WorldWideScience

Sample records for skin fibroblast lines

  1. Lymphoblastoid lines and skin fibroblasts from patients with tuberous sclerosis are abnormally sensitive to ionizing radiation and to a radiomimetic chemical

    Lymphoblastoid lines, derived by transforming peripheral blood lymphocytes with Epstein-Barr virus, and skin fibroblast lines were established from two patients with tuberous sclerosis. The number of viable lymphoblastoid cells was determined by their ability to exclude the vital dye trypan blue after their irradiation with x-rays or 254 nm ultraviolet light. The growth of fibroblasts was determined by their ability to form colonies after treatment with the radiomimetic, DNA-damaging chemical N-methyl-N'-nitro-N-nitrosoguanidine. The tuberous sclerosis lymphoblastoid lines were hypersensitive to x-rays but had normal sensitivity to the ultraviolet radiation. The tuberous sclerosis fibroblast lines were hypersensitive to the N-methyl-N'-nitro-N-nitrosoguanidine. The hypersensitivity of tuberous sclerosis cells to x-rays and to N-methyl-N'-nitro-N-nitrosoguanidine is believed to reflect defective repair of DNA damaged by these agents and may provide the basis for in vitro, including prenatal, diagnostic tests for tuberous sclerosis

  2. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  3. Cultures of cancer patient's skin tissue fibroblast and radiosensitivity assay

    In order to test the radiosensitivity of normal skin tissue, the authors cultured cancer patient's skin tissue fibroblast, surviving fraction experiment was employed to provide data for understanding of the different radiosensitivity among the cancer patients, Method: cancer patient's skin tissue fibroblast were cultured in vitro by the way of tar's attachment, cells were irradiated by graded doses of γ-ray , cell dose response experiment was used to test the radiosensitivity of cell. Result: Cancer patient's skin fibroblast could be propagated and passaged by the method of culture in vitro. Radiosensitivity are different among the various cancer patient's skin tissue fibroblasts

  4. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  5. Treatment of Skin Avulsion Injuries with Basic Fibroblast Growth Factor

    Hajime Matsumine, MD, PhD

    2015-01-01

    Summary: This report describes favorable outcomes in 9 patients with skin avulsion injuries of the extremities who underwent full-thickness skin grafting and basic fibroblast growth factor (bFGF) application. Following removal of contaminated subcutaneous fat tissue on the inside of skin, the avulsed skin was processed into a full-thickness skin graft, with as much of the skin used as possible irrespective of damage. Several drainage holes (5–10 mm in diameter) were made on the graft for drai...

  6. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir;

    2002-01-01

    -assisted microscope work-station. For evaluation of cell morphology, cell contours were recognized semiautomatically and used for determination of cell area, cell spreading and number and length of processes. We found that the cellular displacement of the buccal fibroblasts was only approximately 50% of the cellular...... displacement of periodontal and skin fibroblasts. The decreased cellular displacement of the buccal fibroblasts was found to be due to both lower cellular speed and less persistence in direction. The buccal fibroblasts also displayed smaller areas and longer processes. The differences in cellular morphology...

  7. Extracellular depolymerization of hyaluronic acid in cultured human skin fibroblasts

    The chain length of [3H]hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of [3H]glucosamine was investigated. [3H]Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts

  8. Histamine inhibits differentiation of skin fibroblasts into myofibroblasts.

    Lin, Lin; Yamagata, Kaoru; Nakayamada, Shingo; Sawamukai, Norifumi; Yamaoka, Kunihiro; Sakata, Kei; Nakano, Kazuhisa; Tanaka, Yoshiya

    2015-07-31

    Histamine and TGF-β, major mediators secreted by mast cells, are involved in skin inflammation and play critical roles in the pathogenesis of systemic sclerosis. However, the roles of signaling mechanisms in the development of skin fibrosis remain largely unclear. Here we show that histamine suppressed the expression of α smooth muscle actin (αSMA), a marker of myofibroblasts, induced by TGF-β1 in skin fibroblasts. Histamine H1-receptor (H1R), but not H2-receptor (H2R) or H4-receptor (H4R), was expressed on skin fibroblasts at both mRNA and protein levels. Interestingly, an H1R antagonist, but not H2R or H4R antagonists, antagonized the histamine-mediated suppression of αSMA expression by TGF-β1. Correspondingly, phosphorylated Smad2 was detected after treatment with TGF-β1, whereas the addition of histamine inhibited this phosphorylation. Taken together, histamine-H1R decreased TGF-β1-mediated Smad2 phosphorylation and inhibited differentiation of skin fibroblasts into myofibroblasts. PMID:26036574

  9. Studies of the in vivo radiosensitivity of human skin fibroblasts

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  10. Proliferation index of camel skin fibroblast cells as nuclear donor

    Jaiselmeri is an excellent breed of riding camel, found in Jaiselmer and other adjoining districts of Western Rajasthan in India. Jaiselmeri camel like other pack animals are declining in India over the years due to increased mechanization and control of desert agriculture to some extent. The deep freezing technology on camel semen is poorly developed in India. The somatic cell technology has been developed at this Institute as an alternative tool of long-term conservation on endangered livestock breeds. For this study, samples of (0.25 cm2) skin tissue were collected from ear biopsy from elite male germplasm from National Research Centre on Camel, Bikaner. Skin tissues were cultured at 37 deg. C in Medium (DMEM+ Ham's F-12 nutritive mixture) supplemented with 10% fetal bovine serum, L-Glutamine and antibiotics in an incubator under 98% humidified and 5% Co2 atmosphere. The cell explants were visible from 12-16 days of culture. The cells were allowed to confluent in the TC flasks for additional 3-5 days till nearly 80% surface area is covered by the cells. The primary cells were harvested by usual trypsin-EDTA protocol. The cells were counted using Neubar's haemocytometer and cells were passaged subsequently. Since no reference values were available for camel skin fibroblasts, the present experiments were conducted to study the cell proliferation index, population doubling time, standard growth curve and cell viability using standard growth and MTT assays. It is shown that growth curves showed true sigmoid shape but a marked variation between the cell lines was observed. Moreover, cells, which grew faster attained plateau on day 6 while in slow growing cultures, the curve showed elevation even on day 8. This is probably due to non-availability of growing space for cells having faster growth rate. It was concluded that all animals do not produce karyoplast donors at equal rate or efficiency. Therefore, the growing cultures need to be compared with standard growth

  11. Extracellular depolymerization of hyaluronic acid in cultured human skin fibroblasts

    Nakamura, T.; Takagaki, K.; Kubo, K.; Morikawa, A.; Tamura, S.; Endo, M. (Hirosaki Univ. School of Medicine (Japan))

    1990-10-15

    The chain length of ({sup 3}H)hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of ({sup 3}H)glucosamine was investigated. ({sup 3}H)Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts.

  12. Treatment of Skin Avulsion Injuries with Basic Fibroblast Growth Factor

    Hajime Matsumine, MD, PhD

    2015-04-01

    Full Text Available Summary: This report describes favorable outcomes in 9 patients with skin avulsion injuries of the extremities who underwent full-thickness skin grafting and basic fibroblast growth factor (bFGF application. Following removal of contaminated subcutaneous fat tissue on the inside of skin, the avulsed skin was processed into a full-thickness skin graft, with as much of the skin used as possible irrespective of damage. Several drainage holes (5–10 mm in diameter were made on the graft for drainage from the graft bed and to prevent seroma and hematoma formation. Genetically recombinant human bFGF was sprayed at a dose of 1 μg/cm2 onto the graft bed, which was then covered with the graft and sutured. Pressure immobilization with ointment gauzes and elastic bandages was administered for 1 week postoperatively, and the surface of the skin grafts that did not take was scraped away, preserving the revascularized dermal component on the debrided raw surface as much as possible. bFGF was sprayed again onto the debrided surface to promote epithelialization. Wound closure was achieved in all cases with conservative therapy. The surgical procedure was effective in preventing postoperative ulcer formation and scar contracture and resulted in wound healing with the formation of good-quality, flexible scars.

  13. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  14. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  15. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Colin A. Grant

    2015-05-01

    Full Text Available Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  16. Tattoo ink nanoparticles in skin tissue and fibroblasts.

    Grant, Colin A; Twigg, Peter C; Baker, Richard; Tobin, Desmond J

    2015-01-01

    Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells. PMID:26171294

  17. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  18. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation.

    Yang, Hongming; Hu, Chao; Li, Fengyu; Liang, Liming; Liu, Lingying

    2013-06-01

    Burn injury-mediated destruction of the skin barrier normally induces microbial invasion, in turn leading to the development of systemic infection and occasional septic shock by the release of endotoxins. The objective of this work was to study the influence of lipopolysaccharide (LPS) on the biological characteristics of normal skin fibroblasts and to elucidate the influence of LPS in the initial stage of skin wound healing. Twenty patients with hypertrophic scar in proliferative stage were selected randomly and primary cultures were established from fibroblasts derived from their hypertrophic scar tissue and normal skin. Normal skin fibroblasts of passage 3 were stimulated with different concentrations of LPS. LPS stimulated the proliferation and collagen synthesis of fibroblasts within a certain extent of concentrations (0.005-0.5 μg/mL) (P effect on normal skin fibroblasts-continuous passage of these fibroblasts resulted in ultrastructural pattern similar to fibroblasts derived from hypertrophic scar tissue, and the findings was substantiated by hematoxylin and eosin staining and immunohistochemistry detection of proliferation cell nuclear antigen, type I procollagen and α-smooth muscle actin. Our results suggest that LPS might convert normal skin fibroblasts to hypertrophic scar tissue fibroblasts and participate in the formation of hypertrophic scar; hence, appropriate concentration of LPS may have no effect or be beneficial to skin wound healing, whereas excessive concentration of LPS may delay the time of wound healing. PMID:23653386

  19. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  20. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  1. Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts*

    Otomo, Takanobu; Higaki, Katsumi; Nanba, Eiji; Ozono, Keiichi; Sakai, Norio

    2011-01-01

    Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ∼2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ∼3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH4Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates. PMID:21846724

  2. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J.; Fisher, Gary J.

    2011-01-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482–90, 2006, J Invest Dermatol 130:1697–706, 2010). In furth...

  3. Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor

    Rui Song; Hui-Ning Bian; Wen Lai; Hua-De Chen; Ke-Seng Zhao

    2011-01-01

    Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts...

  4. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  5. Matrine inhibits proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB

    WU Yan-an; GAO Chun-fang; WANG Hao; HUANG Chao; KONG Xian-tao

    2001-01-01

    To study the effect of matrine on proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB (PDGF-BB). Methods: Mouse skin fibroblasts were obtained from newborn ⅠCR mice and propagated in vitro. Proliferation of cell was analyzed by mitochondrial reduction of tetrazolium salt MTT and actual cell count. Results: Matrine (50 to 500 μg/ml) caused dose-dependent reduction of serum-stimulated cell growth. Growth inhibition was totally reversed after removal of the drug. Matrine also inhibited PDGF-BB induced cell growth dose-dependently. Conclusion: Matrine exhibits potent anti-proliferation effect on mouse skin fibroblast. This effect appears to be mediated by decrease of PDGF-induced growth. These results suggest that matrine might have preventive and therapeutic implication in skin fibrosis.

  6. Cloned goats (Gapra hircus) from foetal fibroblast cell lines

    2000-01-01

    Mammalian cloning has been one of the most active research topics in the world.Cloning with in vitro culured foetal fibroblast cells,in comparison with embryonic cells,can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals,but also to utilize the unlimited fibroblast cells to produce large numbers of clonings.The preliminary results are as follows:(i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%,77% and 35%,31%,respectively.There is no significant statistical difference between them.(ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines,which are the first cloned mammals from somatic cells in China.This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development,and a novel technique for the cloning of animals with a high-level expression of transgene(s).

  7. Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts.

    Naffakh, N.; Henri, A; Villeval, J L; Rouyer-Fessard, P; Moullier, P; Blumenfeld, N; Danos, O; Vainchenker, W; Heard, J M; Beuzard, Y.

    1995-01-01

    We have examined whether the secretion of erythropoietin (Epo) from genetically modified cells could represent an alternative to repeated injections of the recombinant hormone for treating chronic anemias responsive to Epo. Primary mouse skin fibroblasts were transduced with a retroviral vector in which the murine Epo cDNA is expressed under the control of the murine phosphoglycerate kinase promoter. "Neo-organs" containing the genetically modified fibroblasts embedded into collagen lattices ...

  8. Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor

    Rui Song

    2011-05-01

    Full Text Available Basic fibroblast growth factor (bFGF regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL. The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01. The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05, while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01. These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

  9. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment.

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-10-01

    This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. PMID:26363275

  10. Possible role for metallothionein in the cellular defense mechanism against UVB irradiation in neonatal human skin fibroblasts

    The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. (Author)

  11. Sperm functional changes and fertilization in vitro in co-culture with human skin fibroblasts.

    Wetzels, A M; Van der Auwera, I; Bastiaans, B A; Goverde, H J; Hollanders, H M; Hamilton, C J

    1995-01-01

    This study was undertaken to evaluate the effects of human skin fibroblast monolayers on human sperm function and fertilization in vitro. Sperm function was evaluated using the hamster oocyte penetration assay (HOPA) and zona binding assay (ZBA) in medium alone and in co-culture with human skin fibroblast monolayers and suspensions. The ZBA was also studied in fibroblast conditioned medium and in bovine oviduct cell monolayers and suspensions. Fertilization was measured both in in-vitro fertilization (IVF) couples with a normal semen analysis (first study; randomized) and in IVF couples with subnormal semen analysis (second study; each patient served as its own control). The HOPA results were not significantly different with or without fibroblasts. In all co-culture situations and in conditioned medium the ZBA scored significantly lower than medium alone. No significant differences with respect to IVF were observed between the co-culture and the control group in either study. The mean fertilization rate per patient was approximately 60% in the group with normal semen analysis and approximately 25% in the group with abnormal semen analysis. From this study we conclude that although co-culture with human skin fibroblasts and epithelial cells influences the results of some sperm function tests, it does not influence fertilization in vitro. PMID:7745043

  12. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    Lucília Pereira da Silva

    2014-01-01

    Full Text Available Fibroblasts colonization into injured areas during wound healing (WH is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH.

  13. Effects of recombinant human epidermal growth factor on the proliferation and radiation survival of human fibroblast cell lines in vitro

    Kim, Hyun Sook; Kang, Ki Mun; Na, Jae Boem; Chai, Gyu Young [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of); Lee, Sang Wook [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2006-09-15

    To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. Number of fibroblast was significant more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

  14. ADHESION AND SPREADING OF HUMAN SKIN FIBROBLASTS ON PHYSICOCHEMICALLY CHARACTERIZED GRADIENT SURFACES

    RUARDY, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x

  15. Enhanced biosynthesis of human skin collagenase in fibroblast cultures from recessive dystrophic epidermolysis bullosa.

    Valle, K J; Bauer, E A

    1980-01-01

    Using a sensitive, specific immunoprecipitation method, the biosynthesis of human skin collagenase was studied in fibroblast cultures from patients with recessive dystrophic epidermolysis bullosa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of solubilized immunoprecipitates showed two 3H-labeled procollagenase species that comigrated with those harvested from control cultures. Recessive dystrophic epidermolysis bullosa cultures accumulated increased amounts of collagenase. Both ...

  16. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling.

    Kevin J Ashcroft

    Full Text Available Keloid disease (KD is an abnormal cutaneous fibroproliferative disorder of unknown aetiopathogenesis. Keloid fibroblasts (KF are implicated as mediators of elevated extracellular matrix deposition. Aberrant secretory behaviour by KF relative to normal skin fibroblasts (NF may influence the disease state. To date, no previous reports exist on the ability of site-specific KF to induce fibrotic-like phenotypic changes in NF or normal scar fibroblasts (NS by paracrine mechanisms. Therefore, the aim of this study was to investigate the influence of conditioned media from site-specific KF on the cellular and molecular behaviour of both NF and NS enabled by paracrine mechanisms. Conditioned media was collected from cultured primary fibroblasts during a proliferative log phase of growth including: NF, NS, peri-lesional keloid fibroblasts (PKF and intra-lesional keloid fibroblasts (IKF. Conditioned media was used to grow NF, NS, PKF and IKF cells over 240 hrs. Cellular behavior was monitored through real time cell analysis (RTCA, proliferation rates and migration in a scratch wound assay. Fibrosis-associated marker expression was determined at both protein and gene level. PKF conditioned media treatment of both NF and NS elicited enhanced cell proliferation, spreading and viability as measured in real time over 240 hrs versus control conditioned media. Following PKF and IKF media treatments up to 240 hrs, both NF and NS showed significantly elevated proliferation rates (p<0.03 and migration in a scratch wound assay (p<0.04. Concomitant up-regulation of collagen I, fibronectin, α-SMA, PAI-1, TGF-β and CTGF (p<0.03 protein expression were also observed. Corresponding qRT-PCR analysis supported these findings (P<0.03. In all cases, conditioned media from growing marginal PKF elicited the strongest effects. In conclusion, primary NF and NS cells treated with PKF or IKF conditioned media exhibit enhanced expression of fibrosis-associated molecular markers

  17. Assessment of the potential skin irritation of lysine-derivative anionic surfactants using mouse fibroblast and human keratinocytes as an alternative to animal testing

    Sánchez Molina, Lourdes; Mitjans Arnal, Montserrat; Infante Martínez-Pardo, Ma. Rosa; Vinardell Martínez-Hidalgo, Ma. Pilar

    2004-01-01

    Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MT...

  18. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication.

    Lee, Wonhye; Debasitis, Jason Cushing; Lee, Vivian Kim; Lee, Jong-Hwan; Fischer, Krisztina; Edminster, Karl; Park, Je-Kyun; Yoo, Seung-Schik

    2009-03-01

    We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing. PMID:19108884

  19. DNA-protein crosslinking in normal human skin fibroblasts exposed to solar ultraviolet wavelengths

    Three normal human skin fibroblast cell lines were exposed to the simulated solar UV radiation produced by a fluorescent sunlamp (wavelength components shorter than either 295, 305 or 315 nm were excluded). The level of DNA-protein crosslinks (DPC) was then measured in those cells either immediately after irradiation or following a 24 h incubation. Cells were exposed to fluences that induce similar levels of DPC. For cells exposed to 10 kJ m-2 of sunlamp UV>295 nm, the level of DPC exhibited a 2-5-fold increase following incubation. In contrast, 40-100% of the DPC were removed upon incubation of cells irradiated with either 10 kJ m-2 of sunlamp UV>305 nm or 150 kJ m-2 of sunlamp UV>315 nm. A major difference between the effects induced by these wavelength regions is that, in addition to DPC, a very high level of pyrimidine dimers is also produced by sunlamp UV>295 nm, whereas much lower dimer yields result from treatment with either sunlamp UV>305 nm or sunlamp UV>315 nm. A potential role for type II DNA topoisomerase in the formation of these DPC resulting from either the change in conformational structure caused by the presence of a high level of dimers or an involvement of this enzyme in dimer excision repair is discussed. (author)

  20. Impact of intense pulsed light irradiation on cultured primary fibroblasts and a vascular endothelial cell line

    Wu, Di; Zhou, BingRong; Xu, Yang; Yin, Zhiqiang; Luo, Dan

    2012-01-01

    The aim of this study was to determine the effects of intense pulsed light (IPL) on cell proliferation and the secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in human fibroblasts and vascular endothelial cell lines, and to investigate the effects of IPL on the mRNA expression levels of type I and III procollagens in cultured human fibroblasts. Foreskin fibroblasts and a vascular endothelial cell line (ECV034) were cultured and treated with various ...

  1. Morphofunctional characteristics of fibroblasts (McCoy cell line) cultured with magnesium preparations

    L. V. Didenko; T. G. Borovaya; E. A. Kost; E A Ulubieva; A. V. Timofeeva; A. G. Avtandilov

    2015-01-01

    Aim. To study the effect of magnesium orotate, magnesium/pyridoxine combination and magnesium sulfate on fibroblast morphofunctional characteristics in cell culture of fibroblasts (McCoy line).Material and methods. The study of fibroblasts (McCoy line) with the addition of magnesium-containing preparations (magnesium orotate, magnesium/pyridoxine combination, magnesium sulphate) to the culture medium was performed using scanning and transmission electron microscopy.Results. When adding into t...

  2. Ontogeny of expression of basic fibroblast growth factor and its receptors in human fetal skin

    CHEN Wei; FU Xiao-bing; GE Shi-li; SUN Tong-zhu; SHENG Zhi-yong

    2005-01-01

    Objective : To investigate the expression characteristics of basic fibroblast growth factor (bFGF)and its receptors, flg ( FGFR1 ) and bek ( FGFR2), in fetal skin at different gestational ages underlying the relevance of these 3 proteins to skin development and the mechanisms underlying the phenotypic transition from scarless to scarforming healing.Methods: Eighteen specimens of fetal skin biopsies of human embryo were obtained from spontaneous abortions at different gestational ages of 13-32 weeks. Gene expression of bFGF, bek and flg was examined with reverse transcription-polymerase chain reaction (RT-PCR). The dynamic expression and distribution of these 3 proteins were detected with streptavidin peroxidase ( SP )immunohistochemical staining method.Results: In the early gestational fetal skin, genes of bFGF and flg were strongly expressed and more protein contents of these 2 proteins were found as compared with the genes at late gestation fetal skin (2.446 ± 0.116 and 2.066 ± 0. 152 versus 2.157 ± 0. 101 and 1.818 ± 0.086,respectively, P < 0.05). On the contrary, the levels of gene expression and protein content of bek were not differently expressed in the early gestational fetal skin versus the late ones. Protein particles of bFGF were mainly distributed in the epidermal cells and some fibroblasts. Bek was mainly located in the cell membrane and cytoplasm of epidermal cells while flg protein was principally located in the epidermal cells, endothelial cells and some fibroblasts.Conclusions: The endogenous bFGF and their receptors might be involved in the cutaneous development at fetal stage. The differently expressing levels of bFGF and flg during gestation may be related to scarless or scarforming repair during gestation.

  3. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    The specific binding of soluble 125I-human plasma fibronectin (125I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of 125I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of 125I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10-8M (early passage) and 4.2 x 10-8M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function

  4. Cultured skin fibroblasts from patients with porokeratosis are hypersensitive to the lethal effects of X-radiation

    Porokeratosis is an autosomal dominant inherited skin disorder. The lesions are characterized by localized abnormal keratinization and may develop into malignant tumors. To determine the cellular basis of the cancer susceptibility associated with this skin condition, we examined the colony-forming ability of X-ray or ultraviolet (UV) light irradiated, cultured fibroblasts derived from porokeratosis patients' normal-appearing skin. Four fibroblast strains derived from four porokeratosis patients' skin were significantly hypersensitive to the lethal effects of X-radiation. However, they all showed a similar sensitivity to strains from normal donors to 254 nm UV light. The hypersensitivity to X-ray radiation in cultured skin fibroblasts from porokeratosis patients suggests an inherent instability of cellular DNA and may prbably be associated with the cancer-prone nature of this skin condition. (author)

  5. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents

  6. Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts

    Ultraviolet A radiation participates in cytotoxicity and carcinogensis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). (Author)

  7. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects

  8. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts.

    Smith, D. W.; Scriver, C R; Tenenhouse, H S; Simell, O.

    1987-01-01

    Lysinuric protein intolerance (LPI) is an autosomal recessive phenotype consistent with impaired transport of cationic amino acids at the basolateral membrane of intestinal and renal epithelia. On the assumption that the basolateral membrane of epithelial cells and plasma membrane of parenchymal cells are functional analogues, we studied transport of cationic amino acids by cultured skin fibroblasts from LPI and control subjects matched for age, sex, and site of biopsy. We measured Na+-indepe...

  9. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts

    Noël, D; Pelegrin, M; Brockly, F;

    2000-01-01

    In vivo production and systemic delivery of therapeutic antibodies by engineered cells might advantageously replace injection of purified antibodies for treating a variety of life-threatening diseases, including cancer, acquired immunodeficiency syndrome, and autoimmune diseases. We report here...... that skin fibroblasts retrovirally transduced to express immunoglobulin genes can be used for sustained long-term systemic delivery of cloned antibodies in immunocompetent mice. Importantly, no anti- idiotypic response against the ectopically expressed model antibody used in this study was observed...

  10. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts.

    Keyse, S M; Applegate, L. A.; Tromvoukis, Y; Tyrrell, R M

    1990-01-01

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents.

  11. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells. (author)

  12. Bone Marrow Cell Transfer into Fetal Circulation Can Ameliorate Genetic Skin Diseases by Providing Fibroblasts to the Skin and Inducing Immune Tolerance

    Chino, Takenao; Tamai, Katsuto; Yamazaki, Takehiko; Otsuru, Satoru; Kikuchi, Yasushi; Nimura, Keisuke; Endo, Masayuki; Nagai, Miki; Uitto, Jouni; Kitajima, Yasuo; Kaneda, Yasufumi

    2008-01-01

    Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent protein-transgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and ...

  13. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  14. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts.

    Yang, Zhongcai; Liu, Jun; Liu, Hongliang; Qiu, Mingning; Liu, Qingqing; Zheng, Liming; Pang, Meijun; Quan, Fusheng; Zhang, Yong

    2013-06-01

    Novel stem cells expressing stage-specific embryonic antigen 3 (SSEA-3) reside among human dermal fibroblasts and are known as multilineage-differentiating stress-enduring (Muse) cells. They enhance the generation efficiency of induced pluripotent stem cells. However, Muse cells have only been found in humans. We aimed to isolate SSEA3-positive cells from terminally differentiated skin fibroblasts of adult goat and determine their pluripotency. Cell clusters from SSEA3(+) populations possessed stem cell-like morphological features and normal karyotypes, were consistently positive for alkaline phosphatase, and expressed stem cell pluripotency markers. These SSEA3(+) cells remained undifferentiated over eight passages in suspension culture and were able to differentiate into cells of all three germ layers in vitro and in vivo. Our combined findings suggest that a subset of adult stem cells expressing SSEA3 also exist among adult goat skin fibroblasts. We are the first to report that multipotent adult goat cells exist among terminally differentiated goat skin in suspension culture. Our results also provide a promising platform for generation of a transgenic goat, because the undifferentiated state of stem cells was thought to be more efficient as donor cells for somatic cell nuclear transfer. PMID:23668861

  15. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  16. Induced pluripotent stem cell lines derived from equine fibroblasts.

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-09-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species. PMID:21347602

  17. Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids

    The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to γ radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several γ-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

  18. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic. PMID:24602819

  19. Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage

    Purpose: The pathophysiological aspects of radiation-induced fibrosis (RIF) have not been well characterized. We therefore cultured human fibroblasts from samples of skin with RIF to investigate the long-term effects of therapeutic irradiation. Materials and methods: Biopsies of normal and RIF skin were obtained from patients previously irradiated for cancer, without recurrence. Cells were extracted from dermis samples by the outgrowth technique, seeded as monolayers and cultured at confluence. Enzyme activities and proteins were assayed, RNA was isolated and Northern blot analysis was performed on surviving cells between passages 2 and 5. Results: RIF cell cultures displayed heterogeneous fibroblasts populations. The initial outgrowth consisted of one-third small cells that floated rapidly, one-third spindle-shaped cells migrating far from the explant to form islets and one-third large pleiomorphic cells. In subsequent subcultures, surviving cells exhibited either myofibroblastic characteristics with a normal proliferative capacity or senescent morphology with a reduced proliferative capacity. These RIF cells had a brief finite lifespan, with dramatically reduced growth rate during their initial outgrowth and the following passages. Study of the antioxidant metabolism showed that Mn superoxide dismutase and catalase activities were significantly weaker in surviving RIF cells than healthy fibroblasts. These exhausted RIF cells exhibited no overexpression of transforming growth factor β or tissue inhibitor of metalloproteinase. Conclusion: Irradiation may lead to apparently contradictory effects such as fibrosis and necrosis in clinical practice. In cell culture, we observed two main cellular phenotypes which may be related to both processes, i.e. myofibroblast-like cells and fibrocyte-like cells. These two phenotypes may represent two steps in the differentiation induced as a long-term effect of therapeutic irradiation of the skin. Cell culture probably

  20. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  1. Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome

    Cinzia Signorini

    2014-01-01

    Full Text Available Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT, a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16 we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs, F4-Neuroprostanes (F4-NeuroPs, nonprotein bound iron (NPBI, and (4-HNE PAs, and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds, F2-IsoPs (7.5-folds NPBI (2.3-folds, 4-HNE PAs (1.48-folds, and GSSG (1.44-folds were detected, with significantly decreased GSH (−43.6% and GSH/GSSG ratio (−3.05 folds. A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.

  2. Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts

    Kashuba, Elena

    2015-05-12

    We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells. Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation. Cells passed more than 300 population doublings, and two out of three tested clones gave rise to tumors in experimental animals. Transformed cells showed anchorage-independent growth and loss of contact inhibition; they expressed epithelial markers, such as E-cadherin and β-catenin. Transformed cells showed increased telomerase activity, disturbance of the cell cycle, and chromosomal instability. Taken together, our data suggest that S18-2 is a newly identified oncoprotein that may be involved in cancerogenesis.

  3. Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy

    Background and purpose: There is increasing evidence for patient-to-patient variation in the response of normal tissue to radiotherapy. Recently, it has been suggested that accumulation of functional fibrocytes may be a key step in the development of radiation-induced fibrosis. Therefore, we have examined a possible relationship between the differentiation state of untreated fibroblasts and the risk of radiation-induced subcutaneous fibrosis in individual patients. Materials and methods: We used skin fibroblast cultures isolated from eight postmastectomy radiotherapy patients whose individual clinical radiosensitivity was assessed by the mean excess risk of fibrosis. Different types of potentially mitotic progenitor fibroblasts (MF) and postmitotic functional fibrocytes (PMF) in the terminal differentiation lineage (MFI approaches MFII approaches MFIII approaches PMF) were scored morphologically in clonal culture. Progression of differentiation was quantified by the ratio L/E of colony-forming late (MFIII and late MFII) and early (MFI and early MFII) progenitors. Results: We observed a correlation between the ratio L/E and the mean risk of fibrosis (rS=0.743, P=0.03), indicating an approximately 10-fold increase in L/E with an increasing risk of fibrosis. This was paralleled by a decreasing trend in the absolute numbers of early progenitor types. By contrast, there was no significant correlation between the plating efficiency and the risk of fibrosis. Conclusions: The data suggest that the risk of fibrosis increases with the progression of the differentiation of untreated progenitor fibroblasts, indicating that the progression of fibroblast differentiation may be a co-factor in the development of radiation-induced fibrosis. If this hypothesis is validated, it provides a rationale for a novel predictive test to identify patients with an increased risk of subcutaneous fibrosis. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres.

    Hanna Wendt

    Full Text Available BACKGROUND: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. METHODOLOGY/PRINCIPAL FINDINGS: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E for microscopic analyses. CONCLUSION/SIGNIFICANCE: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

  5. Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes.

    Sheipouri, Diba; Grant, Ross; Bustamante, Sonia; Lovejoy, David; Guillemin, Gilles J; Braidy, Nady

    2015-06-01

    Acute UVB exposure triggers inflammation leading to the induction of indoleamine 2,3 dioxygenase (IDO1), one of the first enzymes in the kynurenine pathway (KP) for tryptophan degradation. However, limited studies have been undertaken to determine the catabolism of tryptophan within the skin. The aim of this study was two fold: (1) to establish if the administration of the proinflammatory cytokine interferon-gamma (IFN-γ) and/or UVB radiation elicits differential KP expression patterns in human fibroblast and keratinocytes; and (2) to evaluate the effect of KP metabolites on intracellular nicotinamide adenine dinucleotide (NAD(+) ) levels, and cell viability. Primary cultures of human fibroblasts and keratinocytes were used to examine expression of the KP at the mRNA level using qPCR, and at the protein level using immunocytochemistry. Cellular responses to KP metabolites were assessed by examining extracellular lactate dehydrogenase (LDH) activity and intracellular NAD(+) levels. Major downstream KP metabolites were analyzed using GC/MS and HPLC. Our data shows that the KP is fully expressed both in human fibroblasts and keratinocytes. Exposure to UVB radiation and/or IFN-γ causes significant changes in the expression pattern of downstream KP metabolites and enzymes. Exposure to various concentrations of KP metabolites showed marked differences in cell viability and intracellular NAD(+) production, providing support for involvement of the KP in the de novo synthesis of NAD(+) in the skin. This new information will have a significant impact on our understanding of the pathogenesis of UV related skin damage and the diagnosis of KP related disease states. PMID:25639585

  6. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  7. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    Jaroslav Zelenka

    2015-01-01

    Full Text Available A moderate elevation of reactive oxygen species (ROS production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5′AMP-activated protein kinase (AMPK, and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α transcription. A replicative aging of fibroblasts (L0 with a constant (LC, or intermittent 5 mM L-lactate (LI in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1, less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging.

  8. Action spectra for inactivation of normal and xeroderma pigmentosum human skin fibroblasts by ultraviolet radiations

    Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (1BR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm, changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. These results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm. (author)

  9. Evaluation of EPS-PCL Nanofibers as a Nanobiocomposite for Artificial Skin Based on Dermal Fibroblast Culture

    Sang-Myung Jung

    2013-01-01

    Full Text Available Several natural bioactive molecules have been used in the development of scaffolds to enhance biocompatibility or biodegradability and macroalgae contain many bioactive compounds that regulate the physiological activities of cells. In this study, extrapolymeric substances (EPS from brown algae, Undaria pinnatifida, were dispersed in poly-ε-caprolactone (PCL nanofiber, fabricated by electrospinning technique to mimic natural extracellular matrix (ECM, and tested as a scaffold for the production of artificial skin using rat primary fibroblasts. The level of adhesion, viability, and infiltration of cells on the EPS-PCL nanofibers were then assessed. The primary fibroblasts attached well, had good viability, and infiltrated through the nanofiber mat without cytotoxicity. Additionally, fibroblast on EPS-PCL nanofiber overcame the stress derived from high cell density at limited area. These results indicate that EPS-imbedded nanofiber has the potential to be used as scaffolds to develop artificial skin or as wound-healing nanomedicines to regenerate injured skin.

  10. Oxidative stress in skin fibroblasts cultures from patients with Parkinson's disease

    Arenas Joaquín

    2010-10-01

    Full Text Available Abstract Background In the substantia nigra of Parkinson's disease (PD patients, increased lipid peroxidation, decreased activities of the mitochondrial complex I of the respiratory chain, catalase and glutathione-peroxidase, and decreased levels of reduced glutathione have been reported. These observations suggest that oxidative stress and mitochondrial dysfunction play a role in the neurodegeneration in PD. We assessed enzymatic activities of respiratory chain and other enzymes involved in oxidative processes in skin fibroblasts cultures of patients with PD. Methods We studied respiratory chain enzyme activities, activities of total, Cu/Zn- and Mn-superoxide-dismutase, gluthatione-peroxidase and catalase, and coenzyme Q10 levels in skin fibroblasts cultures from 20 Parkinson's disease (PD patients and 19 age- and sex- matched healthy controls. Results When compared with controls, PD patients showed significantly lower specific activities for complex V (both corrected by citrate synthase activity and protein concentrations. Oxidized, reduced and total coenzyme Q10 levels (both corrected by citrate synthase and protein concentrations, and activities of total, Cu/Zn- and Mn-superoxide-dismutase, gluthatione-peroxidase and catalase, did not differ significantly between PD-patients and control groups. Values for enzyme activities in the PD group did not correlate with age at onset, duration, scores of the Unified Parkinson's Disease Rating scales and Hoehn-Yahr staging. Conclusions The main result of this study was the decreased activity of complex V in PD patients. This complex synthesizes ATP from ADP using an electrochemical gradient generated by complexes I-IV. These results suggest decreased energetic metabolism in fibroblasts of patients with PD.

  11. Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents

    Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 days until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage

  12. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  13. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  14. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury

    Jie Zhou

    2016-03-01

    Full Text Available Our previous study has suggested that downregulated microRNA (miR-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2 and vascular endothelial growth factor (VEGF-A were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis.

  15. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  16. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. PMID:22151394

  17. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  18. Content of Androgen Receptor in Cultured Genital Skin Fibroblast From Different Ages of Chinese Normal Men

    卢建; 何立敏; 张金山; 杨震; 周云

    1995-01-01

    A ratpid, simple, reliable method is described for assaying androgen receptor (AR) in dispersed, whole, cultured human genital skin fibroblasts (GSF) with a synthetic androgen, 3H-methyltrienolone (3H-R1881). Receptors for androgen in GSF exhiblt high affinity (Kd=3.0±0.1 nmol/L), low binding capacity and androgen specificity. The content of AR in cultured GSF from 40 normal men varying in age from 1.5—60 years u:as also investigated by this assay. Scatchard analysis and slngle plot revealed the presence of 4.500-8500 binding sites per cell, mean number of AR in GSF of these men is 6288±1082 binding sites/cell. No significant difference was observed in the content of AR in different age groups. This result showed that the content of AR in these ceils did not change with age.

  19. Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures.

    Webb, Sarah J; Zychowski, Gregory V; Bauman, Sandy W; Higgins, Benjamin M; Raudsepp, Terje; Gollahon, Lauren S; Wooten, Kimberly J; Cole, Jennifer M; Godard-Codding, Céline

    2014-12-16

    Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 μM following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 μM benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells. PMID:25384208

  20. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh

    2016-01-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts ...

  1. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  2. Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells

    Ali Beman Zaree Mahmodabady

    2006-01-01

    Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 μM CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

  3. Dramatic increase in oxidative stress in carbon-irradiated normal human skin fibroblasts

    Skin complications were recently reported after carbon-ion (C-ion) radiation therapy. Oxidative stress is considered an important pathway in the appearance of late skin reactions. We evaluated oxidative stress in normal human skin fibroblasts after carbon-ion vs. X-ray irradiation. Survival curves and radiobiological parameters were calculated. DNA damage was quantified, as were lipid peroxidation (LPO), protein carbonylation and antioxidant enzyme activities. Reduced and oxidized glutathione ratios (GSH/GSSG) were determined. Pro-inflammatory cytokine secretion in culture supernatants was evaluated. The relative biological effectiveness (RBE) of C-ions vs. X-rays was 4.8 at D0 (irradiation dose corresponding to a surviving fraction of 37%). Surviving fraction at 2 Gy (SF2) was 71.8% and 7.6% for X-rays and C-ions, respectively. Compared with X-rays, immediate DNA damage was increased less after C-ions, but a late increase was observed at D10% (irradiation dose corresponding to a surviving fraction of 10%). LPO products and protein carbonyls were only increased 24 hours after C-ions. After X-rays, superoxide dismutase (SOD) activity was strongly increased immediately and on day 14 at D0% (irradiation dose corresponding to a surviving fraction of around 0%), catalase activity was unchanged and glutathione peroxidase (GPx) activity was increased only on day 14. These activities were decreased after C-ions compared with X-rays. GSH/GSSG was unchanged after X-rays but was decreased immediately after C-ion irradiation before an increase from day 7. Secretion of IL-6 was increased at late times after X-ray irradiation. After C-ion irradiation, IL-6 concentration was increased on day 7 but was lower compared with X-rays at later times. C-ion effects on normal human skin fibroblasts seemed to be harmful in comparison with X-rays as they produce late DNA damage, LPO products and protein carbonyls, and as they decrease antioxidant defences. Mechanisms leading to this

  4. Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging

    Quan, Chunji; Cho, Moon Kyun; Perry, Daniel; Quan, Taihao

    2015-01-01

    Background Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported. Results To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA comm...

  5. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  6. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  7. Luteolin decreases the UVA‑induced autophagy of human skin fibroblasts by scavenging ROS.

    Yan, Miaomiao; Liu, Zhongrong; Yang, Huilan; Li, Cuihua; Chen, Hulin; Liu, Yan; Zhao, Minling; Zhu, Yingjie

    2016-09-01

    Luteolin (LUT) is a flavone, which is universally present as a constituent of traditional Chinese herbs, and certain vegetables and spices, and has been demonstrated to exhibit potent radical scavenging and cytoprotective properties. Although LUT has various beneficial effects on health, the effects of LUT on the protection of skin remain to be fully elucidated. The present study investigated whether LUT can protect human skin fibroblasts (HSFs) from ultraviolet (UV) A irradiation. It was found that, following exposure to different doses of UVA irradiation, the HSFs exhibited autophagy, as observed by fluorescence and transmission electron microscopy, and reactive oxygen species (ROS) bursts, analyzed by flow cytometry, to differing degrees. Following incubation with micromolar concentrations of LUT, ROS production decreased and autophagy gradually declined. In addition, the expression of hypoxia‑inducible factor‑1α and the classical autophagy‑associated proteins, LC3 and Beclin 1 were observed by western blotting. Western blot analysis showed that the expression levels of HIF‑1α, LC3‑II and Beclin 1 gradually decreased in the UVA‑irradiated HSFs following treatment with LUT. These data indicated that UVA‑induced autophagy was mediated by ROS, suggesting the possibility of resistance against UV by certain natural antioxidants, including LUT. PMID:27430964

  8. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts.

    Hwang, Eunson; Park, Sang-Yong; Sun, Zheng-wang; Shin, Heon-Sub; Lee, Don-Gil; Yi, Tae Hoo

    2014-06-01

    Exposure to ultraviolet (UV) light causes matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging. The activation of MMP is related to increased interlukin-6 (IL-6) and type I procollagen production, which is regulated by transforming growth factor-β1 (TGF-β1). Activator protein-1 (AP-1) activation induces MMP-1 production and reduces type I procollagen secretion. Fucosterol, which is extracted and purified from the brown algae Hizikia fusiformis, is a phytosterol. We assessed the effects of fucosterol on photodamage and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts by using enzyme-linked immunosorbent assay, Western blot analysis, and reverse transcription-polymerase chain reaction. Our results showed that fucosterol significantly decreased the UVB-induced expression of MMP-1, IL-6, p-c-Jun, and p-c-Fos. Additionally, fucosterol markedly increased the UVB-induced production of type I procollagen and TGF-β1. Our results indicate that fucosterol regulates MMP-1 and type I procollagen expression by modulating AP-1 and TGF-β1 signaling and that MMP-1 activation is correlated with IL-6. These data suggest that fucosterol is a promising botanical agent to protect against skin photodamage. PMID:24142195

  9. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661681

  10. Biochemical mechanisms of skin radiation burns inhibition and healing by the volumetric autotransplantation of fibroblasts and of keratinocytes with fibroblasts composition

    L. V. Altukhova

    2015-09-01

    Full Text Available Mechanisms of influence of volumetric autotransplantation of fibroblasts and of the mixture of fibroblasts and keratinocytes on the development of the local 3rd degree X-ray burn and the radiation skin ulcer in guinea pigs were investigated. We used deepadministration into the irradiation zone on its perimeter of 6 doses, which contained (150–160×103 fibroblasts and (130–140×103 keratinocytes in 100 µl. It is shown that this autotransplantation carried out 1 hour after the irradiation, and then every 24 hours, reduces the area of burn on the 35th day, compared to the control by 63%. Radiation ulcer appears on the 10th day after irradiation and is completely healed on the 25th day. With the same regimen of administration of only fibroblasts containing (200–210×103 cells in 100 µl, these parameters of treatment were equal to 31% on 4th and 35th day, respectively. It is shown that as a result of radiation in the area of burn the level of gene expression of collagen types I and III, elastin, fibronectin, vinculin, decorin, hyaluronansynthases 1, 2, 3, matrix metalloproteinases 1, 2, 3, 7, 9 and hyaluronidase is reduced. Besides, in the burn area the level of gene expression of transforming growth factor α, fibroblast growth factors 1, 2, 8 and anti-inflammatory cytokines – interleukin 10 and transforming growth factor-β1 – is reduced, while the level of gene expression of proinflammatory cytokine (interleykin1β increases. Both types of autotransplantation cause the growth of the expression level of all the structural genes and regulatory proteins of biopolymers and decrease in the expression level of interleukin 1β, which leads to activation of tissue regeneration and healing of the burn wound. Reasonsfor the higher efficiency of autotransplantation using the mixture of fibroblasts and keratinocytes compared to autotransplantation by fibroblasts only are both the larger total number of live cells regularly replacing dead cells in

  11. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  12. Generation of Transgenic Porcine Fibroblast Cell Lines Using Nanomagnetic Gene Delivery Vectors.

    Grześkowiak, Bartosz F; Hryhorowicz, Magdalena; Tuśnio, Karol; Grzeszkowiak, Mikołaj; Załęski, Karol; Lipiński, Daniel; Zeyland, Joanna; Mykhaylyk, Olga; Słomski, Ryszard; Jurga, Stefan; Woźniak, Anna

    2016-05-01

    The transgenic process allows for obtaining genetically modified animals for divers biomedical applications. A number of transgenic animals for xenotransplantation have been generated with the somatic cell nuclear transfer (SCNT) method. Thereby, efficient nucleic acid delivery to donor cells such as fibroblasts is of particular importance. The objective of this study was to establish stable transgene expressing porcine fetal fibroblast cell lines using magnetic nanoparticle-based gene delivery vectors under a gradient magnetic field. Magnetic transfection complexes prepared by self-assembly of suitable magnetic nanoparticles, plasmid DNA, and an enhancer under an inhomogeneous magnetic field enabled the rapid and efficient delivery of a gene construct (pCD59-GFPBsd) into porcine fetal fibroblasts. The applied vector dose was magnetically sedimented on the cell surface within 30 min as visualized by fluorescence microscopy. The PCR and RT-PCR analysis confirmed not only the presence but also the expression of transgene in all magnetofected transgenic fibroblast cell lines which survived antibiotic selection. The cells were characterized by high survival rates and proliferative activities as well as correct chromosome number. The developed nanomagnetic gene delivery formulation proved to be an effective tool for the production of genetically engineered fibroblasts and may be used in future in SCNT techniques for breeding new transgenic animals for the purpose of xenotransplantation. PMID:27048425

  13. Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy

    Objective: To investigate if the occurrence of subcutaneous fibrosis after radiotheraphy in an unselected group of breast cancer patients is related to cellular radiosensitivity of skin fibroblasts as measured in a clonogenic assay. Materials and methods: An in vitro colony-forming assay of normal fibroblast radiosensitivity was applied to primary skin biopsies from 31 breast cancer patients who received post-mastectomy radiotherapy with large doses per fraction (2.7-3.9 Gy) more than 10 years earlier. Three clinical normal-tissue endpoints were assessed. Two late endpoints, subcutaneous fibrosis and telangiectasia, were evaluated in three treatments fields by a single experienced clinician. In addition, skin erythema had been assessed at the end of treatment by members of the staff and junior staff. >From previous analyses of normal tissue response, individual clinical radiosensitivity could be assessed as 'excess risk' of each of the three reactions. This was defined as the difference between the actual observed response in the patient and the expected response estimated from individual treatment characteristics in a linear quadratic (LQ) mixture model and, for the two late endpoints, with correction for the follow-up time. This clinical radioresponsiveness was compared with the in vitro radiosensitivity of the skin fibroblasts. To this end, the fractions of colony-forming cells after graded single doses were fitted by an LQ survival curve using non-linear and linear regression from which the surviving fraction at 3.5 Gy (SF3.5) was estimated. Assessment at 3.5 Gy was chosen to reflect the fraction size during clinical radiotherapy. Results: A statistically significant variability of in vitro radiosensitivity between patients could be detected for both SF2 (P = 0.0095) and SF3.5 (P = 0.0008). A significant correlation was observed between SF3.5 and excess risk of fibrosis (rs -0.46, P = 0.009) while no association was found between fibroblast radiosensitivity and

  14. [Infection of skin fibroblasts in animals with different levels of sensitivity to Leishmania infantum and Leishmania mexicana (Kinetoplastida: Trypanosomatidae)].

    Minero, Miguel Angel; Chinchilla, Misael; Guerrero, Olga Marta; Castro, Alfredo

    2004-03-01

    Infection and multiplication of Leishmania infantum and L. mexicana inside of skin fibroblasts from hamsters, mice and rats was achieved. This process was demonstrated either by counting parasites inside the stained cells or by electronic microscopy studies. In addition multiplication rate differences in the cells from these rodent species were determined, for L. infantum as well as for L. mexicana. Parasite development in hamsters and mice fibroblasts was evident but there was not multiplication in rat cells showing that apparently they are refractory to Leishmania infection. These results suggest that the parasite affinity for each animal, as well as any intracellular environment resistance, could involve genetic factors in the parasite multiplication. On the other hand, presence of amastigote multiplication inside of parasitophorus vacuole, showed by electronic microscopy images, probes a true parasite transformation. Therefore it is suggested that fibroblasts could work as host cells for parasite survival and permanency in the infected animals. PMID:17357424

  15. Thyroid hormone excess stimulates the synthesis of proteoglycan in human skin fibroblasts in culture

    Shishiba, Yoshimasa; Ozawa, Yasunori; Shimizu, Taeko (Division of Endocrinology and Endocrine Research Laboratory, Toranomon Hospital (Japan)); Takeuchi, Yasuhiro; Yokoi, Noriko (Okinaka Memorial Institute for Medical Research, Akasaka, Tokyo (Japan))

    1990-01-01

    We previously demonstrated that proteoglycan accumulated in the affected skin of circumscribed pretibial myxedema of Graves' disease. As an underlying mechanism responsible for the accumulation, we sought to determine whether excess thyroid hormone was partially responsible for the increase in proteoglycan synthesis. Human skin fibroblasts were cultured in Ham's F-10 medium containing 1% Nutridoma with graded doses of T{sub 3}(0.184 x 10{sup -9} to 46 x 10{sup -9} mol/l) and were labelled with ({sup 35}S)sulphate and ({sup 3}H)glucosamine. Proteoglycans were purified by Sephadex G-50, Q-Sepharose chromatography with NaCl-gradient and Sepharose CL-6B chromatography. {sup 35}S and {sup 3}H incorporated into dermatan sulphate proteoglycan and heparan sulphate proteoglycan and {sup 3}H incorporated into hyaluronan were measured. {sup 35}S and {sup 3}H incorporation into dermatan sulphate proteoglycan was minimum at a T{sub 3} concentration of 0.184 x 10{sup -9} mol/l, and increased with increasing doses of T{sub 3} up to 46 x 10{sup -9} mol/l. {sup 35}S and {sup 3}H incorporation into heparan sulphate proteoglycan also increased with increasing-doses of T{sub 3}. {sup 3}H incorporation into hyaluranan was not influenced at all by T{sub 3}. The increased incorporation of {sup 35}S into proteoglycan in high-T{sub 3} culture reflects the increased synthesis of proteoglycan because 1. the extent of sulphation of disaccharides examined by thin-layer chromatography was not altered by T{sub 3}; 2. the specific activity of ({sup 35}S)sulphate was not influenced by T{sub 3}, and 3. T{sub 3} did not decrease the degradation rate of cell-associated proteoglycan. (author).

  16. Thyroid hormone excess stimulates the synthesis of proteoglycan in human skin fibroblasts in culture

    We previously demonstrated that proteoglycan accumulated in the affected skin of circumscribed pretibial myxedema of Graves' disease. As an underlying mechanism responsible for the accumulation, we sought to determine whether excess thyroid hormone was partially responsible for the increase in proteoglycan synthesis. Human skin fibroblasts were cultured in Ham's F-10 medium containing 1% Nutridoma with graded doses of T3(0.184 x 10-9 to 46 x 10-9 mol/l) and were labelled with [35S]sulphate and [3H]glucosamine. Proteoglycans were purified by Sephadex G-50, Q-Sepharose chromatography with NaCl-gradient and Sepharose CL-6B chromatography. 35S and 3H incorporated into dermatan sulphate proteoglycan and heparan sulphate proteoglycan and 3H incorporated into hyaluronan were measured. 35S and 3H incorporation into dermatan sulphate proteoglycan was minimum at a T3 concentration of 0.184 x 10-9 mol/l, and increased with increasing doses of T3 up to 46 x 10-9 mol/l. 35S and 3H incorporation into heparan sulphate proteoglycan also increased with increasing-doses of T3. 3H incorporation into hyaluranan was not influenced at all by T3. The increased incorporation of 35S into proteoglycan in high-T3 culture reflects the increased synthesis of proteoglycan because 1. the extent of sulphation of disaccharides examined by thin-layer chromatography was not altered by T3; 2. the specific activity of [35S]sulphate was not influenced by T3, and 3. T3 did not decrease the degradation rate of cell-associated proteoglycan. (author)

  17. Double trisomy mosaic (47,XXX/48,XXX,+13) confirmed by FISH and skin fibroblast culture

    Lieber, E.; Grady, V.; Dosik, H. [Interfaith Medical Center, Brooklyn, NY (United States)] [and others

    1994-09-01

    A 4 lb 8 oz female was born to a 49-year-old woman (P1200G12) at 40 weeks. The baby had tetralogy of Fallot, polydactyly, microcephaly, low set simple ears, posterior cleft of the soft palate and overlapping flexion deformities of both hands. The eyes were deep set. The clinical impression was trisomy 13. The baby is not doing well and needs a gastrotomy tube for feeding. Sucking is allright but swallowing is impeded. An MRI showed an anomaly of the corpus callosum. The ophthalmological examination showed no abnormalities. A chromosome study on a 2-day peripheral blood sample resulted in poor growth and poor morphology; however, 20 Giemsa-banded cells revealed a 47,XXX karyotype. A second specimen was obtained to search for mosaicism and a blood smear revealed nuclear projections on the neutrophils. FISH analysis using whole chromosome painting probe (Life Technologies) first identified the extra chromosome number 13, the final results showing five of sixty metaphase cells (8.3%) with trisomy 13. Cytogenetic analysis using Giemsa-banding technique revealed four cells in fifty examined (8.0%) with a 48,XXX,+13 karyotype. In order to further evaluate the mosaicism, cytogenetic analysis of a skin fibroblast culture was performed. Twenty one of twenty three cells examined (91.3%) showed the 48,XXX,+13 karyotype. FISH analysis of the skin biopsy revealed eighteen of twenty cells (90.9%) with the trisomy 13. The FISH technique is an important enhancement to routine cytogenetic studies when they do not immediately correlate with clinical impressions.

  18. Extracellular Matrix Modulates Morphology, Growth, Oxidative Stress Response and Functionality of Human Skin Fibroblasts during Aging In Vitro

    Jørgensen, Peter; Rattan, Suresh

    2014-01-01

    The Hayflick system of cellular aging and replicative senescence in vitro has been used widely in both basic and applied research in biogerontology. The state of replicative senescence is generally considered to be irreversible, but is modifiable by genetic and environmental manipulations. Some...... recent observations indicate that replicative lifespan, senescence and functionality of cells in vitro can be significantly affected by the quality of the extra cellular matrix (ECM). Following up on those reports, here we show that using the ECM prepared from early passage young cells, partial...... rejuvenation of serially passaged human facial skin fibroblasts was possible in pre-senescent middle-aged cells, but not in fully senescent late passage cells. ECM from young cells improved the appearance, viability, stress tolerance and wound healing ability of skin fibroblasts. Furthermore, young ECM...

  19. Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts.

    Buffoni, F; Pino, R; Dal Pozzo, A

    1995-01-01

    The effects of Gly-His-Lys-Cu and of three synthetic analogues (I, II and III) on wound healing of the guinea-pig dorsal skin, as well as on cultured fibroblasts, were examined. Gly-His-Lys-Cu and peptide I-Cu were tested in vivo. Hydroxyproline, proteins, DNA and semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, were measured, and the histology of the wounds was observed after staining with hematoxylin/eosin. Another set of wounds was treated in parallel with equivalent amounts of copper acetate. Gly-His-Lys-Cu and the analogues caused a decrease of the activity of semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, 4-8 days after surgery, followed by an increase on day 11 that was higher than in the control group. No significant difference was found between the two peptides. A slower reorganization of the skin and a delayed activation of fibroblasts are the main effects observed with these peptides-Cu complexes. Preliminary studies on cultured fibroblasts were monitored to see whether these peptides had a direct effect on fibroblasts. The products studied at a concentration of 10(-7) M, decreased cell reproduction and increased collagen expression. PMID:8836453

  20. DNA-protein crosslinking in normal human skin fibroblasts exposed to ultraviolet radiation

    Cultured normal human skin fibroblasts were exposed to different fluences of 254 nm UV and the levels of DNA-protein crosslinks (DPC) measured with alkaline elution immediately after irradiation or following a 24-hour incubation (370C). For cells exposed to 10J/m/sup 2/ and then incubated, the level of DPC decreased to that of unexposed cells. When the fluences increased, the levels of DPC measured following a 24-hour incubation increased as compared with non-incubated cells. At fluences higher than 100J/m/sup 2/, the DPC levels of incubated cells exceeded the DPC levels of non-incubated cells. When the single strand breaks (SSB) and double strand breaks (DSB) were measured under a deproteinized condition with alkaline elution and neutral elution, respectively, the levels of SSB and DSB were higher for cells with than for cells without post-irradiation incubation. The simultaneous increase of DPC and proteinase-sensitive SSB and DSB for cells given post-irradiation incubation suggests that a significant part of the DPC observed during post-UV-irradiation incubation were the DNA strand breaks that were tightly associated with proteins. A potential role for type II DNA topoisomerase in the formation of these DPC resulting from either the change in conformational structure caused by the presence of a high level of dimers or an involvement of this enzyme in dimer excision repair will be discussed

  1. Recovery from x-ray induced damage in primary cultures of human skin fibroblast cells

    Human skin fibroblast cells from six patients were obtained during surgical operations and grown in culture. Dose response survival curves from single dose exposures of X-rays were developed for the six cell strains. Individual Do values varied in the six strains from 61 to 83 cGy. The shouldered survival curves had extrapolation numbers (n) ranging from 2.2 to 4.8. To assess repair of sublethal damage, cells were exposed to a total dose of 304 cGy split into two equal fractions separated by varying time intervals. Maximal increase in cell survival was observed when the time interval was at least three hours. Dose-response curves were generated for the six cell strains by first irradiating cells with 152 cGy X-rays and then allowing four hours for recovery from sublethal damage before exposing them to second graded doses. The fractionated dose-response survival curves were distinctly different from the single dose exposure curves and confirmed the ability of these cells to recover from X-ray-induced damage. (author)

  2. Growth and motility of human skin fibroblasts on multilayer strong polyelectrolyte films.

    Wytrwal, Magdalena; Koczurkiewicz, Paulina; Zrubek, Karol; Niemiec, Wiktor; Michalik, Marta; Kozik, Bartłomiej; Szneler, Edward; Bernasik, Andrzej; Madeja, Zbigniew; Nowakowska, Maria; Kepczynski, Mariusz

    2016-01-01

    Polyelectrolyte multilayers (PEMs) have found application in modifying material surfaces to make them adhesive or non-adhesive for animal cells. However, PEMs made of strong polyelectrolytes are not fully recognized in the literature. This study focuses on the interplay between the properties of PEM assembled from strong polyelectrolytes and cell adhesion and motility. Strong polycations (with quaternary ammonium groups) and a polyanion (with sulfonate groups) were obtained by modification of poly(allylamine hydrochloride) (PAH). Two types of multilayer films were assembled from these PAH derivatives and used to investigate the behavior of human skin fibroblasts (HSFs). The effect of surface charge, hydrophobicity, and film thickness on adhesion of HSFs in a serum-containing medium was studied with immunofluorescence microscopy. The results showed that adhesion of HSFs was strongly depended on the chemical functions of the terminal layer, whereas the wettability was not important. The surface of PEM can be strongly cytophobic (the quaternary ammonium terminal groups) or strongly cytophilic (the sulfonate terminal groups). Finally, the motile activity of HSFs seeded on glass coated with a varying number of polymer layers was investigated. It was demonstrated using an in vitro model that coating the substrate with only two polymer layers can considerably increase the average speed of HSFs movement and stimulate cell migration into the wound. PMID:26407058

  3. Radiosensitivity of skin fibroblasts from atomic bomb survivors with and without breast cancer

    Fibroblasts were established in vitro from skin biopsies obtained from 55 women and 1 man with or without breast cancer and with or without exposure to radiation from the atomic bomb explosion in Hiroshima. The radiosensitivity of these cells was evaluated by clonogenic assays after exposure to X-rays or to fission neutrons from a 252Cf source. Data were fitted to a multitarget model, S/S0 = A [1 - (1 - ekD)N], for both X-ray and neutron dose-survival curves. A single hit model, S/S0 = AekD, fits the neutron dose-survival responses as well. There were no differences in the means or variances of radiosensitivity between exposed and nonexposed groups or between patients with or without breast cancer. Hence, although the sample is not large, it provides no support for the hypothesis that atomic bomb radiation preferentially induces breast cancer in women whose cells in vitro are sensitive to cell killing by radiation

  4. Spontaneous immortalization of cultured skin fibroblasts obtained from a high-dose atomic bomb survivor

    Two immortal fibroblastic cell strains (substrains) were established by culturing healthy skin cells obtained from a high-dose atomic bomb survivor (female, age 76 years, 5.14 Gy) for more than 4 years. Designated FM-U and FM-M, the two substrains share the same marker chromosome, t(5q-;6p+), but are karyotypically different, possessing hypodiploid chromosome numbers (39-43) in the former and hypertriploid (69-76) in the latter. Thus far, the two strains have passed through 117 and 156 subcultures or more than 230 and 310 cumulative population doublings, respectively, each passage requiring 4-6 days in the former and 3-4 days in the latter. In the process of immortalization, sequential rearrangement among various chromosomes presumably due to telomeric and interstitial telomeric fusions took place following the telomere shortening, particularly in the senescence and postsenescence phase cells. Of particular interest is the fact that loss of heterozygosity (LOH) of the p53 gene was demonstrated in these immortalized cell populations. In addition, the allelic patterns of the LOH of p53 differed. Further evidence indicative of infinite proliferation was demonstrated in both strains, such as the telomere elongation and the significantly low frequency of cells possessing dicentric chromosomes

  5. Radiosensitivity of skin fibroblasts from atomic bomb survivors with and without breast cancer

    Fibroblasts were established in vitro from skin biopsies obtained from 55 women and one man with or without breast cancer and with or without exposure to radiation from the atomic bomb explosion in Hiroshima. The radiosensitivity of these cells was evaluated by clonogenic assays after exposure to X rays or to fission neutrons from a 252Cf source. Data were fitted to a multitarget model, S/S0 = A[1-(1-ekD)N], for both X-ray and neutron dose-survival curves. A single-hit model, S/S0 = AekD, fits the neutron dose-survival responses as well. These was no difference in the means or variances of radiosensitivity between exposed and nonexposed groups, or between patients with or without breast cancer. Hence, although the sample is not large, it provides no support for the hypothesis that A-bomb radiation preferentially induces breast cancer in women whose cells in vitro are sensitive to cell killing by radiation. (author)

  6. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  7. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation.

    Claire Marionnet

    Full Text Available Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV spectrum referred as "daily UV radiation" (DUVR with a higher UVA (320-400 nm to UVB (280-320 nm irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure.

  8. Identiifcation of the miniature pig inbred line by skin allograft

    MU Yu-lian; WEI Jing-liang; TANG Fang; YANG Shu-lin; WU Zhi-gu; XIA Ying; SUN Tong-zhu; LIU Lan; FENG Shu-tang; WU Tian-wen; LI Kui; LI Jun-you; HE Wei; GAO Qian; ZHOU Wen-fang

    2015-01-01

    Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identiifcation of swine inbred lines by skin grafting has been reported. At present, Wuzhishan miniature pig (WZSP) inbred line has acquired the F24 individuals in China. In order to verify whether WZSP inbred line had been cultivated successful y, al ogeneic skin grafts and related research were performed on F20 individuals of WZSP inbreeding population, compared with a control group of autologous transplantation. We observed the transplant recipients’ wounds, detected peripheral blood-related indicators interleukin-2, 4 and 10, CD4+and CD8+lymphocytes, and conducted hematoxylin-eosin (HE) and Masson’s staining of skin to judge whether the immune rejection reactions occurred within 28 days after transplantation. Chr. 7 genomic heterozygosity of 48 WZSP individuals from F20 to F22 was analyzed by high-density single nucleotide polymorphism (SNP) chips (60 000 SNPs). The result showed that there were no signiifcant differences in graft skin, the plasma interleukin-2, 4, 10, CD4+and CD8+, HE and Masson’s staining results between the al ograft and autograft groups, and no immune rejection occurred on the al ograft group. We found that 11 genes in Chr. 7 of major histocompatibility complex (MHC) I and MHC II were homozygous which conifrmed that immune antibody of the al ograft and autograft groups were highly identical and also provided a theoretical basis to no immune rejection occurred on the al ograft in the inbred WZSP. The result proved that the WZSP inbred line had been cultivated successful y for the ifrst time in the world. The test methods also provide a scientiifc basis for the identiifcation of swine and mammal inbred lines.

  9. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  10. Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts

    Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

  11. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated that skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS

  12. Endogenous glutathione protects human skin fibroblasts against the cytotoxic action of UVB, UVA and near-visible radiations

    Both the UVB (290-320 nm) and UVA (320-380 nm) regions of sunlight damage human skin cells but, particularly at the longer wavelengths, information is scant concerning the mechanism(s) of damage induction and the roles of cellular defense mechanisms. Following extensive glutathione depletion of cultured human skin fibroblasts, the cells become strongly sensitized to the cytotoxic action of near-visible (405 nm), UVA (334 nm, 365 nm) and UVB (313 nm) but not UVC (254 nm) radiations. In the critical UVB region, the magnitude of the protection afforded by endogenous glutathione approaches that of the protection provided by excision repair. The results suggest that a significant fraction of even UVB damage can be mediated by free radical attack and that a major role of glutathione in human skin cells is to protect them from the cytotoxic action of sunlight. (author)

  13. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate

    Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines

  14. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.

    Wang, H.; Pieper, J.S.; Schotel, R.; Blitterswijk, C.A. van; Lamme, E.N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue fibrobl

  15. Stimulation of Skin Repair Is Dependent on Fibroblast Source and Presence of Extracellular Matrix

    Wang, Hong-Jun; Pieper, Jeroen; Schotel, Roka; Blitterswijk, van Clemens A.; Lamme, Evert N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue fibrobl

  16. Relationship between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of late normal tissue reactions after radiotherapy

    Late complications in normal tissues are limiting for the doses that can be administered during clinical radiotherapy. Awareness of these complications, and comprehension of the underlying biological mechanisms, is extremely important to improve cancer treatment. Fibrosis is one of the most critical injuries to radiotherapy. It varies significantly among patients despite of identical treatments. The large patient-to-patient variability of normal tissue sections to clinical radiation can possibly be accounted for by the considerable individual variation in cellular radiosensitivity of normal human fibroblasts, as shown in vitro. The purpose of the present investigation has been to analyze individual cellular radiosensitivity of normal human skin fibroblasts, as measured in a colony-forming assay, and the relationship to the occurrence of subcutaneous fibrosis after radiotherapy for breast cancer. (au) 97 refs

  17. Effect of wavelength and fluence on morphology, cellular and genetic integrity of diabetic wounded human skin fibroblasts

    Abrahamse, H.; Hawkins, D.; Houreld, N.

    2006-02-01

    An alternative treatment modality for diabetic wound healing includes low level laser therapy (LLLT). Biostimulation of such wounds may be of benefit to patients by reducing healing time. Structural, cellular and genetic events in diabetic wounded human skin fibroblasts (WS1) were evaluated after exposing cells in culture to a Helium-Neon (632.8nm), a Diode laser (830nm) and a Nd:YAG (Neodynium:Yttrium-Allumina-Gallium) laser (1064nm) at either 5J/cm2 or 16J/cm2. Cells were exposed twice a week and left 24 hours post-irradiation prior to measuring effects. Structural changes were evaluated by assessing colony formation, haptotaxis and chemotaxis. Cellular changes were evaluated using cell viability, (adenosine-triphosphate, ATP production), and proliferation, (alkaline phosphatase, ALP and basic fibroblast growth factor, bFGF expression), while the Comet assay evaluated DNA damage and cytotoxicity was determined assessing membrane permeability for lactate dehydrogenase (LDH). Caspase 3/7 activity was used as an estimate of apoptosis as a result of irradiation. The irradiated diabetic wounded cells showed structural, cellular as well as molecular resilience comparable to that of unwounded normal skin fibroblast cells. With regards to fluence, 5J/cm2 elicit positive cellular and structural responses while 16J/cm2 increases cellular and genetic damage and cellular morphology is altered. Different wavelengths of LLLT influences the beneficial outcomes of diabetic wounded cells and although all three wavelengths elicit cellular effects, the penetration depth of 830nm plays a significant role in the healing of diabetic wounded human fibroblast cells. Results from this study validate the contribution of LLLT to wound healing and elucidate the biochemical effects at a cellular level while highlighting the role of different dosages and wavelengths in LLLT.

  18. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly(ε-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

  19. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration

    Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S, E-mail: nnijrv@nus.edu.s [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore)

    2011-02-15

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly({epsilon}-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

  20. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  1. Dexamethasone regulation of glycosaminoglycan synthesis in cultured human skin fibroblasts. Similar effects of glucocorticoid and thyroid hormones.

    Smith, T. J.

    1984-01-01

    The effects of dexamethasone on glycosaminoglycan accumulation were examined in confluent human skin fibroblasts in vitro. The glucocorticoid consistently inhibited the incorporation of either [3H]acetate or [3H]glucosamine into hyaluronate when added to culture medium 72 h before harvest. This effect was half-maximal at approximately 1 nM and maximal at 5-10 nM. Inhibition occurred within 5 h of hormone addition and was near maximal by 25 h. 11 alpha-hydrocortisone (10 nM), deoxycorticostero...

  2. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  3. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))

    1991-02-15

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  4. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian;

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  5. Influence of corticosteroids on chemotactic response and collagen metabolism of human skin fibroblasts.

    Hein, R; Mauch, C; Hatamochi, A; Krieg, T

    1988-07-15

    Following chronic administration of corticosteroids in vivo, a number of complications occur, which mainly involve the metabolism of connective tissue cells. Therefore, several attempts have been made to develop corticosteroids, which show less pronounced side effects. Fibroblasts were kept in monolayer cultures and were exposed to corticosteroids demonstrating similar anti-inflammatory activity (prednicarbate, desoximetasone). Chemotaxis of fibroblasts was studied over 4 hr, protein and collagen synthesis were estimated using proteinchemical methods and also by dot blot hybridization. Corticosteroids used in a high dosage (10 microM) affected all biosynthetic capacities of the investigated fibroblasts. Protein synthesis and production of collagen types I and III were reduced and a similar decrease of mRNA levels for collagen type I could be found indicating an influence on the pretranslational control. In the same concentrations desoximetasone was much more active than prednicarbate. Fibroblast migration was dosage dependently inhibited from 10(-9) M to 10(-5) M for desoximetasone, while incubation with prednicarbate did not cause a reduction of the chemotactic response at concentrations lower than 10(-7) M. These data suggest that modifications of corticosteroids might result in a dissociation of some of their biological activities and can specifically influence their effects on biosynthetic capacities of fibroblasts. PMID:3395353

  6. Diagnosis of Metachromatic Leukodystrophy, Krabbe Disease, and Farber Disease after Uptake of Fatty Acid-labeled Cerebroside Sulfate into Cultured Skin Fibroblasts

    Kudoh, Tooru; Wenger, David A

    1982-01-01

    [14C]Stearic acid-labeled cerebroside sulfate (CS) was presented to cultured skin fibroblasts in the media. After endocytosis into control cells 86% was readily metabolized to galactosylceramide, ceramide, and stearic acid, which was reutilized in the synthesis of the major lipids found in cultured fibroblasts. Uptake and metabolism of the [14C]CS into cells from typical and atypical patients and carriers of metachromatic leukodystrophy (MLD), Krabbe disease, and Farber disease were observed....

  7. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    Yafan Yang; Shuangshuang Li

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect U...

  8. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite.

    Keyse, S M; Tyrrell, R M

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide...

  9. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    Roč. 2015, č. 2015 (2015), ID351698. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GPP305/12/P388 Institutional support: RVO:67985823 Keywords : mitochondria * reactive oxygen species * lactate * fibroblasts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.516, year: 2014

  10. Fibroblasts from skin biopsies as a tool for biomarker discovery in Parkinson׳s disease.

    Mastroberardino, Pier Giorgio; Ambrosi, Giulia; Blandini, Fabio; Milanese, Chiara; Sepe, Sara

    2014-10-01

    Parkinson׳s disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. The chronic and slow progressing nature of PD may result from subtle yet persistent alterations in biological mechanisms, which might be undetectable in basal, unchallenged conditions. Unlike body fluids, dermal fibroblasts can be exposed to different challenges while in culture and can therefore generate information about the dynamic cellular responses to exogenous stressors. These studies may ultimately generate indicators highlighting the biological defects intrinsic to PD. In fact, fibroblasts from idiopathic PD patients' exhibit deficits typically sustaining the neurodegenerative process of PD, such as increased susceptibility to rotenone as well as deficits in protein homeostasis and mitochondrial bioenergetics Fibroblasts therefore represent a powerful and minimally invasive tool to investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical management of the disease. PMID:26461279

  11. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses

    Maas, van der R.; Zoelen-Bos, van D.J.; Oei, H.L.; Claassen, I.J.T.M.

    2006-01-01

    International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-dete

  12. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Dordoni, Chiara; Ritelli, Marco; Venturini, Marina; Castori, Marco; Colombi, Marina

    2016-01-01

    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients. PMID:27518164

  13. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  14. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.

    Igarashi, A; Okochi, H; Bradham, D M; Grotendorst, G R

    1993-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich peptide that exhibits platelet-derived growth factor (PDGF)-like biological and immunological activities. CTGF is a member of a family of peptides that include serum-induced immediate early gene products, a v-src-induced peptide, and a putative avian transforming gene, nov. In the present study, we demonstrate that human foreskin fibroblasts produce high levels of CTGF mRNA and protein after activation with transforming growth factor b...

  15. DNA double strand breaks in fibroblast cell lines from non-Hodgkin's lymphoma patients showing increased sensitivity to chronic gamma irradiation

    Cultured skin fibroblast cell lines from two non-Hodgkin's lymphoma patients (NHL) and a normal subject were studied for cell killing, chromosomal aberrations (breaks, translocations, dicentrics and rings) and DNA double strand breaks (dsbs) following chronic gamma irradiation. Compared to the cell line from the normal donor, the NHL patients' fibroblasts showed enhanced radiosensitivity for both cell survival and chromosomal aberrations. While spontaneous breaks were observed in both normal and patients' cells, spontaneous translocations and radiation-induced dicentrics and rings were found only in the latter. Radiation-induced DNA double-strand breaks (dsb) were determined by CHEF electrophoresis. After chronic irradiation with gamma rays the fraction of residual dsb was significantly increased from 1.4% in controls to 1.9% in the NHL cell lines. These data, thus suggest that the cellular and chromosomal sensitivity to chronic irradiation observed in NHL patients may be due to a deficiency in the repair of a small fraction of DNA double strand breaks. (author)

  16. Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  17. Cyclobutane-type pyrimidine photodimer formation and induction of ornithine decarboxylase in human skin fibroblasts after UV irradiation

    Cyclobutane-type pyrimidine photodimers as well as the induction of ornithine decarboxylase (ODC) may serve as biochemical markers of the mutagenic and carcinogenic effects of ultraviolet light (UV). For this reason, it is important to compare the formation of pyrimidine dimers with the induction of ODC in human skin fibroblasts after irradiation with UVC (200-290 nm) and UVB (290-320 nm). In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer yields (T-T) by high-pressure liquid chromatography in cultures of neonatal normal human foreskin-derived fibroblasts after irradiation with UVC and UVB light. It was found that the yield of dimerization and the ratio of T-T/C-T decreased from the UVC to the UVB region. Time-course studies of ODC-induction in the same cells indicated that the maximal activity after UVB irradiation was retarded compared to UVC exposure. For the UV-induced ODC-levels, however, no significant difference in maximal induction could be measured after UVC and UVB irradiation at fluences where comparable yields of thymine dimerization are produced. Similar ODC-maxima were obtained with strains from children, while cells from adults showed significantly less pronounced ODC induction, indicating that ODC-response decreases with age and may therefore be used as a marker of aging

  18. ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY

    ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...

  19. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Oranuch Nakchat

    2014-05-01

    Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  20. Cholesterol Metabolism in Brain and Skin Fibroblasts from Sarda Breed Sheep With Scrapie-resistant and Scrapie-susceptible Genotypes

    Alessandra Pani

    2007-01-01

    Full Text Available Scrapie is a fatal spongiform encephalopathy of sheep, a transmissible form of prion disease caused by neuronal accumulation of the aberrantly conformed prion protein (PrPsc. Currently, no ante-mortem diagnostic tests are available to detect this untreatable disease in the pre-clinical stage, thus making difficult to control its spread. Recent evidence suggests that the production of PrPsc can be modulated by the levels of membrane cholesterol in neuronal cells. Since cholesterol levels in cell membranes are dependent on cholesterol homeostasis in the whole organism, we studied cholesterol metabolism in brain tissues, plasma and skin fibroblasts of Sarda breed sheep with scrapie-resistant (ARR/ARR and scrapie-susceptible (ARQ/ARQ prion protein genotypes, both not infected (ARQ/ARQ- and infected (ARQ/ARQ+ with scrapie. We found that, the levels of cytoplasmic cholesterol esters (CE in brains and skin fibroblasts from sheep with the ARQ/ARQ genotype were consistently higher than those from sheep with the ARR/ARR genotype. Conversely, the levels of free cholesterol (FC were lower in ARQ/ARQ, as compared to ARR/ARR sheep, thus resulting in a sharp reduction of the FC/CE ratio. Moreover, both uninfected and infected ARQ/ARQ sheep showed abnormally low levels of high density lipoprotein-cholesterol (HDL-C in their plasma, as compared to ARR/ARR sheep. These data other than adding new strength to the notion that altered levels of intracellular cholesterol may indicate the presence of a lipid metabolic state that predisposes to infection with, and accumulation of, PrPsc in the brain, discriminate for the first time between two distinct but related cellular pools of cholesterol, namely membrane FC on one hand and cytoplasmic CE on the other.

  1. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress.

    Zandberg, L; van Dyk, H C; van der Westhuizen, F H; van Dijk, A A

    2016-09-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inherited metabolic disease of leucine catabolism with a highly variable phenotype. Apart from extensive mutation analyses of the MCCC1 and MCCC2 genes encoding 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), molecular data on MCC deficiency gene expression studies in human tissues is lacking. For IEMs, unbiased '-omics' approaches are starting to reveal the secondary cellular responses to defects in biochemical pathways. Here we present the first whole genome expression profile of immortalized cultured skin fibroblast cells of two clinically affected MCC deficient patients and two healthy individuals generated using Affymetrix(®)HuExST1.0 arrays. There were 16191 significantly differentially expressed transcript IDs of which 3591 were well annotated and present in the predefined knowledge database of Ingenuity Pathway Analysis software used for downstream functional analyses. The most noticeable feature of this MCCA deficient skin fibroblast transcriptome was the typical genetic hallmark of mitochondrial dysfunction, decreased antioxidant response and disruption of energy homeostasis, which was confirmed by mitochondrial functional analyses. The MCC deficient transcriptome seems to predict oxidative stress that could alter the complex secondary cellular response that involve genes of the glycolysis, the TCA cycle, OXPHOS, gluconeogenesis, β-oxidation and the branched-chain fatty acid metabolism. An important emerging insight from this human MCCA transcriptome in combination with previous reports is that chronic exposure to the primary and secondary metabolites of MCC deficiency and the resulting oxidative stress might impact adversely on the quality of life and energy levels, irrespective of whether MCC deficient individuals are clinically affected or asymptomatic. PMID:27417235

  2. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF2.4) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after irradiation

  3. Fibroblasts of skin fragments as a tool for the investigation of genetic diseases: technical recommendations

    Coelho Janice Carneiro

    2000-01-01

    Full Text Available Skin biopsies are frequently indicated for investigation and/or confirmation of genetic disorders. Although relatively simple and noninvasive, these procedures require care in order to increase probability of success and to avoid patient discomfort and unnecessary repeated analyses and associated laboratory fees. The present report highlights the importance of skin biopsies in genetic disorder diagnosis and presents general rules for collecting, storing, transporting and processing samples. We recommend its reading to professionals intending to use this important and sometimes fundamental diagnostic tool.

  4. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  5. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  6. Protective effects of APP 17-mer peptide on cultured human skin fibroblasts after irradiation with ultraviolet light%APP17肽通过抑制细胞内ROS保护紫外线照射后人皮肤成纤维细胞

    陈慧; 连石; 朱威

    2011-01-01

    Objective Ultraviolet light (UV) is known to cause photoaging of skin.UV irradiation can damage proliferation capacity and induce collagenase in fibroblasts in the dermis .Many researchers have explored the potential photo-protective agents;however,no ideal agent has been widely accepted .Amyloid precursor protein 17-mer peptide (APP17-mer peptide),an active peptide segment,has been reported to be responsible for the trophic effect in clonal CNS neuronal line ,fibroblast cell line and HaCat cells.The aim of this study was to explore the effects of APP17-mer peptide on cultured fibroblasts after ultraviolet irradiation .Methods Human skin fibroblasts were cultured in DMEM medium with or without APP 17-mer peptide (concentrations ranging from 20 μmol/L,40 μmol/L,to 80 μmol/L).The cultured fibroblasts were exposed to a single UV irradiation,and the proliferation activity of fibroblasts was detected by a MTT assay .The ex-pression of matrix metalloproteinase-1 (MMP-1) mRNA was analyzed quantitatively following real -time RT-PCR.The generation of intracellular reactive oxygen species (ROS) was measured with fluorescent quantita-tion method.Results A single exposure to UV irradiation depressed proliferation activity of fibroblasts com -pared with sham-irradiated control (P <0.05).40 μmol/L and 80 μmol/L APP17-mer peptide increased the cellular proliferation activity in UV irradiated and unirradiated fibroblasts (P <0.05),however,20 μmol/L did not show such protective effects (P >0.05).A single exposure of fibroblasts to UV irradiation resulted in 1.78 fold up-regulation of MMP-1 mRNA compared with unirradiated sample (P <0.05),and 40 μmol/L and 80 μmol/L APP17-mer peptide decreased the expression of MMP -1 mRNA (P <0.05 and P <0.01,re-spectively).UV irradiation increased generation of ROS in cultured fibroblasts (P <0.05).40 μmol/L APP17-mer peptide inhibited the generation of ROS in irradiated fibroblasts .Conclusions APP17-mer pep-tide can

  7. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  8. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  9. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    Li N

    2014-07-01

    Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound

  10. Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

    Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk; Jeong, Min Ho; Choi, Yoo Jin

    2012-01-01

    Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and pero...

  11. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    Yafan Yang

    2015-01-01

    Full Text Available Ultraviolet (UV irradiation causes damage in skin by generating excessive reactive oxygen species (ROS and induction of matrix metalloproteinases (MMPs, leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption.

  12. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence.

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  13. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    Feng Yang

    Full Text Available BACKGROUND: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. PRINCIPAL FINDINGS: We have identified 7117 unique phosphopeptides (2566 phosphoproteins from control and irradiated (2 and 50 cGy primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. CONCLUSIONS: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  14. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peak intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at

  15. Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts.

    Fan, Chen; Dong, Ying; Xie, Yan; Su, Yonghua; Zhang, Xufang; Leavesley, David; Upton, Zee

    2015-10-01

    Hypertrophic scarring/hypertrophic scars (HS) is a highly prevalent condition following burns and trauma wounds. Numerous studies have demonstrated that transforming growth factor-β1 (TGF‑β1) plays an essential role in the wound healing process by regulating cell differentiation, collagen production and extracellular matrix degradation. The increased expression of TGF-β1 is believed to result in the formation of HS. Shikonin (SHI), an active component extracted from the Chinese herb, Radix Arnebiae, has previously been found to downregulate the expression of TGF-β1 in keratinocyte/fibroblast co-culture conditioned medium. In view of this, in this study, we aimed to further investigate the effects of SHI on TGF-β1-stimulated hypertrophic scar-derived human skin fibroblasts (HSFs) and examined the underlying mechanisms. Cell viability and proliferation were measured using alamarBlue and CyQUANT assays. The total amount of collagen and cell contraction were examined using Sirius red staining and the cell contraction assay kit. Gene expression and signalling pathway activation were detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Our results revealed that SHI reduced TGF-β1‑induced collagen production through the ERK/Smad signalling pathway and attenuated TGF-β1‑induced cell contraction by downregulating α-smooth muscle actin (αSMA) expression in the HSFs. The data from this study provide evidence supporting the potential use of SHI as a novel treatment for HS. PMID:26239419

  16. Radiosensitivity of skin fibroblasts and lymphocytes from atomic bomb survivors in Hiroshima

    In the last 30 years or so, the existence of individual differences in in vivo radiation sensitivity has been well recognized in the response of normal tissues, particularly skin tissue, of cancer patients in the course of radiation therapy. If a large variation in radiosensitivity truly exists, it is very important to compare the radiosensitivity between the A-bomb survivors and a general population. If A-bomb survivors include a disproportionately large number of either radioresistant or radiosensitive persons, the surviving population would provide a biased estimate of the true risk of radiogenic cancer. 14 refs., 1 fig., 1 tab

  17. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  18. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  19. The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-

    We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of [3H]histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of [3H] histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism

  20. Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-κB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-κB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-κB appeared to be correlated with membrane damage, and activation could be prevented by α-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-κB by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-κB over all wavelength ranges examined. (Author)

  1. Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts

    Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to UV radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a UV fluence of 5 J/m2. At this same UV fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the UV fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in UV-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semiconservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity

  2. Activation of NF-{kappa}B in human skin fibroblasts by the oxidative stress generated by UVA radiation

    Vile, G.F.; Tanew-Iliitschew, Adrian; Tyrrell, R.M. [Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne (Switzerland)

    1995-09-01

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-{kappa}B that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-{kappa}B in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-{kappa}B appeared to be correlated with membrane damage, and activation could be prevented by {alpha}-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-{kappa}B by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-{kappa}B over all wavelength ranges examined. (Author).

  3. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  4. Acyl CoA Binding Domain Containing 3 (ACBD3) Protein in Huntington’s Disease 
Human Skin Fibroblasts

    Kratochvílová, H.; Rodinová, M.; Sládková, J.; Klempíř, J.; Lišková, Irena; Motlík, Jan; Zeman, J.; Hansíková, H.; Tesařová, M.

    2015-01-01

    Roč. 78, Suppl. 2 (2015), s. 34-38. ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. Liblice, 08.11.2015-10.11.2015] R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : Huntington’s disease * Acyl-CoA binding domain containing 3 protein * human skin fibroblasts Subject RIV: FH - Neurology Impact factor: 0.165, year: 2014

  5. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca2+/calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  6. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Tanaka M

    2015-02-01

    Full Text Available Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods: First, we investigated the capability of Aloe sterols (cycloartenol and lophenol to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP containing 40 µg Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results: After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake

  7. Establishment, characterization and cryopreservation of Fars native goat fetal fibroblast cell lines

    Davood Mehrabani

    2016-05-01

    Conclusions: The goat fetal fibroblast cell culture can be established using the adherent culture method and can be cryopreserved, too. After thawing, growth and viability indices of these cells were acceptable.

  8. p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

    Chen, Wenqi; Kang, Jian; Xia, Jiping; Li, Yanhua; Yang, Bo; Chen, Bin; Sun, Weiling; Song, Xiuzu; Xiang, Wenzhong; Wang, Xiaoyong; Wang, Fei; Wan, Yinsheng; Bi, Zhigang

    2008-05-01

    Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature senescence in human skin fibroblasts (HSFs). After five repeated subcytotoxic UVB exposures at a dose of 10 mJ/cm2, the following biomarkers of senescence were markedly present: senescence-associated beta-galactosidase (SA beta-gal) activity, growth arrest, and the overexpression of senescence-associated genes. Firstly, there was an increase in the proportion of cells positive for SA beta-gal activity. Secondly, there was a loss of replicative potential as assessed by MTT assay. FACS analysis showed that UVB-stressed HSFs were blocked mostly in the G1 phase of the cell cycle, and replicative senescence, and protein expression of p53, p21(WAF-1) and p16(INK-4a) increased significantly. Thirdly, the mRNA levels of three senescence-associated genes, fibronectin, osteonectin and SM22, also increased. A real time PCR array to investigate the mRNA expression of p53-related genes involved in growth arrest, apoptosis and tumorigenesis indicated that p53, p21, p19, Hdm2, and Bax were up-regulated, and bcl, HIF-1alpha and VEGF were down-regulated. Collectively, our data suggest that UVB-induced SIPS plays an important role in p53-related apoptosis resistance and tumor suppression activity. PMID:18425358

  9. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  10. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  11. Absence of correlations between the radiosensitivity of human T-lymphocytes at G0 and skin fibroblasts at log phase from the same individuals

    Matched samples of peripheral T-lymphocytes and skin fibroblasts from a total of 22 patients who underwent various surgical procedures were tested for a dose-survival study using loss of colony-forming ability as the end point. The results showed that the mean D10 (the dose required to kill 90 % of the cells) ±SD was 3.58 ± 0.21 Gy for T-lymphocytes irradiated at G0 and 3.19 ± 0.37 Gy for skin fibroblasts irradiated at log phase. The coefficient of variation was found to be 6 % and 11 %, respectively. Contrary to expectation, regression analysis of the D10 values for the two cell types revealed no significant correlations. The absence of correlation is most probably derived from the fact that the apparent interindividual variability of dose-survival curves is largely caused by random experimental fluctuations, at least for lymphocytes. Possible reasons for the greater variability observed in the fibroblast assay are discussed. (author)

  12. Enhanced in vitro radiosensitivity of skin fibroblasts in two patients developing brain necrosis following AVM radiosurgery: a new risk factor with potential for a predictive assay

    Purpose: Radiosurgery is an effective treatment for arteriovenous malformations (AVM) with a low risk of developing brain necrosis. Models have been developed to predict the risk of complications. We postulated that genetic differences in radiosensitivity may also be a risk factor. Methods and Materials: Fibroblast cultures were established from skin biopsies in two AVM patients developing radiation necrosis. The results of clonogenic survival assays were compared to a parallel study with two groups of cancer patients treated with radiation: 1) patients without late side effects; 2) patients experiencing severe late sequelae. Results: The survival fraction at 2 Gy (SF2) of the 2 AVM patients was 0.17 (0.14-0.19) and 0.18 (0.14-0.22). The SF2's of the cancer patients ranged between 0.25-0.38 (mean = 0.31) for the control group, and between 0.10-0.20 (mean = 0.17) for the hypersensitive group. The SF2's of the AVM patients who developed brain necrosis were comparable to that of the hypersensitive group (p = 0.85) but significantly lower than the control group (p = 0.05). Conclusion: The two patients who developed radiation necrosis demonstrate increased fibroblast radiosensitivity. The SF2 of skin fibroblasts may potentially be used as a predictive assay to detect patients at risk for brain necrosis

  13. Correlation between normal tissue complications and in vitro radiosensitivity of skin fibroblasts derived from radiotherapy patients treated for variety of tumors

    Purpose: To assess the relationship between fibroblast intrinsic radiosensitivity in vitro and late reactions of normal tissues in patients treated by definitive radiotherapy for variety of tumors. Patients and Methods: Ten patients were selected for this study. They were treated by radical radiotherapy for variety of tumors, including non-Hodgkin's lymphoma, prostate, glottic larynx, anal canal, cervix, bladder, thyroid gland, and tonsil pillar. Five patients did not develop any significant late reactions (normally sensitive group, NS). The other five developed late complications in different normal tissues and organs that proved to be fatal in one patient (clinically hyper-sensitive group, HS). Fibroblast cultures were established from punch skin biopsy and radiosensitivity in vitro was measured. The survival fraction at 2 Gy (SF2) was calculated and compared between the two groups. Results: SF2 ranged between 0.10 and 0.38 with a mean of 0.24. The mean SF2 for each of the NS and the HS groups were 0.31 and 0.17, respectively. The non-parametric rank test of Mann-Whitney shows that the difference between the two groups is statistically significant (p = 0.01). Conclusion: This study indicates that the in vitro radiosensitivity of skin fibroblasts is correlated with late complications in different organs and normal tissues following radiotherapy for variety of tumors. It also lends support to the existence of a common genetic component determining the radiosensitivity of cells targeted by the late effects of ionizing radiation. Key words:

  14. The treatment effects of cultured epidermis, basic fibroblast growth factor and the combination of these two treatments in a radiation skin ulcer model (rat)

    The objective of this study was to evaluate the treatment effects of cultured epidermis, basic fibroblast growth factor (b-FGF) and the combination of these two treatments in a radiation skin ulcer model. The subjects were 9-week-old male inbred line rats and divided into two parts. Rats in one part were applied X-ray and rats in the other part were not. The dose of X-ray was 20 Gy. Wounds were full-thickness wounds. The ways of treatment were divided into four groups: control group, cultured epidermis group, b-FGF group, combination group (cultured epidermis+b-FGF). Wounds were observed on 5, 8, 11, 14, 17, 20, 23, 26 days after treatment. Wound healing rate was calculated and days needed to heal were counted. Relative hardness of scars was measured on the day of epithelization and on 12 and 21 days after epithelization. Wounds applied X-ray: Mean wound healing rate of cultured epidermis group and combination group was significantly higher than that of the two other groups on 8 and 11 days after treatment. Mean relative hardness of scars of cultured epidermis group and combination group was significantly lower than that of the two other groups on all measurement days. Mean days needed to heal of cultured epidermis group were significantly shorter than those of control group and b-FGF group. And those of combination group were significantly shorter than those of b-FGF group. As the shorter the days from making scars became, relative hardness of scars got lower. Wounds without X-ray: Mean wound healing rate of combination group was significantly lower than that of cultured epidermis group and control group on 5 days after treatment. Cultured epidermis graft can be an effective treatment for radiation skin ulcer. b-FGF can weaken the treatment effect of cultured epidermis graft depending on its density. There can be a positive correlation between relative hardness of scars and the days from making scars. (author)

  15. Effects of macelignan isolated from Myristica fragrans (nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2', 7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. (author)

  16. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  18. Establishment of immortal normal and ataxia telangiectasia fibroblast cell lines by introduction of the hTERT gene

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Nakatsugawa, Shigekazu; Hamaguchi, Michinari [Nagoya Univ. (Japan). School of Medicine

    2002-06-01

    To establish immortal human cells, we introduced the human catalytic subunit of telomerase (hTERT) gene into skin fibroblast cells obtained from normal and ataxia telangiectasia (AT) individuals of Japanese origin. After hTERT introduction, these cells continue to grow beyond a population doubling number of 200 while maintaining their original radiosensitivity. Inductions of p53, phosphorylation of Serl5 in p53, and induction of p21 by X-ray irradiation in immortal cells derived from normal individual were not affected by the hTERT introduction. Both normal and AT immortal cells exhibited an apparent inhibition of growth as original primary cells when they reached confluence. Karyotype analysis has revealed that they are in a diploid range. These results suggest that cells immortalized by hTERT introduction retain their original characteristics except for immortalization, and that they may be useful for analyzing various effects of radiation on human cells. (author)

  19. Abnormal sensitivity of diploid skin fibroblasts from a family with Gardner's syndrome to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C

    Skin fibroblasts isolated from two members of the same family with the cancer-prone disease Gardner's Syndrome (intestinal polyposis, colon cancer, bone and soft tissue tumors) showed enhanced sensitivity to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C. These cells showed no liquid-holding type recovery following UV-irradiation of confluent cultures, but were normal in their capacity for UV-induced unscheduled DNA synthesis. UV survival was not influenced by post-irradiation incubation with caffeine. (orig.)

  20. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  1. DEF-1, a Novel Src SH3 Binding Protein That Promotes Adipogenesis in Fibroblastic Cell Lines

    King, Frederick J.; Hu, Erding; Harris, David F.; Sarraf, Pasha; Spiegelman, Bruce M.; Roberts, Thomas M.

    1999-01-01

    The Src homology 3 (SH3) motif is found in numerous signal transduction proteins involved in cellular growth and differentiation. We have purified and cloned a novel protein, DEF-1 (differentiation-enhancing factor), from bovine brain by using a Src SH3 affinity column. Ectopic expression of DEF-1 in fibroblasts resulted in the differentiation of a significant fraction of the culture into adipocytes. This phenotype appears to be related to the induction of the transcription factor peroxisome ...

  2. Similarity between the interleukin 1 receptors on a murine T-lymphoma cell line and on a murine fibroblast cell line

    Interleukin 1β (IL-1β), one of two different polypeptide hormones with interleukin 1 (IL-1) biological activity, produced by activated human monocytes, is a 17.5-kDa protein. IL-1β binds specifically to a variety of cells; the cellular distribution of binding is consistent with reported biological responsiveness. In this report the authors show that two unrelated, but IL-1-responsive, cell lines, LBRM-33-1A5, a T-lymphoma line, and BALB/3T3, a fibroblast line, bind 125I-labeled IL-1β via similar plasma membrane receptor molecules. The T-lymphoma cells possess 238 +/- 16 plasma membrane receptors per cell and bind 125I-labeled IL-1β with an affinity of 3.6 +/- 0.9 x 109 M-1. The IL-1 receptor has a molecular size of ≅ 79.5 kDa, as estimated by affinity cross-linking. The fibroblasts possess 4.8 +/- 0.5 x 103 IL-1 receptor per cell and bind 125I-labeled IL-1β with an affinity of 2.6 +/- 0.5 x 109 M-1. The molecular size of the receptor molecule on the fibroblasts is ≅ 78 kDa. Despite the similarity in the characteristics of the ligand-receptor system on the two different cell types, the biological responses of the two cell types to IL-1β occur at IL-1β concentrations that differ by four orders of magnitude

  3. Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation

    Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients after 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA

  4. Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation

    Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23–65 months after SCT for G-banded chromosome analysis. Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability

  5. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Oranuch Nakchat; Nonthaneth Nalinratana; Duangdeun Meksuriyen; Sunanta Pongsamart

    2014-01-01

    Objective:To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods:Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results: TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  6. Mécano-Stimulation™ of the skin improves sagging score and induces beneficial functional modification of the fibroblasts: clinical, biological, and histological evaluations

    Humbert P

    2015-02-01

    Full Text Available Philippe Humbert,1,2 Ferial Fanian,1,2 Thomas Lihoreau,1,2 Adeline Jeudy,1,2 Ahmed Elkhyat,1,2 Sophie Robin,3 Carol Courderot-Masuyer,3 Hélène Tauzin,3 Christine Lafforgue,1,2,4 Marek Haftek5 1Research and Studies Center on the Integument (CERT, Department of Dermatology, Clinical Investigation Center (CIC 1431, Besançon University Hospital; 2INSERM UMR1098, FED4234 IBCT, University of Franche-Comté, Besançon, France; 3SARL BIOEXIGENCE, Besançon, France; 4Dermopharmacology and Cosmetology Unit, University of Paris Sud, France; 5University of Lyon 1, EA4169, Experimental, clinical and therapeutic aspects of the skin barrier function, INSERM US7 – CNRS UMS3453, Lyon, France Background: Loss of mechanical tension appears to be the major factor underlying decreased collagen synthesis in aged skin. Numerous in vitro studies have shown the impact of mechanical forces on fibroblasts through mechanotransduction, which consists of the conversion of mechanical signals to biochemical responses. Such responses are characterized by the modulation of gene expression coding not only for extracellular matrix components (collagens, elastin, etc. but also for degradation enzymes (matrix metalloproteinases [MMPs] and their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]. A new device providing a mechanical stimulation of the cutaneous and subcutaneous tissue has been used in a simple, blinded, controlled, and randomized study. Materials and methods: Thirty subjects (aged between 35 years and 50 years, with clinical signs of skin sagging, were randomly assigned to have a treatment on hemiface. After a total of 24 sessions with Mécano-Stimulation™, biopsies were performed on the treated side and control area for in vitro analysis (dosage of hyaluronic acid, elastin, type I collagen, MMP9; equivalent dermis retraction; GlaSbox®; n=10 and electron microscopy (n=10. Furthermore, before and after the treatment, clinical evaluations and self

  7. In vitro radiosensitivity of skin fibroblasts can identify a group of radiotherapy patients having developed complications in a variety of normal tissues

    A retrospective study of the in vitro radiosensitivity of skin fibroblasts derived from two groups of patients treated by definitive radiotherapy for a variety of tumors who either displayed or did not display severe complications. Seven radiotherapy patients were selected: three treated for head and neck, prostate and non-Hodgkin lymphoma tumors, and did not develop any significant complications (control group); four patients were treated for bladder, thyroid, head and neck and anal canal tumors and developed serious acute and especially late reactions (hypersensitive group), Primary cell cultures of skin fibroblasts were established and their radiosensitivity studied by the clonogenic assay after exposing to single radiation doses ranging between 1 and 8 Gy. The survival fraction at 2 Gy (SF2) ranged from 0.27 to 0.38, with a mean of 0.33 for the control group, and from 0.10 to 0.20 with a mean of 0.17 for the hypersensitive group. The Mann-Whitney non-parametric test hypersensitive group. The Mann-Whitney non-parametric test showed that the difference between the two means was statistically significant (p = 0.03). The data are in favor of a correlation between the radiosensitivity of patients' fibroblasts and the reactions of different normal tissues to radiotherapy. This association supports the use of the clonogenic survival, or a surrogate test, as a predictive assay. The multiplicity of normal tissues and organs implicated in this association suggests the existence of genetic factors that determine, at least in part, the radiosensitivity of target cells involved in the expression of normal tissues complications following radiotherapy. (authors)

  8. HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1

    Purpose: Despite the comparably high cure rates observed for HPV-positive HNSCC, there is still a great need for specific tumor radiosensitization due to the often severe side effects resulting from intense radiochemotherapy. We recently demonstrated that HPV-positive HNSCC cell lines are characterized by a defect in DNA double-strand break repair associated with a pronounced G2-arrest. Here we tested whether abrogation of this radiation-induced G2-arrest by the inhibition of Chk1 results in specific radiosensitization of HPV-positive HNSCC cells. Materials and methods: Experiments were performed with five HPV and p16-positive (93-VU-147T, UM-SCC-47, UT-SCC-45, UD-SCC-2, UPCI-SCC-154) and two HPV and p16-negative HNSCC cell lines, as well as two normal human fibroblast strains. Chk1 was inhibited by the selective inhibitor PF-00477736. Cell cycle distribution was determined by flow cytometry, Chk1-activity via Western blot and cell survival by colony formation assay. Results: With the exception of UPCI-SCC-154, the inhibition of Chk1 was found to abolish the pronounced radiation-induced G2-arrest in all HPV-positive cells utilized. All tumor cell lines that demonstrated the abrogation of G2-arrest also demonstrated radiosensitization. Notably, in G1-arrest-proficient normal human fibroblasts no radiosensitization was induced. Conclusion: Abrogation of the G2 checkpoint through the inhibition of Chk1 may be used to selectively increase the cellular radiosensitivity of HPV-positive HNSCC without affecting the surrounding normal tissue

  9. Establishment of an Immortalized Skin Keratinocyte Cell Line Derived from the Animal Model Mastomys coucha

    Hasche, Daniel; Stephan, Sonja; Savelyeva, Larissa; Westermann, Frank; Rösl, Frank

    2016-01-01

    In the present report we describe the establishment of a spontaneous immortalized skin keratinocyte cell line derived from the skin of the multimammate rodent Mastomys coucha. These animals are used in preclinical studies for a variety of human diseases such as infections with nematodes, bacteria and papillomaviruses, especially regarding cutaneous manifestations such as non-melanoma skin cancer. Here we characterize the cells in terms of their origin and cytogenetic features. Searching for genomic signatures, a spontaneous mutation in the splicing donor sequence of Trp53 (G to A transition at the first position of intron 7) could be detected. This point mutation leads to alternative splicing and to a premature stop codon, resulting in a truncated and, in turn, undetectable form of p53, probably contributing to the process of immortalization. Mastomys coucha-derived skin keratinocytes can be used as an in vitro system to investigate molecular and immunological aspects of infectious agent interactions with their host cells. PMID:27533138

  10. Expression of nerve growth factor p75 receptor and sortilin in the skin fibroblasts and scar fibroblasts%神经生长因子p75受体与sortilin在皮肤及瘢痕成纤维细胞中的表达**★

    冯璋; 张芮; 冯永强; 周一冲; 王一兵

    2013-01-01

    healing, but there is less research for the low-affinity nerve growth factor receptor p75 and sortilin in fibroblasts, and no reports on whether there are differences in expression of p75 and sortilin in the scar fibroblasts and normal skin fibroblasts. OBJECTIVE: To study the expression of low-affility nerve growth factor receptor p75 and sortilin in the normal human skin fibroblasts and the human keloid fibroblasts. METHODS: The keloid fibroblasts and normal hunman skin fibroblasts were cultured in vitro, and the immortalized epithelial cells HaCaT were used as the positive control. The real-time PCR was used to detect the mRNA expression of the p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts, and western blot and immunocytochemical staining were used to detect the protein expression of p75 and sortilin. RESULTS AND CONCLUSION: The real-time PCR and western blot results showed that in the protein and mRNA levels, p75 and sortilin showed positive expression in the keloid fibroblasts and normal human skin fibroblasts, and there was no significant difference in the expression of p75 between keloid fibroblasts and normal human skin fibroblasts, and the expressions of p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts were significantly lower than those in HaCaT. There was no significant difference of p75 expression between keloid fibroblasts and normal human skin fibroblasts, and the expression of sortilin in the keloid fibroblasts was significantly lower than that in the normal human skin fibroblasts (P < 0.05). Immunocytochemical staining result showed that the expression of p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts were distributed in the membrane and cytoplasm. Precursor nerve growth factor combined with high-affinity p75 receptor could promote the apoptosis of the cells with the help of sortilin, and the expression of sortilin in the keloid fibroblasts was significantly lower than

  11. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  12. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines.

    Zanatta, C F; Mitjans, M; Urgatondo, V; Rocha-Filho, P A; Vinardell, M P

    2010-01-01

    Considering the belief that natural lipids are safer for topical applications and that carotenoids are able to protect cells against photooxidative damage, we have investigated whether topical creams and lotions, produced with Buriti oil and commercial surfactants, can exert photoprotective effect against UVA and UVB irradiation on keratinocytes and fibroblasts. Cell treatment was divided into two steps, prior and after exposition to 30 min of UVA plus UVB radiation or to 60 min of UVA radiation. Emulsions prepared with ethoxylated fatty alcohols as surfactants and containing alpha-tocopherol caused phototoxic damage to the cells, especially when applied prior to UV exposure. Damage reported was due to prooxidant activity and phototoxic effect of the surfactant. Emulsions prepared with Sorbitan Monooleate and PEG-40 castor oil and containing panthenol as active ingredient, were able to reduce the damages caused by radiation when compared to non-treated cells. When the two cell lines used in the study were compared, keratinocytes showed an increase in cell viability higher than fibroblasts. The Buriti oil emulsions could be considered potential vehicles to transport antioxidants precursors and also be used as adjuvant in sun protection, especially in after sun formulations. PMID:19766688

  13. Antiageing Mechanisms of a Standardized Supercritical CO2 Preparation of Black Jack (Bidens pilosa L. in Human Fibroblasts and Skin Fragments

    Gustavo Dieamant

    2015-01-01

    Full Text Available The use of topical retinoids to treat skin disorders and ageing can induce local reactions, while oral retinoids are potent teratogens and produce several unwanted effects. This way, efforts to explore complementary care resources should be supported. Based on this, we evaluate the antiageing effects of a supercritical CO2 extract from Bidens pilosa L. (BPE-CO2A containing a standardized multicomponent mixture of phytol, linolenic, palmitic, linoleic, and oleic acids. BPE-CO2A was assessed for its effects on human dermal fibroblasts (TGF-β1 and FGF levels using ELISA; collagen, elastin, and glycosaminoglycan by colorimetric assays, and mRNA expression of RXR, RAR, and EGFr by qRT-PCR and human skin fragments (RAR, RXR, collagen, elastin, and glycosaminoglycan by immunohistochemical analysis. Levels of extracellular matrix elements, TGF-β1 and FGF, and EGFr gene expression were significantly increased by BPE-CO2A. The modulation of RXR and RAR was positively demonstrated after the treatment with BPE-CO2A or phytol, a component of BPE-CO2A. The effects produced by BPE-CO2A were similar to or better than those produced by retinol and retinoic acid. The ability to stimulate extracellular matrix elements, increase growth factors, and modulate retinoid and rexinoid receptors provides a basis for the development of preparation containing BPE-CO2A as an antiageing/skin-repair agent.

  14. Quercetin enhances UVA-induced DNA damage in a rat fibroblast cell line

    De Castro, M. F.; Basto, Diana; Silva, João P.; Coutinho, O P

    2007-01-01

    Ultraviolet A (UVA) radiation from sunlight induces the production of reactive oxygen species (ROS), affecting a variety of cellular targets including the DNA. Quercetin, a flavonol present in many fruits, vegetables and beverages has been reported as a powerful antioxidant with an important role in prevention of carcinogenesis. The use of this compound, in topical formulations, could be of benefit in the prevention of skin damage produced by sunlight exposure. We investigated the effec...

  15. Decreased mitochondrial density and ultrastructural changes of mitochondria in cultivated skin fibroblasts of patients with Huntington´s disease

    Rodinová, M.; Marková, M.; Kratochvílová, H.; Kučerová, I.; Tesařová, M.; Lišková, Irena; Klempíř, J.; Roth, J.; Zeman, J.; Hansíková, H.

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 20-21. ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington´s disease * fibroblasts * mitochondrial ultrastructure Subject RIV: FH - Neurology

  16. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Deglesne PA; Arroyo R; Ranneva E; Deprez P

    2016-01-01

    Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulatio...

  17. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.

    Li, Yan; Shi, Shan; Gao, Jianxin; Han, Shichao; Wu, Xue; Jia, Yanhui; Su, Linlin; Shi, Jihong; Hu, Dahai

    2016-05-01

    Hypertrophic scar (HS) is a skin fibrotic disease that causes major clinically problematic symptoms. Cryptotanshinone (CT) is an important ingredient of Danshen (Salvia miltiorrhiza Bunge extract) that has been used to treat cardio-cerebral vascular diseases. Its clinical efficacy in HS remains unclear. To investigate whether CT can inhibit HS fibrosis, HS-derived fibroblastic cells (HSFs) were established and treated with or without CT. Type-collagen-I (Col1), type-collagen-III (Col3) and α-smooth muscle actin (α-SMA) expression were measured by western blot and real-time quantitative polymerase chain reaction. HSFs migration and contraction were assessed with the scratch assay and the fibroblast-populated collagen lattice (FPCL) contraction assay, respectively. Wound healing in CT-treated Balb/c mice was assessed by immunohistochemical analysis of collagen expression and Masson's trichrome staining analysis of collagen deposition. CT treatment of HSFs down-regulated Col1, Col3 and α-SMA mRNA and protein expression, HSFs migration, and HSFs contraction, and improved FPCL architecture. In mice, CT treatment accelerated wound healing: the scar margins were narrow and there was less collagen deposition in the regenerated tissue. Thus, CT promotes wound healing and decreases excessive deposition of extracellular matrix components. CT may help to prevent and reduce scarring. PMID:27133042

  18. IPL irradiation rejuvenates skin collagen via the bidirectional regulation of MMP-1 and TGF-β1 mediated by MAPKs in fibroblasts.

    Huang, Jinhua; Luo, Xiang; Lu, Jianyun; Chen, Jing; Zuo, Chengxin; Xiang, Yaping; Yang, Shengbo; Tan, Lina; Kang, Jian; Bi, Zhigang

    2011-05-01

    The efficacy of intense pulsed light (IPL) in remodeling the extracellular matrix of aged skin had been proven by an increasing number of clinical trials. However, because of the lack of research about the underlying molecular and signaling mechanisms, its efficiency had not been accepted universally. A potential mechanism of IPL rejuvenation effects is due to its different effects on diverse cytokines, the impact of IPL on them may determine the phenotype and prognosis of the aged skin. We designed this study to evaluate the impact of IPL on the secretion of matrix metalloproteinase-1 (MMP-1), transforming growth factor-β1 (TGF-β1), and the mitogen-activated protein kinase (MAPK) signaling pathway in human skin fibroblasts, and tried to study the respective functions of MAPKs as mediators of the MMP-1, TGF-β1 secretion. Results showed that the MMP-1 secretion was only enhanced by IPL at 10 J/cm(2); while the TGF-β1 secretion was inhibited by IPL when the fluence was below 36 J/cm(2), but enhanced at 72 J/cm(2). Meanwhile, ERK inhibitor PD98059 decreased MMP-1 secretion, but did not show a significant influence on TGF-β1; JNK inhibitor SP600125 increased the secretion of MMP-1 and decreased the TGF-β1 secretion; P38 inhibitor SB203580 had no significant influence on MMP-1 but increased the secretion of TGF-β1. Our findings indicated that the bidirectional influence of IPL on the secretion of MMP-1 and TGF-β1 is a potential mechanism of its skin rejuvenation effect; and the secretion of these two cytokines can be mediated by MAPKs. PMID:21161310

  19. Receptor-mediated rapid action of 1 alpha,25-dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblasts.

    Barsony, J; Marx, S. J.

    1988-01-01

    The intracellular cGMP concentration in normal human cultured fibroblasts was increased 2- to 3-fold by 1 alpha,25-dihydroxycholecalciferol [1 alpha,25-(OH)2D3] in a dose-dependent manner between 0.01 nM and 1 microM. The response was detectable within 1 min, reached a maximum (225% +/- 8% of baseline) at 6-8 min, and was no longer detectable at 30 min. The half-maximal effect of 1 alpha,25-(OH)2D3 was at 1.8 nM, and 24,25-dihydroxycholecalciferol showed an estimated EC50 100-fold higher. 1 b...

  20. Establishment of epidermal cell lines derived from the skin of the Atlantic bottlenose dolphin (Tursiops truncatus).

    Yu, Jin; Kindy, Mark S; Ellis, Blake C; Baatz, John E; Peden-Adams, Margie; Ellingham, Tara J; Wolff, Daynna J; Fair, Patricia A; Gattoni-Celli, Sebastiano

    2005-12-01

    The Atlantic bottlenose dolphin (Tursiops truncatus), a marine mammal found off the Atlantic coast, has become the focus of considerable attention because of an increasing number of mortality events witnessed in this species over the last several years along the southeastern United States. Assessment of the impact of environmental stressors on bottlenose dolphins (BND) has been difficult because of the protected status of these marine mammals. The studies presented herein focused on establishing epidermal cell cultures and cell lines as tools for the in vitro evaluation of environmental stressors on BND skin. Epidermal cell cultures were established from skin samples obtained from Atlantic BND and subjected to karyotype analysis. These cultures were further characterized using immunohistochemical methods demonstrating expression of cytokeratins. By two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we observed that the proteomic profile of BND skin tissue samples shared distinct similarities with that of skin-derived cultures. Epidermal cell cultures were transfected with a plasmid encoding the SV40 small t- and large T-antigens, as well as the neomycin-resistance gene. Five neomycin-resistant clones were isolated and expanded, and all of them proliferated at a faster rate than nontransfected BND epidermal cultures, which exhibited signs of senescence. Cell lysates prepared from two transfected clones were shown to express, by Western blot analysis, both SV40 tumor antigens. These experimental results are consistent with the concept that transfected clones expressing SV40 tumor antigens represent immortalized BND cell lines. Epidermal cell lines derived from Tursiops truncatus will provide a unique tool for studying key features of the interaction occurring between dolphins and the environment in which they live at their most crucial interface: the skin. PMID:16281302

  1. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses.

    Maas, Riks; van Zoelen, Diana; Oei, Hok; Claassen, Ivo

    2006-09-01

    International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products. PMID:16257542

  2. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

  3. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line

    1985-01-01

    The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions...

  4. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro

    In vitro tests are needed to replace animal tests to screen for the skin sensitization potential of chemicals. Skin sensitizers are electrophilic molecules and the Nrf2-electrophile-sensing pathway comprising the repressor protein Keap1, the transcription factor Nrf2 and the antioxidant response element (ARE) is emerging as a toxicity pathway induced by skin sensitizers. Previously, we screened a large set of chemicals in the reporter cell line AREc32, which contains an eight-fold repeat of the rat GSTA2 ARE-sequence upstream of a luciferase reporter gene in the human breast cancer cell line MCF7. This approach was now further developed to bring it closer to the conditions in the human skin and to propose a fully standardized assay. To this end, a luciferase reporter gene under control of a single copy of the ARE-element of the human AKR1C2 gene was stably inserted into HaCaT keratinocytes. A standard operating procedure was developed whereby chemicals are routinely tested at 12 concentrations in triplicate for significant induction of gene activity. We report results from this novel assay on (i) a list of reference chemicals published by ECVAM, (ii) the ICCVAM list of chemicals for validation of alternative endpoints in the LLNA and (iii) on a more general list of 67 chemicals derived from the ICCVAM database. For comparison, peptide reactivity data are presented for the same chemicals. The results indicate a good predictive value of this approach for hazard identification. Its technical simplicity, the high-throughput format and the good predictivity may make this assay a candidate for rapid validation to meet the tight deadline to replace animal tests for skin sensitization by 2013 set by the European authorities.

  5. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Mei Xin [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Key Laboratory of Horticultural Plant Growth Development and Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029 (China); Wu Yuanyuan; Mao Xiao [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Tu Youying, E-mail: youytu@zju.edu.c [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China)

    2011-01-15

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  6. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  7. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production.

    Deters, A M; Schröder, K R; Smiatek, T; Hensel, Andreas

    2005-01-01

    Endogenous carbohydrates, especially oligo- and polysaccharides, participate in the regulation of a broad range of biological activities, e. g., signal transduction, inflammation, fertilisation, cell-cell-adhesion and act as in vivo markers for the determination of cell types. In the present study, water-soluble (WS) and gel-forming polysaccharides (GF) of ispaghula seed husk (Plantago ovata Forsskal, Plantaginaceae) were characterised as neutral and acidic arabinoxylans and tested under in vitro conditions for regulating activities on cell physiology of human keratinocytes and human primary fibroblasts. Only water-soluble polysaccharides exhibited strong and significant effects on cell physiology of keratinocytes and fibroblasts. Proliferation of cells of the spontaneously immortalised keratinocyte cell line HaCaT was significantly up-regulated in a dose-independent manner. Analysis of activated signal pathways by RNA analysis proved an effect of the acidic arabinoxylan on the expression of keratinocyte growth factor (KGF) in HaCaT cells. Differentiation behaviour of normal human keratinocytes (NHK) determined by involucrin was slightly influenced, due to the enhanced cell proliferation, leading to a cell-cell-mediated indirect induction of early differentiation. WS did not influence late differentiation, as determined by keratin K1 and K10 titres. PMID:15678371

  8. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    Svenstrup, B; Brünner, N; Dombernowsky, P;

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase and...... 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments...

  9. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher ce...

  10. Exploring the Anticancer Activity of Grape Seed Extract on Skin Cancer Cell Lines A431

    V. Mohansrinivasan

    2015-08-01

    Full Text Available In this study, grape seeds were extracted using ethyl acetate and petroleum ether by solvent-solvent extraction method. The phytochemical tests were performed to identify different phytochemical compounds present in the grape seed extract (GSE. Antibacterial activity of the GSE was determined using agar diffusion method against Gram- positive and Gram-negative bacteria. Gas chromatography-mass spectrometry (GC-MS and Fourier transform infrared spectroscopy (FTIR analysis was done to identify the presence of bioactive compounds and their functional groups. The GC-MS results revealed a total of four compounds, known to have potent activity against cancer cells, viz, squalene, the most potent compound found in ethyl acetate extract and diethyl phthalate, ethyl-9- cis -11- trans octadecadienoate and (R-(--14,-methyl-8-Hexadecyn-1-ol in petroleum ether extract. Cytotoxic activity of the GSE was observed against skin cancer cell lines A4321 using 3-(4, 5-dimethylthiazol-2-yl-2-5-diphenyl tetrazolium bromide MTT assay. The IC50 value of the GSE against A431 skin cancer cell line was 480 µg/mL. This is first such report against A4321 cell lines. The study gives the overall perception about importance of GSE in medicine and nutraceuticals purposes.

  11. Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

    Eun Kyeong Lee

    2013-05-01

    Full Text Available In the current study, we explored the effect of LDR on theactivation of Nrfs transcription factor involved in cellular redoxevents. Experiments were carried out utilizing 0.05 and 0.5 GyX-ray irradiated normal human skin fibroblast HS27 cells. Theresults showed LDR induced Nrf1 and Nrf2 activation andexpression of antioxidant genes HO-1, Mn-SOD, and NQO1.In particular, 0.05 Gy-irradiation increased only Nrf1 activation,but 0.5 Gy induced both Nrf1 and Nrf2 activation.LDR-mediated Nrf1/2 activation was accompanied by reactivespecies (RS generation and Ca2+ flux. This effect was abolishedin the presence of N-acetyl-cysteine and BAPTA- AM.Furthermore, Nrf1/2 activation by LDR was suppressed byPD98059, an inhibitor of ERK1/2. In conclusion, LDR inducesNrf1 and Nrf2 activation and expression of Nrf-regulatedantioxidant defense genes through RS and Ca2+/ERK1/2pathways, suggesting new insights into the molecularmechanism underlying the beneficial role of LDR in HS27cells. [BMB Reports 2013; 46(5: 258-263

  12. Betaine:homocysteine methyltransferase--a new assay for the liver enzyme and its absence from human skin fibroblasts and peripheral blood lymphocytes.

    Wang, J A; Dudman, N P; Lynch, J; Wilcken, D E

    1991-12-31

    Chronic elevation of plasma homocysteine is associated with increased atherogenesis and thrombosis, and can be lowered by betaine (N,N,N-trimethylglycine) treatment which is thought to stimulate activity of the enzyme betaine:homocysteine methyltransferase. We have developed a new assay for this enzyme, in which the products of the enzyme-catalysed reaction between betaine and homocysteine are oxidised by performic acid before being separated and quantified by amino acid analysis. This assay confirmed that human liver contains abundant betaine:homocysteine methyltransferase (33.4 nmol/h/mg protein at 37 degrees C, pH 7.4). Chicken and lamb livers also contain the enzyme, with respective activities of 50.4 and 6.2 nmol/h/mg protein. However, phytohaemagglutinin-stimulated human peripheral blood lymphocytes and cultured human skin fibroblasts contained no detectable betaine:homocysteine methyltransferase (less than 1.4 nmol/h/mg protein), even after cells were pre-cultured in media designed to stimulate production of the enzyme. The results emphasize the importance of the liver in mediating the lowering of elevated circulating homocysteine by betaine. PMID:1819467

  13. [Slow Formation and Degradation of γH2AX Foci in Human Skin Fibroblasts Exposed to Low-Dose X-Ray Radiation].

    Grekhova, A K; Eremin, P S; Osipov, A N; Eremin, I I; Pustovalova, M V; Ozerov, I V; Smetanina, N M; Lazareva, N L; Vorobyeva, N Yu; Pulin, A A; Maksimova, O A; Gordeev, A V; Bushmanov, A Yu; Kotenko, K V

    2015-01-01

    It was shown that the kinetics of changes of γH2AX foci number (marker of DNA double-strand breaks) in human skin fibroblasts after exposure to low doses of X-ray radiation (20, 40 and 80 mGy) differs from that observed after exposure to medium-low doses (160 and 240 mGy). After exposure to 160 and 240 mGy the highest number of γH2AX foci was detected at 30 min after exposure (first experimental point) and further their decrease was observed. At the same time we observed a fast phase of repair (upto 4 h), in which there was a decrease of the foci amount to ~50-60% and a slow phase of repair (from 4 h to 24 h). After 24 h only ~3-5% of the foci amount observed at 30 min after irradiation was left. After exposure to low doses, the foci number did not decrease during 2 h and even 24 h after exposure their amount was ~25% from that observed at maximum points (1 h after irradiation at 40 and 80 mGy and 2 h after irradiation at 20 mGy). PMID:26601539

  14. Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus.

    Gerami-Naini, Behzad; Smith, Avi; Maione, Anna G; Kashpur, Olga; Carpinito, Gianpaolo; Veves, Aristides; Mooney, David J; Garlick, Jonathan A

    2016-08-01

    Diabetic foot ulcers (DFUs) are nonhealing chronic wounds that are a serious complication of diabetes. Since induced pluripotent stem cells (iPSCs) may offer a potent source of autologous cells to heal these wounds, we studied if repair-deficient fibroblasts, derived from DFU patients and age- and site-matched control fibroblasts, could be reprogrammed to iPSCs. To establish this, we used Sendai virus to successfully reprogram six primary fibroblast cell lines derived from ulcerated skin of two DFU patients (DFU8, DFU25), nonulcerated foot skin from two diabetic patients (DFF24, DFF9), and healthy foot skin from two nondiabetic patients (NFF12, NFF14). We confirmed reprogramming to a pluripotent state through three independent criteria: immunofluorescent staining for SSEA-4 and TRA-1-81, formation of embryoid bodies with differentiation potential to all three embryonic germ layers in vitro, and formation of teratomas in vivo. All iPSC lines showed normal karyotypes and typical, nonmethylated CpG sites for OCT4 and NANOG. iPSCs derived from DFUs were similar to those derived from site-matched nonulcerated skin from both diabetic and nondiabetic patients. These results have established for the first time that multiple, DFU-derived fibroblast cell lines can be reprogrammed with efficiencies similar to control fibroblasts, thus demonstrating their utility for future regenerative therapy of DFUs. PMID:27328415

  15. Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: Model systems for equine sarcoids

    It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independently of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology

  16. On the Thermus thermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line.

    Pantazaki, A A; Choli-Papadopoulou, T

    2012-05-01

    A limited number of bacterial strains usually grown under nutrient limitation secrete rhamnolipids (RLs), which are recorded as virulence factors that are implicated in the pathogenicity of a microorganism. The non-pathogenic T. thermophilus HB8 produces extracellular rhamnolipids (TthRLs) under defined cultivation conditions using sunflower seed oil and sodium gluconate as carbon sources. In particular, the secreted TthRLs have been isolated, purified and identified with ATR-FTIR. Their effects on the cells' viability were examined when they were supplemented in a culture of human skin fibroblasts. Purified TthRLs triggered a sequence of rapid and pronounced morphological alterations characterized by transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation, rounding up, distortion of nuclei and loss of lamellar processes, and finally disruption of membrane. The addition of TthRLs in the cultured fibroblasts caused cytotoxicity, in contrast to that of rhamnose that stimulated viability, as it was assessed by MTT test. These results revealed that among the constituents of RLs that are implicated in the cytotoxicity, it has to be attributed to the lipidic chain variation and not to the carbohydrate part. TthRLs cytotoxicity on fibroblasts is comparable, and provoked similar effects, to that caused by saponin white, a known surfactant. TthRLs secretion might be a crucial point for the transformation of a non-pathogenic bacterium to a pathogenic one under certain environmental conditions favoring their secretion. RLs secretion in the microorganism's world might be a general route for the passage in the pathogenicity to ensure their survival under nutrient limitation conditions. PMID:21611776

  17. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE

    The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells. The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce

  18. The common properties and the heterogeneity of dermal fibroblast subpopulations.

    Makarchuk O.I.

    2007-01-01

    Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular...

  19. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  20. Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Matthaei Klaus I

    2004-07-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

  1. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms

  2. Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line

    Neves, Bruno Miguel; Cruz, Maria Teresa; Francisco, Vera; Gonçalo, Margarida; Figueiredo, Américo; Duarte, Carlos B.; Lopes, Maria Celeste

    2008-01-01

    The development of non-animal methods for skin sensitization testing is an urgent challenge. Some of the most promising in vitro approaches are based on the analysis of phenotypical and functional modifications induced by sensitizers in dendritic cell models. In this work, we evaluated, for the first time, a fetal skin-derived dendritic cell line (FSDC) as a model to discriminate between sensitizers and irritants, through analysis of their effects on CD40 and CXCR4 protein expression. The che...

  3. The determination of the topological structure of skin friction lines on a rectangular wing-body combination

    Yates, Leslie A.; Fearn, Richard L.

    1988-01-01

    A short tutorial in the application of topological ideas to the intepretation of oil flow patterns is presented. Topological concepts such as critical points, phase portraits, topological stability, and indexing are discussed. These concepts are used in an ordered procedure to construct phase portraits of skin friction lines with oil flow patterns for a wing-body combination and two angles of attack. The relationship between the skin friction phase portrait and planar cuts of the velocity field is also discussed.

  4. Effect of 660 nm Light-Emitting Diode on the Wound Healing in Fibroblast-Like Cell Lines

    Myung-Sun Kim

    2015-01-01

    Full Text Available Light in the red to near-infrared (NIR range (630–1000 nm, which is generated using low energy laser or light-emitting diode (LED arrays, was reported to have a range of beneficial biological effects in many injury models. NIR via a LED is a well-accepted therapeutic tool for the treatment of infected, ischemic, and hypoxic wounds as well as other soft tissue injuries in humans and animals. This study examined the effects of exposure to 660 nm red LED light at intensities of 2.5, 5.5, and 8.5 mW/cm2 for 5, 10, and 20 min on wound healing and proliferation in fibroblast-like cells, such as L929 mouse fibroblasts and human gingival fibroblasts (HGF-1. A photo illumination-cell culture system was designed to evaluate the cell proliferation and wound healing of fibroblast-like cells exposed to 600 nm LED light. The cell proliferation was evaluated by MTT assay, and a scratched wound assay was performed to assess the rate of migrating cells and the healing effect. Exposure to the 660 nm red LED resulted in an increase in cell proliferation and migration compared to the control, indicating its potential use as a phototherapeutic agent.

  5. Estrogens and aging skin

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity...

  6. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher frequency of plasmids with mutations, fewer plasmids with two or more mutations in the marker gene, and a new mutagenic hotspot. The major type of base substitution mutation was the G:C to A:T transition with both cell lines. These results, together with similar findings published earlier with cells from a xeroderma pigmentosum patient in complementation group A, suggest that isolated G:C to A:T somatic mutations may be particularly important in generation of human skin cancer by UV radiation

  7. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  8. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Chien-Liang Fang

    2016-07-01

    Full Text Available Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM. Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1, Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL, and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR, adiponectin receptor 1 (AdipoR1, matrix metalloproteinase-1 (MMP-1, MMP-3, and cyclooxygenase-2 (COX-2, but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.

  9. Comparative assessment of HIF-1α and Akt responses in human lung and skin cells exposed to benzo[α]pyrene: Effect of conditioned medium from pre-exposed primary fibroblasts.

    Mavrofrydi, Olga; Mavroeidi, Panagiota; Papazafiri, Panagiota

    2016-09-01

    Exposure to atmospheric pollutants has been accused for many adverse health effects. Benzo[α]pyrene (Β[α]Ρ) in particular, the most extensively studied member of pollutants, is implicated in both cancer initiation and promotion. In the present study, we compared the effects of noncytotoxic doses of Β[α]Ρ, between human skin and lung epithelial cells A431 and A549, respectively, focusing on Akt kinase and HIF-1α, as it is well known that these proteins are upregulated in various human cancers promoting survival, angiogenesis and metastasis of tumor cells. Also, taking into consideration that fibroblasts are involved in cancer progression, we tested the possible modulation of epithelial cell response by paracrine factors secreted by Β[α]Ρ-treated fibroblasts. Low doses of Β[α]Ρ were found to enhance epithelial cell proliferation and upregulate both Akt kinase and HIF-1α, with A549 cells exhibiting a more sustained profile of upregulation. It is to notice that, the response of HIF-1α was remarkably early, acting as a sensitive marker in response to airborne pollutants. Also, HIF-1α was induced by Β[α]Ρ in both lung and skin fibroblasts indicating that this effect may be conserved throughout different cell types and tissues. Interestingly however, the response of both proteins was differentially modified upon treatment with conditioned medium from Β[α]Ρ-exposed fibroblasts. This is particularly evident in A459 cells and confirms the critical role of intercellular and paracrine factors in the modulation of the final response to an extracellular signal. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1103-1112, 2016. PMID:25728052

  10. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  11. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts.

    Zoppi, Nicoletta; Chiarelli, Nicola; Cinquina, Valeria; Ritelli, Marco; Colombi, Marina

    2015-12-01

    Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder. PMID:26376865

  12. A new approach to cancer therapy due to appropriate uptake and retention kinetics of meta-tetrahydroxy-phenylchlorin in a human fibroblast cell line.

    Wierrani, F; Fiedler, D; Schnitzhofer, G; Stewart, J C; Gharehbaghi, K; Henry, M; Grin, W; Grünberger, W; Krammer, B

    1996-04-01

    Studies have shown that meta-tetrahydroxy-phenylchlorin is an efficient tumor targeting agent for laser photodynamic therapy. The effectiveness of this approach for cancer treatment depends on drug concentration, incubation time and extracellular protein. We studied uptake and retention kinetics of mTHPC in a human fibroblast cell line. Our results clearly demonstrate a difference in the amount of extracellular mTHPC at an incubation temperature of 37 degrees C compared to 20 degrees C and 4 degrees C. pH-values were always constant and not responsible for the increase. Furthermore, both absorption and fluorescence of mTHPC increase when incubated at normal human body temperature. Incubation of human fibroblast cells with mTHPC (10 micg/mL) showed that intracellular mTHPC increases in a linear manner reaching saturation after 24 hours and declining until 48 hours with concommitant increase of supernatant mTHPC. Therefore, we believe that tumor cells can be treated optimally with PDT following a delay > 24 hours after drug administration with a minimum of damage to surrounding normal tissues. PMID:8937740

  13. Development of an artificial lock for the skin-pass section in a hot dip galvanising line

    In this paper, we present the application of data mining techniques to develop an artificial lock for the skin-pass in an attempt to solve a problem that can arise during the galvanising manufacturing process:the wrong labelling of the steel grade of a coil. In order to detect these errors and thus to avoid that coils with different properties than expected end up with a client, we propose neural network-based models for on-line predicting the strip elongation in the skin-pass section according to the manufacturing conditions and its chemical composition. thus, a significant difference between estimated and measured elongation would mean that the coil must be removed from the line for further analyses. (Author) 14 refs

  14. Differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields

    We studied the effect of symmetric, biphasic sinusoidal electromagnetic fields (EMF) (20 Hz, 6 mT) on the differentiation of normal human skin fibroblasts (HH-8), normal human lung fibroblasts (WI38), and SV40-transformed human lung fibroblasts (WI38SV40) in in vitro cultures. Cells were exposed up to 21 days for 2 x 6 h per day to EMF. Normal mitotic human skin and lung fibroblasts could be induced to differentiate into postmitotic cells upon exposure to EMF. Concomitantly, the synthesis of total collagen as well as total cellular protein increased significantly by a factor of 5-13 in EMF-induced postmitotic cells. As analyzed by two-dimensional gel electrophoresis of [35S]methionine-labeled polypeptides, EMF-induced postmitotic cells express the same differentiation-dependent and cell type-specific marker proteins as their spontaneously arising counterparts. In SV40-transformed human lung fibroblasts (cell line WI38SV40) the exposure to EMF induced the differentiation of mitotic WI38SV40 cells into postmitotic and degenerating cells in subpopulations of WI38SV40 cell cultures. Other subpopulations of WI38SV40 cells did not show any effect of EMF on cell proliferation and differentiation. These results indicate that long-term EMF exposure of fibroblasts in vitro induces the differentiation of mitotic to postmitotic cells that are characterized by differentiation-specific proteins and differentiation-dependent enhanced metabolic activities

  15. Reconstruction of Tissue Engineering Skin by Epidermal Cells and Fibroblasts Combined with Modified Polymer of Lactic Acid%皮肤细胞复合改性聚乳酸构建组织工程皮肤

    冯颖; 王宗良; 师铁英; 石毅; 周余来; 颜炜群

    2007-01-01

    目的:探讨以改性聚乳酸为细胞外基质网架构建组织工程皮肤的可行性.方法:采用盐溶法制备机械性能得到部分改进的聚乳酸多孔泡沫网架,向改进的聚乳酸网架接种真皮成纤维细胞和表皮角质形成细胞,以普通聚乳酸支架作为对照,构建组织工程皮肤.体外培养一周,对网架进行形态学观察.主要观察指标:①一般形态观察②组织学观察.结果:复层组织工程皮肤在结构上与正常皮肤相似,具有真皮、表皮双层结构.改性聚乳酸网架上有双层细胞生长,生长的细胞与网架接触,并且在其表面形成较为明显而连续的细胞层.随着培养时间的延长,发生了一系列变化:表皮部分细胞层数逐渐增多,真皮部分细胞也逐渐增多,并向表皮层深入,位于表皮与网架之间.结论:双醛淀粉作为良好的增柔剂在改善聚乳酸网架的机械性能的同时,也具有良好的细胞相容性,不影响细胞的生长增殖和代谢,可以进一步用作组织工程皮肤的支架材料.%Objective: To investigate the applied feasibility of scaffold with modified PLA (Polymer of lactic acid) in tissue engineering. Methods:First, we adopted salting-in method to prepare porous foam scaffold. Then, we reconstructed tissue engineering skin by epidermal cells and fibroblasts combined with modified PLA. On the 14th day of cell culturing in vitro, we was a control. Results:The arfificial skin is composed of epidermis and dermis and similar to natural skin in appearance. The skin consists of fibroblasts and keratinocytes, which are in various proliferation and differentiation stages. Fibroblasts and keratinocytes distribute on the surface of polymer of lactic acid (PLA) and the number of fibroblast and keratinocyte increase. Conclusion:Dialdehyde starches (DAS) not only improve the function of PLA but also have good effects on cells. Moreover, it does not affect the growth and the metabolism of the cells. So it is

  16. Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene.

    Spalding, J W; Momma, J; Elwell, M R; Tennant, R W

    1993-07-01

    A transgenic mouse line (TG.AC) created in the FVB/N strain, carries a v-Ha-ras gene fused to a zeta-globin promoter gene. These trangenic mice have the properties of genetically initiated skin and have been shown to be sensitive to 12-O-tetradecanoylphorbol-13-acetate (TPA), a well-described promoter of skin papillomas in the two-stage mouse skin tumorigenesis model. It was of interest to determine whether the TG.AC mouse strain was also responsive to other known promoters. Groups of heterozygous or homozygous TG.AC mice were treated topically, 2x/week, for up to 20 weeks with benzoyl peroxide (BPO), 2-butanol peroxide (2-BUP), phenol (PH), acetic acid (AA), TPA and acetone (ACN), the vehicle control. Skin papillomas were induced in all groups treated with TPA, BPO and 2-BUP. Papillomas were observed in some treatment groups as early as 3 weeks. The relative activity of the promoters was TPA > 2-BUP > BPO > PH = AA = ACN. No papillomas were observed in any of the uninitiated FVB/N mice treated in a similar manner and which served as treatment control groups. Studies to determine the sensitivity of TG.AC mice to TPA, indicated that a total dose of 25-30 micrograms of TPA administered in 3 or 10 applications, was sufficient to induce an average incidence of 11-15 papillomas per mouse. The papilloma incidence continued to increase and was maintained up to 15 weeks after TPA treatment was terminated. The short latency period and high incidence of papilloma induction indicate that TG.AC mice have a high sensitivity to known skin promoters. The TG.AC line should prove to be a sensitive model for identifying putative tumor promoters or complete carcinogens. PMID:8330346

  17. Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses

    Lai, Zon Weng; Bolm, Louisa; Fuellgraf, Hannah; Biniossek, Martin L.; Makowiec, Frank; Hopt, Ulrich Theodor; Werner, Martin; Keck, Tobias; Bausch, Dirk; Sorio, Claudio; Scarpa, Aldo; Schilling, Oliver; Bronsert, Peter; Wellner, Ulrich Friedrich

    2016-01-01

    Background Ampullary cancer is a relatively rare form of cancer and usually treated by pancreatoduodenectomy, followed by adjuvant therapy. The intestinal subtype is associated with markedly improved prognosis after resection. At present, only few cell lines are available for in vitro studies of ampullary cancer and they have not been collectively characterized. Methods We characterize five ampullary cancer cell lines by subtype maker expression, epithelial-mesenchymal transition (EMT) featur...

  18. Increased transcription of the c-myc oncogene in two methylcholanthrene-induced quail fibroblastic cell lines

    Saule, S.; Martin, P.; Gegonne, A.; Begue, A.; Lagrou, C.; Stehelin, D.

    1984-12-01

    The expression of three c-onc genes (c-erb, c-myc, c-myb) was investigated in five cell lines established from fibrosarcomas induced with 20-methylcholanthrene (MCA) of Japanese quails. These cell lines showed low levels of the three c-onc genes, with the exception of two cell lines that accumulated moderate (MCAQ 1-4) and large amounts (MCAQ 3-5) of c-myc RNA. Molecular cloning and restriction endonuclease analyses indicated that expression of c-myc in these two cell lines were not associated with detectable rearrangements in the c-myc locus, that the size of the c-myc transcript (2.7 kb) in MCAQ 3-5 was similar to that of the normal c-myc messenger RNAs (mRNA) and that the transcriptional activatin observed in MCAQ 3-5 was not mediated by the LTR (long terminal repeat) of a proximate ALV (avian leukosis virus) provirus. Finally, when analyzed with the restriction enzymes Msp I and Hpa II, the c-myc locus of MCAQ 3-5 and MCAQ 1-4 was found hypomethylated as compared with that of the other cell lines tested that show low levels of c-myc transcripts. Results suggest that one of the ways methylcholanthrene could mediate transformation is by inducing an abnormal regulation of the c-myc gene.

  19. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum.

    Okamura, Kohji; Toyoda, Masashi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Umezawa, Akihiro

    2015-12-01

    Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively. PMID:26697316

  20. Modulation of radio-induced oxidative damage by the combination of pentoxifylline and γ-tocopherol in skin fibroblasts and microvascular endothelial cells

    Clinical or accidental localized ionizing radiation exposure can induce severe skin damage constituting the cutaneous radiological syndrome which is divided in acute and late phases. The combination of pentoxifylline (PTX), antioxidant phytochemical, and γ-tocopherol, antioxidant nutrient shows effectiveness in reducing the late radio-induced skin damage with a long period. This work aims to investigate the molecular and cellular mechanisms involved in the effects of this combination

  1. Mouse fibroblast L929 cells are less permissive to infection by Nelson Bay orthoreovirus compared to other mammalian cell lines.

    Mok, Lawrence; Wynne, James W; Grimley, Samantha; Shiell, Brian; Green, Diane; Monaghan, Paul; Pallister, Jackie; Bacic, Antony; Michalski, Wojtek P

    2015-07-01

    In recent years, bats have been identified as a natural reservoir for a diverse range of viruses. Nelson Bay orthoreovirus (NBV) was first isolated from the heart blood of a fruit bat (Pteropus poliocephalus) in 1968. While the pathogenesis of NBV remains unknown, other related members of this group have caused acute respiratory disease in humans. Thus the potential for NBV to impact human health appears plausible. Here, to increase our knowledge of NBV, we examined the replication and infectivity of NBV using different mammalian cell lines derived from bat, human, mouse and monkey. All cell lines supported the replication of NBV; however, L929 cells showed a greater than 2 log reduction in virus titre compared with the other cell lines. Furthermore, NBV did not induce major cytopathic effects in the L929 cells, as was observed in other cell lines. Interestingly, the related Pteropine orthoreoviruses, Pulau virus (PulV) and Melaka virus (MelV) were able to replicate to high titres in L929 cells but infection resulted in reduced cytopathic effect. Our study demonstrates a unique virus-host interaction between NBV and L929 cells, where cells effectively control viral infection/replication and limit the formation of syncytia. By elucidating the molecular mechanisms that control this unique relationship, important insights will be made into the biology of this fusogenic virus. PMID:25748429

  2. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    SezenYılmaz

    2016-02-01

    Full Text Available Objective: Many studies have been published on the antioxidative effects of boric acid (BA and sodium borates in in vitro studies. However, the boron (B concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentration range relevant to humans. The aim of this study was to investigate the protective effects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods: In this experimental study, comet assay and neutral red uptake (NRU assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2. Results: The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 μM. These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion: Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54

  3. [The influence of low-frequency pulsed electric and magnetic signals or their combination on the normal and modified fibroblasts (an experimental study)].

    Ulitko, M V; Medvedeva, S Yu; Malakhov, V V

    2016-01-01

    The results of clinical studies give evidence of the beneficial preventive and therapeutic effects of the «Tiline-EM» physiotherapeutic device designed for the combined specific treatment of the skin regions onto which both discomfort and pain sensations are directly projected, reflectively active sites and zones, as well as trigger zones with the use of low-frequency pulsed electric current and magnetic field. The efficient application of the device requires the understanding of the general mechanisms underlying such action on the living systems including those operating at the cellular and subcellular levels. The objective of the present study was the investigation of the specific and complex effects produced by the low-frequency pulses of electric current and magnetic field generated in the physiotherapeutic device «Tiline-EM» on the viability, proliferative activity, and morphofunctional characteristics of normal skin fibroblasts and the transformed fibroblast line K-22. It has been demonstrated that the biological effects of the electric and magnetic signals vary depending on the type of the cell culture and the mode of impact. The transformed fibroblasts proved to be more sensitive to the specific and complex effects of electric and magnetic pulses than the normal skin fibroblasts. The combined action of the electric and magnetic signals was shown to have the greatest influence on both varieties of fibroblasts. It manifests itself in the form of enhanced viability, elevated proliferative and synthetic activity in the cultures of transformed fibroblasts and as the acceleration of cell differentiation in the cultures of normal fibroblasts. The effect of stimulation of dermal fibroblast differentiation in response to the combined treatment by the electric and magnetic signals is of interest from the standpoint of the physiotherapeutic use of the «Tiline-EM» device for the purpose of obtaining fibroblasts cultures to be employed in regenerative therapy and

  4. Cytotoxic and mutagenic effects of carcinogenic aromatic amides and polycyclic hydrocarbons and ultraviolet irradiation in normally repairing and repair-deficient (xeroderma pigmentosum) diploid human skin fibroblasts

    The cloning ability of fibroblasts taken from a xeroderma pigmentosum patient proved 2.5 to 3.5 times more sensitive to the cytotoxic effect of active derivatives of carcinogens or to uv irradiation than that of normal cells. They also exhibited a corresponding 2.5- to 3.5-fold greater increase in the frequency of induced mutations to 8-azaguanine resistance per survivor, which might have been expected since these XP cells exhibit less than 20 percent of the DNA-repairing capacity of the normal cells following exposure to such DNA-damaging agents

  5. Creating a line-shaped weakening in a polymer skin/foam bilaminate sheet while minimizing read-through

    Cox, Kevin R.

    When a line shaped weakening in a polymer skin/foam bilaminate is created by mechanically scoring the backside of the skin, where it is bonded to the foam, the weakness of the bilaminate is determined by the depth of the score groove. The deeper the groove, the weaker the bilaminate and the easier it is to achieve a location-controlled fragmentation-free failure. But also, the deeper the groove, the greater the tendency for read-through. Read-through is seeing on the front surface of the skin the location of the groove that was created on the back surface. This is why it is often important to minimize the groove depth required to achieve a location-controlled fragmentation-free failure and to minimize read-through for a given groove depth. The immediate application of this technology is found in the weakening of a car instrument panel to allow the passenger-side airbag to deploy through it. This work has focused on understanding how the skin fails, how the foam fails, and what leads to a location-controlled fragmentation-free failure of the bilaminate. Quasi-shear and tensile tests were conducted to achieve this. The knowledge acquired was used to develop tests to predict how a bilaminate will fail and to make general bilaminate design recommendations to minimize the groove depth required to achieve a location-controlled fragmentation-free failure. This work has also focused on understanding what topographical feature on the skin's surface constitutes read-through, what strains are induced by mechanical scoring, and how these strains lead to read-through. Scored and mounted skins were viewed with an optical interferometer and measured with a profilometer to better understand what topographical features constitute read-through. Skins of different color and gloss level were viewed with incident light directed in various directions to better understand the affect of incident light direction, color, and gloss on read-through. Several model systems were used to

  6. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  7. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  8. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  9. Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    Caffeine was found to potentiate x-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 h postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +- 0.13 which did not vary significantly with treatment time or x-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +- 0.12 at 30 h, rose to 1.66 +- 0.17 at 41 h, and decreased to 1.31 +- 0.13 at 66 h. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment

  10. The potentiation by caffeine of X-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    Caffeine was found to potentiate X-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 hr postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +/- 0.13 which did not vary significantly with treatment time or X-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +/- 0.12 at 30 hr, rose to 1.66 +/- 0.17 at 41 hr, and decreased to 1.31 +/- 0.13 at 66 hr. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment