WorldWideScience

Sample records for skin fibroblast lines

  1. Lymphoblastoid lines and skin fibroblasts from patients with tuberous sclerosis are abnormally sensitive to ionizing radiation and to a radiomimetic chemical

    Lymphoblastoid lines, derived by transforming peripheral blood lymphocytes with Epstein-Barr virus, and skin fibroblast lines were established from two patients with tuberous sclerosis. The number of viable lymphoblastoid cells was determined by their ability to exclude the vital dye trypan blue after their irradiation with x-rays or 254 nm ultraviolet light. The growth of fibroblasts was determined by their ability to form colonies after treatment with the radiomimetic, DNA-damaging chemical N-methyl-N'-nitro-N-nitrosoguanidine. The tuberous sclerosis lymphoblastoid lines were hypersensitive to x-rays but had normal sensitivity to the ultraviolet radiation. The tuberous sclerosis fibroblast lines were hypersensitive to the N-methyl-N'-nitro-N-nitrosoguanidine. The hypersensitivity of tuberous sclerosis cells to x-rays and to N-methyl-N'-nitro-N-nitrosoguanidine is believed to reflect defective repair of DNA damaged by these agents and may provide the basis for in vitro, including prenatal, diagnostic tests for tuberous sclerosis

  2. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  3. Cultures of cancer patient's skin tissue fibroblast and radiosensitivity assay

    In order to test the radiosensitivity of normal skin tissue, the authors cultured cancer patient's skin tissue fibroblast, surviving fraction experiment was employed to provide data for understanding of the different radiosensitivity among the cancer patients, Method: cancer patient's skin tissue fibroblast were cultured in vitro by the way of tar's attachment, cells were irradiated by graded doses of γ-ray , cell dose response experiment was used to test the radiosensitivity of cell. Result: Cancer patient's skin fibroblast could be propagated and passaged by the method of culture in vitro. Radiosensitivity are different among the various cancer patient's skin tissue fibroblasts

  4. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  5. Treatment of Skin Avulsion Injuries with Basic Fibroblast Growth Factor

    Hajime Matsumine, MD, PhD

    2015-01-01

    Summary: This report describes favorable outcomes in 9 patients with skin avulsion injuries of the extremities who underwent full-thickness skin grafting and basic fibroblast growth factor (bFGF) application. Following removal of contaminated subcutaneous fat tissue on the inside of skin, the avulsed skin was processed into a full-thickness skin graft, with as much of the skin used as possible irrespective of damage. Several drainage holes (5–10 mm in diameter) were made on the graft for drai...

  6. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir;

    2002-01-01

    -assisted microscope work-station. For evaluation of cell morphology, cell contours were recognized semiautomatically and used for determination of cell area, cell spreading and number and length of processes. We found that the cellular displacement of the buccal fibroblasts was only approximately 50% of the cellular...... displacement of periodontal and skin fibroblasts. The decreased cellular displacement of the buccal fibroblasts was found to be due to both lower cellular speed and less persistence in direction. The buccal fibroblasts also displayed smaller areas and longer processes. The differences in cellular morphology...

  7. Extracellular depolymerization of hyaluronic acid in cultured human skin fibroblasts

    The chain length of [3H]hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of [3H]glucosamine was investigated. [3H]Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts

  8. Histamine inhibits differentiation of skin fibroblasts into myofibroblasts.

    Lin, Lin; Yamagata, Kaoru; Nakayamada, Shingo; Sawamukai, Norifumi; Yamaoka, Kunihiro; Sakata, Kei; Nakano, Kazuhisa; Tanaka, Yoshiya

    2015-07-31

    Histamine and TGF-β, major mediators secreted by mast cells, are involved in skin inflammation and play critical roles in the pathogenesis of systemic sclerosis. However, the roles of signaling mechanisms in the development of skin fibrosis remain largely unclear. Here we show that histamine suppressed the expression of α smooth muscle actin (αSMA), a marker of myofibroblasts, induced by TGF-β1 in skin fibroblasts. Histamine H1-receptor (H1R), but not H2-receptor (H2R) or H4-receptor (H4R), was expressed on skin fibroblasts at both mRNA and protein levels. Interestingly, an H1R antagonist, but not H2R or H4R antagonists, antagonized the histamine-mediated suppression of αSMA expression by TGF-β1. Correspondingly, phosphorylated Smad2 was detected after treatment with TGF-β1, whereas the addition of histamine inhibited this phosphorylation. Taken together, histamine-H1R decreased TGF-β1-mediated Smad2 phosphorylation and inhibited differentiation of skin fibroblasts into myofibroblasts. PMID:26036574

  9. Studies of the in vivo radiosensitivity of human skin fibroblasts

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  10. Proliferation index of camel skin fibroblast cells as nuclear donor

    Jaiselmeri is an excellent breed of riding camel, found in Jaiselmer and other adjoining districts of Western Rajasthan in India. Jaiselmeri camel like other pack animals are declining in India over the years due to increased mechanization and control of desert agriculture to some extent. The deep freezing technology on camel semen is poorly developed in India. The somatic cell technology has been developed at this Institute as an alternative tool of long-term conservation on endangered livestock breeds. For this study, samples of (0.25 cm2) skin tissue were collected from ear biopsy from elite male germplasm from National Research Centre on Camel, Bikaner. Skin tissues were cultured at 37 deg. C in Medium (DMEM+ Ham's F-12 nutritive mixture) supplemented with 10% fetal bovine serum, L-Glutamine and antibiotics in an incubator under 98% humidified and 5% Co2 atmosphere. The cell explants were visible from 12-16 days of culture. The cells were allowed to confluent in the TC flasks for additional 3-5 days till nearly 80% surface area is covered by the cells. The primary cells were harvested by usual trypsin-EDTA protocol. The cells were counted using Neubar's haemocytometer and cells were passaged subsequently. Since no reference values were available for camel skin fibroblasts, the present experiments were conducted to study the cell proliferation index, population doubling time, standard growth curve and cell viability using standard growth and MTT assays. It is shown that growth curves showed true sigmoid shape but a marked variation between the cell lines was observed. Moreover, cells, which grew faster attained plateau on day 6 while in slow growing cultures, the curve showed elevation even on day 8. This is probably due to non-availability of growing space for cells having faster growth rate. It was concluded that all animals do not produce karyoplast donors at equal rate or efficiency. Therefore, the growing cultures need to be compared with standard growth

  11. Extracellular depolymerization of hyaluronic acid in cultured human skin fibroblasts

    Nakamura, T.; Takagaki, K.; Kubo, K.; Morikawa, A.; Tamura, S.; Endo, M. (Hirosaki Univ. School of Medicine (Japan))

    1990-10-15

    The chain length of ({sup 3}H)hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of ({sup 3}H)glucosamine was investigated. ({sup 3}H)Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts.

  12. Treatment of Skin Avulsion Injuries with Basic Fibroblast Growth Factor

    Hajime Matsumine, MD, PhD

    2015-04-01

    Full Text Available Summary: This report describes favorable outcomes in 9 patients with skin avulsion injuries of the extremities who underwent full-thickness skin grafting and basic fibroblast growth factor (bFGF application. Following removal of contaminated subcutaneous fat tissue on the inside of skin, the avulsed skin was processed into a full-thickness skin graft, with as much of the skin used as possible irrespective of damage. Several drainage holes (5–10 mm in diameter were made on the graft for drainage from the graft bed and to prevent seroma and hematoma formation. Genetically recombinant human bFGF was sprayed at a dose of 1 μg/cm2 onto the graft bed, which was then covered with the graft and sutured. Pressure immobilization with ointment gauzes and elastic bandages was administered for 1 week postoperatively, and the surface of the skin grafts that did not take was scraped away, preserving the revascularized dermal component on the debrided raw surface as much as possible. bFGF was sprayed again onto the debrided surface to promote epithelialization. Wound closure was achieved in all cases with conservative therapy. The surgical procedure was effective in preventing postoperative ulcer formation and scar contracture and resulted in wound healing with the formation of good-quality, flexible scars.

  13. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  14. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  15. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Colin A. Grant

    2015-05-01

    Full Text Available Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  16. Tattoo ink nanoparticles in skin tissue and fibroblasts.

    Grant, Colin A; Twigg, Peter C; Baker, Richard; Tobin, Desmond J

    2015-01-01

    Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells. PMID:26171294

  17. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  18. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation.

    Yang, Hongming; Hu, Chao; Li, Fengyu; Liang, Liming; Liu, Lingying

    2013-06-01

    Burn injury-mediated destruction of the skin barrier normally induces microbial invasion, in turn leading to the development of systemic infection and occasional septic shock by the release of endotoxins. The objective of this work was to study the influence of lipopolysaccharide (LPS) on the biological characteristics of normal skin fibroblasts and to elucidate the influence of LPS in the initial stage of skin wound healing. Twenty patients with hypertrophic scar in proliferative stage were selected randomly and primary cultures were established from fibroblasts derived from their hypertrophic scar tissue and normal skin. Normal skin fibroblasts of passage 3 were stimulated with different concentrations of LPS. LPS stimulated the proliferation and collagen synthesis of fibroblasts within a certain extent of concentrations (0.005-0.5 μg/mL) (P effect on normal skin fibroblasts-continuous passage of these fibroblasts resulted in ultrastructural pattern similar to fibroblasts derived from hypertrophic scar tissue, and the findings was substantiated by hematoxylin and eosin staining and immunohistochemistry detection of proliferation cell nuclear antigen, type I procollagen and α-smooth muscle actin. Our results suggest that LPS might convert normal skin fibroblasts to hypertrophic scar tissue fibroblasts and participate in the formation of hypertrophic scar; hence, appropriate concentration of LPS may have no effect or be beneficial to skin wound healing, whereas excessive concentration of LPS may delay the time of wound healing. PMID:23653386

  19. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  20. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  1. Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts*

    Otomo, Takanobu; Higaki, Katsumi; Nanba, Eiji; Ozono, Keiichi; Sakai, Norio

    2011-01-01

    Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ∼2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ∼3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH4Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates. PMID:21846724

  2. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J.; Fisher, Gary J.

    2011-01-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482–90, 2006, J Invest Dermatol 130:1697–706, 2010). In furth...

  3. Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor

    Rui Song; Hui-Ning Bian; Wen Lai; Hua-De Chen; Ke-Seng Zhao

    2011-01-01

    Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts...

  4. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  5. Matrine inhibits proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB

    WU Yan-an; GAO Chun-fang; WANG Hao; HUANG Chao; KONG Xian-tao

    2001-01-01

    To study the effect of matrine on proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB (PDGF-BB). Methods: Mouse skin fibroblasts were obtained from newborn ⅠCR mice and propagated in vitro. Proliferation of cell was analyzed by mitochondrial reduction of tetrazolium salt MTT and actual cell count. Results: Matrine (50 to 500 μg/ml) caused dose-dependent reduction of serum-stimulated cell growth. Growth inhibition was totally reversed after removal of the drug. Matrine also inhibited PDGF-BB induced cell growth dose-dependently. Conclusion: Matrine exhibits potent anti-proliferation effect on mouse skin fibroblast. This effect appears to be mediated by decrease of PDGF-induced growth. These results suggest that matrine might have preventive and therapeutic implication in skin fibrosis.

  6. Cloned goats (Gapra hircus) from foetal fibroblast cell lines

    2000-01-01

    Mammalian cloning has been one of the most active research topics in the world.Cloning with in vitro culured foetal fibroblast cells,in comparison with embryonic cells,can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals,but also to utilize the unlimited fibroblast cells to produce large numbers of clonings.The preliminary results are as follows:(i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%,77% and 35%,31%,respectively.There is no significant statistical difference between them.(ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines,which are the first cloned mammals from somatic cells in China.This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development,and a novel technique for the cloning of animals with a high-level expression of transgene(s).

  7. Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts.

    Naffakh, N.; Henri, A; Villeval, J L; Rouyer-Fessard, P; Moullier, P; Blumenfeld, N; Danos, O; Vainchenker, W; Heard, J M; Beuzard, Y.

    1995-01-01

    We have examined whether the secretion of erythropoietin (Epo) from genetically modified cells could represent an alternative to repeated injections of the recombinant hormone for treating chronic anemias responsive to Epo. Primary mouse skin fibroblasts were transduced with a retroviral vector in which the murine Epo cDNA is expressed under the control of the murine phosphoglycerate kinase promoter. "Neo-organs" containing the genetically modified fibroblasts embedded into collagen lattices ...

  8. Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor

    Rui Song

    2011-05-01

    Full Text Available Basic fibroblast growth factor (bFGF regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL. The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01. The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05, while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01. These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

  9. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment.

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-10-01

    This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. PMID:26363275

  10. Possible role for metallothionein in the cellular defense mechanism against UVB irradiation in neonatal human skin fibroblasts

    The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. (Author)

  11. Sperm functional changes and fertilization in vitro in co-culture with human skin fibroblasts.

    Wetzels, A M; Van der Auwera, I; Bastiaans, B A; Goverde, H J; Hollanders, H M; Hamilton, C J

    1995-01-01

    This study was undertaken to evaluate the effects of human skin fibroblast monolayers on human sperm function and fertilization in vitro. Sperm function was evaluated using the hamster oocyte penetration assay (HOPA) and zona binding assay (ZBA) in medium alone and in co-culture with human skin fibroblast monolayers and suspensions. The ZBA was also studied in fibroblast conditioned medium and in bovine oviduct cell monolayers and suspensions. Fertilization was measured both in in-vitro fertilization (IVF) couples with a normal semen analysis (first study; randomized) and in IVF couples with subnormal semen analysis (second study; each patient served as its own control). The HOPA results were not significantly different with or without fibroblasts. In all co-culture situations and in conditioned medium the ZBA scored significantly lower than medium alone. No significant differences with respect to IVF were observed between the co-culture and the control group in either study. The mean fertilization rate per patient was approximately 60% in the group with normal semen analysis and approximately 25% in the group with abnormal semen analysis. From this study we conclude that although co-culture with human skin fibroblasts and epithelial cells influences the results of some sperm function tests, it does not influence fertilization in vitro. PMID:7745043

  12. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    Lucília Pereira da Silva

    2014-01-01

    Full Text Available Fibroblasts colonization into injured areas during wound healing (WH is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH.

  13. Effects of recombinant human epidermal growth factor on the proliferation and radiation survival of human fibroblast cell lines in vitro

    Kim, Hyun Sook; Kang, Ki Mun; Na, Jae Boem; Chai, Gyu Young [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of); Lee, Sang Wook [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2006-09-15

    To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. Number of fibroblast was significant more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

  14. ADHESION AND SPREADING OF HUMAN SKIN FIBROBLASTS ON PHYSICOCHEMICALLY CHARACTERIZED GRADIENT SURFACES

    RUARDY, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x

  15. Enhanced biosynthesis of human skin collagenase in fibroblast cultures from recessive dystrophic epidermolysis bullosa.

    Valle, K J; Bauer, E A

    1980-01-01

    Using a sensitive, specific immunoprecipitation method, the biosynthesis of human skin collagenase was studied in fibroblast cultures from patients with recessive dystrophic epidermolysis bullosa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of solubilized immunoprecipitates showed two 3H-labeled procollagenase species that comigrated with those harvested from control cultures. Recessive dystrophic epidermolysis bullosa cultures accumulated increased amounts of collagenase. Both ...

  16. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling.

    Kevin J Ashcroft

    Full Text Available Keloid disease (KD is an abnormal cutaneous fibroproliferative disorder of unknown aetiopathogenesis. Keloid fibroblasts (KF are implicated as mediators of elevated extracellular matrix deposition. Aberrant secretory behaviour by KF relative to normal skin fibroblasts (NF may influence the disease state. To date, no previous reports exist on the ability of site-specific KF to induce fibrotic-like phenotypic changes in NF or normal scar fibroblasts (NS by paracrine mechanisms. Therefore, the aim of this study was to investigate the influence of conditioned media from site-specific KF on the cellular and molecular behaviour of both NF and NS enabled by paracrine mechanisms. Conditioned media was collected from cultured primary fibroblasts during a proliferative log phase of growth including: NF, NS, peri-lesional keloid fibroblasts (PKF and intra-lesional keloid fibroblasts (IKF. Conditioned media was used to grow NF, NS, PKF and IKF cells over 240 hrs. Cellular behavior was monitored through real time cell analysis (RTCA, proliferation rates and migration in a scratch wound assay. Fibrosis-associated marker expression was determined at both protein and gene level. PKF conditioned media treatment of both NF and NS elicited enhanced cell proliferation, spreading and viability as measured in real time over 240 hrs versus control conditioned media. Following PKF and IKF media treatments up to 240 hrs, both NF and NS showed significantly elevated proliferation rates (p<0.03 and migration in a scratch wound assay (p<0.04. Concomitant up-regulation of collagen I, fibronectin, α-SMA, PAI-1, TGF-β and CTGF (p<0.03 protein expression were also observed. Corresponding qRT-PCR analysis supported these findings (P<0.03. In all cases, conditioned media from growing marginal PKF elicited the strongest effects. In conclusion, primary NF and NS cells treated with PKF or IKF conditioned media exhibit enhanced expression of fibrosis-associated molecular markers

  17. Assessment of the potential skin irritation of lysine-derivative anionic surfactants using mouse fibroblast and human keratinocytes as an alternative to animal testing

    Sánchez Molina, Lourdes; Mitjans Arnal, Montserrat; Infante Martínez-Pardo, Ma. Rosa; Vinardell Martínez-Hidalgo, Ma. Pilar

    2004-01-01

    Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MT...

  18. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication.

    Lee, Wonhye; Debasitis, Jason Cushing; Lee, Vivian Kim; Lee, Jong-Hwan; Fischer, Krisztina; Edminster, Karl; Park, Je-Kyun; Yoo, Seung-Schik

    2009-03-01

    We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing. PMID:19108884

  19. DNA-protein crosslinking in normal human skin fibroblasts exposed to solar ultraviolet wavelengths

    Three normal human skin fibroblast cell lines were exposed to the simulated solar UV radiation produced by a fluorescent sunlamp (wavelength components shorter than either 295, 305 or 315 nm were excluded). The level of DNA-protein crosslinks (DPC) was then measured in those cells either immediately after irradiation or following a 24 h incubation. Cells were exposed to fluences that induce similar levels of DPC. For cells exposed to 10 kJ m-2 of sunlamp UV>295 nm, the level of DPC exhibited a 2-5-fold increase following incubation. In contrast, 40-100% of the DPC were removed upon incubation of cells irradiated with either 10 kJ m-2 of sunlamp UV>305 nm or 150 kJ m-2 of sunlamp UV>315 nm. A major difference between the effects induced by these wavelength regions is that, in addition to DPC, a very high level of pyrimidine dimers is also produced by sunlamp UV>295 nm, whereas much lower dimer yields result from treatment with either sunlamp UV>305 nm or sunlamp UV>315 nm. A potential role for type II DNA topoisomerase in the formation of these DPC resulting from either the change in conformational structure caused by the presence of a high level of dimers or an involvement of this enzyme in dimer excision repair is discussed. (author)

  20. Impact of intense pulsed light irradiation on cultured primary fibroblasts and a vascular endothelial cell line

    Wu, Di; Zhou, BingRong; Xu, Yang; Yin, Zhiqiang; Luo, Dan

    2012-01-01

    The aim of this study was to determine the effects of intense pulsed light (IPL) on cell proliferation and the secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in human fibroblasts and vascular endothelial cell lines, and to investigate the effects of IPL on the mRNA expression levels of type I and III procollagens in cultured human fibroblasts. Foreskin fibroblasts and a vascular endothelial cell line (ECV034) were cultured and treated with various ...

  1. Morphofunctional characteristics of fibroblasts (McCoy cell line) cultured with magnesium preparations

    L. V. Didenko; T. G. Borovaya; E. A. Kost; E A Ulubieva; A. V. Timofeeva; A. G. Avtandilov

    2015-01-01

    Aim. To study the effect of magnesium orotate, magnesium/pyridoxine combination and magnesium sulfate on fibroblast morphofunctional characteristics in cell culture of fibroblasts (McCoy line).Material and methods. The study of fibroblasts (McCoy line) with the addition of magnesium-containing preparations (magnesium orotate, magnesium/pyridoxine combination, magnesium sulphate) to the culture medium was performed using scanning and transmission electron microscopy.Results. When adding into t...

  2. Ontogeny of expression of basic fibroblast growth factor and its receptors in human fetal skin

    CHEN Wei; FU Xiao-bing; GE Shi-li; SUN Tong-zhu; SHENG Zhi-yong

    2005-01-01

    Objective : To investigate the expression characteristics of basic fibroblast growth factor (bFGF)and its receptors, flg ( FGFR1 ) and bek ( FGFR2), in fetal skin at different gestational ages underlying the relevance of these 3 proteins to skin development and the mechanisms underlying the phenotypic transition from scarless to scarforming healing.Methods: Eighteen specimens of fetal skin biopsies of human embryo were obtained from spontaneous abortions at different gestational ages of 13-32 weeks. Gene expression of bFGF, bek and flg was examined with reverse transcription-polymerase chain reaction (RT-PCR). The dynamic expression and distribution of these 3 proteins were detected with streptavidin peroxidase ( SP )immunohistochemical staining method.Results: In the early gestational fetal skin, genes of bFGF and flg were strongly expressed and more protein contents of these 2 proteins were found as compared with the genes at late gestation fetal skin (2.446 ± 0.116 and 2.066 ± 0. 152 versus 2.157 ± 0. 101 and 1.818 ± 0.086,respectively, P < 0.05). On the contrary, the levels of gene expression and protein content of bek were not differently expressed in the early gestational fetal skin versus the late ones. Protein particles of bFGF were mainly distributed in the epidermal cells and some fibroblasts. Bek was mainly located in the cell membrane and cytoplasm of epidermal cells while flg protein was principally located in the epidermal cells, endothelial cells and some fibroblasts.Conclusions: The endogenous bFGF and their receptors might be involved in the cutaneous development at fetal stage. The differently expressing levels of bFGF and flg during gestation may be related to scarless or scarforming repair during gestation.

  3. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    The specific binding of soluble 125I-human plasma fibronectin (125I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of 125I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of 125I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10-8M (early passage) and 4.2 x 10-8M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function

  4. Cultured skin fibroblasts from patients with porokeratosis are hypersensitive to the lethal effects of X-radiation

    Porokeratosis is an autosomal dominant inherited skin disorder. The lesions are characterized by localized abnormal keratinization and may develop into malignant tumors. To determine the cellular basis of the cancer susceptibility associated with this skin condition, we examined the colony-forming ability of X-ray or ultraviolet (UV) light irradiated, cultured fibroblasts derived from porokeratosis patients' normal-appearing skin. Four fibroblast strains derived from four porokeratosis patients' skin were significantly hypersensitive to the lethal effects of X-radiation. However, they all showed a similar sensitivity to strains from normal donors to 254 nm UV light. The hypersensitivity to X-ray radiation in cultured skin fibroblasts from porokeratosis patients suggests an inherent instability of cellular DNA and may prbably be associated with the cancer-prone nature of this skin condition. (author)

  5. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts.

    Smith, D. W.; Scriver, C R; Tenenhouse, H S; Simell, O.

    1987-01-01

    Lysinuric protein intolerance (LPI) is an autosomal recessive phenotype consistent with impaired transport of cationic amino acids at the basolateral membrane of intestinal and renal epithelia. On the assumption that the basolateral membrane of epithelial cells and plasma membrane of parenchymal cells are functional analogues, we studied transport of cationic amino acids by cultured skin fibroblasts from LPI and control subjects matched for age, sex, and site of biopsy. We measured Na+-indepe...

  6. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts

    Noël, D; Pelegrin, M; Brockly, F;

    2000-01-01

    In vivo production and systemic delivery of therapeutic antibodies by engineered cells might advantageously replace injection of purified antibodies for treating a variety of life-threatening diseases, including cancer, acquired immunodeficiency syndrome, and autoimmune diseases. We report here...... that skin fibroblasts retrovirally transduced to express immunoglobulin genes can be used for sustained long-term systemic delivery of cloned antibodies in immunocompetent mice. Importantly, no anti- idiotypic response against the ectopically expressed model antibody used in this study was observed...

  7. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts.

    Keyse, S M; Applegate, L. A.; Tromvoukis, Y; Tyrrell, R M

    1990-01-01

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents.

  8. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents

  9. Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts

    Ultraviolet A radiation participates in cytotoxicity and carcinogensis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). (Author)

  10. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects

  11. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells. (author)

  12. Bone Marrow Cell Transfer into Fetal Circulation Can Ameliorate Genetic Skin Diseases by Providing Fibroblasts to the Skin and Inducing Immune Tolerance

    Chino, Takenao; Tamai, Katsuto; Yamazaki, Takehiko; Otsuru, Satoru; Kikuchi, Yasushi; Nimura, Keisuke; Endo, Masayuki; Nagai, Miki; Uitto, Jouni; Kitajima, Yasuo; Kaneda, Yasufumi

    2008-01-01

    Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent protein-transgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and ...

  13. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts.

    Yang, Zhongcai; Liu, Jun; Liu, Hongliang; Qiu, Mingning; Liu, Qingqing; Zheng, Liming; Pang, Meijun; Quan, Fusheng; Zhang, Yong

    2013-06-01

    Novel stem cells expressing stage-specific embryonic antigen 3 (SSEA-3) reside among human dermal fibroblasts and are known as multilineage-differentiating stress-enduring (Muse) cells. They enhance the generation efficiency of induced pluripotent stem cells. However, Muse cells have only been found in humans. We aimed to isolate SSEA3-positive cells from terminally differentiated skin fibroblasts of adult goat and determine their pluripotency. Cell clusters from SSEA3(+) populations possessed stem cell-like morphological features and normal karyotypes, were consistently positive for alkaline phosphatase, and expressed stem cell pluripotency markers. These SSEA3(+) cells remained undifferentiated over eight passages in suspension culture and were able to differentiate into cells of all three germ layers in vitro and in vivo. Our combined findings suggest that a subset of adult stem cells expressing SSEA3 also exist among adult goat skin fibroblasts. We are the first to report that multipotent adult goat cells exist among terminally differentiated goat skin in suspension culture. Our results also provide a promising platform for generation of a transgenic goat, because the undifferentiated state of stem cells was thought to be more efficient as donor cells for somatic cell nuclear transfer. PMID:23668861

  14. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  15. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  16. Induced pluripotent stem cell lines derived from equine fibroblasts.

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-09-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species. PMID:21347602

  17. Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids

    The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to γ radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several γ-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

  18. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic. PMID:24602819

  19. Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage

    Purpose: The pathophysiological aspects of radiation-induced fibrosis (RIF) have not been well characterized. We therefore cultured human fibroblasts from samples of skin with RIF to investigate the long-term effects of therapeutic irradiation. Materials and methods: Biopsies of normal and RIF skin were obtained from patients previously irradiated for cancer, without recurrence. Cells were extracted from dermis samples by the outgrowth technique, seeded as monolayers and cultured at confluence. Enzyme activities and proteins were assayed, RNA was isolated and Northern blot analysis was performed on surviving cells between passages 2 and 5. Results: RIF cell cultures displayed heterogeneous fibroblasts populations. The initial outgrowth consisted of one-third small cells that floated rapidly, one-third spindle-shaped cells migrating far from the explant to form islets and one-third large pleiomorphic cells. In subsequent subcultures, surviving cells exhibited either myofibroblastic characteristics with a normal proliferative capacity or senescent morphology with a reduced proliferative capacity. These RIF cells had a brief finite lifespan, with dramatically reduced growth rate during their initial outgrowth and the following passages. Study of the antioxidant metabolism showed that Mn superoxide dismutase and catalase activities were significantly weaker in surviving RIF cells than healthy fibroblasts. These exhausted RIF cells exhibited no overexpression of transforming growth factor β or tissue inhibitor of metalloproteinase. Conclusion: Irradiation may lead to apparently contradictory effects such as fibrosis and necrosis in clinical practice. In cell culture, we observed two main cellular phenotypes which may be related to both processes, i.e. myofibroblast-like cells and fibrocyte-like cells. These two phenotypes may represent two steps in the differentiation induced as a long-term effect of therapeutic irradiation of the skin. Cell culture probably

  20. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  1. Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome

    Cinzia Signorini

    2014-01-01

    Full Text Available Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT, a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16 we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs, F4-Neuroprostanes (F4-NeuroPs, nonprotein bound iron (NPBI, and (4-HNE PAs, and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds, F2-IsoPs (7.5-folds NPBI (2.3-folds, 4-HNE PAs (1.48-folds, and GSSG (1.44-folds were detected, with significantly decreased GSH (−43.6% and GSH/GSSG ratio (−3.05 folds. A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.

  2. Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts

    Kashuba, Elena

    2015-05-12

    We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells. Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation. Cells passed more than 300 population doublings, and two out of three tested clones gave rise to tumors in experimental animals. Transformed cells showed anchorage-independent growth and loss of contact inhibition; they expressed epithelial markers, such as E-cadherin and β-catenin. Transformed cells showed increased telomerase activity, disturbance of the cell cycle, and chromosomal instability. Taken together, our data suggest that S18-2 is a newly identified oncoprotein that may be involved in cancerogenesis.

  3. Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy

    Background and purpose: There is increasing evidence for patient-to-patient variation in the response of normal tissue to radiotherapy. Recently, it has been suggested that accumulation of functional fibrocytes may be a key step in the development of radiation-induced fibrosis. Therefore, we have examined a possible relationship between the differentiation state of untreated fibroblasts and the risk of radiation-induced subcutaneous fibrosis in individual patients. Materials and methods: We used skin fibroblast cultures isolated from eight postmastectomy radiotherapy patients whose individual clinical radiosensitivity was assessed by the mean excess risk of fibrosis. Different types of potentially mitotic progenitor fibroblasts (MF) and postmitotic functional fibrocytes (PMF) in the terminal differentiation lineage (MFI approaches MFII approaches MFIII approaches PMF) were scored morphologically in clonal culture. Progression of differentiation was quantified by the ratio L/E of colony-forming late (MFIII and late MFII) and early (MFI and early MFII) progenitors. Results: We observed a correlation between the ratio L/E and the mean risk of fibrosis (rS=0.743, P=0.03), indicating an approximately 10-fold increase in L/E with an increasing risk of fibrosis. This was paralleled by a decreasing trend in the absolute numbers of early progenitor types. By contrast, there was no significant correlation between the plating efficiency and the risk of fibrosis. Conclusions: The data suggest that the risk of fibrosis increases with the progression of the differentiation of untreated progenitor fibroblasts, indicating that the progression of fibroblast differentiation may be a co-factor in the development of radiation-induced fibrosis. If this hypothesis is validated, it provides a rationale for a novel predictive test to identify patients with an increased risk of subcutaneous fibrosis. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres.

    Hanna Wendt

    Full Text Available BACKGROUND: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. METHODOLOGY/PRINCIPAL FINDINGS: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E for microscopic analyses. CONCLUSION/SIGNIFICANCE: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

  5. Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes.

    Sheipouri, Diba; Grant, Ross; Bustamante, Sonia; Lovejoy, David; Guillemin, Gilles J; Braidy, Nady

    2015-06-01

    Acute UVB exposure triggers inflammation leading to the induction of indoleamine 2,3 dioxygenase (IDO1), one of the first enzymes in the kynurenine pathway (KP) for tryptophan degradation. However, limited studies have been undertaken to determine the catabolism of tryptophan within the skin. The aim of this study was two fold: (1) to establish if the administration of the proinflammatory cytokine interferon-gamma (IFN-γ) and/or UVB radiation elicits differential KP expression patterns in human fibroblast and keratinocytes; and (2) to evaluate the effect of KP metabolites on intracellular nicotinamide adenine dinucleotide (NAD(+) ) levels, and cell viability. Primary cultures of human fibroblasts and keratinocytes were used to examine expression of the KP at the mRNA level using qPCR, and at the protein level using immunocytochemistry. Cellular responses to KP metabolites were assessed by examining extracellular lactate dehydrogenase (LDH) activity and intracellular NAD(+) levels. Major downstream KP metabolites were analyzed using GC/MS and HPLC. Our data shows that the KP is fully expressed both in human fibroblasts and keratinocytes. Exposure to UVB radiation and/or IFN-γ causes significant changes in the expression pattern of downstream KP metabolites and enzymes. Exposure to various concentrations of KP metabolites showed marked differences in cell viability and intracellular NAD(+) production, providing support for involvement of the KP in the de novo synthesis of NAD(+) in the skin. This new information will have a significant impact on our understanding of the pathogenesis of UV related skin damage and the diagnosis of KP related disease states. PMID:25639585

  6. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  7. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    Jaroslav Zelenka

    2015-01-01

    Full Text Available A moderate elevation of reactive oxygen species (ROS production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5′AMP-activated protein kinase (AMPK, and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α transcription. A replicative aging of fibroblasts (L0 with a constant (LC, or intermittent 5 mM L-lactate (LI in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1, less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging.

  8. Action spectra for inactivation of normal and xeroderma pigmentosum human skin fibroblasts by ultraviolet radiations

    Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (1BR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm, changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. These results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm. (author)

  9. Oxidative stress in skin fibroblasts cultures from patients with Parkinson's disease

    Arenas Joaquín

    2010-10-01

    Full Text Available Abstract Background In the substantia nigra of Parkinson's disease (PD patients, increased lipid peroxidation, decreased activities of the mitochondrial complex I of the respiratory chain, catalase and glutathione-peroxidase, and decreased levels of reduced glutathione have been reported. These observations suggest that oxidative stress and mitochondrial dysfunction play a role in the neurodegeneration in PD. We assessed enzymatic activities of respiratory chain and other enzymes involved in oxidative processes in skin fibroblasts cultures of patients with PD. Methods We studied respiratory chain enzyme activities, activities of total, Cu/Zn- and Mn-superoxide-dismutase, gluthatione-peroxidase and catalase, and coenzyme Q10 levels in skin fibroblasts cultures from 20 Parkinson's disease (PD patients and 19 age- and sex- matched healthy controls. Results When compared with controls, PD patients showed significantly lower specific activities for complex V (both corrected by citrate synthase activity and protein concentrations. Oxidized, reduced and total coenzyme Q10 levels (both corrected by citrate synthase and protein concentrations, and activities of total, Cu/Zn- and Mn-superoxide-dismutase, gluthatione-peroxidase and catalase, did not differ significantly between PD-patients and control groups. Values for enzyme activities in the PD group did not correlate with age at onset, duration, scores of the Unified Parkinson's Disease Rating scales and Hoehn-Yahr staging. Conclusions The main result of this study was the decreased activity of complex V in PD patients. This complex synthesizes ATP from ADP using an electrochemical gradient generated by complexes I-IV. These results suggest decreased energetic metabolism in fibroblasts of patients with PD.

  10. Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents

    Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 days until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage

  11. Evaluation of EPS-PCL Nanofibers as a Nanobiocomposite for Artificial Skin Based on Dermal Fibroblast Culture

    Sang-Myung Jung

    2013-01-01

    Full Text Available Several natural bioactive molecules have been used in the development of scaffolds to enhance biocompatibility or biodegradability and macroalgae contain many bioactive compounds that regulate the physiological activities of cells. In this study, extrapolymeric substances (EPS from brown algae, Undaria pinnatifida, were dispersed in poly-ε-caprolactone (PCL nanofiber, fabricated by electrospinning technique to mimic natural extracellular matrix (ECM, and tested as a scaffold for the production of artificial skin using rat primary fibroblasts. The level of adhesion, viability, and infiltration of cells on the EPS-PCL nanofibers were then assessed. The primary fibroblasts attached well, had good viability, and infiltrated through the nanofiber mat without cytotoxicity. Additionally, fibroblast on EPS-PCL nanofiber overcame the stress derived from high cell density at limited area. These results indicate that EPS-imbedded nanofiber has the potential to be used as scaffolds to develop artificial skin or as wound-healing nanomedicines to regenerate injured skin.

  12. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  13. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  14. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury

    Jie Zhou

    2016-03-01

    Full Text Available Our previous study has suggested that downregulated microRNA (miR-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2 and vascular endothelial growth factor (VEGF-A were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis.

  15. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  16. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. PMID:22151394

  17. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  18. Content of Androgen Receptor in Cultured Genital Skin Fibroblast From Different Ages of Chinese Normal Men

    卢建; 何立敏; 张金山; 杨震; 周云

    1995-01-01

    A ratpid, simple, reliable method is described for assaying androgen receptor (AR) in dispersed, whole, cultured human genital skin fibroblasts (GSF) with a synthetic androgen, 3H-methyltrienolone (3H-R1881). Receptors for androgen in GSF exhiblt high affinity (Kd=3.0±0.1 nmol/L), low binding capacity and androgen specificity. The content of AR in cultured GSF from 40 normal men varying in age from 1.5—60 years u:as also investigated by this assay. Scatchard analysis and slngle plot revealed the presence of 4.500-8500 binding sites per cell, mean number of AR in GSF of these men is 6288±1082 binding sites/cell. No significant difference was observed in the content of AR in different age groups. This result showed that the content of AR in these ceils did not change with age.

  19. Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures.

    Webb, Sarah J; Zychowski, Gregory V; Bauman, Sandy W; Higgins, Benjamin M; Raudsepp, Terje; Gollahon, Lauren S; Wooten, Kimberly J; Cole, Jennifer M; Godard-Codding, Céline

    2014-12-16

    Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 μM following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 μM benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells. PMID:25384208

  20. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  1. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh

    2016-01-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts ...

  2. Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells

    Ali Beman Zaree Mahmodabady

    2006-01-01

    Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 μM CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

  3. Dramatic increase in oxidative stress in carbon-irradiated normal human skin fibroblasts

    Skin complications were recently reported after carbon-ion (C-ion) radiation therapy. Oxidative stress is considered an important pathway in the appearance of late skin reactions. We evaluated oxidative stress in normal human skin fibroblasts after carbon-ion vs. X-ray irradiation. Survival curves and radiobiological parameters were calculated. DNA damage was quantified, as were lipid peroxidation (LPO), protein carbonylation and antioxidant enzyme activities. Reduced and oxidized glutathione ratios (GSH/GSSG) were determined. Pro-inflammatory cytokine secretion in culture supernatants was evaluated. The relative biological effectiveness (RBE) of C-ions vs. X-rays was 4.8 at D0 (irradiation dose corresponding to a surviving fraction of 37%). Surviving fraction at 2 Gy (SF2) was 71.8% and 7.6% for X-rays and C-ions, respectively. Compared with X-rays, immediate DNA damage was increased less after C-ions, but a late increase was observed at D10% (irradiation dose corresponding to a surviving fraction of 10%). LPO products and protein carbonyls were only increased 24 hours after C-ions. After X-rays, superoxide dismutase (SOD) activity was strongly increased immediately and on day 14 at D0% (irradiation dose corresponding to a surviving fraction of around 0%), catalase activity was unchanged and glutathione peroxidase (GPx) activity was increased only on day 14. These activities were decreased after C-ions compared with X-rays. GSH/GSSG was unchanged after X-rays but was decreased immediately after C-ion irradiation before an increase from day 7. Secretion of IL-6 was increased at late times after X-ray irradiation. After C-ion irradiation, IL-6 concentration was increased on day 7 but was lower compared with X-rays at later times. C-ion effects on normal human skin fibroblasts seemed to be harmful in comparison with X-rays as they produce late DNA damage, LPO products and protein carbonyls, and as they decrease antioxidant defences. Mechanisms leading to this

  4. Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging

    Quan, Chunji; Cho, Moon Kyun; Perry, Daniel; Quan, Taihao

    2015-01-01

    Background Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported. Results To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA comm...

  5. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  6. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  7. Luteolin decreases the UVA‑induced autophagy of human skin fibroblasts by scavenging ROS.

    Yan, Miaomiao; Liu, Zhongrong; Yang, Huilan; Li, Cuihua; Chen, Hulin; Liu, Yan; Zhao, Minling; Zhu, Yingjie

    2016-09-01

    Luteolin (LUT) is a flavone, which is universally present as a constituent of traditional Chinese herbs, and certain vegetables and spices, and has been demonstrated to exhibit potent radical scavenging and cytoprotective properties. Although LUT has various beneficial effects on health, the effects of LUT on the protection of skin remain to be fully elucidated. The present study investigated whether LUT can protect human skin fibroblasts (HSFs) from ultraviolet (UV) A irradiation. It was found that, following exposure to different doses of UVA irradiation, the HSFs exhibited autophagy, as observed by fluorescence and transmission electron microscopy, and reactive oxygen species (ROS) bursts, analyzed by flow cytometry, to differing degrees. Following incubation with micromolar concentrations of LUT, ROS production decreased and autophagy gradually declined. In addition, the expression of hypoxia‑inducible factor‑1α and the classical autophagy‑associated proteins, LC3 and Beclin 1 were observed by western blotting. Western blot analysis showed that the expression levels of HIF‑1α, LC3‑II and Beclin 1 gradually decreased in the UVA‑irradiated HSFs following treatment with LUT. These data indicated that UVA‑induced autophagy was mediated by ROS, suggesting the possibility of resistance against UV by certain natural antioxidants, including LUT. PMID:27430964

  8. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts.

    Hwang, Eunson; Park, Sang-Yong; Sun, Zheng-wang; Shin, Heon-Sub; Lee, Don-Gil; Yi, Tae Hoo

    2014-06-01

    Exposure to ultraviolet (UV) light causes matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging. The activation of MMP is related to increased interlukin-6 (IL-6) and type I procollagen production, which is regulated by transforming growth factor-β1 (TGF-β1). Activator protein-1 (AP-1) activation induces MMP-1 production and reduces type I procollagen secretion. Fucosterol, which is extracted and purified from the brown algae Hizikia fusiformis, is a phytosterol. We assessed the effects of fucosterol on photodamage and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts by using enzyme-linked immunosorbent assay, Western blot analysis, and reverse transcription-polymerase chain reaction. Our results showed that fucosterol significantly decreased the UVB-induced expression of MMP-1, IL-6, p-c-Jun, and p-c-Fos. Additionally, fucosterol markedly increased the UVB-induced production of type I procollagen and TGF-β1. Our results indicate that fucosterol regulates MMP-1 and type I procollagen expression by modulating AP-1 and TGF-β1 signaling and that MMP-1 activation is correlated with IL-6. These data suggest that fucosterol is a promising botanical agent to protect against skin photodamage. PMID:24142195

  9. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661681

  10. Biochemical mechanisms of skin radiation burns inhibition and healing by the volumetric autotransplantation of fibroblasts and of keratinocytes with fibroblasts composition

    L. V. Altukhova

    2015-09-01

    Full Text Available Mechanisms of influence of volumetric autotransplantation of fibroblasts and of the mixture of fibroblasts and keratinocytes on the development of the local 3rd degree X-ray burn and the radiation skin ulcer in guinea pigs were investigated. We used deepadministration into the irradiation zone on its perimeter of 6 doses, which contained (150–160×103 fibroblasts and (130–140×103 keratinocytes in 100 µl. It is shown that this autotransplantation carried out 1 hour after the irradiation, and then every 24 hours, reduces the area of burn on the 35th day, compared to the control by 63%. Radiation ulcer appears on the 10th day after irradiation and is completely healed on the 25th day. With the same regimen of administration of only fibroblasts containing (200–210×103 cells in 100 µl, these parameters of treatment were equal to 31% on 4th and 35th day, respectively. It is shown that as a result of radiation in the area of burn the level of gene expression of collagen types I and III, elastin, fibronectin, vinculin, decorin, hyaluronansynthases 1, 2, 3, matrix metalloproteinases 1, 2, 3, 7, 9 and hyaluronidase is reduced. Besides, in the burn area the level of gene expression of transforming growth factor α, fibroblast growth factors 1, 2, 8 and anti-inflammatory cytokines – interleukin 10 and transforming growth factor-β1 – is reduced, while the level of gene expression of proinflammatory cytokine (interleykin1β increases. Both types of autotransplantation cause the growth of the expression level of all the structural genes and regulatory proteins of biopolymers and decrease in the expression level of interleukin 1β, which leads to activation of tissue regeneration and healing of the burn wound. Reasonsfor the higher efficiency of autotransplantation using the mixture of fibroblasts and keratinocytes compared to autotransplantation by fibroblasts only are both the larger total number of live cells regularly replacing dead cells in

  11. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  12. Generation of Transgenic Porcine Fibroblast Cell Lines Using Nanomagnetic Gene Delivery Vectors.

    Grześkowiak, Bartosz F; Hryhorowicz, Magdalena; Tuśnio, Karol; Grzeszkowiak, Mikołaj; Załęski, Karol; Lipiński, Daniel; Zeyland, Joanna; Mykhaylyk, Olga; Słomski, Ryszard; Jurga, Stefan; Woźniak, Anna

    2016-05-01

    The transgenic process allows for obtaining genetically modified animals for divers biomedical applications. A number of transgenic animals for xenotransplantation have been generated with the somatic cell nuclear transfer (SCNT) method. Thereby, efficient nucleic acid delivery to donor cells such as fibroblasts is of particular importance. The objective of this study was to establish stable transgene expressing porcine fetal fibroblast cell lines using magnetic nanoparticle-based gene delivery vectors under a gradient magnetic field. Magnetic transfection complexes prepared by self-assembly of suitable magnetic nanoparticles, plasmid DNA, and an enhancer under an inhomogeneous magnetic field enabled the rapid and efficient delivery of a gene construct (pCD59-GFPBsd) into porcine fetal fibroblasts. The applied vector dose was magnetically sedimented on the cell surface within 30 min as visualized by fluorescence microscopy. The PCR and RT-PCR analysis confirmed not only the presence but also the expression of transgene in all magnetofected transgenic fibroblast cell lines which survived antibiotic selection. The cells were characterized by high survival rates and proliferative activities as well as correct chromosome number. The developed nanomagnetic gene delivery formulation proved to be an effective tool for the production of genetically engineered fibroblasts and may be used in future in SCNT techniques for breeding new transgenic animals for the purpose of xenotransplantation. PMID:27048425

  13. Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy

    Objective: To investigate if the occurrence of subcutaneous fibrosis after radiotheraphy in an unselected group of breast cancer patients is related to cellular radiosensitivity of skin fibroblasts as measured in a clonogenic assay. Materials and methods: An in vitro colony-forming assay of normal fibroblast radiosensitivity was applied to primary skin biopsies from 31 breast cancer patients who received post-mastectomy radiotherapy with large doses per fraction (2.7-3.9 Gy) more than 10 years earlier. Three clinical normal-tissue endpoints were assessed. Two late endpoints, subcutaneous fibrosis and telangiectasia, were evaluated in three treatments fields by a single experienced clinician. In addition, skin erythema had been assessed at the end of treatment by members of the staff and junior staff. >From previous analyses of normal tissue response, individual clinical radiosensitivity could be assessed as 'excess risk' of each of the three reactions. This was defined as the difference between the actual observed response in the patient and the expected response estimated from individual treatment characteristics in a linear quadratic (LQ) mixture model and, for the two late endpoints, with correction for the follow-up time. This clinical radioresponsiveness was compared with the in vitro radiosensitivity of the skin fibroblasts. To this end, the fractions of colony-forming cells after graded single doses were fitted by an LQ survival curve using non-linear and linear regression from which the surviving fraction at 3.5 Gy (SF3.5) was estimated. Assessment at 3.5 Gy was chosen to reflect the fraction size during clinical radiotherapy. Results: A statistically significant variability of in vitro radiosensitivity between patients could be detected for both SF2 (P = 0.0095) and SF3.5 (P = 0.0008). A significant correlation was observed between SF3.5 and excess risk of fibrosis (rs -0.46, P = 0.009) while no association was found between fibroblast radiosensitivity and

  14. [Infection of skin fibroblasts in animals with different levels of sensitivity to Leishmania infantum and Leishmania mexicana (Kinetoplastida: Trypanosomatidae)].

    Minero, Miguel Angel; Chinchilla, Misael; Guerrero, Olga Marta; Castro, Alfredo

    2004-03-01

    Infection and multiplication of Leishmania infantum and L. mexicana inside of skin fibroblasts from hamsters, mice and rats was achieved. This process was demonstrated either by counting parasites inside the stained cells or by electronic microscopy studies. In addition multiplication rate differences in the cells from these rodent species were determined, for L. infantum as well as for L. mexicana. Parasite development in hamsters and mice fibroblasts was evident but there was not multiplication in rat cells showing that apparently they are refractory to Leishmania infection. These results suggest that the parasite affinity for each animal, as well as any intracellular environment resistance, could involve genetic factors in the parasite multiplication. On the other hand, presence of amastigote multiplication inside of parasitophorus vacuole, showed by electronic microscopy images, probes a true parasite transformation. Therefore it is suggested that fibroblasts could work as host cells for parasite survival and permanency in the infected animals. PMID:17357424

  15. Thyroid hormone excess stimulates the synthesis of proteoglycan in human skin fibroblasts in culture

    Shishiba, Yoshimasa; Ozawa, Yasunori; Shimizu, Taeko (Division of Endocrinology and Endocrine Research Laboratory, Toranomon Hospital (Japan)); Takeuchi, Yasuhiro; Yokoi, Noriko (Okinaka Memorial Institute for Medical Research, Akasaka, Tokyo (Japan))

    1990-01-01

    We previously demonstrated that proteoglycan accumulated in the affected skin of circumscribed pretibial myxedema of Graves' disease. As an underlying mechanism responsible for the accumulation, we sought to determine whether excess thyroid hormone was partially responsible for the increase in proteoglycan synthesis. Human skin fibroblasts were cultured in Ham's F-10 medium containing 1% Nutridoma with graded doses of T{sub 3}(0.184 x 10{sup -9} to 46 x 10{sup -9} mol/l) and were labelled with ({sup 35}S)sulphate and ({sup 3}H)glucosamine. Proteoglycans were purified by Sephadex G-50, Q-Sepharose chromatography with NaCl-gradient and Sepharose CL-6B chromatography. {sup 35}S and {sup 3}H incorporated into dermatan sulphate proteoglycan and heparan sulphate proteoglycan and {sup 3}H incorporated into hyaluronan were measured. {sup 35}S and {sup 3}H incorporation into dermatan sulphate proteoglycan was minimum at a T{sub 3} concentration of 0.184 x 10{sup -9} mol/l, and increased with increasing doses of T{sub 3} up to 46 x 10{sup -9} mol/l. {sup 35}S and {sup 3}H incorporation into heparan sulphate proteoglycan also increased with increasing-doses of T{sub 3}. {sup 3}H incorporation into hyaluranan was not influenced at all by T{sub 3}. The increased incorporation of {sup 35}S into proteoglycan in high-T{sub 3} culture reflects the increased synthesis of proteoglycan because 1. the extent of sulphation of disaccharides examined by thin-layer chromatography was not altered by T{sub 3}; 2. the specific activity of ({sup 35}S)sulphate was not influenced by T{sub 3}, and 3. T{sub 3} did not decrease the degradation rate of cell-associated proteoglycan. (author).

  16. Thyroid hormone excess stimulates the synthesis of proteoglycan in human skin fibroblasts in culture

    We previously demonstrated that proteoglycan accumulated in the affected skin of circumscribed pretibial myxedema of Graves' disease. As an underlying mechanism responsible for the accumulation, we sought to determine whether excess thyroid hormone was partially responsible for the increase in proteoglycan synthesis. Human skin fibroblasts were cultured in Ham's F-10 medium containing 1% Nutridoma with graded doses of T3(0.184 x 10-9 to 46 x 10-9 mol/l) and were labelled with [35S]sulphate and [3H]glucosamine. Proteoglycans were purified by Sephadex G-50, Q-Sepharose chromatography with NaCl-gradient and Sepharose CL-6B chromatography. 35S and 3H incorporated into dermatan sulphate proteoglycan and heparan sulphate proteoglycan and 3H incorporated into hyaluronan were measured. 35S and 3H incorporation into dermatan sulphate proteoglycan was minimum at a T3 concentration of 0.184 x 10-9 mol/l, and increased with increasing doses of T3 up to 46 x 10-9 mol/l. 35S and 3H incorporation into heparan sulphate proteoglycan also increased with increasing-doses of T3. 3H incorporation into hyaluranan was not influenced at all by T3. The increased incorporation of 35S into proteoglycan in high-T3 culture reflects the increased synthesis of proteoglycan because 1. the extent of sulphation of disaccharides examined by thin-layer chromatography was not altered by T3; 2. the specific activity of [35S]sulphate was not influenced by T3, and 3. T3 did not decrease the degradation rate of cell-associated proteoglycan. (author)

  17. Double trisomy mosaic (47,XXX/48,XXX,+13) confirmed by FISH and skin fibroblast culture

    Lieber, E.; Grady, V.; Dosik, H. [Interfaith Medical Center, Brooklyn, NY (United States)] [and others

    1994-09-01

    A 4 lb 8 oz female was born to a 49-year-old woman (P1200G12) at 40 weeks. The baby had tetralogy of Fallot, polydactyly, microcephaly, low set simple ears, posterior cleft of the soft palate and overlapping flexion deformities of both hands. The eyes were deep set. The clinical impression was trisomy 13. The baby is not doing well and needs a gastrotomy tube for feeding. Sucking is allright but swallowing is impeded. An MRI showed an anomaly of the corpus callosum. The ophthalmological examination showed no abnormalities. A chromosome study on a 2-day peripheral blood sample resulted in poor growth and poor morphology; however, 20 Giemsa-banded cells revealed a 47,XXX karyotype. A second specimen was obtained to search for mosaicism and a blood smear revealed nuclear projections on the neutrophils. FISH analysis using whole chromosome painting probe (Life Technologies) first identified the extra chromosome number 13, the final results showing five of sixty metaphase cells (8.3%) with trisomy 13. Cytogenetic analysis using Giemsa-banding technique revealed four cells in fifty examined (8.0%) with a 48,XXX,+13 karyotype. In order to further evaluate the mosaicism, cytogenetic analysis of a skin fibroblast culture was performed. Twenty one of twenty three cells examined (91.3%) showed the 48,XXX,+13 karyotype. FISH analysis of the skin biopsy revealed eighteen of twenty cells (90.9%) with the trisomy 13. The FISH technique is an important enhancement to routine cytogenetic studies when they do not immediately correlate with clinical impressions.

  18. Extracellular Matrix Modulates Morphology, Growth, Oxidative Stress Response and Functionality of Human Skin Fibroblasts during Aging In Vitro

    Jørgensen, Peter; Rattan, Suresh

    2014-01-01

    The Hayflick system of cellular aging and replicative senescence in vitro has been used widely in both basic and applied research in biogerontology. The state of replicative senescence is generally considered to be irreversible, but is modifiable by genetic and environmental manipulations. Some...... recent observations indicate that replicative lifespan, senescence and functionality of cells in vitro can be significantly affected by the quality of the extra cellular matrix (ECM). Following up on those reports, here we show that using the ECM prepared from early passage young cells, partial...... rejuvenation of serially passaged human facial skin fibroblasts was possible in pre-senescent middle-aged cells, but not in fully senescent late passage cells. ECM from young cells improved the appearance, viability, stress tolerance and wound healing ability of skin fibroblasts. Furthermore, young ECM...

  19. Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts.

    Buffoni, F; Pino, R; Dal Pozzo, A

    1995-01-01

    The effects of Gly-His-Lys-Cu and of three synthetic analogues (I, II and III) on wound healing of the guinea-pig dorsal skin, as well as on cultured fibroblasts, were examined. Gly-His-Lys-Cu and peptide I-Cu were tested in vivo. Hydroxyproline, proteins, DNA and semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, were measured, and the histology of the wounds was observed after staining with hematoxylin/eosin. Another set of wounds was treated in parallel with equivalent amounts of copper acetate. Gly-His-Lys-Cu and the analogues caused a decrease of the activity of semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, 4-8 days after surgery, followed by an increase on day 11 that was higher than in the control group. No significant difference was found between the two peptides. A slower reorganization of the skin and a delayed activation of fibroblasts are the main effects observed with these peptides-Cu complexes. Preliminary studies on cultured fibroblasts were monitored to see whether these peptides had a direct effect on fibroblasts. The products studied at a concentration of 10(-7) M, decreased cell reproduction and increased collagen expression. PMID:8836453

  20. Radiosensitivity of skin fibroblasts from atomic bomb survivors with and without breast cancer

    Fibroblasts were established in vitro from skin biopsies obtained from 55 women and 1 man with or without breast cancer and with or without exposure to radiation from the atomic bomb explosion in Hiroshima. The radiosensitivity of these cells was evaluated by clonogenic assays after exposure to X-rays or to fission neutrons from a 252Cf source. Data were fitted to a multitarget model, S/S0 = A [1 - (1 - ekD)N], for both X-ray and neutron dose-survival curves. A single hit model, S/S0 = AekD, fits the neutron dose-survival responses as well. There were no differences in the means or variances of radiosensitivity between exposed and nonexposed groups or between patients with or without breast cancer. Hence, although the sample is not large, it provides no support for the hypothesis that atomic bomb radiation preferentially induces breast cancer in women whose cells in vitro are sensitive to cell killing by radiation

  1. Spontaneous immortalization of cultured skin fibroblasts obtained from a high-dose atomic bomb survivor

    Two immortal fibroblastic cell strains (substrains) were established by culturing healthy skin cells obtained from a high-dose atomic bomb survivor (female, age 76 years, 5.14 Gy) for more than 4 years. Designated FM-U and FM-M, the two substrains share the same marker chromosome, t(5q-;6p+), but are karyotypically different, possessing hypodiploid chromosome numbers (39-43) in the former and hypertriploid (69-76) in the latter. Thus far, the two strains have passed through 117 and 156 subcultures or more than 230 and 310 cumulative population doublings, respectively, each passage requiring 4-6 days in the former and 3-4 days in the latter. In the process of immortalization, sequential rearrangement among various chromosomes presumably due to telomeric and interstitial telomeric fusions took place following the telomere shortening, particularly in the senescence and postsenescence phase cells. Of particular interest is the fact that loss of heterozygosity (LOH) of the p53 gene was demonstrated in these immortalized cell populations. In addition, the allelic patterns of the LOH of p53 differed. Further evidence indicative of infinite proliferation was demonstrated in both strains, such as the telomere elongation and the significantly low frequency of cells possessing dicentric chromosomes

  2. Radiosensitivity of skin fibroblasts from atomic bomb survivors with and without breast cancer

    Fibroblasts were established in vitro from skin biopsies obtained from 55 women and one man with or without breast cancer and with or without exposure to radiation from the atomic bomb explosion in Hiroshima. The radiosensitivity of these cells was evaluated by clonogenic assays after exposure to X rays or to fission neutrons from a 252Cf source. Data were fitted to a multitarget model, S/S0 = A[1-(1-ekD)N], for both X-ray and neutron dose-survival curves. A single-hit model, S/S0 = AekD, fits the neutron dose-survival responses as well. These was no difference in the means or variances of radiosensitivity between exposed and nonexposed groups, or between patients with or without breast cancer. Hence, although the sample is not large, it provides no support for the hypothesis that A-bomb radiation preferentially induces breast cancer in women whose cells in vitro are sensitive to cell killing by radiation. (author)

  3. DNA-protein crosslinking in normal human skin fibroblasts exposed to ultraviolet radiation

    Cultured normal human skin fibroblasts were exposed to different fluences of 254 nm UV and the levels of DNA-protein crosslinks (DPC) measured with alkaline elution immediately after irradiation or following a 24-hour incubation (370C). For cells exposed to 10J/m/sup 2/ and then incubated, the level of DPC decreased to that of unexposed cells. When the fluences increased, the levels of DPC measured following a 24-hour incubation increased as compared with non-incubated cells. At fluences higher than 100J/m/sup 2/, the DPC levels of incubated cells exceeded the DPC levels of non-incubated cells. When the single strand breaks (SSB) and double strand breaks (DSB) were measured under a deproteinized condition with alkaline elution and neutral elution, respectively, the levels of SSB and DSB were higher for cells with than for cells without post-irradiation incubation. The simultaneous increase of DPC and proteinase-sensitive SSB and DSB for cells given post-irradiation incubation suggests that a significant part of the DPC observed during post-UV-irradiation incubation were the DNA strand breaks that were tightly associated with proteins. A potential role for type II DNA topoisomerase in the formation of these DPC resulting from either the change in conformational structure caused by the presence of a high level of dimers or an involvement of this enzyme in dimer excision repair will be discussed

  4. Recovery from x-ray induced damage in primary cultures of human skin fibroblast cells

    Human skin fibroblast cells from six patients were obtained during surgical operations and grown in culture. Dose response survival curves from single dose exposures of X-rays were developed for the six cell strains. Individual Do values varied in the six strains from 61 to 83 cGy. The shouldered survival curves had extrapolation numbers (n) ranging from 2.2 to 4.8. To assess repair of sublethal damage, cells were exposed to a total dose of 304 cGy split into two equal fractions separated by varying time intervals. Maximal increase in cell survival was observed when the time interval was at least three hours. Dose-response curves were generated for the six cell strains by first irradiating cells with 152 cGy X-rays and then allowing four hours for recovery from sublethal damage before exposing them to second graded doses. The fractionated dose-response survival curves were distinctly different from the single dose exposure curves and confirmed the ability of these cells to recover from X-ray-induced damage. (author)

  5. Growth and motility of human skin fibroblasts on multilayer strong polyelectrolyte films.

    Wytrwal, Magdalena; Koczurkiewicz, Paulina; Zrubek, Karol; Niemiec, Wiktor; Michalik, Marta; Kozik, Bartłomiej; Szneler, Edward; Bernasik, Andrzej; Madeja, Zbigniew; Nowakowska, Maria; Kepczynski, Mariusz

    2016-01-01

    Polyelectrolyte multilayers (PEMs) have found application in modifying material surfaces to make them adhesive or non-adhesive for animal cells. However, PEMs made of strong polyelectrolytes are not fully recognized in the literature. This study focuses on the interplay between the properties of PEM assembled from strong polyelectrolytes and cell adhesion and motility. Strong polycations (with quaternary ammonium groups) and a polyanion (with sulfonate groups) were obtained by modification of poly(allylamine hydrochloride) (PAH). Two types of multilayer films were assembled from these PAH derivatives and used to investigate the behavior of human skin fibroblasts (HSFs). The effect of surface charge, hydrophobicity, and film thickness on adhesion of HSFs in a serum-containing medium was studied with immunofluorescence microscopy. The results showed that adhesion of HSFs was strongly depended on the chemical functions of the terminal layer, whereas the wettability was not important. The surface of PEM can be strongly cytophobic (the quaternary ammonium terminal groups) or strongly cytophilic (the sulfonate terminal groups). Finally, the motile activity of HSFs seeded on glass coated with a varying number of polymer layers was investigated. It was demonstrated using an in vitro model that coating the substrate with only two polymer layers can considerably increase the average speed of HSFs movement and stimulate cell migration into the wound. PMID:26407058

  6. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  7. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation.

    Claire Marionnet

    Full Text Available Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV spectrum referred as "daily UV radiation" (DUVR with a higher UVA (320-400 nm to UVB (280-320 nm irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure.

  8. Identiifcation of the miniature pig inbred line by skin allograft

    MU Yu-lian; WEI Jing-liang; TANG Fang; YANG Shu-lin; WU Zhi-gu; XIA Ying; SUN Tong-zhu; LIU Lan; FENG Shu-tang; WU Tian-wen; LI Kui; LI Jun-you; HE Wei; GAO Qian; ZHOU Wen-fang

    2015-01-01

    Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identiifcation of swine inbred lines by skin grafting has been reported. At present, Wuzhishan miniature pig (WZSP) inbred line has acquired the F24 individuals in China. In order to verify whether WZSP inbred line had been cultivated successful y, al ogeneic skin grafts and related research were performed on F20 individuals of WZSP inbreeding population, compared with a control group of autologous transplantation. We observed the transplant recipients’ wounds, detected peripheral blood-related indicators interleukin-2, 4 and 10, CD4+and CD8+lymphocytes, and conducted hematoxylin-eosin (HE) and Masson’s staining of skin to judge whether the immune rejection reactions occurred within 28 days after transplantation. Chr. 7 genomic heterozygosity of 48 WZSP individuals from F20 to F22 was analyzed by high-density single nucleotide polymorphism (SNP) chips (60 000 SNPs). The result showed that there were no signiifcant differences in graft skin, the plasma interleukin-2, 4, 10, CD4+and CD8+, HE and Masson’s staining results between the al ograft and autograft groups, and no immune rejection occurred on the al ograft group. We found that 11 genes in Chr. 7 of major histocompatibility complex (MHC) I and MHC II were homozygous which conifrmed that immune antibody of the al ograft and autograft groups were highly identical and also provided a theoretical basis to no immune rejection occurred on the al ograft in the inbred WZSP. The result proved that the WZSP inbred line had been cultivated successful y for the ifrst time in the world. The test methods also provide a scientiifc basis for the identiifcation of swine and mammal inbred lines.

  9. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  10. Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts

    Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

  11. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated that skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS

  12. Endogenous glutathione protects human skin fibroblasts against the cytotoxic action of UVB, UVA and near-visible radiations

    Both the UVB (290-320 nm) and UVA (320-380 nm) regions of sunlight damage human skin cells but, particularly at the longer wavelengths, information is scant concerning the mechanism(s) of damage induction and the roles of cellular defense mechanisms. Following extensive glutathione depletion of cultured human skin fibroblasts, the cells become strongly sensitized to the cytotoxic action of near-visible (405 nm), UVA (334 nm, 365 nm) and UVB (313 nm) but not UVC (254 nm) radiations. In the critical UVB region, the magnitude of the protection afforded by endogenous glutathione approaches that of the protection provided by excision repair. The results suggest that a significant fraction of even UVB damage can be mediated by free radical attack and that a major role of glutathione in human skin cells is to protect them from the cytotoxic action of sunlight. (author)

  13. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.

    Wang, H.; Pieper, J.S.; Schotel, R.; Blitterswijk, C.A. van; Lamme, E.N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue fibrobl

  14. Stimulation of Skin Repair Is Dependent on Fibroblast Source and Presence of Extracellular Matrix

    Wang, Hong-Jun; Pieper, Jeroen; Schotel, Roka; Blitterswijk, van Clemens A.; Lamme, Evert N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue fibrobl

  15. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate

    Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines

  16. Relationship between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of late normal tissue reactions after radiotherapy

    Late complications in normal tissues are limiting for the doses that can be administered during clinical radiotherapy. Awareness of these complications, and comprehension of the underlying biological mechanisms, is extremely important to improve cancer treatment. Fibrosis is one of the most critical injuries to radiotherapy. It varies significantly among patients despite of identical treatments. The large patient-to-patient variability of normal tissue sections to clinical radiation can possibly be accounted for by the considerable individual variation in cellular radiosensitivity of normal human fibroblasts, as shown in vitro. The purpose of the present investigation has been to analyze individual cellular radiosensitivity of normal human skin fibroblasts, as measured in a colony-forming assay, and the relationship to the occurrence of subcutaneous fibrosis after radiotherapy for breast cancer. (au) 97 refs

  17. Effect of wavelength and fluence on morphology, cellular and genetic integrity of diabetic wounded human skin fibroblasts

    Abrahamse, H.; Hawkins, D.; Houreld, N.

    2006-02-01

    An alternative treatment modality for diabetic wound healing includes low level laser therapy (LLLT). Biostimulation of such wounds may be of benefit to patients by reducing healing time. Structural, cellular and genetic events in diabetic wounded human skin fibroblasts (WS1) were evaluated after exposing cells in culture to a Helium-Neon (632.8nm), a Diode laser (830nm) and a Nd:YAG (Neodynium:Yttrium-Allumina-Gallium) laser (1064nm) at either 5J/cm2 or 16J/cm2. Cells were exposed twice a week and left 24 hours post-irradiation prior to measuring effects. Structural changes were evaluated by assessing colony formation, haptotaxis and chemotaxis. Cellular changes were evaluated using cell viability, (adenosine-triphosphate, ATP production), and proliferation, (alkaline phosphatase, ALP and basic fibroblast growth factor, bFGF expression), while the Comet assay evaluated DNA damage and cytotoxicity was determined assessing membrane permeability for lactate dehydrogenase (LDH). Caspase 3/7 activity was used as an estimate of apoptosis as a result of irradiation. The irradiated diabetic wounded cells showed structural, cellular as well as molecular resilience comparable to that of unwounded normal skin fibroblast cells. With regards to fluence, 5J/cm2 elicit positive cellular and structural responses while 16J/cm2 increases cellular and genetic damage and cellular morphology is altered. Different wavelengths of LLLT influences the beneficial outcomes of diabetic wounded cells and although all three wavelengths elicit cellular effects, the penetration depth of 830nm plays a significant role in the healing of diabetic wounded human fibroblast cells. Results from this study validate the contribution of LLLT to wound healing and elucidate the biochemical effects at a cellular level while highlighting the role of different dosages and wavelengths in LLLT.

  18. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly(ε-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

  19. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration

    Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S, E-mail: nnijrv@nus.edu.s [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore)

    2011-02-15

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly({epsilon}-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

  20. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  1. Dexamethasone regulation of glycosaminoglycan synthesis in cultured human skin fibroblasts. Similar effects of glucocorticoid and thyroid hormones.

    Smith, T. J.

    1984-01-01

    The effects of dexamethasone on glycosaminoglycan accumulation were examined in confluent human skin fibroblasts in vitro. The glucocorticoid consistently inhibited the incorporation of either [3H]acetate or [3H]glucosamine into hyaluronate when added to culture medium 72 h before harvest. This effect was half-maximal at approximately 1 nM and maximal at 5-10 nM. Inhibition occurred within 5 h of hormone addition and was near maximal by 25 h. 11 alpha-hydrocortisone (10 nM), deoxycorticostero...

  2. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  3. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))

    1991-02-15

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  4. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian;

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  5. Influence of corticosteroids on chemotactic response and collagen metabolism of human skin fibroblasts.

    Hein, R; Mauch, C; Hatamochi, A; Krieg, T

    1988-07-15

    Following chronic administration of corticosteroids in vivo, a number of complications occur, which mainly involve the metabolism of connective tissue cells. Therefore, several attempts have been made to develop corticosteroids, which show less pronounced side effects. Fibroblasts were kept in monolayer cultures and were exposed to corticosteroids demonstrating similar anti-inflammatory activity (prednicarbate, desoximetasone). Chemotaxis of fibroblasts was studied over 4 hr, protein and collagen synthesis were estimated using proteinchemical methods and also by dot blot hybridization. Corticosteroids used in a high dosage (10 microM) affected all biosynthetic capacities of the investigated fibroblasts. Protein synthesis and production of collagen types I and III were reduced and a similar decrease of mRNA levels for collagen type I could be found indicating an influence on the pretranslational control. In the same concentrations desoximetasone was much more active than prednicarbate. Fibroblast migration was dosage dependently inhibited from 10(-9) M to 10(-5) M for desoximetasone, while incubation with prednicarbate did not cause a reduction of the chemotactic response at concentrations lower than 10(-7) M. These data suggest that modifications of corticosteroids might result in a dissociation of some of their biological activities and can specifically influence their effects on biosynthetic capacities of fibroblasts. PMID:3395353

  6. Diagnosis of Metachromatic Leukodystrophy, Krabbe Disease, and Farber Disease after Uptake of Fatty Acid-labeled Cerebroside Sulfate into Cultured Skin Fibroblasts

    Kudoh, Tooru; Wenger, David A

    1982-01-01

    [14C]Stearic acid-labeled cerebroside sulfate (CS) was presented to cultured skin fibroblasts in the media. After endocytosis into control cells 86% was readily metabolized to galactosylceramide, ceramide, and stearic acid, which was reutilized in the synthesis of the major lipids found in cultured fibroblasts. Uptake and metabolism of the [14C]CS into cells from typical and atypical patients and carriers of metachromatic leukodystrophy (MLD), Krabbe disease, and Farber disease were observed....

  7. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    Yafan Yang; Shuangshuang Li

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect U...

  8. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    Roč. 2015, č. 2015 (2015), ID351698. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GPP305/12/P388 Institutional support: RVO:67985823 Keywords : mitochondria * reactive oxygen species * lactate * fibroblasts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.516, year: 2014

  9. Fibroblasts from skin biopsies as a tool for biomarker discovery in Parkinson׳s disease.

    Mastroberardino, Pier Giorgio; Ambrosi, Giulia; Blandini, Fabio; Milanese, Chiara; Sepe, Sara

    2014-10-01

    Parkinson׳s disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. The chronic and slow progressing nature of PD may result from subtle yet persistent alterations in biological mechanisms, which might be undetectable in basal, unchallenged conditions. Unlike body fluids, dermal fibroblasts can be exposed to different challenges while in culture and can therefore generate information about the dynamic cellular responses to exogenous stressors. These studies may ultimately generate indicators highlighting the biological defects intrinsic to PD. In fact, fibroblasts from idiopathic PD patients' exhibit deficits typically sustaining the neurodegenerative process of PD, such as increased susceptibility to rotenone as well as deficits in protein homeostasis and mitochondrial bioenergetics Fibroblasts therefore represent a powerful and minimally invasive tool to investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical management of the disease. PMID:26461279

  10. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite.

    Keyse, S M; Tyrrell, R M

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide...

  11. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses

    Maas, van der R.; Zoelen-Bos, van D.J.; Oei, H.L.; Claassen, I.J.T.M.

    2006-01-01

    International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-dete

  12. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Dordoni, Chiara; Ritelli, Marco; Venturini, Marina; Castori, Marco; Colombi, Marina

    2016-01-01

    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients. PMID:27518164

  13. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  14. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.

    Igarashi, A; Okochi, H; Bradham, D M; Grotendorst, G R

    1993-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich peptide that exhibits platelet-derived growth factor (PDGF)-like biological and immunological activities. CTGF is a member of a family of peptides that include serum-induced immediate early gene products, a v-src-induced peptide, and a putative avian transforming gene, nov. In the present study, we demonstrate that human foreskin fibroblasts produce high levels of CTGF mRNA and protein after activation with transforming growth factor b...

  15. DNA double strand breaks in fibroblast cell lines from non-Hodgkin's lymphoma patients showing increased sensitivity to chronic gamma irradiation

    Cultured skin fibroblast cell lines from two non-Hodgkin's lymphoma patients (NHL) and a normal subject were studied for cell killing, chromosomal aberrations (breaks, translocations, dicentrics and rings) and DNA double strand breaks (dsbs) following chronic gamma irradiation. Compared to the cell line from the normal donor, the NHL patients' fibroblasts showed enhanced radiosensitivity for both cell survival and chromosomal aberrations. While spontaneous breaks were observed in both normal and patients' cells, spontaneous translocations and radiation-induced dicentrics and rings were found only in the latter. Radiation-induced DNA double-strand breaks (dsb) were determined by CHEF electrophoresis. After chronic irradiation with gamma rays the fraction of residual dsb was significantly increased from 1.4% in controls to 1.9% in the NHL cell lines. These data, thus suggest that the cellular and chromosomal sensitivity to chronic irradiation observed in NHL patients may be due to a deficiency in the repair of a small fraction of DNA double strand breaks. (author)

  16. Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  17. Cyclobutane-type pyrimidine photodimer formation and induction of ornithine decarboxylase in human skin fibroblasts after UV irradiation

    Cyclobutane-type pyrimidine photodimers as well as the induction of ornithine decarboxylase (ODC) may serve as biochemical markers of the mutagenic and carcinogenic effects of ultraviolet light (UV). For this reason, it is important to compare the formation of pyrimidine dimers with the induction of ODC in human skin fibroblasts after irradiation with UVC (200-290 nm) and UVB (290-320 nm). In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer yields (T-T) by high-pressure liquid chromatography in cultures of neonatal normal human foreskin-derived fibroblasts after irradiation with UVC and UVB light. It was found that the yield of dimerization and the ratio of T-T/C-T decreased from the UVC to the UVB region. Time-course studies of ODC-induction in the same cells indicated that the maximal activity after UVB irradiation was retarded compared to UVC exposure. For the UV-induced ODC-levels, however, no significant difference in maximal induction could be measured after UVC and UVB irradiation at fluences where comparable yields of thymine dimerization are produced. Similar ODC-maxima were obtained with strains from children, while cells from adults showed significantly less pronounced ODC induction, indicating that ODC-response decreases with age and may therefore be used as a marker of aging

  18. ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY

    ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...

  19. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Oranuch Nakchat

    2014-05-01

    Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  20. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress.

    Zandberg, L; van Dyk, H C; van der Westhuizen, F H; van Dijk, A A

    2016-09-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inherited metabolic disease of leucine catabolism with a highly variable phenotype. Apart from extensive mutation analyses of the MCCC1 and MCCC2 genes encoding 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), molecular data on MCC deficiency gene expression studies in human tissues is lacking. For IEMs, unbiased '-omics' approaches are starting to reveal the secondary cellular responses to defects in biochemical pathways. Here we present the first whole genome expression profile of immortalized cultured skin fibroblast cells of two clinically affected MCC deficient patients and two healthy individuals generated using Affymetrix(®)HuExST1.0 arrays. There were 16191 significantly differentially expressed transcript IDs of which 3591 were well annotated and present in the predefined knowledge database of Ingenuity Pathway Analysis software used for downstream functional analyses. The most noticeable feature of this MCCA deficient skin fibroblast transcriptome was the typical genetic hallmark of mitochondrial dysfunction, decreased antioxidant response and disruption of energy homeostasis, which was confirmed by mitochondrial functional analyses. The MCC deficient transcriptome seems to predict oxidative stress that could alter the complex secondary cellular response that involve genes of the glycolysis, the TCA cycle, OXPHOS, gluconeogenesis, β-oxidation and the branched-chain fatty acid metabolism. An important emerging insight from this human MCCA transcriptome in combination with previous reports is that chronic exposure to the primary and secondary metabolites of MCC deficiency and the resulting oxidative stress might impact adversely on the quality of life and energy levels, irrespective of whether MCC deficient individuals are clinically affected or asymptomatic. PMID:27417235

  1. Cholesterol Metabolism in Brain and Skin Fibroblasts from Sarda Breed Sheep With Scrapie-resistant and Scrapie-susceptible Genotypes

    Alessandra Pani

    2007-01-01

    Full Text Available Scrapie is a fatal spongiform encephalopathy of sheep, a transmissible form of prion disease caused by neuronal accumulation of the aberrantly conformed prion protein (PrPsc. Currently, no ante-mortem diagnostic tests are available to detect this untreatable disease in the pre-clinical stage, thus making difficult to control its spread. Recent evidence suggests that the production of PrPsc can be modulated by the levels of membrane cholesterol in neuronal cells. Since cholesterol levels in cell membranes are dependent on cholesterol homeostasis in the whole organism, we studied cholesterol metabolism in brain tissues, plasma and skin fibroblasts of Sarda breed sheep with scrapie-resistant (ARR/ARR and scrapie-susceptible (ARQ/ARQ prion protein genotypes, both not infected (ARQ/ARQ- and infected (ARQ/ARQ+ with scrapie. We found that, the levels of cytoplasmic cholesterol esters (CE in brains and skin fibroblasts from sheep with the ARQ/ARQ genotype were consistently higher than those from sheep with the ARR/ARR genotype. Conversely, the levels of free cholesterol (FC were lower in ARQ/ARQ, as compared to ARR/ARR sheep, thus resulting in a sharp reduction of the FC/CE ratio. Moreover, both uninfected and infected ARQ/ARQ sheep showed abnormally low levels of high density lipoprotein-cholesterol (HDL-C in their plasma, as compared to ARR/ARR sheep. These data other than adding new strength to the notion that altered levels of intracellular cholesterol may indicate the presence of a lipid metabolic state that predisposes to infection with, and accumulation of, PrPsc in the brain, discriminate for the first time between two distinct but related cellular pools of cholesterol, namely membrane FC on one hand and cytoplasmic CE on the other.

  2. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF2.4) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after irradiation

  3. Fibroblasts of skin fragments as a tool for the investigation of genetic diseases: technical recommendations

    Coelho Janice Carneiro

    2000-01-01

    Full Text Available Skin biopsies are frequently indicated for investigation and/or confirmation of genetic disorders. Although relatively simple and noninvasive, these procedures require care in order to increase probability of success and to avoid patient discomfort and unnecessary repeated analyses and associated laboratory fees. The present report highlights the importance of skin biopsies in genetic disorder diagnosis and presents general rules for collecting, storing, transporting and processing samples. We recommend its reading to professionals intending to use this important and sometimes fundamental diagnostic tool.

  4. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  5. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  6. Protective effects of APP 17-mer peptide on cultured human skin fibroblasts after irradiation with ultraviolet light%APP17肽通过抑制细胞内ROS保护紫外线照射后人皮肤成纤维细胞

    陈慧; 连石; 朱威

    2011-01-01

    Objective Ultraviolet light (UV) is known to cause photoaging of skin.UV irradiation can damage proliferation capacity and induce collagenase in fibroblasts in the dermis .Many researchers have explored the potential photo-protective agents;however,no ideal agent has been widely accepted .Amyloid precursor protein 17-mer peptide (APP17-mer peptide),an active peptide segment,has been reported to be responsible for the trophic effect in clonal CNS neuronal line ,fibroblast cell line and HaCat cells.The aim of this study was to explore the effects of APP17-mer peptide on cultured fibroblasts after ultraviolet irradiation .Methods Human skin fibroblasts were cultured in DMEM medium with or without APP 17-mer peptide (concentrations ranging from 20 μmol/L,40 μmol/L,to 80 μmol/L).The cultured fibroblasts were exposed to a single UV irradiation,and the proliferation activity of fibroblasts was detected by a MTT assay .The ex-pression of matrix metalloproteinase-1 (MMP-1) mRNA was analyzed quantitatively following real -time RT-PCR.The generation of intracellular reactive oxygen species (ROS) was measured with fluorescent quantita-tion method.Results A single exposure to UV irradiation depressed proliferation activity of fibroblasts com -pared with sham-irradiated control (P <0.05).40 μmol/L and 80 μmol/L APP17-mer peptide increased the cellular proliferation activity in UV irradiated and unirradiated fibroblasts (P <0.05),however,20 μmol/L did not show such protective effects (P >0.05).A single exposure of fibroblasts to UV irradiation resulted in 1.78 fold up-regulation of MMP-1 mRNA compared with unirradiated sample (P <0.05),and 40 μmol/L and 80 μmol/L APP17-mer peptide decreased the expression of MMP -1 mRNA (P <0.05 and P <0.01,re-spectively).UV irradiation increased generation of ROS in cultured fibroblasts (P <0.05).40 μmol/L APP17-mer peptide inhibited the generation of ROS in irradiated fibroblasts .Conclusions APP17-mer pep-tide can

  7. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  8. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  9. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    Li N

    2014-07-01

    Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound

  10. Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

    Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk; Jeong, Min Ho; Choi, Yoo Jin

    2012-01-01

    Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and pero...

  11. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    Yafan Yang

    2015-01-01

    Full Text Available Ultraviolet (UV irradiation causes damage in skin by generating excessive reactive oxygen species (ROS and induction of matrix metalloproteinases (MMPs, leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption.

  12. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence.

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  13. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    Feng Yang

    Full Text Available BACKGROUND: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. PRINCIPAL FINDINGS: We have identified 7117 unique phosphopeptides (2566 phosphoproteins from control and irradiated (2 and 50 cGy primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. CONCLUSIONS: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  14. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peak intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at

  15. Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts.

    Fan, Chen; Dong, Ying; Xie, Yan; Su, Yonghua; Zhang, Xufang; Leavesley, David; Upton, Zee

    2015-10-01

    Hypertrophic scarring/hypertrophic scars (HS) is a highly prevalent condition following burns and trauma wounds. Numerous studies have demonstrated that transforming growth factor-β1 (TGF‑β1) plays an essential role in the wound healing process by regulating cell differentiation, collagen production and extracellular matrix degradation. The increased expression of TGF-β1 is believed to result in the formation of HS. Shikonin (SHI), an active component extracted from the Chinese herb, Radix Arnebiae, has previously been found to downregulate the expression of TGF-β1 in keratinocyte/fibroblast co-culture conditioned medium. In view of this, in this study, we aimed to further investigate the effects of SHI on TGF-β1-stimulated hypertrophic scar-derived human skin fibroblasts (HSFs) and examined the underlying mechanisms. Cell viability and proliferation were measured using alamarBlue and CyQUANT assays. The total amount of collagen and cell contraction were examined using Sirius red staining and the cell contraction assay kit. Gene expression and signalling pathway activation were detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Our results revealed that SHI reduced TGF-β1‑induced collagen production through the ERK/Smad signalling pathway and attenuated TGF-β1‑induced cell contraction by downregulating α-smooth muscle actin (αSMA) expression in the HSFs. The data from this study provide evidence supporting the potential use of SHI as a novel treatment for HS. PMID:26239419

  16. Radiosensitivity of skin fibroblasts and lymphocytes from atomic bomb survivors in Hiroshima

    In the last 30 years or so, the existence of individual differences in in vivo radiation sensitivity has been well recognized in the response of normal tissues, particularly skin tissue, of cancer patients in the course of radiation therapy. If a large variation in radiosensitivity truly exists, it is very important to compare the radiosensitivity between the A-bomb survivors and a general population. If A-bomb survivors include a disproportionately large number of either radioresistant or radiosensitive persons, the surviving population would provide a biased estimate of the true risk of radiogenic cancer. 14 refs., 1 fig., 1 tab

  17. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  18. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  19. Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts

    Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to UV radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a UV fluence of 5 J/m2. At this same UV fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the UV fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in UV-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semiconservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity

  20. Activation of NF-{kappa}B in human skin fibroblasts by the oxidative stress generated by UVA radiation

    Vile, G.F.; Tanew-Iliitschew, Adrian; Tyrrell, R.M. [Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne (Switzerland)

    1995-09-01

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-{kappa}B that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-{kappa}B in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-{kappa}B appeared to be correlated with membrane damage, and activation could be prevented by {alpha}-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-{kappa}B by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-{kappa}B over all wavelength ranges examined. (Author).

  1. Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-κB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-κB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-κB appeared to be correlated with membrane damage, and activation could be prevented by α-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-κB by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-κB over all wavelength ranges examined. (Author)

  2. The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-

    We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of [3H]histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of [3H] histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism

  3. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  4. Acyl CoA Binding Domain Containing 3 (ACBD3) Protein in Huntington’s Disease 
Human Skin Fibroblasts

    Kratochvílová, H.; Rodinová, M.; Sládková, J.; Klempíř, J.; Lišková, Irena; Motlík, Jan; Zeman, J.; Hansíková, H.; Tesařová, M.

    2015-01-01

    Roč. 78, Suppl. 2 (2015), s. 34-38. ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. Liblice, 08.11.2015-10.11.2015] R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : Huntington’s disease * Acyl-CoA binding domain containing 3 protein * human skin fibroblasts Subject RIV: FH - Neurology Impact factor: 0.165, year: 2014

  5. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca2+/calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  6. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Tanaka M

    2015-02-01

    Full Text Available Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods: First, we investigated the capability of Aloe sterols (cycloartenol and lophenol to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP containing 40 µg Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results: After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake

  7. Establishment, characterization and cryopreservation of Fars native goat fetal fibroblast cell lines

    Davood Mehrabani

    2016-05-01

    Conclusions: The goat fetal fibroblast cell culture can be established using the adherent culture method and can be cryopreserved, too. After thawing, growth and viability indices of these cells were acceptable.

  8. p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

    Chen, Wenqi; Kang, Jian; Xia, Jiping; Li, Yanhua; Yang, Bo; Chen, Bin; Sun, Weiling; Song, Xiuzu; Xiang, Wenzhong; Wang, Xiaoyong; Wang, Fei; Wan, Yinsheng; Bi, Zhigang

    2008-05-01

    Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature senescence in human skin fibroblasts (HSFs). After five repeated subcytotoxic UVB exposures at a dose of 10 mJ/cm2, the following biomarkers of senescence were markedly present: senescence-associated beta-galactosidase (SA beta-gal) activity, growth arrest, and the overexpression of senescence-associated genes. Firstly, there was an increase in the proportion of cells positive for SA beta-gal activity. Secondly, there was a loss of replicative potential as assessed by MTT assay. FACS analysis showed that UVB-stressed HSFs were blocked mostly in the G1 phase of the cell cycle, and replicative senescence, and protein expression of p53, p21(WAF-1) and p16(INK-4a) increased significantly. Thirdly, the mRNA levels of three senescence-associated genes, fibronectin, osteonectin and SM22, also increased. A real time PCR array to investigate the mRNA expression of p53-related genes involved in growth arrest, apoptosis and tumorigenesis indicated that p53, p21, p19, Hdm2, and Bax were up-regulated, and bcl, HIF-1alpha and VEGF were down-regulated. Collectively, our data suggest that UVB-induced SIPS plays an important role in p53-related apoptosis resistance and tumor suppression activity. PMID:18425358

  9. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  10. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  11. Enhanced in vitro radiosensitivity of skin fibroblasts in two patients developing brain necrosis following AVM radiosurgery: a new risk factor with potential for a predictive assay

    Purpose: Radiosurgery is an effective treatment for arteriovenous malformations (AVM) with a low risk of developing brain necrosis. Models have been developed to predict the risk of complications. We postulated that genetic differences in radiosensitivity may also be a risk factor. Methods and Materials: Fibroblast cultures were established from skin biopsies in two AVM patients developing radiation necrosis. The results of clonogenic survival assays were compared to a parallel study with two groups of cancer patients treated with radiation: 1) patients without late side effects; 2) patients experiencing severe late sequelae. Results: The survival fraction at 2 Gy (SF2) of the 2 AVM patients was 0.17 (0.14-0.19) and 0.18 (0.14-0.22). The SF2's of the cancer patients ranged between 0.25-0.38 (mean = 0.31) for the control group, and between 0.10-0.20 (mean = 0.17) for the hypersensitive group. The SF2's of the AVM patients who developed brain necrosis were comparable to that of the hypersensitive group (p = 0.85) but significantly lower than the control group (p = 0.05). Conclusion: The two patients who developed radiation necrosis demonstrate increased fibroblast radiosensitivity. The SF2 of skin fibroblasts may potentially be used as a predictive assay to detect patients at risk for brain necrosis

  12. Correlation between normal tissue complications and in vitro radiosensitivity of skin fibroblasts derived from radiotherapy patients treated for variety of tumors

    Purpose: To assess the relationship between fibroblast intrinsic radiosensitivity in vitro and late reactions of normal tissues in patients treated by definitive radiotherapy for variety of tumors. Patients and Methods: Ten patients were selected for this study. They were treated by radical radiotherapy for variety of tumors, including non-Hodgkin's lymphoma, prostate, glottic larynx, anal canal, cervix, bladder, thyroid gland, and tonsil pillar. Five patients did not develop any significant late reactions (normally sensitive group, NS). The other five developed late complications in different normal tissues and organs that proved to be fatal in one patient (clinically hyper-sensitive group, HS). Fibroblast cultures were established from punch skin biopsy and radiosensitivity in vitro was measured. The survival fraction at 2 Gy (SF2) was calculated and compared between the two groups. Results: SF2 ranged between 0.10 and 0.38 with a mean of 0.24. The mean SF2 for each of the NS and the HS groups were 0.31 and 0.17, respectively. The non-parametric rank test of Mann-Whitney shows that the difference between the two groups is statistically significant (p = 0.01). Conclusion: This study indicates that the in vitro radiosensitivity of skin fibroblasts is correlated with late complications in different organs and normal tissues following radiotherapy for variety of tumors. It also lends support to the existence of a common genetic component determining the radiosensitivity of cells targeted by the late effects of ionizing radiation. Key words:

  13. Absence of correlations between the radiosensitivity of human T-lymphocytes at G0 and skin fibroblasts at log phase from the same individuals

    Matched samples of peripheral T-lymphocytes and skin fibroblasts from a total of 22 patients who underwent various surgical procedures were tested for a dose-survival study using loss of colony-forming ability as the end point. The results showed that the mean D10 (the dose required to kill 90 % of the cells) ±SD was 3.58 ± 0.21 Gy for T-lymphocytes irradiated at G0 and 3.19 ± 0.37 Gy for skin fibroblasts irradiated at log phase. The coefficient of variation was found to be 6 % and 11 %, respectively. Contrary to expectation, regression analysis of the D10 values for the two cell types revealed no significant correlations. The absence of correlation is most probably derived from the fact that the apparent interindividual variability of dose-survival curves is largely caused by random experimental fluctuations, at least for lymphocytes. Possible reasons for the greater variability observed in the fibroblast assay are discussed. (author)

  14. The treatment effects of cultured epidermis, basic fibroblast growth factor and the combination of these two treatments in a radiation skin ulcer model (rat)

    The objective of this study was to evaluate the treatment effects of cultured epidermis, basic fibroblast growth factor (b-FGF) and the combination of these two treatments in a radiation skin ulcer model. The subjects were 9-week-old male inbred line rats and divided into two parts. Rats in one part were applied X-ray and rats in the other part were not. The dose of X-ray was 20 Gy. Wounds were full-thickness wounds. The ways of treatment were divided into four groups: control group, cultured epidermis group, b-FGF group, combination group (cultured epidermis+b-FGF). Wounds were observed on 5, 8, 11, 14, 17, 20, 23, 26 days after treatment. Wound healing rate was calculated and days needed to heal were counted. Relative hardness of scars was measured on the day of epithelization and on 12 and 21 days after epithelization. Wounds applied X-ray: Mean wound healing rate of cultured epidermis group and combination group was significantly higher than that of the two other groups on 8 and 11 days after treatment. Mean relative hardness of scars of cultured epidermis group and combination group was significantly lower than that of the two other groups on all measurement days. Mean days needed to heal of cultured epidermis group were significantly shorter than those of control group and b-FGF group. And those of combination group were significantly shorter than those of b-FGF group. As the shorter the days from making scars became, relative hardness of scars got lower. Wounds without X-ray: Mean wound healing rate of combination group was significantly lower than that of cultured epidermis group and control group on 5 days after treatment. Cultured epidermis graft can be an effective treatment for radiation skin ulcer. b-FGF can weaken the treatment effect of cultured epidermis graft depending on its density. There can be a positive correlation between relative hardness of scars and the days from making scars. (author)

  15. Effects of macelignan isolated from Myristica fragrans (nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2', 7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. (author)

  16. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  18. Establishment of immortal normal and ataxia telangiectasia fibroblast cell lines by introduction of the hTERT gene

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Nakatsugawa, Shigekazu; Hamaguchi, Michinari [Nagoya Univ. (Japan). School of Medicine

    2002-06-01

    To establish immortal human cells, we introduced the human catalytic subunit of telomerase (hTERT) gene into skin fibroblast cells obtained from normal and ataxia telangiectasia (AT) individuals of Japanese origin. After hTERT introduction, these cells continue to grow beyond a population doubling number of 200 while maintaining their original radiosensitivity. Inductions of p53, phosphorylation of Serl5 in p53, and induction of p21 by X-ray irradiation in immortal cells derived from normal individual were not affected by the hTERT introduction. Both normal and AT immortal cells exhibited an apparent inhibition of growth as original primary cells when they reached confluence. Karyotype analysis has revealed that they are in a diploid range. These results suggest that cells immortalized by hTERT introduction retain their original characteristics except for immortalization, and that they may be useful for analyzing various effects of radiation on human cells. (author)

  19. Abnormal sensitivity of diploid skin fibroblasts from a family with Gardner's syndrome to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C

    Skin fibroblasts isolated from two members of the same family with the cancer-prone disease Gardner's Syndrome (intestinal polyposis, colon cancer, bone and soft tissue tumors) showed enhanced sensitivity to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C. These cells showed no liquid-holding type recovery following UV-irradiation of confluent cultures, but were normal in their capacity for UV-induced unscheduled DNA synthesis. UV survival was not influenced by post-irradiation incubation with caffeine. (orig.)

  20. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  1. DEF-1, a Novel Src SH3 Binding Protein That Promotes Adipogenesis in Fibroblastic Cell Lines

    King, Frederick J.; Hu, Erding; Harris, David F.; Sarraf, Pasha; Spiegelman, Bruce M.; Roberts, Thomas M.

    1999-01-01

    The Src homology 3 (SH3) motif is found in numerous signal transduction proteins involved in cellular growth and differentiation. We have purified and cloned a novel protein, DEF-1 (differentiation-enhancing factor), from bovine brain by using a Src SH3 affinity column. Ectopic expression of DEF-1 in fibroblasts resulted in the differentiation of a significant fraction of the culture into adipocytes. This phenotype appears to be related to the induction of the transcription factor peroxisome ...

  2. Similarity between the interleukin 1 receptors on a murine T-lymphoma cell line and on a murine fibroblast cell line

    Interleukin 1β (IL-1β), one of two different polypeptide hormones with interleukin 1 (IL-1) biological activity, produced by activated human monocytes, is a 17.5-kDa protein. IL-1β binds specifically to a variety of cells; the cellular distribution of binding is consistent with reported biological responsiveness. In this report the authors show that two unrelated, but IL-1-responsive, cell lines, LBRM-33-1A5, a T-lymphoma line, and BALB/3T3, a fibroblast line, bind 125I-labeled IL-1β via similar plasma membrane receptor molecules. The T-lymphoma cells possess 238 +/- 16 plasma membrane receptors per cell and bind 125I-labeled IL-1β with an affinity of 3.6 +/- 0.9 x 109 M-1. The IL-1 receptor has a molecular size of ≅ 79.5 kDa, as estimated by affinity cross-linking. The fibroblasts possess 4.8 +/- 0.5 x 103 IL-1 receptor per cell and bind 125I-labeled IL-1β with an affinity of 2.6 +/- 0.5 x 109 M-1. The molecular size of the receptor molecule on the fibroblasts is ≅ 78 kDa. Despite the similarity in the characteristics of the ligand-receptor system on the two different cell types, the biological responses of the two cell types to IL-1β occur at IL-1β concentrations that differ by four orders of magnitude

  3. Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation

    Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients after 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA

  4. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Oranuch Nakchat; Nonthaneth Nalinratana; Duangdeun Meksuriyen; Sunanta Pongsamart

    2014-01-01

    Objective:To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods:Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results: TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  5. Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation

    Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23–65 months after SCT for G-banded chromosome analysis. Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability

  6. Mécano-Stimulation™ of the skin improves sagging score and induces beneficial functional modification of the fibroblasts: clinical, biological, and histological evaluations

    Humbert P

    2015-02-01

    Full Text Available Philippe Humbert,1,2 Ferial Fanian,1,2 Thomas Lihoreau,1,2 Adeline Jeudy,1,2 Ahmed Elkhyat,1,2 Sophie Robin,3 Carol Courderot-Masuyer,3 Hélène Tauzin,3 Christine Lafforgue,1,2,4 Marek Haftek5 1Research and Studies Center on the Integument (CERT, Department of Dermatology, Clinical Investigation Center (CIC 1431, Besançon University Hospital; 2INSERM UMR1098, FED4234 IBCT, University of Franche-Comté, Besançon, France; 3SARL BIOEXIGENCE, Besançon, France; 4Dermopharmacology and Cosmetology Unit, University of Paris Sud, France; 5University of Lyon 1, EA4169, Experimental, clinical and therapeutic aspects of the skin barrier function, INSERM US7 – CNRS UMS3453, Lyon, France Background: Loss of mechanical tension appears to be the major factor underlying decreased collagen synthesis in aged skin. Numerous in vitro studies have shown the impact of mechanical forces on fibroblasts through mechanotransduction, which consists of the conversion of mechanical signals to biochemical responses. Such responses are characterized by the modulation of gene expression coding not only for extracellular matrix components (collagens, elastin, etc. but also for degradation enzymes (matrix metalloproteinases [MMPs] and their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]. A new device providing a mechanical stimulation of the cutaneous and subcutaneous tissue has been used in a simple, blinded, controlled, and randomized study. Materials and methods: Thirty subjects (aged between 35 years and 50 years, with clinical signs of skin sagging, were randomly assigned to have a treatment on hemiface. After a total of 24 sessions with Mécano-Stimulation™, biopsies were performed on the treated side and control area for in vitro analysis (dosage of hyaluronic acid, elastin, type I collagen, MMP9; equivalent dermis retraction; GlaSbox®; n=10 and electron microscopy (n=10. Furthermore, before and after the treatment, clinical evaluations and self

  7. In vitro radiosensitivity of skin fibroblasts can identify a group of radiotherapy patients having developed complications in a variety of normal tissues

    A retrospective study of the in vitro radiosensitivity of skin fibroblasts derived from two groups of patients treated by definitive radiotherapy for a variety of tumors who either displayed or did not display severe complications. Seven radiotherapy patients were selected: three treated for head and neck, prostate and non-Hodgkin lymphoma tumors, and did not develop any significant complications (control group); four patients were treated for bladder, thyroid, head and neck and anal canal tumors and developed serious acute and especially late reactions (hypersensitive group), Primary cell cultures of skin fibroblasts were established and their radiosensitivity studied by the clonogenic assay after exposing to single radiation doses ranging between 1 and 8 Gy. The survival fraction at 2 Gy (SF2) ranged from 0.27 to 0.38, with a mean of 0.33 for the control group, and from 0.10 to 0.20 with a mean of 0.17 for the hypersensitive group. The Mann-Whitney non-parametric test hypersensitive group. The Mann-Whitney non-parametric test showed that the difference between the two means was statistically significant (p = 0.03). The data are in favor of a correlation between the radiosensitivity of patients' fibroblasts and the reactions of different normal tissues to radiotherapy. This association supports the use of the clonogenic survival, or a surrogate test, as a predictive assay. The multiplicity of normal tissues and organs implicated in this association suggests the existence of genetic factors that determine, at least in part, the radiosensitivity of target cells involved in the expression of normal tissues complications following radiotherapy. (authors)

  8. HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1

    Purpose: Despite the comparably high cure rates observed for HPV-positive HNSCC, there is still a great need for specific tumor radiosensitization due to the often severe side effects resulting from intense radiochemotherapy. We recently demonstrated that HPV-positive HNSCC cell lines are characterized by a defect in DNA double-strand break repair associated with a pronounced G2-arrest. Here we tested whether abrogation of this radiation-induced G2-arrest by the inhibition of Chk1 results in specific radiosensitization of HPV-positive HNSCC cells. Materials and methods: Experiments were performed with five HPV and p16-positive (93-VU-147T, UM-SCC-47, UT-SCC-45, UD-SCC-2, UPCI-SCC-154) and two HPV and p16-negative HNSCC cell lines, as well as two normal human fibroblast strains. Chk1 was inhibited by the selective inhibitor PF-00477736. Cell cycle distribution was determined by flow cytometry, Chk1-activity via Western blot and cell survival by colony formation assay. Results: With the exception of UPCI-SCC-154, the inhibition of Chk1 was found to abolish the pronounced radiation-induced G2-arrest in all HPV-positive cells utilized. All tumor cell lines that demonstrated the abrogation of G2-arrest also demonstrated radiosensitization. Notably, in G1-arrest-proficient normal human fibroblasts no radiosensitization was induced. Conclusion: Abrogation of the G2 checkpoint through the inhibition of Chk1 may be used to selectively increase the cellular radiosensitivity of HPV-positive HNSCC without affecting the surrounding normal tissue

  9. Establishment of an Immortalized Skin Keratinocyte Cell Line Derived from the Animal Model Mastomys coucha

    Hasche, Daniel; Stephan, Sonja; Savelyeva, Larissa; Westermann, Frank; Rösl, Frank

    2016-01-01

    In the present report we describe the establishment of a spontaneous immortalized skin keratinocyte cell line derived from the skin of the multimammate rodent Mastomys coucha. These animals are used in preclinical studies for a variety of human diseases such as infections with nematodes, bacteria and papillomaviruses, especially regarding cutaneous manifestations such as non-melanoma skin cancer. Here we characterize the cells in terms of their origin and cytogenetic features. Searching for genomic signatures, a spontaneous mutation in the splicing donor sequence of Trp53 (G to A transition at the first position of intron 7) could be detected. This point mutation leads to alternative splicing and to a premature stop codon, resulting in a truncated and, in turn, undetectable form of p53, probably contributing to the process of immortalization. Mastomys coucha-derived skin keratinocytes can be used as an in vitro system to investigate molecular and immunological aspects of infectious agent interactions with their host cells. PMID:27533138

  10. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines.

    Zanatta, C F; Mitjans, M; Urgatondo, V; Rocha-Filho, P A; Vinardell, M P

    2010-01-01

    Considering the belief that natural lipids are safer for topical applications and that carotenoids are able to protect cells against photooxidative damage, we have investigated whether topical creams and lotions, produced with Buriti oil and commercial surfactants, can exert photoprotective effect against UVA and UVB irradiation on keratinocytes and fibroblasts. Cell treatment was divided into two steps, prior and after exposition to 30 min of UVA plus UVB radiation or to 60 min of UVA radiation. Emulsions prepared with ethoxylated fatty alcohols as surfactants and containing alpha-tocopherol caused phototoxic damage to the cells, especially when applied prior to UV exposure. Damage reported was due to prooxidant activity and phototoxic effect of the surfactant. Emulsions prepared with Sorbitan Monooleate and PEG-40 castor oil and containing panthenol as active ingredient, were able to reduce the damages caused by radiation when compared to non-treated cells. When the two cell lines used in the study were compared, keratinocytes showed an increase in cell viability higher than fibroblasts. The Buriti oil emulsions could be considered potential vehicles to transport antioxidants precursors and also be used as adjuvant in sun protection, especially in after sun formulations. PMID:19766688

  11. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  12. Expression of nerve growth factor p75 receptor and sortilin in the skin fibroblasts and scar fibroblasts%神经生长因子p75受体与sortilin在皮肤及瘢痕成纤维细胞中的表达**★

    冯璋; 张芮; 冯永强; 周一冲; 王一兵

    2013-01-01

    healing, but there is less research for the low-affinity nerve growth factor receptor p75 and sortilin in fibroblasts, and no reports on whether there are differences in expression of p75 and sortilin in the scar fibroblasts and normal skin fibroblasts. OBJECTIVE: To study the expression of low-affility nerve growth factor receptor p75 and sortilin in the normal human skin fibroblasts and the human keloid fibroblasts. METHODS: The keloid fibroblasts and normal hunman skin fibroblasts were cultured in vitro, and the immortalized epithelial cells HaCaT were used as the positive control. The real-time PCR was used to detect the mRNA expression of the p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts, and western blot and immunocytochemical staining were used to detect the protein expression of p75 and sortilin. RESULTS AND CONCLUSION: The real-time PCR and western blot results showed that in the protein and mRNA levels, p75 and sortilin showed positive expression in the keloid fibroblasts and normal human skin fibroblasts, and there was no significant difference in the expression of p75 between keloid fibroblasts and normal human skin fibroblasts, and the expressions of p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts were significantly lower than those in HaCaT. There was no significant difference of p75 expression between keloid fibroblasts and normal human skin fibroblasts, and the expression of sortilin in the keloid fibroblasts was significantly lower than that in the normal human skin fibroblasts (P < 0.05). Immunocytochemical staining result showed that the expression of p75 and sortilin in the keloid fibroblasts and normal human skin fibroblasts were distributed in the membrane and cytoplasm. Precursor nerve growth factor combined with high-affinity p75 receptor could promote the apoptosis of the cells with the help of sortilin, and the expression of sortilin in the keloid fibroblasts was significantly lower than

  13. Antiageing Mechanisms of a Standardized Supercritical CO2 Preparation of Black Jack (Bidens pilosa L. in Human Fibroblasts and Skin Fragments

    Gustavo Dieamant

    2015-01-01

    Full Text Available The use of topical retinoids to treat skin disorders and ageing can induce local reactions, while oral retinoids are potent teratogens and produce several unwanted effects. This way, efforts to explore complementary care resources should be supported. Based on this, we evaluate the antiageing effects of a supercritical CO2 extract from Bidens pilosa L. (BPE-CO2A containing a standardized multicomponent mixture of phytol, linolenic, palmitic, linoleic, and oleic acids. BPE-CO2A was assessed for its effects on human dermal fibroblasts (TGF-β1 and FGF levels using ELISA; collagen, elastin, and glycosaminoglycan by colorimetric assays, and mRNA expression of RXR, RAR, and EGFr by qRT-PCR and human skin fragments (RAR, RXR, collagen, elastin, and glycosaminoglycan by immunohistochemical analysis. Levels of extracellular matrix elements, TGF-β1 and FGF, and EGFr gene expression were significantly increased by BPE-CO2A. The modulation of RXR and RAR was positively demonstrated after the treatment with BPE-CO2A or phytol, a component of BPE-CO2A. The effects produced by BPE-CO2A were similar to or better than those produced by retinol and retinoic acid. The ability to stimulate extracellular matrix elements, increase growth factors, and modulate retinoid and rexinoid receptors provides a basis for the development of preparation containing BPE-CO2A as an antiageing/skin-repair agent.

  14. Quercetin enhances UVA-induced DNA damage in a rat fibroblast cell line

    De Castro, M. F.; Basto, Diana; Silva, João P.; Coutinho, O P

    2007-01-01

    Ultraviolet A (UVA) radiation from sunlight induces the production of reactive oxygen species (ROS), affecting a variety of cellular targets including the DNA. Quercetin, a flavonol present in many fruits, vegetables and beverages has been reported as a powerful antioxidant with an important role in prevention of carcinogenesis. The use of this compound, in topical formulations, could be of benefit in the prevention of skin damage produced by sunlight exposure. We investigated the effec...

  15. Decreased mitochondrial density and ultrastructural changes of mitochondria in cultivated skin fibroblasts of patients with Huntington´s disease

    Rodinová, M.; Marková, M.; Kratochvílová, H.; Kučerová, I.; Tesařová, M.; Lišková, Irena; Klempíř, J.; Roth, J.; Zeman, J.; Hansíková, H.

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 20-21. ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington´s disease * fibroblasts * mitochondrial ultrastructure Subject RIV: FH - Neurology

  16. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Deglesne PA; Arroyo R; Ranneva E; Deprez P

    2016-01-01

    Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulatio...

  17. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.

    Li, Yan; Shi, Shan; Gao, Jianxin; Han, Shichao; Wu, Xue; Jia, Yanhui; Su, Linlin; Shi, Jihong; Hu, Dahai

    2016-05-01

    Hypertrophic scar (HS) is a skin fibrotic disease that causes major clinically problematic symptoms. Cryptotanshinone (CT) is an important ingredient of Danshen (Salvia miltiorrhiza Bunge extract) that has been used to treat cardio-cerebral vascular diseases. Its clinical efficacy in HS remains unclear. To investigate whether CT can inhibit HS fibrosis, HS-derived fibroblastic cells (HSFs) were established and treated with or without CT. Type-collagen-I (Col1), type-collagen-III (Col3) and α-smooth muscle actin (α-SMA) expression were measured by western blot and real-time quantitative polymerase chain reaction. HSFs migration and contraction were assessed with the scratch assay and the fibroblast-populated collagen lattice (FPCL) contraction assay, respectively. Wound healing in CT-treated Balb/c mice was assessed by immunohistochemical analysis of collagen expression and Masson's trichrome staining analysis of collagen deposition. CT treatment of HSFs down-regulated Col1, Col3 and α-SMA mRNA and protein expression, HSFs migration, and HSFs contraction, and improved FPCL architecture. In mice, CT treatment accelerated wound healing: the scar margins were narrow and there was less collagen deposition in the regenerated tissue. Thus, CT promotes wound healing and decreases excessive deposition of extracellular matrix components. CT may help to prevent and reduce scarring. PMID:27133042

  18. IPL irradiation rejuvenates skin collagen via the bidirectional regulation of MMP-1 and TGF-β1 mediated by MAPKs in fibroblasts.

    Huang, Jinhua; Luo, Xiang; Lu, Jianyun; Chen, Jing; Zuo, Chengxin; Xiang, Yaping; Yang, Shengbo; Tan, Lina; Kang, Jian; Bi, Zhigang

    2011-05-01

    The efficacy of intense pulsed light (IPL) in remodeling the extracellular matrix of aged skin had been proven by an increasing number of clinical trials. However, because of the lack of research about the underlying molecular and signaling mechanisms, its efficiency had not been accepted universally. A potential mechanism of IPL rejuvenation effects is due to its different effects on diverse cytokines, the impact of IPL on them may determine the phenotype and prognosis of the aged skin. We designed this study to evaluate the impact of IPL on the secretion of matrix metalloproteinase-1 (MMP-1), transforming growth factor-β1 (TGF-β1), and the mitogen-activated protein kinase (MAPK) signaling pathway in human skin fibroblasts, and tried to study the respective functions of MAPKs as mediators of the MMP-1, TGF-β1 secretion. Results showed that the MMP-1 secretion was only enhanced by IPL at 10 J/cm(2); while the TGF-β1 secretion was inhibited by IPL when the fluence was below 36 J/cm(2), but enhanced at 72 J/cm(2). Meanwhile, ERK inhibitor PD98059 decreased MMP-1 secretion, but did not show a significant influence on TGF-β1; JNK inhibitor SP600125 increased the secretion of MMP-1 and decreased the TGF-β1 secretion; P38 inhibitor SB203580 had no significant influence on MMP-1 but increased the secretion of TGF-β1. Our findings indicated that the bidirectional influence of IPL on the secretion of MMP-1 and TGF-β1 is a potential mechanism of its skin rejuvenation effect; and the secretion of these two cytokines can be mediated by MAPKs. PMID:21161310

  19. Receptor-mediated rapid action of 1 alpha,25-dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblasts.

    Barsony, J; Marx, S. J.

    1988-01-01

    The intracellular cGMP concentration in normal human cultured fibroblasts was increased 2- to 3-fold by 1 alpha,25-dihydroxycholecalciferol [1 alpha,25-(OH)2D3] in a dose-dependent manner between 0.01 nM and 1 microM. The response was detectable within 1 min, reached a maximum (225% +/- 8% of baseline) at 6-8 min, and was no longer detectable at 30 min. The half-maximal effect of 1 alpha,25-(OH)2D3 was at 1.8 nM, and 24,25-dihydroxycholecalciferol showed an estimated EC50 100-fold higher. 1 b...

  20. Establishment of epidermal cell lines derived from the skin of the Atlantic bottlenose dolphin (Tursiops truncatus).

    Yu, Jin; Kindy, Mark S; Ellis, Blake C; Baatz, John E; Peden-Adams, Margie; Ellingham, Tara J; Wolff, Daynna J; Fair, Patricia A; Gattoni-Celli, Sebastiano

    2005-12-01

    The Atlantic bottlenose dolphin (Tursiops truncatus), a marine mammal found off the Atlantic coast, has become the focus of considerable attention because of an increasing number of mortality events witnessed in this species over the last several years along the southeastern United States. Assessment of the impact of environmental stressors on bottlenose dolphins (BND) has been difficult because of the protected status of these marine mammals. The studies presented herein focused on establishing epidermal cell cultures and cell lines as tools for the in vitro evaluation of environmental stressors on BND skin. Epidermal cell cultures were established from skin samples obtained from Atlantic BND and subjected to karyotype analysis. These cultures were further characterized using immunohistochemical methods demonstrating expression of cytokeratins. By two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we observed that the proteomic profile of BND skin tissue samples shared distinct similarities with that of skin-derived cultures. Epidermal cell cultures were transfected with a plasmid encoding the SV40 small t- and large T-antigens, as well as the neomycin-resistance gene. Five neomycin-resistant clones were isolated and expanded, and all of them proliferated at a faster rate than nontransfected BND epidermal cultures, which exhibited signs of senescence. Cell lysates prepared from two transfected clones were shown to express, by Western blot analysis, both SV40 tumor antigens. These experimental results are consistent with the concept that transfected clones expressing SV40 tumor antigens represent immortalized BND cell lines. Epidermal cell lines derived from Tursiops truncatus will provide a unique tool for studying key features of the interaction occurring between dolphins and the environment in which they live at their most crucial interface: the skin. PMID:16281302

  1. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses.

    Maas, Riks; van Zoelen, Diana; Oei, Hok; Claassen, Ivo

    2006-09-01

    International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products. PMID:16257542

  2. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

  3. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line

    1985-01-01

    The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions...

  4. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro

    In vitro tests are needed to replace animal tests to screen for the skin sensitization potential of chemicals. Skin sensitizers are electrophilic molecules and the Nrf2-electrophile-sensing pathway comprising the repressor protein Keap1, the transcription factor Nrf2 and the antioxidant response element (ARE) is emerging as a toxicity pathway induced by skin sensitizers. Previously, we screened a large set of chemicals in the reporter cell line AREc32, which contains an eight-fold repeat of the rat GSTA2 ARE-sequence upstream of a luciferase reporter gene in the human breast cancer cell line MCF7. This approach was now further developed to bring it closer to the conditions in the human skin and to propose a fully standardized assay. To this end, a luciferase reporter gene under control of a single copy of the ARE-element of the human AKR1C2 gene was stably inserted into HaCaT keratinocytes. A standard operating procedure was developed whereby chemicals are routinely tested at 12 concentrations in triplicate for significant induction of gene activity. We report results from this novel assay on (i) a list of reference chemicals published by ECVAM, (ii) the ICCVAM list of chemicals for validation of alternative endpoints in the LLNA and (iii) on a more general list of 67 chemicals derived from the ICCVAM database. For comparison, peptide reactivity data are presented for the same chemicals. The results indicate a good predictive value of this approach for hazard identification. Its technical simplicity, the high-throughput format and the good predictivity may make this assay a candidate for rapid validation to meet the tight deadline to replace animal tests for skin sensitization by 2013 set by the European authorities.

  5. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Mei Xin [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Key Laboratory of Horticultural Plant Growth Development and Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029 (China); Wu Yuanyuan; Mao Xiao [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Tu Youying, E-mail: youytu@zju.edu.c [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China)

    2011-01-15

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  6. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  7. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production.

    Deters, A M; Schröder, K R; Smiatek, T; Hensel, Andreas

    2005-01-01

    Endogenous carbohydrates, especially oligo- and polysaccharides, participate in the regulation of a broad range of biological activities, e. g., signal transduction, inflammation, fertilisation, cell-cell-adhesion and act as in vivo markers for the determination of cell types. In the present study, water-soluble (WS) and gel-forming polysaccharides (GF) of ispaghula seed husk (Plantago ovata Forsskal, Plantaginaceae) were characterised as neutral and acidic arabinoxylans and tested under in vitro conditions for regulating activities on cell physiology of human keratinocytes and human primary fibroblasts. Only water-soluble polysaccharides exhibited strong and significant effects on cell physiology of keratinocytes and fibroblasts. Proliferation of cells of the spontaneously immortalised keratinocyte cell line HaCaT was significantly up-regulated in a dose-independent manner. Analysis of activated signal pathways by RNA analysis proved an effect of the acidic arabinoxylan on the expression of keratinocyte growth factor (KGF) in HaCaT cells. Differentiation behaviour of normal human keratinocytes (NHK) determined by involucrin was slightly influenced, due to the enhanced cell proliferation, leading to a cell-cell-mediated indirect induction of early differentiation. WS did not influence late differentiation, as determined by keratin K1 and K10 titres. PMID:15678371

  8. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    Svenstrup, B; Brünner, N; Dombernowsky, P;

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase and...... 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments...

  9. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher ce...

  10. Exploring the Anticancer Activity of Grape Seed Extract on Skin Cancer Cell Lines A431

    V. Mohansrinivasan

    2015-08-01

    Full Text Available In this study, grape seeds were extracted using ethyl acetate and petroleum ether by solvent-solvent extraction method. The phytochemical tests were performed to identify different phytochemical compounds present in the grape seed extract (GSE. Antibacterial activity of the GSE was determined using agar diffusion method against Gram- positive and Gram-negative bacteria. Gas chromatography-mass spectrometry (GC-MS and Fourier transform infrared spectroscopy (FTIR analysis was done to identify the presence of bioactive compounds and their functional groups. The GC-MS results revealed a total of four compounds, known to have potent activity against cancer cells, viz, squalene, the most potent compound found in ethyl acetate extract and diethyl phthalate, ethyl-9- cis -11- trans octadecadienoate and (R-(--14,-methyl-8-Hexadecyn-1-ol in petroleum ether extract. Cytotoxic activity of the GSE was observed against skin cancer cell lines A4321 using 3-(4, 5-dimethylthiazol-2-yl-2-5-diphenyl tetrazolium bromide MTT assay. The IC50 value of the GSE against A431 skin cancer cell line was 480 µg/mL. This is first such report against A4321 cell lines. The study gives the overall perception about importance of GSE in medicine and nutraceuticals purposes.

  11. Betaine:homocysteine methyltransferase--a new assay for the liver enzyme and its absence from human skin fibroblasts and peripheral blood lymphocytes.

    Wang, J A; Dudman, N P; Lynch, J; Wilcken, D E

    1991-12-31

    Chronic elevation of plasma homocysteine is associated with increased atherogenesis and thrombosis, and can be lowered by betaine (N,N,N-trimethylglycine) treatment which is thought to stimulate activity of the enzyme betaine:homocysteine methyltransferase. We have developed a new assay for this enzyme, in which the products of the enzyme-catalysed reaction between betaine and homocysteine are oxidised by performic acid before being separated and quantified by amino acid analysis. This assay confirmed that human liver contains abundant betaine:homocysteine methyltransferase (33.4 nmol/h/mg protein at 37 degrees C, pH 7.4). Chicken and lamb livers also contain the enzyme, with respective activities of 50.4 and 6.2 nmol/h/mg protein. However, phytohaemagglutinin-stimulated human peripheral blood lymphocytes and cultured human skin fibroblasts contained no detectable betaine:homocysteine methyltransferase (less than 1.4 nmol/h/mg protein), even after cells were pre-cultured in media designed to stimulate production of the enzyme. The results emphasize the importance of the liver in mediating the lowering of elevated circulating homocysteine by betaine. PMID:1819467

  12. Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

    Eun Kyeong Lee

    2013-05-01

    Full Text Available In the current study, we explored the effect of LDR on theactivation of Nrfs transcription factor involved in cellular redoxevents. Experiments were carried out utilizing 0.05 and 0.5 GyX-ray irradiated normal human skin fibroblast HS27 cells. Theresults showed LDR induced Nrf1 and Nrf2 activation andexpression of antioxidant genes HO-1, Mn-SOD, and NQO1.In particular, 0.05 Gy-irradiation increased only Nrf1 activation,but 0.5 Gy induced both Nrf1 and Nrf2 activation.LDR-mediated Nrf1/2 activation was accompanied by reactivespecies (RS generation and Ca2+ flux. This effect was abolishedin the presence of N-acetyl-cysteine and BAPTA- AM.Furthermore, Nrf1/2 activation by LDR was suppressed byPD98059, an inhibitor of ERK1/2. In conclusion, LDR inducesNrf1 and Nrf2 activation and expression of Nrf-regulatedantioxidant defense genes through RS and Ca2+/ERK1/2pathways, suggesting new insights into the molecularmechanism underlying the beneficial role of LDR in HS27cells. [BMB Reports 2013; 46(5: 258-263

  13. [Slow Formation and Degradation of γH2AX Foci in Human Skin Fibroblasts Exposed to Low-Dose X-Ray Radiation].

    Grekhova, A K; Eremin, P S; Osipov, A N; Eremin, I I; Pustovalova, M V; Ozerov, I V; Smetanina, N M; Lazareva, N L; Vorobyeva, N Yu; Pulin, A A; Maksimova, O A; Gordeev, A V; Bushmanov, A Yu; Kotenko, K V

    2015-01-01

    It was shown that the kinetics of changes of γH2AX foci number (marker of DNA double-strand breaks) in human skin fibroblasts after exposure to low doses of X-ray radiation (20, 40 and 80 mGy) differs from that observed after exposure to medium-low doses (160 and 240 mGy). After exposure to 160 and 240 mGy the highest number of γH2AX foci was detected at 30 min after exposure (first experimental point) and further their decrease was observed. At the same time we observed a fast phase of repair (upto 4 h), in which there was a decrease of the foci amount to ~50-60% and a slow phase of repair (from 4 h to 24 h). After 24 h only ~3-5% of the foci amount observed at 30 min after irradiation was left. After exposure to low doses, the foci number did not decrease during 2 h and even 24 h after exposure their amount was ~25% from that observed at maximum points (1 h after irradiation at 40 and 80 mGy and 2 h after irradiation at 20 mGy). PMID:26601539

  14. Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus.

    Gerami-Naini, Behzad; Smith, Avi; Maione, Anna G; Kashpur, Olga; Carpinito, Gianpaolo; Veves, Aristides; Mooney, David J; Garlick, Jonathan A

    2016-08-01

    Diabetic foot ulcers (DFUs) are nonhealing chronic wounds that are a serious complication of diabetes. Since induced pluripotent stem cells (iPSCs) may offer a potent source of autologous cells to heal these wounds, we studied if repair-deficient fibroblasts, derived from DFU patients and age- and site-matched control fibroblasts, could be reprogrammed to iPSCs. To establish this, we used Sendai virus to successfully reprogram six primary fibroblast cell lines derived from ulcerated skin of two DFU patients (DFU8, DFU25), nonulcerated foot skin from two diabetic patients (DFF24, DFF9), and healthy foot skin from two nondiabetic patients (NFF12, NFF14). We confirmed reprogramming to a pluripotent state through three independent criteria: immunofluorescent staining for SSEA-4 and TRA-1-81, formation of embryoid bodies with differentiation potential to all three embryonic germ layers in vitro, and formation of teratomas in vivo. All iPSC lines showed normal karyotypes and typical, nonmethylated CpG sites for OCT4 and NANOG. iPSCs derived from DFUs were similar to those derived from site-matched nonulcerated skin from both diabetic and nondiabetic patients. These results have established for the first time that multiple, DFU-derived fibroblast cell lines can be reprogrammed with efficiencies similar to control fibroblasts, thus demonstrating their utility for future regenerative therapy of DFUs. PMID:27328415

  15. Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: Model systems for equine sarcoids

    It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independently of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology

  16. On the Thermus thermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line.

    Pantazaki, A A; Choli-Papadopoulou, T

    2012-05-01

    A limited number of bacterial strains usually grown under nutrient limitation secrete rhamnolipids (RLs), which are recorded as virulence factors that are implicated in the pathogenicity of a microorganism. The non-pathogenic T. thermophilus HB8 produces extracellular rhamnolipids (TthRLs) under defined cultivation conditions using sunflower seed oil and sodium gluconate as carbon sources. In particular, the secreted TthRLs have been isolated, purified and identified with ATR-FTIR. Their effects on the cells' viability were examined when they were supplemented in a culture of human skin fibroblasts. Purified TthRLs triggered a sequence of rapid and pronounced morphological alterations characterized by transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation, rounding up, distortion of nuclei and loss of lamellar processes, and finally disruption of membrane. The addition of TthRLs in the cultured fibroblasts caused cytotoxicity, in contrast to that of rhamnose that stimulated viability, as it was assessed by MTT test. These results revealed that among the constituents of RLs that are implicated in the cytotoxicity, it has to be attributed to the lipidic chain variation and not to the carbohydrate part. TthRLs cytotoxicity on fibroblasts is comparable, and provoked similar effects, to that caused by saponin white, a known surfactant. TthRLs secretion might be a crucial point for the transformation of a non-pathogenic bacterium to a pathogenic one under certain environmental conditions favoring their secretion. RLs secretion in the microorganism's world might be a general route for the passage in the pathogenicity to ensure their survival under nutrient limitation conditions. PMID:21611776

  17. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE

    The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells. The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce

  18. The common properties and the heterogeneity of dermal fibroblast subpopulations.

    Makarchuk O.I.

    2007-01-01

    Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular...

  19. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  20. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms

  1. Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Matthaei Klaus I

    2004-07-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

  2. Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line

    Neves, Bruno Miguel; Cruz, Maria Teresa; Francisco, Vera; Gonçalo, Margarida; Figueiredo, Américo; Duarte, Carlos B.; Lopes, Maria Celeste

    2008-01-01

    The development of non-animal methods for skin sensitization testing is an urgent challenge. Some of the most promising in vitro approaches are based on the analysis of phenotypical and functional modifications induced by sensitizers in dendritic cell models. In this work, we evaluated, for the first time, a fetal skin-derived dendritic cell line (FSDC) as a model to discriminate between sensitizers and irritants, through analysis of their effects on CD40 and CXCR4 protein expression. The che...

  3. The determination of the topological structure of skin friction lines on a rectangular wing-body combination

    Yates, Leslie A.; Fearn, Richard L.

    1988-01-01

    A short tutorial in the application of topological ideas to the intepretation of oil flow patterns is presented. Topological concepts such as critical points, phase portraits, topological stability, and indexing are discussed. These concepts are used in an ordered procedure to construct phase portraits of skin friction lines with oil flow patterns for a wing-body combination and two angles of attack. The relationship between the skin friction phase portrait and planar cuts of the velocity field is also discussed.

  4. Effect of 660 nm Light-Emitting Diode on the Wound Healing in Fibroblast-Like Cell Lines

    Myung-Sun Kim

    2015-01-01

    Full Text Available Light in the red to near-infrared (NIR range (630–1000 nm, which is generated using low energy laser or light-emitting diode (LED arrays, was reported to have a range of beneficial biological effects in many injury models. NIR via a LED is a well-accepted therapeutic tool for the treatment of infected, ischemic, and hypoxic wounds as well as other soft tissue injuries in humans and animals. This study examined the effects of exposure to 660 nm red LED light at intensities of 2.5, 5.5, and 8.5 mW/cm2 for 5, 10, and 20 min on wound healing and proliferation in fibroblast-like cells, such as L929 mouse fibroblasts and human gingival fibroblasts (HGF-1. A photo illumination-cell culture system was designed to evaluate the cell proliferation and wound healing of fibroblast-like cells exposed to 600 nm LED light. The cell proliferation was evaluated by MTT assay, and a scratched wound assay was performed to assess the rate of migrating cells and the healing effect. Exposure to the 660 nm red LED resulted in an increase in cell proliferation and migration compared to the control, indicating its potential use as a phototherapeutic agent.

  5. Estrogens and aging skin

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity...

  6. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher frequency of plasmids with mutations, fewer plasmids with two or more mutations in the marker gene, and a new mutagenic hotspot. The major type of base substitution mutation was the G:C to A:T transition with both cell lines. These results, together with similar findings published earlier with cells from a xeroderma pigmentosum patient in complementation group A, suggest that isolated G:C to A:T somatic mutations may be particularly important in generation of human skin cancer by UV radiation

  7. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Chien-Liang Fang

    2016-07-01

    Full Text Available Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM. Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1, Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL, and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR, adiponectin receptor 1 (AdipoR1, matrix metalloproteinase-1 (MMP-1, MMP-3, and cyclooxygenase-2 (COX-2, but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.

  8. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  9. Comparative assessment of HIF-1α and Akt responses in human lung and skin cells exposed to benzo[α]pyrene: Effect of conditioned medium from pre-exposed primary fibroblasts.

    Mavrofrydi, Olga; Mavroeidi, Panagiota; Papazafiri, Panagiota

    2016-09-01

    Exposure to atmospheric pollutants has been accused for many adverse health effects. Benzo[α]pyrene (Β[α]Ρ) in particular, the most extensively studied member of pollutants, is implicated in both cancer initiation and promotion. In the present study, we compared the effects of noncytotoxic doses of Β[α]Ρ, between human skin and lung epithelial cells A431 and A549, respectively, focusing on Akt kinase and HIF-1α, as it is well known that these proteins are upregulated in various human cancers promoting survival, angiogenesis and metastasis of tumor cells. Also, taking into consideration that fibroblasts are involved in cancer progression, we tested the possible modulation of epithelial cell response by paracrine factors secreted by Β[α]Ρ-treated fibroblasts. Low doses of Β[α]Ρ were found to enhance epithelial cell proliferation and upregulate both Akt kinase and HIF-1α, with A549 cells exhibiting a more sustained profile of upregulation. It is to notice that, the response of HIF-1α was remarkably early, acting as a sensitive marker in response to airborne pollutants. Also, HIF-1α was induced by Β[α]Ρ in both lung and skin fibroblasts indicating that this effect may be conserved throughout different cell types and tissues. Interestingly however, the response of both proteins was differentially modified upon treatment with conditioned medium from Β[α]Ρ-exposed fibroblasts. This is particularly evident in A459 cells and confirms the critical role of intercellular and paracrine factors in the modulation of the final response to an extracellular signal. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1103-1112, 2016. PMID:25728052

  10. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  11. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts.

    Zoppi, Nicoletta; Chiarelli, Nicola; Cinquina, Valeria; Ritelli, Marco; Colombi, Marina

    2015-12-01

    Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder. PMID:26376865

  12. A new approach to cancer therapy due to appropriate uptake and retention kinetics of meta-tetrahydroxy-phenylchlorin in a human fibroblast cell line.

    Wierrani, F; Fiedler, D; Schnitzhofer, G; Stewart, J C; Gharehbaghi, K; Henry, M; Grin, W; Grünberger, W; Krammer, B

    1996-04-01

    Studies have shown that meta-tetrahydroxy-phenylchlorin is an efficient tumor targeting agent for laser photodynamic therapy. The effectiveness of this approach for cancer treatment depends on drug concentration, incubation time and extracellular protein. We studied uptake and retention kinetics of mTHPC in a human fibroblast cell line. Our results clearly demonstrate a difference in the amount of extracellular mTHPC at an incubation temperature of 37 degrees C compared to 20 degrees C and 4 degrees C. pH-values were always constant and not responsible for the increase. Furthermore, both absorption and fluorescence of mTHPC increase when incubated at normal human body temperature. Incubation of human fibroblast cells with mTHPC (10 micg/mL) showed that intracellular mTHPC increases in a linear manner reaching saturation after 24 hours and declining until 48 hours with concommitant increase of supernatant mTHPC. Therefore, we believe that tumor cells can be treated optimally with PDT following a delay > 24 hours after drug administration with a minimum of damage to surrounding normal tissues. PMID:8937740

  13. Development of an artificial lock for the skin-pass section in a hot dip galvanising line

    In this paper, we present the application of data mining techniques to develop an artificial lock for the skin-pass in an attempt to solve a problem that can arise during the galvanising manufacturing process:the wrong labelling of the steel grade of a coil. In order to detect these errors and thus to avoid that coils with different properties than expected end up with a client, we propose neural network-based models for on-line predicting the strip elongation in the skin-pass section according to the manufacturing conditions and its chemical composition. thus, a significant difference between estimated and measured elongation would mean that the coil must be removed from the line for further analyses. (Author) 14 refs

  14. Differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields

    We studied the effect of symmetric, biphasic sinusoidal electromagnetic fields (EMF) (20 Hz, 6 mT) on the differentiation of normal human skin fibroblasts (HH-8), normal human lung fibroblasts (WI38), and SV40-transformed human lung fibroblasts (WI38SV40) in in vitro cultures. Cells were exposed up to 21 days for 2 x 6 h per day to EMF. Normal mitotic human skin and lung fibroblasts could be induced to differentiate into postmitotic cells upon exposure to EMF. Concomitantly, the synthesis of total collagen as well as total cellular protein increased significantly by a factor of 5-13 in EMF-induced postmitotic cells. As analyzed by two-dimensional gel electrophoresis of [35S]methionine-labeled polypeptides, EMF-induced postmitotic cells express the same differentiation-dependent and cell type-specific marker proteins as their spontaneously arising counterparts. In SV40-transformed human lung fibroblasts (cell line WI38SV40) the exposure to EMF induced the differentiation of mitotic WI38SV40 cells into postmitotic and degenerating cells in subpopulations of WI38SV40 cell cultures. Other subpopulations of WI38SV40 cells did not show any effect of EMF on cell proliferation and differentiation. These results indicate that long-term EMF exposure of fibroblasts in vitro induces the differentiation of mitotic to postmitotic cells that are characterized by differentiation-specific proteins and differentiation-dependent enhanced metabolic activities

  15. Reconstruction of Tissue Engineering Skin by Epidermal Cells and Fibroblasts Combined with Modified Polymer of Lactic Acid%皮肤细胞复合改性聚乳酸构建组织工程皮肤

    冯颖; 王宗良; 师铁英; 石毅; 周余来; 颜炜群

    2007-01-01

    目的:探讨以改性聚乳酸为细胞外基质网架构建组织工程皮肤的可行性.方法:采用盐溶法制备机械性能得到部分改进的聚乳酸多孔泡沫网架,向改进的聚乳酸网架接种真皮成纤维细胞和表皮角质形成细胞,以普通聚乳酸支架作为对照,构建组织工程皮肤.体外培养一周,对网架进行形态学观察.主要观察指标:①一般形态观察②组织学观察.结果:复层组织工程皮肤在结构上与正常皮肤相似,具有真皮、表皮双层结构.改性聚乳酸网架上有双层细胞生长,生长的细胞与网架接触,并且在其表面形成较为明显而连续的细胞层.随着培养时间的延长,发生了一系列变化:表皮部分细胞层数逐渐增多,真皮部分细胞也逐渐增多,并向表皮层深入,位于表皮与网架之间.结论:双醛淀粉作为良好的增柔剂在改善聚乳酸网架的机械性能的同时,也具有良好的细胞相容性,不影响细胞的生长增殖和代谢,可以进一步用作组织工程皮肤的支架材料.%Objective: To investigate the applied feasibility of scaffold with modified PLA (Polymer of lactic acid) in tissue engineering. Methods:First, we adopted salting-in method to prepare porous foam scaffold. Then, we reconstructed tissue engineering skin by epidermal cells and fibroblasts combined with modified PLA. On the 14th day of cell culturing in vitro, we was a control. Results:The arfificial skin is composed of epidermis and dermis and similar to natural skin in appearance. The skin consists of fibroblasts and keratinocytes, which are in various proliferation and differentiation stages. Fibroblasts and keratinocytes distribute on the surface of polymer of lactic acid (PLA) and the number of fibroblast and keratinocyte increase. Conclusion:Dialdehyde starches (DAS) not only improve the function of PLA but also have good effects on cells. Moreover, it does not affect the growth and the metabolism of the cells. So it is

  16. Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene.

    Spalding, J W; Momma, J; Elwell, M R; Tennant, R W

    1993-07-01

    A transgenic mouse line (TG.AC) created in the FVB/N strain, carries a v-Ha-ras gene fused to a zeta-globin promoter gene. These trangenic mice have the properties of genetically initiated skin and have been shown to be sensitive to 12-O-tetradecanoylphorbol-13-acetate (TPA), a well-described promoter of skin papillomas in the two-stage mouse skin tumorigenesis model. It was of interest to determine whether the TG.AC mouse strain was also responsive to other known promoters. Groups of heterozygous or homozygous TG.AC mice were treated topically, 2x/week, for up to 20 weeks with benzoyl peroxide (BPO), 2-butanol peroxide (2-BUP), phenol (PH), acetic acid (AA), TPA and acetone (ACN), the vehicle control. Skin papillomas were induced in all groups treated with TPA, BPO and 2-BUP. Papillomas were observed in some treatment groups as early as 3 weeks. The relative activity of the promoters was TPA > 2-BUP > BPO > PH = AA = ACN. No papillomas were observed in any of the uninitiated FVB/N mice treated in a similar manner and which served as treatment control groups. Studies to determine the sensitivity of TG.AC mice to TPA, indicated that a total dose of 25-30 micrograms of TPA administered in 3 or 10 applications, was sufficient to induce an average incidence of 11-15 papillomas per mouse. The papilloma incidence continued to increase and was maintained up to 15 weeks after TPA treatment was terminated. The short latency period and high incidence of papilloma induction indicate that TG.AC mice have a high sensitivity to known skin promoters. The TG.AC line should prove to be a sensitive model for identifying putative tumor promoters or complete carcinogens. PMID:8330346

  17. Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses

    Lai, Zon Weng; Bolm, Louisa; Fuellgraf, Hannah; Biniossek, Martin L.; Makowiec, Frank; Hopt, Ulrich Theodor; Werner, Martin; Keck, Tobias; Bausch, Dirk; Sorio, Claudio; Scarpa, Aldo; Schilling, Oliver; Bronsert, Peter; Wellner, Ulrich Friedrich

    2016-01-01

    Background Ampullary cancer is a relatively rare form of cancer and usually treated by pancreatoduodenectomy, followed by adjuvant therapy. The intestinal subtype is associated with markedly improved prognosis after resection. At present, only few cell lines are available for in vitro studies of ampullary cancer and they have not been collectively characterized. Methods We characterize five ampullary cancer cell lines by subtype maker expression, epithelial-mesenchymal transition (EMT) featur...

  18. Increased transcription of the c-myc oncogene in two methylcholanthrene-induced quail fibroblastic cell lines

    Saule, S.; Martin, P.; Gegonne, A.; Begue, A.; Lagrou, C.; Stehelin, D.

    1984-12-01

    The expression of three c-onc genes (c-erb, c-myc, c-myb) was investigated in five cell lines established from fibrosarcomas induced with 20-methylcholanthrene (MCA) of Japanese quails. These cell lines showed low levels of the three c-onc genes, with the exception of two cell lines that accumulated moderate (MCAQ 1-4) and large amounts (MCAQ 3-5) of c-myc RNA. Molecular cloning and restriction endonuclease analyses indicated that expression of c-myc in these two cell lines were not associated with detectable rearrangements in the c-myc locus, that the size of the c-myc transcript (2.7 kb) in MCAQ 3-5 was similar to that of the normal c-myc messenger RNAs (mRNA) and that the transcriptional activatin observed in MCAQ 3-5 was not mediated by the LTR (long terminal repeat) of a proximate ALV (avian leukosis virus) provirus. Finally, when analyzed with the restriction enzymes Msp I and Hpa II, the c-myc locus of MCAQ 3-5 and MCAQ 1-4 was found hypomethylated as compared with that of the other cell lines tested that show low levels of c-myc transcripts. Results suggest that one of the ways methylcholanthrene could mediate transformation is by inducing an abnormal regulation of the c-myc gene.

  19. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum.

    Okamura, Kohji; Toyoda, Masashi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Umezawa, Akihiro

    2015-12-01

    Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively. PMID:26697316

  20. Modulation of radio-induced oxidative damage by the combination of pentoxifylline and γ-tocopherol in skin fibroblasts and microvascular endothelial cells

    Clinical or accidental localized ionizing radiation exposure can induce severe skin damage constituting the cutaneous radiological syndrome which is divided in acute and late phases. The combination of pentoxifylline (PTX), antioxidant phytochemical, and γ-tocopherol, antioxidant nutrient shows effectiveness in reducing the late radio-induced skin damage with a long period. This work aims to investigate the molecular and cellular mechanisms involved in the effects of this combination

  1. Mouse fibroblast L929 cells are less permissive to infection by Nelson Bay orthoreovirus compared to other mammalian cell lines.

    Mok, Lawrence; Wynne, James W; Grimley, Samantha; Shiell, Brian; Green, Diane; Monaghan, Paul; Pallister, Jackie; Bacic, Antony; Michalski, Wojtek P

    2015-07-01

    In recent years, bats have been identified as a natural reservoir for a diverse range of viruses. Nelson Bay orthoreovirus (NBV) was first isolated from the heart blood of a fruit bat (Pteropus poliocephalus) in 1968. While the pathogenesis of NBV remains unknown, other related members of this group have caused acute respiratory disease in humans. Thus the potential for NBV to impact human health appears plausible. Here, to increase our knowledge of NBV, we examined the replication and infectivity of NBV using different mammalian cell lines derived from bat, human, mouse and monkey. All cell lines supported the replication of NBV; however, L929 cells showed a greater than 2 log reduction in virus titre compared with the other cell lines. Furthermore, NBV did not induce major cytopathic effects in the L929 cells, as was observed in other cell lines. Interestingly, the related Pteropine orthoreoviruses, Pulau virus (PulV) and Melaka virus (MelV) were able to replicate to high titres in L929 cells but infection resulted in reduced cytopathic effect. Our study demonstrates a unique virus-host interaction between NBV and L929 cells, where cells effectively control viral infection/replication and limit the formation of syncytia. By elucidating the molecular mechanisms that control this unique relationship, important insights will be made into the biology of this fusogenic virus. PMID:25748429

  2. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    SezenYılmaz

    2016-02-01

    Full Text Available Objective: Many studies have been published on the antioxidative effects of boric acid (BA and sodium borates in in vitro studies. However, the boron (B concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentration range relevant to humans. The aim of this study was to investigate the protective effects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods: In this experimental study, comet assay and neutral red uptake (NRU assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2. Results: The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 μM. These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion: Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54

  3. [The influence of low-frequency pulsed electric and magnetic signals or their combination on the normal and modified fibroblasts (an experimental study)].

    Ulitko, M V; Medvedeva, S Yu; Malakhov, V V

    2016-01-01

    The results of clinical studies give evidence of the beneficial preventive and therapeutic effects of the «Tiline-EM» physiotherapeutic device designed for the combined specific treatment of the skin regions onto which both discomfort and pain sensations are directly projected, reflectively active sites and zones, as well as trigger zones with the use of low-frequency pulsed electric current and magnetic field. The efficient application of the device requires the understanding of the general mechanisms underlying such action on the living systems including those operating at the cellular and subcellular levels. The objective of the present study was the investigation of the specific and complex effects produced by the low-frequency pulses of electric current and magnetic field generated in the physiotherapeutic device «Tiline-EM» on the viability, proliferative activity, and morphofunctional characteristics of normal skin fibroblasts and the transformed fibroblast line K-22. It has been demonstrated that the biological effects of the electric and magnetic signals vary depending on the type of the cell culture and the mode of impact. The transformed fibroblasts proved to be more sensitive to the specific and complex effects of electric and magnetic pulses than the normal skin fibroblasts. The combined action of the electric and magnetic signals was shown to have the greatest influence on both varieties of fibroblasts. It manifests itself in the form of enhanced viability, elevated proliferative and synthetic activity in the cultures of transformed fibroblasts and as the acceleration of cell differentiation in the cultures of normal fibroblasts. The effect of stimulation of dermal fibroblast differentiation in response to the combined treatment by the electric and magnetic signals is of interest from the standpoint of the physiotherapeutic use of the «Tiline-EM» device for the purpose of obtaining fibroblasts cultures to be employed in regenerative therapy and

  4. Cytotoxic and mutagenic effects of carcinogenic aromatic amides and polycyclic hydrocarbons and ultraviolet irradiation in normally repairing and repair-deficient (xeroderma pigmentosum) diploid human skin fibroblasts

    The cloning ability of fibroblasts taken from a xeroderma pigmentosum patient proved 2.5 to 3.5 times more sensitive to the cytotoxic effect of active derivatives of carcinogens or to uv irradiation than that of normal cells. They also exhibited a corresponding 2.5- to 3.5-fold greater increase in the frequency of induced mutations to 8-azaguanine resistance per survivor, which might have been expected since these XP cells exhibit less than 20 percent of the DNA-repairing capacity of the normal cells following exposure to such DNA-damaging agents

  5. Creating a line-shaped weakening in a polymer skin/foam bilaminate sheet while minimizing read-through

    Cox, Kevin R.

    When a line shaped weakening in a polymer skin/foam bilaminate is created by mechanically scoring the backside of the skin, where it is bonded to the foam, the weakness of the bilaminate is determined by the depth of the score groove. The deeper the groove, the weaker the bilaminate and the easier it is to achieve a location-controlled fragmentation-free failure. But also, the deeper the groove, the greater the tendency for read-through. Read-through is seeing on the front surface of the skin the location of the groove that was created on the back surface. This is why it is often important to minimize the groove depth required to achieve a location-controlled fragmentation-free failure and to minimize read-through for a given groove depth. The immediate application of this technology is found in the weakening of a car instrument panel to allow the passenger-side airbag to deploy through it. This work has focused on understanding how the skin fails, how the foam fails, and what leads to a location-controlled fragmentation-free failure of the bilaminate. Quasi-shear and tensile tests were conducted to achieve this. The knowledge acquired was used to develop tests to predict how a bilaminate will fail and to make general bilaminate design recommendations to minimize the groove depth required to achieve a location-controlled fragmentation-free failure. This work has also focused on understanding what topographical feature on the skin's surface constitutes read-through, what strains are induced by mechanical scoring, and how these strains lead to read-through. Scored and mounted skins were viewed with an optical interferometer and measured with a profilometer to better understand what topographical features constitute read-through. Skins of different color and gloss level were viewed with incident light directed in various directions to better understand the affect of incident light direction, color, and gloss on read-through. Several model systems were used to

  6. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  7. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  8. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  9. Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    Caffeine was found to potentiate x-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 h postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +- 0.13 which did not vary significantly with treatment time or x-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +- 0.12 at 30 h, rose to 1.66 +- 0.17 at 41 h, and decreased to 1.31 +- 0.13 at 66 h. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment

  10. The potentiation by caffeine of X-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    Caffeine was found to potentiate X-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 hr postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +/- 0.13 which did not vary significantly with treatment time or X-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +/- 0.12 at 30 hr, rose to 1.66 +/- 0.17 at 41 hr, and decreased to 1.31 +/- 0.13 at 66 hr. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment

  11. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  12. Microprobe analysis of human fibroblasts

    The Melbourne Proton Microprobe has been used to study the copper content in human skin fibroblast cells derived from patients with the genetic disease Menkes Syndrome. Both normal and diseased cells have been studied to investigate any elemental differences occurring between the two cell types. This paper details the preparatory techniques necessary for individual cell analysis and presents the elemental information with a new three dimensional contour mapping technique. These maps are used to highlight elemental differences between normal and mutant fibroblasts. The work also confirms the expected copper excess found in the Menkes cell and indicates that the microprobe can be used for rapid identification of a Menkes carrier

  13. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum.

    Seetharam, S; Protić-Sabljić, M; Seidman, M M; Kraemer, K H

    1987-01-01

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher ...

  14. Antiageing Mechanisms of a Standardized Supercritical CO2 Preparation of Black Jack (Bidens pilosa L.) in Human Fibroblasts and Skin Fragments

    Gustavo Dieamant; Maria Del Carmen V. Pereda; Cecília Nogueira; Samara Eberlin; Gustavo Facchini; Juliana Tibério Checon; Camila Kappke Cesar; Lilian Mussi; Márcio Antonio Polezel; Divino Martins-Oliveira; Luiz Claudio Di Stasi

    2015-01-01

    The use of topical retinoids to treat skin disorders and ageing can induce local reactions, while oral retinoids are potent teratogens and produce several unwanted effects. This way, efforts to explore complementary care resources should be supported. Based on this, we evaluate the antiageing effects of a supercritical CO2 extract from Bidens pilosa L. (BPE-CO2A) containing a standardized multicomponent mixture of phytol, linolenic, palmitic, linoleic, and oleic acids. BPE-CO2A was assessed f...

  15. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Tanaka.M; Misawa E; Yamauchi K.; Abe F; Ishizaki C

    2015-01-01

    Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on ...

  16. Can Platelet-rich Plasma Be Used for Skin Rejuvenation? Evaluation of Effects of Platelet-rich Plasma on Human Dermal Fibroblast

    Kim, Dae Hun; Je, Young Jin; Kim, Chang Deok; Lee, Young Ho; Seo, Young Joon; Lee, Jeung Hoon; Lee, Young

    2011-01-01

    Background Autologous platelet-rich plasma has attracted attention in various medical fields recently, including orthopedic, plastic, and dental surgeries and dermatology for its wound healing ability. Further, it has been used clinically in mesotherapy for skin rejuvenation. Objective In this study, the effects of activated platelet-rich plasma (aPRP) and activated platelet-poor plasma (aPPP) have been investigated on the remodelling of the extracellular matrix, a process that requires activ...

  17. Deterministic late effects of skin irradiation: in vitro studies of experimental radiation fibrosis

    After radiotherapy or radiation accidents, large doses of gamma irradiation can induce necrosis and fibrosis, and secondary cancers are occasionally observed. The identity of the target cells in such irradiated tissues is still controversial. As the role of the fibroblast in wound repair after acute irradiation is not well documented, this role was investigated in an experimental model. Pigs were gamma irradiated with an 192Ir source on the thigh, which resulted in necrosis and then fibrosis of the skin and muscular tissues. In primary cultures, fibroblasts isolated from the fibrotic tissue exhibited an activated phenotype for up to two years after irradiation. They had a myofibroblastic morphology and their proliferation was activated. The fibroblasts synthesised an extracellular matrix similar to that of immature scars or developing tissues. Most fibroblasts carried numerous chromosome anomalies. In long-term cultures, fibrotic fibroblasts gave rise to established cell lines, in which the morphology of the cells resembled that of transformed cells. Such highly modified cells observed in vitro might be related to the appearance of secondary sarcoma in vivo. We conclude from these results that the fibroblast is clearly an important target cell in irradiated skin. The difficult healing of late radiation damage could be related to chronic inflammation and to the long-term activation of abnormal fibroblasts in irradiated tissues. (author)

  18. Methods to study differences in cell mobility during skin wound healing in vitro.

    Monsuur, Hanneke N; Boink, Mireille A; Weijers, Ester M; Roffel, Sanne; Breetveld, Melanie; Gefen, Amit; van den Broek, Lenie J; Gibbs, Susan

    2016-05-24

    Wound healing events which occur in humans are difficult to study in animals due to differences in skin physiology. Furthermore there are increasing restrictions in Europe for using animals for testing the therapeutic properties of new compounds. Therefore, in line with the 3Rs (reduction, refinement and replacement of test animals), a number of human in vitro models of different levels of complexity have been developed to investigate cell mobility during wound healing. Keratinocyte, melanocyte, fibroblast and endothelial cell mobility are described, since these are the residential cells which are responsible for restoring the main structural features of the skin. A monolayer scratch assay is used to study random fibroblast and endothelial cell migration in response to EGF and bFGF respectively and a chemotactic assay is used to study directional fibroblast migration towards CCL5. In order to study endothelial sprouting in response to bFGF or VEGF, which involves continuous degradation and resynthesis of a 3D matrix, a fibrin gel is used. Human physiologically relevant tissue-engineered skin models are used to investigate expansion of the stratified, differentiated epidermis (keratinocytes and melanocytes) over a fibroblast populated dermis and also to study migration and distribution of fibroblasts into the dermis. Together these skin models provide a platform for testing the mode of action of novel compounds for enhanced and scar free wound healing. PMID:26903411

  19. Preliminary clinical observations on autologous cultured skin fibroblasts transplantation to treat the facial soft tissue deficiencies%自体成纤维细胞移植充填面部凹陷的初步临床观察

    曾玮; 魏子人; 刘岱; 柴密; 赵玉明

    2013-01-01

    Objective To observe the effect and safety of autologous cultured skin fibroblasts transplantation for treating depressed facial skin defects.Methods A total of 19 patients were treated from Jan,2010 to Oct,2010.Autologous skin fibroblasts were separated from postauricular skin biopsy or resected skin tissue in other surgeries such as blepharoplasty.They were cultured and expanded with exclusive method.Cells (2 × 107/ml) within three passages were injected intradermally at the site of skin depression three times at one-month interval.Adverse events were observed and recorded.Clinical effects were evaluated and graded by two unrelated physicians before and 6 months after the first injection.Results Cells from 16 patients were successfully cultured at the first time.The other 3 patients underwent a second harvest.A total amount of 6 × 108 cells could be reached within three passages in 45 days.16 out of 19 patients accomplished the whole course of this study.Minor adverse events were observed in two patients including small ulcer caused by over injection in one patient and slightly redness and swelling in the other.The redness disappeared after a week without any treatment.No serious complications were observed.Significant difference was noticed between the scores obtained before and after the treatment.Conclusions From this study,neither serious complications nor excessive cell proliferation or scar formation was found after cell injection.The effect of using autologous fibroblast transplantation was obvious and long-lasting,which provides a new choice for the treatment of depressed facial skin defects.%目的 观察自体成纤维细胞移植治疗面部痤疮、瘢痕等软组织凹陷的临床安全性和有效性.方法 2010年1月至11月,通过自体成纤维细胞移植,对19例患者进行面部软组织凹陷治疗.皮肤标本选用耳后皮肤或其他手术中切除的皮肤组织,利用特殊的培养方法体外培养扩

  20. Comparative study on cytotoxicity effect of biological and commercial synthesized nanosilver on human gastric carcinoma and normal lung fibroblast cell lines

    Mohammad Ali Rashmezad

    2015-03-01

    Full Text Available Background: Biosynthesis of nanoparticles has attracted the attention of the scientific community in nanotechnology and biotechnology due to their extensive application in the area of material sciences and medicine. Nowadays, despite a various application of nanomaterial’s, there is a little information about their impact on human health. In this study, we investigated the comparative study on cytotoxicity effect of biological and commercial synthesized nanosilver on human gastric carcinoma (AGS and normal lung fibroblast (MRC-5 cell lines. Methods: The current experimental study was carried out in Islamic Azad University, East Tehran Branch, from April to November 2014. The biological synthesis of nanosilver was obtained from Eucalyptus plant extract as a reducing agent. Further to more analysis, morphological study on size and shape of developed biological nanosilver was characterized by performing scanning electron microscopy and dynamic light scattering. AGS and MCR-5 cell lines were treated with various concentration of nanosilver for 24, 48 and 72 hours. Finally, the cell viability was evaluated by using MTT assay. Results: The results show that the nanosilver exerts a dose-dependent inhibitory effect on viability of cells. At 100µg/mL of commercial and biological synthesized nanosilver, the viability of AGS was reduced to 7.47±0.002% (P=0.002 and 3.65±0.01% (P=0.003 after 72 hours, respectively. In addition, the viability of MRC-5 at the same condition was reduced to 10.27±0.19% (P=0.001 and 9.16±1.53% (P=0.002, respectively. Conclusion: Based on a thorough literature surveys, the present study is the first research about biosynthesis of nanosilver using Eucalyptus plant extract. This eco-friendly and cost effective method can be used for large scale production of silver nanoparticle. In addition, based on the current obtained data, commercial and biological synthesized nanosilver can more inhibitory effect on cancer cells compared

  1. Fibroblast cultures in duchenne muscular dystrophy

    Primary skin fibroblast cultures were grown from forearm pinch skin biopsies obtained from 24 patients with Duchenne muscular dystrophy (DMD) and ten normal controls matched for sex and age. The first subcultures were grown for 7 days and incubated with L-(3H)-proline for 24 hours. Intracellular collagen incoption was significantly decreased (2.2 X) and extracellular collagen incorporation significantly increased (1.8 X) in fibroblast cultures from patients with DMD by both collagenase assay and polyacrylamide gel electrophoresis. The synthesis of noncollagen proteins showed low values from the DMD fibroblast cultures. The alterations in synthesis and secretion of collagen and noncollagen proteins were characteristic only for the log phase of DMD fibroblasts. (author)

  2. 应用双光子显微镜观察自体成纤维细胞填充效果%Filling effect of autologous skin fibroblasts: a study of two-photon fluorescence microscopy

    熊舒原; 曹宁; 察鹏飞; 卓双木; 陈建新

    2008-01-01

    Objective To investigate the survival profile of the intradermally injected mouse autologous skin fibroblasts and the changes of the collagen fibers by using green fluorescent protein labeling and two-photon fluorescence microscopy. Methods The cultured cells were transfected by EGFP lentivirus, and then the cells were injected into the corresponding mouse skin. Biopsy was taken from the animals after 1 and 2 months. The specimens made serial frozen sections, the survival profile of the injected cells and the changes of the collagen fibers were observed by two-photon fluorescence microscopy. The collagenic area and dermal thickness were measured with image analysis software, and statistical analysis was also carried out. Results Two-photon fluorescence microscopy showed clear images of the injected cells and collagen fibers. Both the area of collagen fibers and the dermal thickness were significantly increased in injected cells after 2 months (P0.05). Conclusions Autologous cultured fibroblasts could survive in a long time after transplantating into the skin, and collagen could be newly produced, the depth of dermis increases, which provides a possibility to treat mini-defects of the tissue.%目的 通过双光子显微镜观察体外培养的小鼠皮肤成纤维细胞皮内注射移植后的长期存活情况,了解胶原纤维等基质成分的变化.方法 将增强型绿色荧光蛋白(EGFP)慢病毒液转染成功的成纤维细胞注射到小鼠皮内,分别于注射1、2个月后取材,行连续冰冻切片,双光子显微镜观察,对胶原的分布面积和真皮厚度做图像分析,并对所得数据进行统计学处理.结果 双光子显微镜对注射移植细胞及胶原清晰成像,注射1个月时,胶原分布面积及真皮厚度与对照组比较差异无统计学意义(P>0.05);2个月后胶原分布面积及真皮厚度与对照组比较差异有统计学意义(P<0.01).结论 成纤维细胞注射移植到小鼠皮内可以长期存活,能够

  3. Application of Allogeneic Fibroblast Cells in Cellular Therapy of Recessive Dystrophic Epidermolysis Bullosa

    Zare

    2015-09-01

    Full Text Available Context Connective tissue cells include fibroblasts, chondrocytes, adipocyte, and osteocytes. These cells are specialized for the secretion of collagenous extracellular matrix and are responsible for the architectural framework of the human body. Evidence Acquisition Connective tissue cells play a central role in supporting as well as repairing tissues and organs. Fibroblast cell therapy could be used for the treatment of burn wounds, scars, diabetic foot ulcers, acne scars and skin aging. This review focused on biology of fibroblasts and their role in cell therapy of recessive dystrophic epidermolysis bullosa (RDEB. Results Fibroblasts are known to play a pivotal role in skin structure and integrity, and dermal fibroblasts are believed to promote skin regeneration and rejuvenation via collagen production. Conclusions Fibroblasts can be used in transplantations to ameliorate an immune system response, in order to reduce antigen production. Human fibroblasts suppress ongoing mixed lymphocyte reactions (MLRs between lymphocyte cells from two individuals, and supernatant materials from fibroblast cultures suppress MLRs.

  4. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    Hesham Fahmy; Ahmed, Safwat A.; Szymanski, Pawel T.; Bhimanna Kuppast; Sherief Khalifa

    2011-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enh...

  5. First-line health care provider performance in the management of common skin diseases using an algorithmic approach as a diagnostic tool in Kano State, Nigeria

    Taal AT

    2015-12-01

    Full Text Available Anna Theodora Taal,1 Erik B Post,2 Tijjani Hussaini,3 Augustin Gayus Barminus,4 Tahir Dahiru5 1Netherlands Leprosy Relief, Amsterdam, Netherlands; 2The Royal Tropical Institute, Amsterdam, Netherlands; 3TB and Leprosy Control Programme, Kano State, Nigeria; 4State Dermatology Hospital Garkida, Adamawa State, Nigeria; 5Netherlands Leprosy Relief, Lagos, NigeriaAbstract: Skin diseases are common worldwide, though prevalence rates in rural areas are difficult to estimate, and are primarily based on hospital studies rather than community-based studies. Primary health care providers in rural areas often lack sufficient knowledge about skin diseases, which contributes to poor skin management and subsequently causes considerable morbidity. This study looked at the performance of first-line health care providers in the management of common skin disease, using an algorithmic approach with a flowchart with diagnostic steps. As a reference standard, two dermatologists independently validated the diagnoses and treatment choices made by the providers. The performance of the algorithm was calculated in terms of the sensitivity, specificity, positive predictive value (PPV, and negative predictive value for each skin disease of the algorithm. A total of 19 patent medicine vendors and 12 traditional healers from Kano State in Nigeria diagnosed 4,147 patients with suspected skin symptoms. The most common skin disease was tinea capitis (59.2%, and it was found predominantly among boys below 15 years of age. Together, patent medicine vendors and traditional healers had 82% of the cases correctly diagnosed, and in 82% they prescribed the correct treatment. The sensitivities varied for each skin disease from 94.8% for tinea capitis to 7.1% for contact dermatitis. The specificities varied between 87.0% and 98.6%. Except for tinea capitis, lower PPVs were found for the various skin diseases when compared to earlier studies. In spite of the observed low sensitivities

  6. Skin pigmentary anomalies and mosaicism for an acentric marker chromosome originating from 3q

    Portnoi, M.; Boutchnei, S.; Bouscarat, F.; Morlier, G.; Nizard, S.; Dersarkissian, H.; Crickx, B.; Nouchy, M.; Taillemite, J.; Belaich, S.

    1999-01-01

    We report on a 22 year old man with hyperpigmentation distributed along the lines of Blaschko in whom cytogenetic analysis showed mosaicism for an unusual supernumerary marker chromosome. The patient was of normal intelligence and was not dysmorphic. The marker was present in 30% of his lymphocytes and in 6% of his skin fibroblasts from a dark area, while fibroblasts from a light area showed a normal karyotype, 46,XY.We have identified the origin of the marker using fluorescence in situ hybri...

  7. Inhibition of basal and TGF beta-induced fibroblast collagen synthesis by antineoplastic agents. Implications for wound healing.

    Hendricks, T.; Martens, M F; Huyben, C M; Wobbes, T.

    1993-01-01

    Antineoplastic drugs, given in the perioperative period, are thought to be a hazard to wound repair. Since fibroblast collagen synthesis is crucial to healing, we examined the effects of bleomycin, cisplatin and 5-fluorouracil on collagen synthesis in confluent cultures of fibroblasts from human colon and skin. The drugs were added in final concentrations between 0.1 and 50 microM. Bleomycin did not affect collagen synthesis in colon fibroblasts but inhibited synthesis in skin fibroblasts. Co...

  8. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line

    Matos, MT; Duarte, CB; Gonçalo, Margarida; Lopes, MC

    2005-01-01

    The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse sk...

  9. Abnormal proliferation and aging of cultured fibroblasts from pigs with subcutaneous fibrosis induced by gamma irradiation

    In vivo, fibrotic disorders, which may be due either to injury or disease, are characterized by overproliferation of fibroblasts and overproduction of connective tissue. In vitro, however, most of the fibrotic cell lines studied exhibited no differences in growth potential compared with control cell lines derived from normal skin. In the present study, we investigated the in vitro behavior of fibroblasts derived from pigs with subcutaneous fibrosis induced by gamma irradiation. The cells were isolated from the scar tissue six to 20 months after irradiation. In primary cultures, the cells derived from the fibrotic lesions exhibited greater attachment efficiency and faster proliferation than those of the cells derived from the normal skin of the same animal. In long-term cultures, the differences between normal and fibrotic cells were still greater: the normal skin cells underwent 17 population doublings and then died, whereas the fibrotic cells exhibited a prolonged life span, and were still actively proliferating after 80 population doublings. Cell morphology and the number of chromosomes were modified throughout subcultures. These results imply that in the scar tissue active fibrotic cell proliferation continued for years after irradiation and that this activation was expressed in vitro. Therefore, in this pig fibrosis model, the data acquired in the present in vitro studies closely resemble that obtained from earlier in vivo observations

  10. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn; You, Seungkwon

    2011-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and ca...

  11. Polycomponent mesotherapy formulations for the treatment of skin aging and improvement of skin quality

    Prikhnenko S

    2015-01-01

    Sergey Prikhnenko Private Practice, Novosibirsk, Russia Abstract: Skin aging can largely be attributed to dermal fibroblast dysfunction and a decrease in their biosynthetic activity. Regardless of the underlying causes, aging fibroblasts begin to produce elements of the extracellular matrix in amounts that are insufficient to maintain the youthful appearance of skin. The goal of mesopreparations is primarily to slow down and correct changes in skin due to aging. The rationale for developing ...

  12. PAMPs and DAMPs stimulate the expression of pro-inflammatory cytokines in vitro in a fibroblast cell-line from rainbow trout (Oncorhynchus mykiss)

    Ingerslev, Hans-Christian; Ossum, C.G.; Nielsen, Michael Engelbrecht

    activates downstream signalling pathways, which subsequently leads to expression of pro-inflammatory cytokines and chemokines. DAMPs released from necrotic cells may also bind to and activate similar downstream signalling events. In telosts was found that mechanical damage of the muscle tissue using sterile...... significant up-regulation of the expression of IL-1β, IL-8 and IL-10 and stimulation with supernatant from sonicated cells led to a significant up-regulation of IL-1β and IL-10, while debris only stimulated the expression of IL-1β. TLR-2 and -4 are not described from salmonid fishes, however TLR-3, -5 and -9...... are described in this evolutionary lineage of the bony fishes. The expression of TLR-3 and -9 receptors were significantly up-regulated following physical damage of muscle tissue as well as in stimulated fibroblasts, where LPS induced both TLR-3 and -9, supernatant from sonicated cells only TLR-9...

  13. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients.

    Parlanti, Eleonora; Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara; Zijno, Andrea; D'Errico, Mariarosaria; Simonelli, Valeria; Sanchez, Massimo; Fattibene, Paola; Falchi, Mario; Dogliotti, Eugenia

    2015-12-01

    Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine. PMID:26546826

  14. Skin graft

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  15. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Kegel Magdalena

    2011-10-01

    Full Text Available Abstract Background The kynurenine pathway (KP is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN-γ 200 U/ml and/or tumor necrosis factor (TNF-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease

  16. Multiple Directional Differentiation Difference of Neonatal Rat Fibroblasts from Six Organs

    Yuqiao Chang

    2016-06-01

    Full Text Available Background/Aims: Fibroblasts are abundantly distributed throughout connective tissues in the body and are very important in maintaining the structural and functional integrity. Recent reports have proved that fibroblasts and mesenchymal stem cells share much more in common than previously recognized. The aim of this study was to investigate comparative studies in fibroblasts on the differences in the expression of molecular markers and differentiation capacity from different organs. Methods: Combined trypsin/collagenase enzymes digestion method was used to isolate and culture the fibroblasts derived from heart, liver, spleen, lung, kidney and skin. Cell activity was determined by methyl thiazolyl tetrazolium (MTT assay. Common molecular markers for fibroblasts such as vimentin, DDR2 and FSP1, stem cell markers nanog, c-kit and sca-1 were detected by RT-PCR, immunofluorescence and western blotting. The osteogenic, adipogenic and cardiogenic differentiations of fibroblasts were performed by inductive culture in special mediums, and analyzed by Alizarin red, Oil red O and immunofluorescence staining of cTnT respectively. Results: The proliferation rate of fibroblasts in lung was faster than in other five organs. Common molecular markers for fibroblasts were expressed differently in different organs. DDR2 was strongly expressed in fibroblasts in the heart, partly expressed in the heart, skin, liver and spleen. Interestingly, no expression of DDR2 was detected in liver and kidney. However, vimentin and FSP1 were consistently expressed in fibroblasts from skin, liver, kidney, spleen and lung. nanog expression in fibroblasts from lung was less than that from heart, skin, liver and spleen (P . c-kit expression in fibroblasts from heart, skin and kidney was higher than that from spleen (P , while the c-kit positive fibroblasts from liver was obviously higher than that from spleen (P . But sca-1 expression in fibroblasts from lung was the lowest among six

  17. 金雀异黄素对D-半乳糖损伤的乳鼠皮肤成纤维细胞的作用%Study of genistein on mouse skin fibroblasts injured by D-galactose

    顾翠英; 韩志芬; 夏花英; 蒋嘉烨; 曹红平; 金国琴

    2012-01-01

    Objective To observe the effects of genistein (Gen) on the mouse skin fibroblasts (MSFs) injured by D-galactose and investigate the mechanisms. Methods MSFs were cultured in vitro, then Gen was used to affect the model cells injured by D-galactose. The morphostructure of the MSFs were observed with microscope. The vitalities of superoxide dismutase ( SOD) , lactic acid dehydrogenase (LDH) , and the content of malondialdehyde (MDA) were measured by kit methods. Erαand ERβmRNA were detected by RT-PCR method. Results Compared with model group, 0. 5 mg/L Gen could improve the content of MDA, increase the vitalities of SOD and LDH (P < 0.01) markedly. Gen could decrease the expression of Erα mRNA (P<0. 05) and increase Erβ mRNA (P<0. 05) obviously. Conclusions 0. 5 mg/L Gen can improve ER mRNA, enhance the vitality of SOD and antioxidation, increase the content of MDA and the vitality of LDH, change the biological characteristics of MSFs, inhibit MSFs proliferation.%目的 观察金雀异黄素(Gen)对D-半乳糖(D-gal)损伤的小鼠皮肤成纤维细胞(MSFs)模型的作用,并探索其机制.方法 体外培养MSFs,D-gal制作细胞损伤模型,并用Gen进行干预.显微镜下观察各组MSFs生长形态变化;试剂盒法检测MSFs上清液中超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量和乳酸脱氢酶(LDH)活性;RT-PCR法检测MSFs的雌激素受体雌激素受体(ER)α和ERβ mRNA的表达.结果 与模型组相比,浓度为0.5 mg/L Gen能显著提高SOD活性,同时亦提高MDA含量和LDH活性(P<0.01);明显下调ERα mRNA表达(P<0.05),上调ERβmRNA表达(P<0.05).结论 浓度为0.5 mg/L Gen可以通过改善模型细胞ER mRNA的表达,提高SOD活性和抗氧化作用;同时升高MDA含量和LDH活性,改变MSFs的生物学特性,抑制其过度增殖.

  18. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.

    Santhanam, Ramesh Kumar; Ahmad, Syahida; Abas, Faridah; Safinar Ismail, Intan; Rukayadi, Yaya; Tayyab Akhtar, Muhammad; Shaari, Khozirah

    2016-01-01

    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells. PMID:27231889

  19. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF Cell Lines

    Ramesh Kumar Santhanam

    2016-05-01

    Full Text Available Zanthoxylum rhetsa is an aromatic tree, known vernacularly as “Indian Prickly Ash”. It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin, a berberine alkaloid (columbamine and a triterpenoid (lupeol from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF and mouse melanoma (B16-F10 cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

  20. Impact of the neutron and nuclear matter equations of state on neutron skin and neutron drip lines in chiral effective field theory

    Sammarruca, Francesca

    2016-01-01

    We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.

  1. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  2. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility

  3. A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair

    Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

  4. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology.

    Yanlin Wang

    Full Text Available Alzheimer's disease (AD is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP leading to the generation of β-amyloid (Aβ peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for Aβ generation, and endocytic dysfunction has been linked to increased Aβ production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating Aβ metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ∼ 500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating Aβ production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in Aβ toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins

  5. Polypeptide structure of a human dermal fibroblast-activating factor (FAF) derived from the U937 cultured line of human monocyte-like cells

    Six liter batches of 1 x 106 U937 cells/ml of serum-free RPMI medium were incubated with 100 ng/ml of phorbol myristate acetate for 48 hr at 370C in 5% CO2 in air to generate FAFs, as quantified by the stimulation of uptake of [3H]thymidine by quiescent human dermal fibroblasts. Filtration of the supernatants on Sephadex G-75 resolved two FAFs of approximately 40,000 and 10-13,000 daltons. The latter principle was purified to homogeneity by sequential Sephadex G-50 filtration, revealing an apparent m.w. of 7-8000, Mono-Q FPLC anion-exchange chromatography with a linear gradient from 20 mM Tris-HCl (pH 8.3) to 0.5 M NaCl-20 mM Tris-HCl in 30 min, and two cycles of high-performance liquid chromatography (HPLC) on a 300 A pore 10 μm C4 column at 1 ml/min with 0.05% trifluoroacetic acid (TFA) in water to 30:70 (v:v) and then to 60:40 (v:v) acetonitrile: 0.05% TFA linearly in 15 min and 30 min, respectively, The FAF activity eluted from HPLC in a sharp peak of O.D. 215 nm at 45% acetonitrile. Analyses of amino acid composition of the highly purified 7-8000 dalton FAF-U937 revealed 37% hydrophobic, 14% basic, and 21% acidic or amide residues, as well as one tryrosine and one methionine. This U937 cell-derived FAF appears to be a unique acidic polypeptide growth factor

  6. Skin toxicity and quality of life in patients with metastatic colorectal cancer during first-line panitumumab plus FOLFIRI treatment in a single-arm phase II study

    Integument-related toxicities are common during epidermal growth factor receptor (EGFR)-targeted therapy. Panitumumab is a fully human monoclonal antibody targeting the EGFR that significantly improves progression-free survival when added to chemotherapy in patients with metastatic colorectal cancer who have wild-type (WT) KRAS tumours. Primary efficacy and tolerability results from a phase II single-arm study of first-line panitumumab plus FOLFIRI in patients with metastatic colorectal cancer have been reported. Here we report additional descriptive tolerability and quality of life data from this trial. Integument-related toxicities and quality of life were analysed; toxicities were graded using modified National Cancer Institute Common Toxicity Criteria. Kaplan-Meier estimates of time to and duration of first integument-related toxicity were prepared. Quality of life was measured using EuroQoL EQ-5D and EORTC QLQ-C30. Best overall response was analysed by skin toxicity grade and baseline quality of life. Change in quality of life was analysed by skin toxicity severity. 154 patients were enrolled (WT KRAS n = 86; mutant KRAS n = 59); most (98%) experienced integument-related toxicities (most commonly rash [42%], dry skin [40%] and acne [36%]). Median time to first integument-related toxicity was 8 days; median duration was 334 days. Overall, proportionally more patients with grade 2+ skin toxicity responded (56%) compared with those with grade 0/1 (29%). Mean overall EQ-5D health state index scores (0.81 vs. 0.78), health rating scores (72.5 vs. 71.0) and QLQ-C30 global health status scores (65.8 vs. 66.7) were comparable at baseline vs. safety follow-up (8 weeks after completion), respectively and appeared unaffected by skin toxicity severity. First-line panitumumab plus FOLFIRI has acceptable tolerability and appears to have little impact on quality of life, despite the high incidence of integument-related toxicity. ClinicalTrials.gov NCT00508404

  7. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing

    Mathew Varkey

    2015-07-01

    Full Text Available Skin protects the body from exogenous substances and functions as a barrier to fluid loss and trauma. The skin comprises of epidermal, dermal and hypodermal layers, which mainly contain keratinocytes, fibroblasts and adipocytes, respectively, typically embedded on extracellular matrix made up of glycosaminoglycans and fibrous proteins. When the integrity of skin is compromised due to injury as in burns the coverage of skin has to be restored to facilitate repair and regeneration. Skin substitutes are preferred for wound coverage when the loss of skin is extensive especially in the case of second or third degree burns. Different kinds of skin substitutes with different features are commercially available; they can be classified into acellular skin substitutes, those with cultured epidermal cells and no dermal components, those with only dermal components, and tissue engineered substitutes that contain both epidermal and dermal components. Typically, adult wounds heal by fibrosis. Most organs are affected by fibrosis, with chronic fibrotic diseases estimated to be a leading cause of morbidity and mortality. In the skin, fibroproliferative disorders such as hypertrophic scars and keloid formation cause cosmetic and functional problems. Dermal fibroblasts are understood to be heterogeneous; this may have implications on post-burn wound healing since studies have shown that superficial and deep dermal fibroblasts are anti-fibrotic and pro-fibrotic, respectively. Selective use of superficial dermal fibroblasts rather than the conventional heterogeneous dermal fibroblasts may prove beneficial for post-burn wound healing.

  8. Fetal ACL Fibroblasts Exhibit Enhanced Cellular Properties Compared with Adults

    Stalling, Simone S.; Nicoll, Steven B.

    2008-01-01

    Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice ...

  9. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  10. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    Dabelsteen, S; Wandall, H H; Grøn, B;

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is...... expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  11. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts.

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W

    2016-02-19

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. PMID:26699196

  12. Establishment and characterization of a skin epidermal cell line from mud loach, Misgurnus anguillicaudatus, (MASE) and its interaction with three bacterial pathogens.

    Xu, Xiaohui; Sivaramasamy, Elayaraja; Jin, Songjun; Li, Fuhua; Xiang, Jianhai

    2016-08-01

    A continuous skin epidermal cell line from mud Loach (Misgurnus anguillicaudatus) (MASE cell line) was established with its application in bacteria infection demonstrated in this study. Primary MASE cell culture was initiated at 26 °C in Dulbecco's modified Eagle medium/F12 medium (1:1; pH7.2) supplemented with 20% fetal bovine serum (FBS). The primary MASE cells in spindle morphology proliferated into a confluent monolayer within 2 weeks, and were continuously subcultured even in 10% FBS- DMEM/F12 after 10 passages. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 26 °C. The MASE cells have been subcultured steadily over Passage 90 with a population doubling time of 53.3 h at Passage 60. Chromosome analysis revealed that 60.5% of MASE cells at Passage 60 maintained the normal diploid chromosome number (50) with a normal karyotype of 10m+4sm + 36t. Bacteria from the three species (Aeromonas veronii, Vibrio parahaemolyticus and Escherichia coli) were used to investigate the interactions between bacteria and cellular hosts. The three strains could be attached to the MASE cells and replicate at different levels. A. veronii could induce apoptosis in the MASE cells, with highest adherence rate among the three strains, whereas V. parahaemolyticus could cause highest cell death rate through a non-apoptotic cell death pathway, with high level of replication. The results revealed that different bacteria could interact with the MASE cells in different manners, and divergent pathways might lie in mediating cell death when cellular hosts confronted with pathogen infection. Therefore, the MASE cell line may serve as a useful tool for studying the interaction between skin bacteria and fish cells. PMID:27288257

  13. Changes in skin levels of two neutotrophins (glial cell line derived neurotrohic factor and neurotrophin-3) cause alterations in cutaneous neuron responses to mechanical stimuli

    Jeffrey Lawson; Sabrina L. Mcllwrath; H. Richard Koerber

    2008-01-01

    Neurotrophins are important for the development and maintenance of both high and low threshold mechanoreceptors (HTMRs and LTMRs). In this series of studies, the effects of constitutive overexpression of two different neurotrophins, neurotrophin-3 (NT-3) and glial cell line derived neurotrohic factor (GDNF), were examined. Previous studies indicated that both of them may be implicated in the normal development of mouse dorsal root ganglion (DRG) neurons. Neurons from mice transgenically altered to overexpress NT-3 or GDNF (NT-3-OE or GDNF-OE mice) in the skin were examined using several physiological, immunohistochemi-cal and molecular techniques. Ex vivo skin/nerve/DRG/spinal cord and skin/nerve preparations were used to determine the response characteristics of the cutaneous neurons; immunohistochemistry was used to examine the biochemical phenotype of DRG cells and the skin; RT-PCR was used to examine the levels of candidate ion channels in skin and DRG that may correlate with changes in physiologi-cal responses. In GDNF-OE mice, I-isolectin B4 (IB4)-immunopositive C-HTMRs (nociceptors), a large percentage of which are sensitive to GDNF, had significantly lower mechanical thresholds than wildtype (WT) neurons. Heat thresholds for the same cells were not different. Mechanical sensitivity changes in GDNF-OE mice were correlated with significant increases in acid sensing ion channels 2a (ASIC2a) and 2b (ASIC2b) and transient receptor potential channel AI (TRPAI), all of which are putative mechanosensitive ion channels. Overexpression of NT-3 affected the responses of A-LTMRs and A-HTMRs, hut had no effect on C-HTMRs. Slowly adapting type 1 (SA1) LTMRs and A-HTMRs had increased mechanical sensitivity compared to WT. Mechanical sensitivity was correlated with significant increases in acid-sensing ion channels ASIC1 and ASIC3. This data indicates that both neurotrophins play roles in determining mechanical thresholds of cutaneous HTMRs and LTMRs and that sensitivity

  14. 不同砷化合物对人皮肤成纤维细胞系的毒性研究%Cytotoxicity study of human embryo skin fibroblasts cells by different kinds of arsenicals

    陆景坤; 陈朝军; 翟小涵; 李小东

    2011-01-01

    Objective To investigate the relationship between cytotoxicity and oxidative stress induced by different kinds of ar-senicals in human embryo skin fibroblasts cells (CCC - ESF -1) . Methods Cultured CCC - ESF -1 was exposed to Arsenic Trioxide (As2O3, iAs M ) , Hydrogen sodium arsenate( Na2HAsO4 · 7H2O,iAsv ) or sodium dimethylarsonate (DMAV) of 0 to 400 junol/L for 48h, respectively. MTT assay were used to evaluate the cell viability and the malondialdehyde (MDA) content and the activity of the superoxide dismutase ( SOD) in CCC - ESF - 1 were detected respectively. Results iAs1 ( ≥12. 5 u,mol/L) ,iAsv ( ≥12.5μmol/L) and DMAV ( ≥50. Oμmol/L) could all decrease the cell viability in a dose - dependent manner ina certain dose range ( P 500. 0μmol/L, respectively. The 25. 0,50. 0 μmol/L As2O3 ( iAs1) and 200. 0μmol/L NajHAsO4· 7H2O( iAsv )induced the significant increase of the MDA contents compared to those in the control group ( P <0. 05). The SOD activity inl.0,50.0funol/L Na2HAsO4, · 7H2O group was significantly higher than that in the control group ( P <0.05), while the SOD activity induced by ≥12. 5μmol/L As2O3,200. 0 junol/L Na2HAsO4 · 7H2O and ≥ 12. 5μmol/L C2H6AsO2Na · 3H2O were significantly decreased (P < 0. 01, P < 0. 05) , there were the dose - effect relation of inverted U curves. Conclusion The different arsenicals on CCC - ESF -1 cells have different cell toxicity, which As2O3 {iAs M ) is highly toxic in CCC - ESF -1. The one of mechanisms probably relates to different levels of oxidative stress induced by arsenicals of different concentrations.%目的:探讨不同砷化合物对人皮肤成纤维细胞系(CCC-ESF-1)的细胞毒性与氧化应激的关系.方法:培养的CCC-ESF-1分别暴露于0.0~400.0 μmol/L三氧化二砷(As2O3,iAs)、砷酸氢二纳(Na2HAsO4·7H2O,iAsv)和二甲基砷酸钠(C2H6AsO2Na·3H2O,DMAv)48 h,应用四甲基偶氮唑盐(MTT)法测定细胞生存率;检测砷化物对丙二醛(MDA)含量、超氧

  15. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-kappaB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line.

    Duarte, Carlos B.; M. Celeste Lopes; Américo Figueiredo; M. Teresa Cruz; Margarida Gonçalo; Ana Luísa Vital

    2003-01-01

    AIMS: Nitric oxide (NO) has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in a mouse fetal skin dendritic cell line. METHODS: NO production was assessed by the method of Griess. Expression of the inducible isoform of nitric oxide synthase (iNOS) protein was evaluated by wester...

  16. Physiological ER Stress Mediates the Differentiation of Fibroblasts.

    Shinsuke Matsuzaki

    Full Text Available Recently, accumulating reports have suggested the importance of endoplasmic reticulum (ER stress signaling in the differentiation of several tissues and cells, including myoblasts and osteoblasts. Secretory cells are easily subjected to ER stress during maturation of their secreted proteins. Skin fibroblasts produce and release several proteins, such as collagens, matrix metalloproteinases (MMPs, the tissue inhibitors of metalloproteinases (TIMPs and glycosaminoglycans (GAGs, and the production of these proteins is increased at wound sites. Differentiation of fibroblasts into myofibroblasts is one of the key factors for wound healing and that TGF-β can induce fibroblast differentiation into myofibroblasts, which express α-smooth muscle actin. Well-differentiated myofibroblasts show increased production of collagen and TGF-β, and bring about wound healing. In this study, we examined the effects of ER stress signaling on the differentiation of fibroblasts, which is required for wound healing, using constitutively ER stress-activated primary cultured fibroblasts. The cells expressed positive α-smooth muscle actin signals without TGF-β stimulation compared with control fibroblasts. Gel-contraction assays suggested that ER stress-treated primary fibroblasts caused stronger shrinkage of collagen gels than control cells. These results suggest that ER stress signaling could accelerate the differentiation of fibroblasts to myofibroblasts at injured sites. The present findings may provide important insights for developing therapies to improve wound healing.

  17. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts.

    Gruchlik, Arkadiusz; Jurzak, Magdalena; Chodurek, Ewa; Dzierzewicz, Zofia

    2012-01-01

    Cosmeceuticals represent a marriage between cosmetics and pharmaceuticals. There are numerous cosmeceutically active products which can be broadly classified into the following categories: antioxidants, oligopeptides, growth factors and pigment lightning agents. Much attention has been focused on the tripeptides such as Gly-His-Lys (GHK) and Gly-Gly-His (GGH) and their copper complexes, which have a high activity and good skin tolerance. Recent data suggested their physiological role in process of wound healing, tissue repair and skin inflammation. The mechanism of anti-inflammatory properties of these peptides is not clear. The aim of the study was evaluation of influence of two peptides GGH. GHK and their copper complexes and saccharomyces/copper ferment (Oligolides Copper) on secretion of pro-inflammatory IL-6 in normal human dermal fibroblasts NHDF cell line. IL-6 was evaluated using the ELISA kit. GGH, GHK, CuCl2 and their copper complexes decreased TNF-alpha-dependent IL-6 secretion in fibroblasts. IL-6 is crucial for normal wound healing, skin inflammation and UVB-induced erythema. Because of the anti-inflammatory properties, the copper-peptides could be used on the skin surface instead of corticosteroids or non-steroidal anti-inflammatory drugs, which have more side effects. Our observations provide some new information about the role of these tripeptides in skin inflammation. PMID:23285694

  18. Intra- and inter-laboratory reproducibility and accuracy of the LuSens assay: A reporter gene-cell line to detect keratinocyte activation by skin sensitizers.

    Ramirez, Tzutzuy; Stein, Nadine; Aumann, Alexandra; Remus, Tina; Edwards, Amber; Norman, Kimberly G; Ryan, Cindy; Bader, Jackie E; Fehr, Markus; Burleson, Florence; Foertsch, Leslie; Wang, Xiaohong; Gerberick, Frank; Beilstein, Paul; Hoffmann, Sebastian; Mehling, Annette; van Ravenzwaay, Bennard; Landsiedel, Robert

    2016-04-01

    Several non-animal methods are now available to address the key events leading to skin sensitization as defined by the adverse outcome pathway. The KeratinoSens assay addresses the cellular event of keratinocyte activation and is a method accepted under OECD TG 442D. In this study, the results of an inter-laboratory evaluation of the "me-too" LuSens assay, a bioassay that uses a human keratinocyte cell line harboring a reporter gene construct composed of the rat antioxidant response element (ARE) of the NADPH:quinone oxidoreductase 1 gene and the luciferase gene, are described. Earlier in-house validation with 74 substances showed an accuracy of 82% in comparison to human data. When used in a battery of non-animal methods, even higher predictivity is achieved. To meet European validation criteria, a multicenter study was conducted in 5 laboratories. The study was divided into two phases, to assess 1) transferability of the method, and 2) reproducibility and accuracy. Phase I was performed by testing 8 non-coded test substances; the results showed a good transferability to naïve laboratories even without on-site training. Phase II was performed with 20 coded test substances (performance standards recommended by OECD, 2015). In this phase, the intra- and inter-laboratory reproducibility as well as accuracy of the method was evaluated. The data demonstrate a remarkable reproducibility of 100% and an accuracy of over 80% in identifying skin sensitizers, indicating a good concordance with in vivo data. These results demonstrate good transferability, reliability and accuracy of the method thereby achieving the standards necessary for use in a regulatory setting to detect skin sensitizers. PMID:26796489

  19. Chronic γ-irradiation results in increased cell killing and chromosomal aberration with specific breakpoints in fibroblast cell strains derived from non-Hodgkin's lymphoma patients

    Cultured skin fibroblast cells from 16 NHL (non-Hodgkin's lymphoma) patients and 2 clinically normal subjects were compared for cell survival and chromosomal aberration after chronic γ-irradiation. Fibroblasts from an ataxia telangiectasia (AT) homozygote and an AT heterozygote were used as positive controls. Following irradiation, fibroblasts from all 16 NHL patients showed an increase in both cell death and chromosomal aberration (breaks and rearrangements) compared to normal subjects. The difference in frequency of chromosomal aberration between normals and NHL-patients remained virtually unchanged over a period of 24-72 h post irradiation incubation of cells. Cell cycle analysis by flow cytometry carried out in 1 normal and 1 NHL fibroblast cell strain showed that more cells representing the NHL patient were in G2/M phase compared to the normal at various times of cytogenetic analysis. While the AT homozygote appeared to be the most radiosensitive, the AT heterozygote showed a slightly higher incidence of cell death and chromosomal aberration than the normals. The cellular and chromosomal radiosensitivity of fibroblast cell lines from NHL-patients differed slightly from that of AT heterozygote but clearly occupied an intermediate position between the AT homozygote and the normal subjects. Cells from 3 of the NHL patients showed radiation-induced specific chromosomal breaks involving chromosomes 1, 2, 6, 8, 10 and 11 which correspond to known fragile sites. Such breakpoints associated with increased radiosensitivity may be indicative of predisposition to malignancy in the patients studied. (author). 30 refs., 2 figs., 4 tabs

  20. Increased rate of cell-substratum detachment of fibroblasts from patients with Duchenne muscular dystrophy.

    Kent, C

    1983-01-01

    When skin fibroblasts from patients with Duchenne muscular dystrophy were treated with trypsin in the presence of divalent cations, they detached more rapidly from the substratum than did fibroblasts from normal individuals of similar age, sex, and passage number. This difference was observed when either the time of incubation or trypsin concentration was varied. The ease of detachment of both normal and dystrophic fibroblasts varied somewhat with culture age and plating density, although det...

  1. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts

    Koji Ueno; Yuriko Takeuchi; Makoto Samura; Yuya Tanaka; Tamami Nakamura; Arata Nishimoto; Tomoaki Murata; Tohru Hosoyama; Kimikazu Hamano

    2016-01-01

    The purpose of this study was to confirm the therapeutic effects of mixed sheets consisting of peripheral blood mononuclear cells (PBMNCs) and fibroblasts on cutaneous skin ulcers. Vascular endothelial growth factor (VEGF) secretion in mixed cell sheets was much higher than in PBMNCs and fibroblasts. Concerning the mechanism, transforming growth factor beta 1 and platelet-derived growth factor BB secreted from PBMNCs enhanced VEGF production in fibroblasts. In wounds created on the backs of d...

  2. Serial-section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts

    1983-01-01

    We have examined, by analyzing thin (15-20 nm) serial sections, whether coated pits involved in adsorptive pinocytosis in cultured fibroblasts give rise to free coated vesicles or represent permanently surface- associated structures from the neck of which uncoated receptosomes pinch off and carry ligand into the cell. Human skin fibroblasts and mouse L-929 fibroblasts were incubated with cationized ferritin (CF), a ligand known to bind to coated pit regions, at 37 degrees C before fixation. I...

  3. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    Hesham Fahmy

    2011-12-01

    Full Text Available Sarcodiol (SD is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3 and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4. SD treatment also enhances cellular level of tumor suppressor protein 53 (p53 and stimulates cleavage of the nuclear poly (ADP-ribose polymerase (cleaved-PARP. SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells.

  4. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells. PMID:22363217

  5. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  6. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

  7. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  8. Chemokines and skin diseases.

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy. PMID:25182982

  9. 不同厚度自体皮片移植对大鼠深Ⅱ°烧伤创面成纤维细胞转化的影响%Effect of skin autograft with different thickness on the transdifferentiation of fibroblasts after deep partial thickness burn in rats

    马恬; 贾赤宇; 焦大凯

    2011-01-01

    Objective To investigate the effect of thin split-thickness skin, inter-mediate thickness skin and full-thickness skin autograft on the differentiation of fibroblasts into myofibroblasts in rats after deep partial thickness burn. Methods A total of 40 SD rats were divided randomly into two groups (Group A & Group B, n =20 each). In Group A, tissue samples were collected at Day 2 after skin-grafting while Day 7in Group B. In each group, every rat was scalded to cause deep partial thickness wound with an area of 10% of total body surface. The wounds received eschar shaving instantly coupled with skin-autograft, covering with thin split-thickness skin, inter-mediate thickness skin and full-thickness skin respectively. Meanwhile the control wound on the same rat was scalded only. Then the expression of α-SMA was detected by immunohistochemistry in each wound. And the numbers of myofibroblasts (α-SMA positive cells ) and fibroblasts (negative cells) were counted to calculate the conversion ratio of myofibroblasts. Results In Group A, the conversion ratios of myofibroblasts of control, thin split-thickness skin autograft, inter-mediate thickness skin and full-thickness skin groups were (76. 3 ±3. 3)%, (69. 8 ± 1.6)%, (57.5 ± 1.6)% and (44. 7 ± 1.7 ) % respectively. In Group B, the ratios were (72. 9 ± 6. 1 ) %, ( 63.6 ± 4. 7 ) %, ( 50. 2 ±1.6)% and (32. 3 ± 1.2)% respectively. The ratio was higher in control group than that in any other one (P <0. 01 ). There was statistic difference between thin split-thickness skin, inter-mediate thickness skin and full-thickness skin autograft groups ( P < 0. 05 ). Conclusion A direct association may exist between the conversion ratio of myofibroblasts and the application of skin-grafting in rats after deep partial thickness scalding. It is probably related with varying degrees of scar contracture in the long-term.%目的 探讨自体刃厚皮、中厚皮及全厚皮覆盖SD大鼠深Ⅱ°烧伤创面对创基成纤维

  10. Skin Diseases: Skin Health and Skin Diseases

    ... threatening skin cancer. The "ABCD's" of what to watch for with the moles on your skin: Asymmetry : ... skin cancer has been increasing. Exposure to the sun is a major factor. In 2006, over 30 ...

  11. LINES

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  12. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. PMID:25867977

  13. Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis.

    François Huaux

    Full Text Available Morbi-mortality in cystic fibrosis (CF is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy.

  14. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  15. The development of a 3D immunocompetent model of human skin

    As the first line of defence, skin is regularly exposed to a variety of biological, physical and chemical insults. Therefore, determining the skin sensitization potential of new chemicals is of paramount importance from the safety assessment and regulatory point of view. Given the questionable biological relevance of animal models to human as well as ethical and regulatory pressure to limit or stop the use of animal models for safety testing, there is a need for developing simple yet physiologically relevant models of human skin. Herein, we describe the construction of a novel immunocompetent 3D human skin model comprising of dendritic cells co-cultured with keratinocytes and fibroblasts. This model culture system is simple to assemble with readily-available components and importantly, can be separated into its constitutive individual layers to allow further insight into cell–cell interactions and detailed studies of the mechanisms of skin sensitization. In this study, using non-degradable microfibre scaffolds and a cell-laden gel, we have engineered a multilayer 3D immunocompetent model comprised of keratinocytes and fibroblasts that are interspersed with dendritic cells. We have characterized this model using a combination of confocal microscopy, immuno-histochemistry and scanning electron microscopy and have shown differentiation of the epidermal layer and formation of an epidermal barrier. Crucially the immune cells in the model are able to migrate and remain responsive to stimulation with skin sensitizers even at low concentrations. We therefore suggest this new biologically relevant skin model will prove valuable in investigating the mechanisms of allergic contact dermatitis and other skin pathologies in human. Once fully optimized, this model can also be used as a platform for testing the allergenic potential of new chemicals and drug leads. (paper)

  16. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens

    Kakunaga, Takeo

    1978-01-01

    Cultured fibroblast cells derived from a skin biopsy sample taken from normal human adult were exposed to a potent carcinogen, 4-nitroquinoline 1-oxide. Alterations of cell growth pattern such as higher density and piling up of cells were noticed in some fractions of cultures that were successively subcultured after nitroquinoline oxide treatment. Morphologically altered cells retained this growth pattern and became established lines of transformed cells without showing the limited life-span characteristic of normal cells in culture. The transformed cells showed a higher saturation density and the ability to grow in soft agar, properties that are usually correlated with neoplastic transformation of cells in culture. Selection of preexisting transformed human cells as a mechanism of this observed transformation seemed unlikely because clones of these normal cells could also be used to assess the transforming effect of nitroquinoline oxide. Preliminary results suggest that numerous cell divisions were required for the development of the transformation after nitroquinoline oxide treatment of these human cells. When the transformed cell lines were injected subcutaneously into nude (athymic) mice, solid tumors were produced at the site of inoculation. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine also induced cell transformation, in a manner similar to treatment with nitroquinoline oxide. However, transformation was not induced with (i) 4-aminoquinoline 1-oxide (a noncarcinogenic derivative of 4-nitroquinoline 1-oxide), (ii) 3-methylcholanthrene (a carcinogen that cannot be metabolically activated by the target cells employed), or (iii) the solvent dimethyl sulfoxide. Images PMID:418410

  17. Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy

    Herskind, C.; Johansen, J.; Bentzen, S.M.; Overgaard, M.; Overgaard, J.; Bamberg, M.; Rodemann, H.P. [Univ. of Tuebingen (Germany). Section of Radiobiology and Molecular Environmental Research

    2000-07-01

    In order to acquire a better understanding of the mechanism of radiation-induced fibrosis, we studied the differentiation of normal skin fibroblasts cultured from breast cancer radiotherapy patients with different risk of fibrosis. The differentiation state of fibroblasts was characterized in clonal cultures using established cytomorphological criteria. Collagen synthesis was determined by 3H-proline incorporation into pepsin-resistant protein. Radiation-induced inactivation of fibroblasts was paralleled by an increase in terminally differentiated fibrocytes, demonstrating that premature terminal differentiation is an important response to irradiation of fibroblasts from radiotherapy patients. Surviving colony-forming fibroblasts showed a change in differentiation with an increase in the ratio L:E of progenitor fibroblasts in late (L) compared to early (E) differentiation states. Furthermore, increased collagen production was observed after irradiation. The results provide evidence supporting a role of terminal fibroblast differentiation in radiation-induced fibrosis and imply that the progenitor population surviving radiotherapy might be more prone to terminal differentiation than before radiotherapy.

  18. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  19. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  20. Polycomponent mesotherapy formulations for the treatment of skin aging and improvement of skin quality

    Prikhnenko S

    2015-04-01

    Full Text Available Sergey Prikhnenko Private Practice, Novosibirsk, Russia Abstract: Skin aging can largely be attributed to dermal fibroblast dysfunction and a decrease in their biosynthetic activity. Regardless of the underlying causes, aging fibroblasts begin to produce elements of the extracellular matrix in amounts that are insufficient to maintain the youthful appearance of skin. The goal of mesopreparations is primarily to slow down and correct changes in skin due to aging. The rationale for developing complex polycomponent mesopreparations is based on the principle that aging skin needs to be supplied with the various substrates that are key to the adequate functioning of the fibroblast. The quintessential example of a polycomponent formulation – NCTF® (New Cellular Treatment Factor – includes vitamins, minerals, amino acids, nucleotides, coenzymes and antioxidants, as well as hyaluronic acid, designed to help fibroblasts function more efficiently by providing a more optimal environment for biochemical processes and energy generation, as well as resisting the effects of oxidative stress. In vitro experiments suggest that there is a significant increase in the synthetic and prophylactic activity of fibroblasts with treated NCTF, and a significant increase in the ability of cells to resist oxidative stress. The current article looks at the rationale behind the development of polycomponent mesopreparations, using NCTF as an example. Keywords: mesotherapy, skin aging, skin quality

  1. Photodynamic therapy inhibit Fibroblast Growth Factor-10 induced keratinocyte differentiation and proliferation through ROS in Fibroblast Growth Factor Receptor-2b pathway.

    Gozali, Maya Valeska; Yi, Fei; Zhang, Jia-An; Liu, Juan; Wu, Hong-Jin; Xu, Yang; Luo, Dan; Zhou, Bing-Rong

    2016-01-01

    5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is known to be effective in several skin diseases such as acne, actinic keratoses, condyloma acuminata. However, some detailed mechanisms of ALA-PDT to treat these skin diseases still remain elusive. In this study, we aimed to investigate mechanism of ALA-PDT in in-vitro and in-vivo models. For in vitro, we use human keratinocyte cell line (HaCaT) cells. CCK-8 was used to detect cell proliferation activity, immunofluorescence and western blotting method to detect the content of keratin (K)1, K6, K16, protein kinase C (PKC), fibroblast growth factor receptor-2b (FGFR2b) protein, ELISA and RT-PCR to detect expression of interleukin (IL) 1α in the cell supernatant, and detect reactive oxygen species (ROS). For in vivo, we use 20 rabbits to induce hyperkeratosis acne model in their ear. Dermatoscope was used to see follicle hyperkeratosis and skin biopsy to analyze histology and immunohistochemical of PKC, FGFR2b, K1, K6 and K16. Results from this study suggest that ROS stimulated by ALA-PDT lead to inhibition of FGFR2b pathway in PKC downstream to cause reduction of IL1α expression, and eventually, keratinocytes differentiation and proliferation. Our data thus reveal a treatment mechanism of ALA-PDT underlying hyperkeratosis related dermatoses. PMID:27273653

  2. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Yira Bermudez

    Full Text Available BACKGROUND: Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. RESULTS: Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. CONCLUSIONS: The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  3. Fucoidan Promotes the Reconstruction of Skin Equivalents

    Song, Yu Seok; Li, Hailan; Balcos, Marie Carmel; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Choi, Hye-Ryung; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-01-01

    In this study we investigated the effects of fucoidan on the proliferation of fibroblasts and the reconstruction of a skin equivalent (SE). Fucoidan significantly stimulated the proliferation of CCD-25Sk human fibroblasts and Western blot analysis demonstrated that fucoidan markedly increased the expression of cyclin D1 and decreased the expression of p27. Fucoidan was used to reconstruct SE. Immunohistochemical staining showed that the addition of fucoidan to dermal equivalents increased exp...

  4. Aging Skin

    ... email address Submit Home > Healthy Aging > Wellness Healthy Aging Aging skin More information on aging skin When it ... treated early. Return to top More information on Aging skin Read more from womenshealth.gov Varicose Veins ...

  5. Skin Conditions

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  6. Chronic actinic damage of facial skin.

    Bilaç, Cemal; Şahin, Mustafa Turhan; Öztürkcan, Serap

    2014-01-01

    Chronic actinic damage of the skin manifests itself as extrinsic skin aging (photoaging) and photocarcinogenesis. During the last decade, substantial progress has been made in understanding cellular and molecular mechanisms of photoaging. DNA photodamage and ultraviolet-generated reactive oxygen species are the initial events that lead to most of the typical histologic and clinical manifestations of chronic photodamage of the skin. Chronic actinic damage affects all layers of the skin. Keratinocytes, melanocytes, fibroblasts, and endothelial cells are altered by ultraviolet radiation and can result in numerous changes in human skin, particularly the skin of fair-skinned individuals. These changes include actinic keratosis, thickening and wrinkling, elastosis, telengiectasia, solar comedones, diffuse or mottled hyperpigmentation, and skin cancers. There are many options in the treatment of changes caused by chronic actinic damage. The most effective measure of prevention of the photoaging and photocarcinogenesis is sun protection. PMID:25441468

  7. Microarray Analysis of Host Cell Gene Transcription in Response to Varicella-Zoster Virus Infection of Human T Cells and Fibroblasts In Vitro and SCIDhu Skin Xenografts In Vivo

    Jones, Jeremy O.; Arvin, Ann M.

    2003-01-01

    During primary infection, varicella-zoster virus (VZV) is spread via lymphocytes to skin, where it induces a rash and establishes latency in sensory ganglia. A live, attenuated varicella vaccine (vOka) was generated by using the VZV Oka strain (pOka), but the molecular basis for vOka attenuation remains unknown. Little is known concerning the effects of wild-type or attenuated VZV on cellular gene regulation in the host cells that are critical for pathogenesis. In this study, transcriptional ...

  8. Cytokine-mediated PGE2 expression in human colonic fibroblasts.

    Kim, E C; Zhu, Y; Andersen, V; Sciaky, D; Cao, H J; Meekins, H; Smith, T J; Lance, P

    1998-10-01

    We investigated prostanoid biogenesis in human colonic fibroblasts (CCD-18Co and 5 primary fibroblast cultures) and epithelial cell lines (NCM460, T84, HT-29, and LS 174T) and the effect of PGE2 on fibroblast morphology. Cytokine-stimulated PGE2 production was measured. PGH synthase-1 and -2 (PGHS-1 and -2) protein and mRNA expression were evaluated. Basal PGE2 levels were low in all cell types (0.15-6.47 ng/mg protein). Treatment for 24 h with interleukin-1beta (IL-1beta; 10 ng/ml) or tumor necrosis factor-alpha (50 ng/ml), respectively, elicited maximal 25- and 6-fold inductions of PGE2 synthesis in CCD-18Co cultures and similar results in primary fibroblast cultures; maximal inductions with IL-1beta in colonic epithelial cell lines were from zero to fivefold. Treatment of CCD-18Co fibroblasts with IL-1beta caused maximal 21- and 53-fold increases, respectively, in PGHS-2 protein and mRNA levels without altering PGHS-1 expression. PGE2 (0.1 micromol/l) elicited a dramatic shape change in selected fibroblasts. Colonic fibroblasts are potentially important as cytokine targets and a source of and target for colonic prostanoids in vivo. PMID:9755052

  9. 转KAP6.1-GFP-蜘蛛拖丝蛋白基因核心序列4S绵羊成纤维细胞株的筛选%Filtration of Transgenic Sheep Skin Fibroblasts with KAP6.1-GFP-polymerized Spider Dragline Silk Protein Gene(4S)

    王春生; 原璐; 宁方勇; 吴治昊; 朴善花; 安铁洙

    2011-01-01

    [目的]通过体细胞核移植为获得皮肤特异表达蜘蛛拖丝蛋白的绵羊莫定基础.[方法]将pcDNA3.1和带有角蛋白结合蛋白启动子质粒pGM-T-KAP6.1分别用Bg1 Ⅱ和Hin d Ⅲ双酶切后连接,再与蜘蛛拖丝蛋白基因核心序列4S连接,最后通过酶切与pIRES2-EGFP质粒连接后构建真核表达载体pIRES2-EGFP-4S;将此载体线性化后,采用脂质体法转染绵羊皮肤成纤维细胞,通过G418筛选获得转基因阳性细胞.[结果]筛选得到转pIRES2-EGFP-4S的阳性细胞.对阳性细胞经体外培养后的检测显示:(1)细胞形态(长梭形)、细胞生长曲线(呈S形)、群体倍增时间(随培养时间增加逐渐缩短)和细胞接种率(细胞贴壁率及存活率在24 h内逐渐升高,并达到最高值125%)等均具有正常绵羊成纤维细胞的生物学特征;(2)阳性细胞经冷冻复苏后具有与新鲜阳性细胞相似的生物学特征;(3)PCR检测结果显示,pIRES2-EGFP-4S在阳性细胞的基因组中整合.[结论]获得具有在绵羊皮肤特异表达,且便于检测的转蜘蛛拖丝蛋白4S的绵羊成纤维细胞株.%[Objective] This study aims to establish transgenic sheep fibroblast cell line and lay a foundation for transgenic sheep with expression spider dragline silk protein gene in hair follicle by nuclear transplantation. [Method] pcDNA3.1 and pGM-T-KAP6.1(hair follicle-specific promoter) were digested by 5g/Ⅱand Hind Ⅲ, and linked each other. The recombinant plasmid was linked with spider dragline silk protein gene and then linked with pIRES2-EGFP by a series of molecular methods. The eukaryotic expression vector pIRES2-EGFP-4S was constructed. Sheep fibroblasts were transfected with the plasmid by cationic liposome method and G418 was used to filtrate them. After identified, transgenic cell line with spider dragline silk protein gene was established. [Result] The G418 positive cells were detected in vitro. The results showed that cellular morphology was similar

  10. Skin Photoaging and the Role of Antioxidants in Its Prevention

    Pandel, Ruža; Poljšak, Borut; Godic, Aleksandar; Dahmane, Raja

    2013-01-01

    Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin (skin phototype). In addition to direct or indirect DNA damage, UVR activates cell surface receptors of keratinocytes and fibroblasts in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the stru...

  11. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  12. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  13. Skin Conditions during Pregnancy

    ... line that runs from the navel to the pubic hair • Stretch marks •Acne • Spider veins • Varicose veins • Changes ... Nigra: A line running from the navel to pubic hair that darkens during pregnancy. Melasma: A common skin ...

  14. Serotonin in human skin

    Jianguo Huang; Qiying Gong; Guiming Li

    2005-01-01

    In this review the authors summarize data of a potential role for serotonin in human skin physiology and pathology. The uncovering of endogenous serotonin synthesis and its transformation to melatonin underlines a putative important role of this pathway in melanocyte physiology and pathology. Pathways of the biosynthesis and biodegradation of serotonin have been characterized in human beings and its major cellular populations. Moreover, receptors of serotonin are expressed on keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. And the widespread expression of a cutaneous seorotoninergic system indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Melatonin, in turn, can also act as a hormone, neurotransmitter, cytokine, biological modifier and immunomodulator. Thus, Serotonin local synthesis and cellular localization could thus become of great importance in the diagnosis and management of cutaneous pathology.

  15. Insights in the etiopathology of galactosyltransferase II (GalT-II deficiency from transcriptome-wide expression profiling of skin fibroblasts of two sisters with compound heterozygosity for two novel B3GALT6 mutations

    Marco Ritelli

    2015-03-01

    Full Text Available Mutations in B3GALT6, encoding the galactosyltransferase II (GalT-II involved in the synthesis of the glycosaminoglycan (GAG linkage region of proteoglycans (PGs, have recently been associated with a spectrum of connective tissue disorders, including spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1 and Ehlers–Danlos-like syndrome. Here, we report on two sisters compound heterozygous for two novel B3GALT6 mutations that presented with severe short stature and progressive kyphoscoliosis, joint hypermobility and laxity, hyperextensible skin, platyspondyly, short ilia, and elbow malalignment. Microarray-based transcriptome analysis revealed the differential expression of several genes encoding extracellular matrix (ECM structural components, including COMP, SPP1, COL5A1, and COL15A1, enzymes involved in GAG synthesis and in ECM remodeling, such as CSGALNACT1, CHPF, LOXL3, and STEAP4, signaling transduction molecules of the TGFβ/BMP pathway, i.e., GDF6, GDF15, and BMPER, and transcription factors of the HOX and LIM families implicated in skeletal and limb development. Immunofluorescence analyses confirmed the down-regulated expression of some of these genes, in particular of the cartilage oligomeric matrix protein and osteopontin, encoded by COMP and SPP1, respectively, and showed the predominant reduction and disassembly of the heparan sulfate specific GAGs, as well as of the PG perlecan and type III and V collagens. The key role of GalT-II in GAG synthesis and the crucial biological functions of PGs are consistent with the perturbation of many physiological functions that are critical for the correct architecture and homeostasis of various connective tissues, including skin, bone, cartilage, tendons, and ligaments, and generates the wide phenotypic spectrum of GalT-II-deficient patients.

  16. Chloride transport in human fibroblasts is activated by hypotonic shock

    Incubation of human skin fibroblasts in hypotonic media induced the activation of 36Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of 36Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also 36Cl- influx was enhanced by hypotonic medium

  17. Defining the identity of mouse embryonic dermal fibroblasts.

    Budnick, Isadore; Hamburg-Shields, Emily; Chen, Demeng; Torre, Eduardo; Jarrell, Andrew; Akhtar-Zaidi, Batool; Cordovan, Olivia; Spitale, Rob C; Scacheri, Peter; Atit, Radhika P

    2016-08-01

    Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:27265328

  18. Niemann-pick variant disorders: comparison of errors of cellular cholesterol homeostasis in group D and group C fibroblasts.

    Butler, J D; Comly, M E; Kruth, H. S.; Vanier, M; Filling-Katz, M; Fink, J.; Barton, N.; Weintroub, H; Quirk, J M; Tokoro, T

    1987-01-01

    Fluorescence microscopic examination of filipin-stained cultured skin fibroblasts derived from two brothers with group D Niemann-Pick disease revealed abnormal storage of low density lipoprotein (LDL)-derived cholesterol. LDL stimulation of intracellular cholesteryl ester synthesis was severely compromised in the Niemann-Pick D fibroblasts, as it also was in fibroblasts obtained from Niemann-Pick C patients. Cholesteryl ester synthesis was intermediately deficient in cells derived from an obl...

  19. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration

    Loren Pickart

    2015-01-01

    Full Text Available GHK (glycyl-L-histidyl-L-lysine is present in human plasma, saliva, and urine but declines with age. It is proposed that GHK functions as a complex with copper 2+ which accelerates wound healing and skin repair. GHK stimulates both synthesis and breakdown of collagen and glycosaminoglycans and modulates the activity of both metalloproteinases and their inhibitors. It stimulates collagen, dermatan sulfate, chondroitin sulfate, and the small proteoglycan, decorin. It also restores replicative vitality to fibroblasts after radiation therapy. The molecule attracts immune and endothelial cells to the site of an injury. It accelerates wound-healing of the skin, hair follicles, gastrointestinal tract, boney tissue, and foot pads of dogs. It also induces systemic wound healing in rats, mice, and pigs. In cosmetic products, it has been found to tighten loose skin and improve elasticity, skin density, and firmness, reduce fine lines and wrinkles, reduce photodamage, and hyperpigmentation, and increase keratinocyte proliferation. GHK has been proposed as a therapeutic agent for skin inflammation, chronic obstructive pulmonary disease, and metastatic colon cancer. It is capable of up- and downregulating at least 4,000 human genes, essentially resetting DNA to a healthier state. The present review revisits GHK’s role in skin regeneration in the light of recent discoveries.

  20. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration.

    Pickart, Loren; Vasquez-Soltero, Jessica Michelle; Margolina, Anna

    2015-01-01

    GHK (glycyl-L-histidyl-L-lysine) is present in human plasma, saliva, and urine but declines with age. It is proposed that GHK functions as a complex with copper 2+ which accelerates wound healing and skin repair. GHK stimulates both synthesis and breakdown of collagen and glycosaminoglycans and modulates the activity of both metalloproteinases and their inhibitors. It stimulates collagen, dermatan sulfate, chondroitin sulfate, and the small proteoglycan, decorin. It also restores replicative vitality to fibroblasts after radiation therapy. The molecule attracts immune and endothelial cells to the site of an injury. It accelerates wound-healing of the skin, hair follicles, gastrointestinal tract, boney tissue, and foot pads of dogs. It also induces systemic wound healing in rats, mice, and pigs. In cosmetic products, it has been found to tighten loose skin and improve elasticity, skin density, and firmness, reduce fine lines and wrinkles, reduce photodamage, and hyperpigmentation, and increase keratinocyte proliferation. GHK has been proposed as a therapeutic agent for skin inflammation, chronic obstructive pulmonary disease, and metastatic colon cancer. It is capable of up- and downregulating at least 4,000 human genes, essentially resetting DNA to a healthier state. The present review revisits GHK's role in skin regeneration in the light of recent discoveries. PMID:26236730

  1. Phospholipids accumulation in mucolipidosis IV cultured fibroblasts.

    Bargal, R; Bach, G

    1988-01-01

    Cultured fibroblasts from mucolipidosis IV patients accumulated phospholipids when compared to normal controls or cells from other genotypes. The major stored compounds were identified as phosphatidylcholine, phosphatidylethanolamine and to a larger extent lysophosphatidylcholine and lysobisphosphatidic acid. Pulse chase experiments of 32P-labelled phospholipids showed increased retention of these compounds in the mucolipidosis IV lines throughout the pulse and chase periods. Phospholipase A1, A2, C, D and lysophospholipase showed normal activity in the mucolipidosis IV lines and thus the metabolic cause for this storage remains to be identified. PMID:3139925

  2. Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    Yannick Gache

    Full Text Available Basal cell carcinoma (BCC is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH. PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS, a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis

  3. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Y Boza; R Yefi; Ml Rudolph; PC Smith; TM Oberyszyn; KL Tober; IG Rojas

    2010-01-01

    The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV) sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature se...

  4. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    Gennaro Altamura

    2013-01-01

    Full Text Available Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1 and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm.

  5. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  6. Biosynthesis of collagen by fibroblasts kept in culture

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.)

  7. Polycomponent mesotherapy formulations for the treatment of skin aging and improvement of skin quality.

    Prikhnenko, Sergey

    2015-01-01

    Skin aging can largely be attributed to dermal fibroblast dysfunction and a decrease in their biosynthetic activity. Regardless of the underlying causes, aging fibroblasts begin to produce elements of the extracellular matrix in amounts that are insufficient to maintain the youthful appearance of skin. The goal of mesopreparations is primarily to slow down and correct changes in skin due to aging. The rationale for developing complex polycomponent mesopreparations is based on the principle that aging skin needs to be supplied with the various substrates that are key to the adequate functioning of the fibroblast. The quintessential example of a polycomponent formulation - NCTF(®) (New Cellular Treatment Factor) - includes vitamins, minerals, amino acids, nucleotides, coenzymes and antioxidants, as well as hyaluronic acid, designed to help fibroblasts function more efficiently by providing a more optimal environment for biochemical processes and energy generation, as well as resisting the effects of oxidative stress. In vitro experiments suggest that there is a significant increase in the synthetic and prophylactic activity of fibroblasts with treated NCTF, and a significant increase in the ability of cells to resist oxidative stress. The current article looks at the rationale behind the development of polycomponent mesopreparations, using NCTF as an example. PMID:25897252

  8. Salmonella enterica Serovar Typhimurium Invades Fibroblasts by Multiple Routes Differing from the Entry into Epithelial Cells▿

    Aiastui, Ana; Pucciarelli, M. Graciela; García-Del Portillo, Francisco

    2010-01-01

    Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal t...

  9. UV-induced DNA excision repair in rat fibroblasts during immortalization and terminal differentiation in vitro

    UV-induced DNA excision repair was studied as DNA repair synthesis and dimer removal in rat fibroblast cultures, initiated from either dense or sparse inocula of primary cells grown from skin biopsies. During passaging in vitro an initial increase in DNA repair synthesis, determined both autoradiographically as unscheduled DNA synthesis (UDS) and by means of the BrdU photolysis assay as the number and average size of repair patches, was found to be associated with a morphological shift from small spindle-shaped to large pleiomorphic cells observed over the first twenty generations. In cell populations in growth crisis, a situation exclusively associated with thin-inoculum cultures in which the population predominantly consisted of large pleiomorphic cells, UDS was found to occur at a low level. After development of secondary cultures into immortal cell lines, both repair synthesis and morphology appeared to be the same as in the original primary spindle-shaped cells. At all passages the capacity to remove UV-induced pyrimidine dimers was found to be low, as indicated by the persistence of Micrococcus luteus UV endonuclease-sensitive sites. These results are discussed in the context of terminal differentiation and immortalization of rat fibroblasts upon establishment in vitro

  10. Sagging Skin

    ... turkey neck,” this occurs as skin loses its elasticity and in cases where individuals have lost a ... technique or procedure is appropriate for my skin type? Did the doctor show me before-and-after ...

  11. Skin Dictionary

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases Cosmetic treatments Dry / sweaty skin Eczema / dermatitis Hair and scalp ...

  12. Skin turgor

    ... up during a check. This can indicate severe dehydration that needs quick treatment. You have reduced skin turgor and are unable ... Urinalysis Intravenous fluids may be needed for severe ... treat other conditions that affect skin turgor and elasticity.

  13. Skin Cancer

    Skin cancer is the most common form of cancer in the United States. The two most common types ... face, neck, hands, and arms. Another type of skin cancer, melanoma, is more dangerous but less common. Anyone ...

  14. SKIN CANCER

    Made Putri Hendaria

    2013-03-01

    Full Text Available Skin is an organ which protect the human body from the environment. It was build by milion cells. According to the changes in human lifestyle which tends to unhealthy life, increasing ultraviolet radiation, toxins, and genetics makes the cells who build the skin do the abnormal growth being cancer cells. Classification of skin cancer is according the most common three types, they are Basal Cell Carcinoma, Squamous Cell Carcinoma, and Malignant Melanoma. More than 3,5 milion skin cancer cases was happened in United States, which makes it become the most common cancer type in that country. Skin cancer diagnosis is build from anamnesis, physic examination about skin eufloressence, using dermoscopy, and histopatologic examination as the gold standar. Therapy for skin cancer is classified to surgery and non surgery therapy and its prognostic is depend to the types of the skin cancer itself.

  15. Skin Aging

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  16. Skin Biopsy

    ... skin condition cannot be diagnosed by the patient's history and what the physician finds on examination alone. Confirming a clinical diagnosis may also be necessary prior to starting therapy. Skin biopsy types are as follows: Shave biopsies Punch biopsies ...

  17. Periostin in Skin Tissue Skin-Related Diseases

    Yukie Yamaguchi

    2014-01-01

    Recently, periostin—a matricellular protein—has been highlighted for its pivotal functions in the skin. Analysis of periostin null mice has revealed that periostin contributes to collagen fibrillogenesis, collagen cross-linking, and the formation of ECM meshwork via interactions with other ECM components. Periostin expression is enhanced by mechanical stress or skin injury; this is indicative of the physiologically protective functions of periostin, which promotes wound repair by acting on keratinocytes and fibroblasts. Along with its physiological functions, periostin plays pathogenic roles in skin fibrosis and chronic allergic inflammation. In systemic sclerosis (SSc patients, periostin levels reflect the severity of skin fibrosis. Periostin null mice have shown reduced skin fibrosis in a bleomycin-induced SSc mouse model, indicating a key role of periostin in fibrosis. Moreover, in atopic dermatitis (AD, attenuated AD phenotype has been observed in periostin null mice in a house dust mite extract-induced AD mouse model. Th2 cytokine-induced periostin acts on keratinocytes to produce inflammatory cytokines that further enhance the Th2 response, thereby sustaining and amplifying chronic allergic inflammation. Thus, periostin is deeply involved in the pathogenesis of AD and other inflammation-related disorders affecting the skin. Understanding the dynamic actions of periostin would be key to dissecting pathogenesis of skin-related diseases and to developing novel therapeutic strategies.

  18. Chitosan-gelatin-hyaluronic acid scaffolds used for skin substitute

    MAO Jinshu; WANG Xianghui; YAO kangde; LI Xiulan

    2001-01-01

    @@ Skin is composed of both a dermal layer-consisting primarily of fibroblasts,and matrix macromolecules (ECM)-and an epidermal layer-composing of epidermal cells containing keratin filaments undergoing progressive differentiation from abasal proliferating layer to a surface consisting of terminally differentiated, epidermal cells that protect the skin from the environment.

  19. Repair of DNA strand breaks in progeric fibroblasts and aging human diploid cells

    The rate of rejoining of DNA strand breaks induced by 10 krad of γ-irradiation has been studied in normal human diploid skin fibroblasts and skin fibroblasts from six patients with symptoms of progeria. Although slightly more rapid in very early passage, the repair rate in normal cells was similar throughout most of their life span in vitro. The appearance of cells with reduced repair capacity was evident as the cultures became senescent. The progeric fibroblasts varied greatly in their response to irradiation. The rate of repair was greatly reduced in two strains, whereas in two others extensive DNA degradation was consistently observed in unirradiated cells. Degradation was apparently related to the radiation received from the incorporated radiolabel. Normal repair was seen in progeric fibroblasts transformed by SV40 virus

  20. Skin Graft

    Ruka Shimizu; Kazuo Kishi

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  1. SKIN CANCER

    Made Putri Hendaria; AAGN Asmarajaya; Sri Maliawan

    2013-01-01

    Skin is an organ which protect the human body from the environment. It was build by milion cells. According to the changes in human lifestyle which tends to unhealthy life, increasing ultraviolet radiation, toxins, and genetics makes the cells who build the skin do the abnormal growth being cancer cells. Classification of skin cancer is according the most common three types, they are Basal Cell Carcinoma, Squamous Cell Carcinoma, and Malignant Melanoma. More than 3,5 milion skin cancer cases ...

  2. Skin graft

    ... caused a large amount of skin loss Burns Cosmetic reasons or reconstructive surgeries where there has been skin damage or skin ... anesthesia are: Reactions to medicines Problems with breathing Risks for this surgery are: Bleeding Chronic pain (rarely) Infection Loss of ...

  3. Skin Aging

    Your skin changes as you age. You might notice wrinkles, age spots and dryness. Your skin also becomes thinner and loses fat, making it ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out ...

  4. Age-related skin changes

    Božanić Snežana

    2012-01-01

    Full Text Available Age-related skin changes can be induced by chronological ageing, manifested in subcutaneous fat reduction, and photo-ageing eliciting increased elastotic substance in the upper dermis, destruction of its fibrilar structure, augmented intercellular substance and moderate inflammatory infiltrate. Forty-five biopsy skin samples of the sun-exposed and sun-protected skin were analyzed. The patients were both males and females, aged from 17 to 81 years. The thickness of the epidermal layers and the number of cellular living layers is greater in younger skin. The amount of keratohyaline granules is enlarged in older skin. Dermoepidermal junction is flattened and the presence of elastotic material in the dermis is pronounced with age. The amount of inflammatory infiltrate is increased, the fibrous trabeculae are thickened in older skin and the atrophy of the hypodermis is observed. Chronological ageing alters the fibroblasts metabolism by reducing their life span, capacity to divide and produce collagen. During ageing, the enlargement of collagen fibrils diminishes the skin elasticity.

  5. In vitro studies of the diabetic condition using cultured fibroblasts with focus on wound healing

    Hehenberger, Karin M.

    1997-01-01

    This thesis focuses on the diabetic condition at the cellular level, and how thismay lead to late complications. Defect wound healing in diabetic patients is poorlyunderstood, but impaired granulation is observed clinically. We have therefore decidedto study an in vltro system using cultured fibroblasts. These were derived from biopsiesfrom human diabetic and non-diabetic wounds and uninjured skin, Goto-Kakazaki ratsand Wistar rats. In addition Swiss 3T3 mouse fibroblasts we...

  6. Effects of 17β-estradiol on the Synthesis of Collagen and Elastin in Cultured Human Skin Fibroblasts%17β雌二醇对人皮肤成纤维细胞胶原和弹性蛋白合成的影响

    孟飞; 王丽; 王彦; 郗林鹤; 张洁

    2016-01-01

    Objective To explore the influence of 17 beta estradiol (17β-E2) with different concentrations on the synthesis of collagen and elastin of cultured human skin fibroblasts (hSFB) at different time points in vitro. Methods Human fibroblasts were cultured with different concentrations of 17β-E2 (10-7, 10-8, 10-9, 10-10, 10-11 mol/L) for 24 hours, 48 hours and 72 hours. The corresponding RNA was extracted at respectively time points, then mRNA expression of type Ⅰprocollagen, typeⅢprocollagen and tropoelastin were detected by reverse transcription-polymerase chain reaction (RT-PCR) method. Results The mRNA expressions of procollagen Ⅰ, procollagen Ⅲ and tropoelastin were not changed in 24 hours, but up-regulated in 48 hours and declined in 72 hours by 17β-E2 stimulations. On 48 hours, the synthesis of procollagen and tropoelastin stimulated with 10-10 mol/L of 17β-E2 was significantly increased, compared with the other concentrations. On 48 hours with the same concentration, the up-regulated effect on synthesis of procollagen and tropoelastin was different, the effect on procollagen was stronger than tropoelastin, especially procollagen Ⅲ. Conclusion 17-E2 has a certain role in promoting the synthesis of collagen and elastin, though the influence is different according to different culture time and different concentration, and the most effective concentration and culture time are 10-10 mol/L and 48 hours respectively.%目的:探讨不同浓度17β雌二醇(17β-estrogen,17β-E2)在不同时间点对体外培养的人皮肤成纤维细胞(Hu-man skin fibroblast,hSFB)合成胶原及弹性蛋白的影响。方法体外培养hSFB,分别加入不同浓度的17β-E2(10-7、10-8、10-9、10-10、10-11 mol/L),继续培养24 h、48 h、72 h,在不同时间点分别提取相应的RNA,RT-PCR检测经17β-E2处理后的hSFB的Ⅰ、Ⅲ型前胶原及原弹性蛋白mRNA的表达情况。结果 RT-PCR结果显示,17β-E2处理组较空白

  7. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  8. Morfometria de fibroblastos e fibrócitos durante o processo cicatricial na pele de coelhos da raça Nova Zelândia Branco tratados com calêndula Morphometry of fibroblasts and fibrocytes during wound healing in the skin of rabbits of the New Zeland White breed treated with marigold

    Leonardo de Oliveira Pagnano

    2008-09-01

    Full Text Available O objetivo deste estudo foi avaliar a capacidade cicatrizante da calêndula (Calendula officinalis L. sobre feridas cutâneas experimentais, em 15 coelhos, distribuídos em três grupos denominados: excipiente, calêndula e controle. Cada animal foi submetido à uma incisão cirúrgica de 6cm de comprimento, lateral à coluna vertebral e suturada no padrão U. Os produtos avaliados foram colocados sobre as incisões durante sete dias na quantidade de 0,1ml (loção cremosa não-iônica - grupo excipiente; tintura de calêndula a 5% - grupo calêndula e nos animais do grupo controle não se utilizou nenhum produto. A biópsia de pele foi realizada no 1°, 3°, 5° e 7° dia após a incisão cirúrgica para avaliação morfométrica do processo cicatricial, analisando-se o número de fibroblastos e fibrócitos. A morfometria foi realizada por meio de microscópio óptico adaptado a um sistema computadorizado de análise de imagens. De acordo com os resultados, a calêndula propiciou obtenção dos maiores valores médios das células envolvidas no processo cicatricial, os fibroblastos, deduzindo que a mesma, inferiu uma resposta mais satisfatória na cicatrização em relação aos demais tratamentos.The aim of this study was to evaluate the scarring capability of marigold (Calendula officinalis L. on experimental skin wounds in 15 rabbits, distributed in three groups: excipient, marigold and control. Each animal was subjected to a surgical incision measuring 6cm in length, laterally to the spinal column and sutured in U-shape. Products evaluated were placed on the incisions for 7 days, at a rate of 0.1ml (nonionic creamy lotion - excipient group; 5% marigold extract and no treatment was provided to control animals. Skin biopsy was performed on 1, 3, 5, and 7 days after wounding, for morphometric and cicatricial process evaluations. The morphometry was performed with an optical microscope adapted to a computadorized picture analysis system. The

  9. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes

  10. Age-dependent alterations of decorin glycosaminoglycans in human skin

    Yong Li; Ying Liu; Wei Xia; Dan Lei; Voorhees, John J.; Fisher, Gary J.

    2013-01-01

    Proteoglycans, a family of glycosaminoglycan (GAG) conjugated proteins, are important constituents of human skin connective tissue (dermis) and are essential for maintaining mechanical strength of the skin. Age-related alterations of dermal proteoglycans have not been fully elucidated. We quantified transcripts of 20 known interstitial proteoglycans in human skin and found that decorin was the most highly expressed. Decorin was predominantly produced by dermal fibroblasts. Decorin was localiz...

  11. Skin manifestations in a case of trisomy 16 mosaicism

    Ousager, Lilian Bomme; Brandrup, Flemming; Andersen, Charlotte Brasch;

    2006-01-01

    We present a 48-year-old man with unilateral dermatological manifestations including hypertrichosis, telangiectasia, hyperkeratosis and hyperpigmentation. Additional findings included skeletal abnormalities and left-sided hearing loss. Skin biopsies showed changes characteristic of porokeratosis........ Fibroblast karyotyping from affected skin demonstrated trisomy 16 mosaicism, in contrast to the normal karyotype in unaffected skin and blood lymphocytes. The possible role of trisomy 16 in porokeratosis is discussed....

  12. Experience of ReCell in Skin Cancer Reconstruction

    Onur Gilleard; Nicholas Segaren; Ciaran Healy

    2013-01-01

    The ReCell system (Avita Medical) is a cell culture product that allows the immediate processing of a small split-thickness skin biopsy to produce a complete population of cells including keratinocytes, melanocytes, Langerhans cells and fibroblasts. This series is the first to highlight the reconstructive applications of ReCell following ablative skin cancer surgery. The ReCell system was utilized for three patients following skin cancer excision. In two cases, the cells were applied to foreh...

  13. Human skin equivalent as an alternative to animal testing

    Brunner, Herwig; Kersen, Silke; Weimer, Michaela; Mertsching, Heike

    2008-01-01

    The 3-D skin equivalent can be viewed as physiologically comparable to the natural skin and therefore is a suitable alternative for animal testing. This highly differentiated in vitro human skin equivalent is used to assess the efficacy and mode of action of novel agents. This model is generated from primary human keratinocytes on a collagen substrate containing human dermal fibroblasts. It is grown at the air-liquid interface which allows full epidermal stratification and epidermal-dermal in...

  14. SKIN AND HAIR CHANGES AFTER FORTY

    Manisha

    2014-04-01

    Full Text Available Aging is a continuous, dynamic, and an irreversible process. Direct exposure to ultra-violet radiations, skin is particularly prone to early aging, known as photo aging. Skin aging is particularly important because of its visibility and social impact. As women age we will notice changes to our skin and hair during the menopause. Dry, thinning, fragile, less tolerant and sagging skin are common complaints. The main reasons for the change in skin is the loss of estrogen, testosterone and dehydroepiandrosterone (DHEA etc, 1, 2, 3 from the age of 35 onwards up to menopause, the more we have had long-term exposure to the elements, such as sun and wind the more this becomes evident. Estrogen is very involved in the normal function of the skin. It directly affects the function of key cells in the skin, like the fibroblast (produces collagen and elastin, keratinocyte (closely involved in skin protection and melanocytes (involved in evenness of skin color, etc.. It also helps regulate hair follicle function (hair production as well as sebaceous gland activity (producing skin oils. After the age of forty most of women enters menopause, during which estrogens levels decreases, which leads to different types of hair and skin changes which has been described in this article.

  15. Naïve adult stem cells isolation from primary human fibroblast cultures.

    Wenzel, Vera; Roedl, Daniela; Ring, Johannes; Djabali, Karima

    2013-01-01

    Over the last decade, several adult stem cell populations have been identified in human skin (1-4). The isolation of multipotent adult dermal precursors was first reported by Miller F. D laboratory (5, 6). These early studies described a multipotent precursor cell population from adult mammalian dermis (5). These cells--termed SKPs, for skin-derived precursors-- were isolated and expanded from rodent and human skin and differentiated into both neural and mesodermal progeny, including cell types never found in skin, such as neurons (5). Immunocytochemical studies on cultured SKPs revealed that cells expressed vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors, in addition to fibronectin and multipotent stem cell markers (6). Until now, the adult stem cells population SKPs have been isolated from freshly collected mammalian skin biopsies. Recently, we have established and reported that a population of skin derived precursor cells could remain present in primary fibroblast cultures established from skin biopsies (7). The assumption that a few somatic stem cells might reside in primary fibroblast cultures at early population doublings was based upon the following observations: (1) SKPs and primary fibroblast cultures are derived from the dermis, and therefore a small number of SKP cells could remain present in primary dermal fibroblast cultures and (2) primary fibroblast cultures grown from frozen aliquots that have been subjected to unfavorable temperature during storage or transfer contained a small number of cells that remained viable (7). These rare cells were able to expand and could be passaged several times. This observation suggested that a small number of cells with high proliferation potency and resistance to stress were present in human fibroblast cultures (7). We took advantage of these findings to establish a protocol for rapid isolation of adult stem cells from primary fibroblast cultures that are

  16. Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts

    Rehders, Maren; Grosshäuser, Bianka B.; Smarandache, Anita; Sadhukhan, Annapurna; Mirastschijski, Ursula; Kempf, Jürgen; Dünne, Matthias; Slenzka, Klaus; Brix, Klaudia

    2011-04-01

    Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respiratory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of extraterrestrial lunar dusts on human health is required to best support future missions to moon, mars or other destinations. In this study, we used several methods to assess the specific effects of extraterrestrial dusts onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and because a well orchestrated program ensures proper wound healing. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology and viability of the cells were determined. Cytotoxicity was measured using the MTT assay and by monitoring culture impedance, while phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells which was also investigated by propidium iodide intake. It was found that the effects of the two types of dust simulants on the different features of both cell lines varied to a considerable extent. Moreover, proliferation of HaCaT keratinocytes, as analyzed by Ki67 labeling, was suppressed in sub-confluent cultures exposed to lunar dust simulant. Furthermore, experimental evidence is provided for a delay in regeneration of keratinocyte monolayers from scratch-wounding when exposed to lunar dust simulant. The obtained results will facilitate further investigations of dust exposure during wound healing and will ease risk assessment studies e.g., for lunar lander approaches. The investigations will help to determine safety measures to be taken during

  17. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  18. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Center for excellence Modern Textile Characterization, Tehran (Iran, Islamic Republic of)

    2015-03-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  19. Curious Skin

    Angel, G.

    2010-01-01

    Some of Henry Wellcome’s collection of tattoos on human skin will be on display in our forthcoming Skin exhibition. But how did the Parisian doctor from whom they were acquired come by his macabre collection of tattoos in the first place, and what did they mean to those whose skin they were on? It’s Gemma Angel‘s job to find out…

  20. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  1. The effect of pantothenic acid deficiency on keratinocyte proliferation and the synthesis of keratinocyte growth factor and collagen in fibroblasts.

    Kobayashi, Daisaku; Kusama, Miho; Onda, Masaaki; Nakahata, Norimichi

    2011-01-01

    It has been reported that pantothenic acid (vitamin B5) and panthenol, an alcohol derivative of pantothenic acid, have beneficial moisturizing effects on the skin. However, few studies have investigated the mechanism of action of pantothenic acid on skin tissues. We tried to clarify the role of pantothenic acid on skin function by using keratinocytes and fibroblasts. The depletion of pantothenic acid from the culture medium suppressed keratinocyte proliferation and promoted differentiation. Moreover, pantothenic acid depletion decreased the synthesis of keratinocyte growth factor and procollagen 4a2 in fibroblasts. These results suggest that pantothenic acid is essential for maintaining keratinocyte proliferation and differentiation. PMID:21258175

  2. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  3. Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1

    Roper, James A.; Williamson, Rosalind C.; Bally, Blandine; Cowell, Christopher AM; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D.

    2015-01-01

    Chronic skin healing defects are one of the leading challenges to lifelong wellbeing, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed and driving wound contraction. We discover that mechanical stimulation of skin with ultrasound...

  4. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl).

    Lopez, E; Le Faou, A; Borzeix, S; Berland, S

    2000-02-01

    The components of the cutaneous envelope, the epidermis and the dermis, change in response to aging or environmental stress factors. The fibroblasts involved in maintaining skin tone are the main targets. Nacre, mother of pearl, from Pinctada maxima, which can stimulate and regulate bone forming cells, was implanted in the dermis of rats to test its action on the skin fibroblasts. This report describes the effect of nacre on the skin fibroblast recruitment and physiological activity. It resulted in enhanced extracellular matrix synthesis and the production of components implicated in cell to cell adhesion and communication (such as decorine) and in tissue regeneration (type I and type III collagens). The nacre implant produced a well vascularized tissue. The physiological conditions in the region around the implant are thus those required for the positive interactions between the dermis and epidermis which are fundamental for the physiological function of the skin. PMID:10798323

  5. Sjögren-Larsson syndrome. Impaired fatty alcohol oxidation in cultured fibroblasts due to deficient fatty alcohol:nicotinamide adenine dinucleotide oxidoreductase activity.

    Rizzo, W B; Dammann, A L; Craft, D A

    1988-01-01

    Lipid metabolism was studied in cultured skin fibroblasts from patients with the inherited disorder, Sjögren-Larsson syndrome (SLS). Intact SLS fibroblasts incubated in the presence of [1-14C]palmitate accumulated more radioactive hexadecanol than did normal cells, whereas incorporation of radioactivity into other cellular lipids was unaltered. The hexadecanol content of SLS fibroblasts was abnormally elevated. Hexadecanol accumulation was not due to increased fatty alcohol synthesis nor its ...

  6. Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release

    He Shaoheng; Luo Jianmin; Wang Li

    2007-01-01

    Abstract Background It has been recognized that dermal fibroblasts and matrix metalloproteases (MMP) play crucial roles in wound healing process in skin. Thrombin was found to stimulate IL-8 release from human dermal fibroblasts (HDFs). However, little is known of the effect of thrombin on secretion of MMPs from dermal fibroblasts. In the present study, the influence of thrombin on proMMP-2 and proMMP-9 activity release from primary cultured HDFs, and its potential signaling pathways were inv...

  7. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  8. Clinical Experience with Chitosan Matrix and Cultured Fibroblasts for Burns

    Gaziza Danlybayeva

    2014-12-01

    Full Text Available Introduction. Burns are an important public health challenge due to the frequency of getting burns in day-to-day life, occupational hazards, and catastrophes. Treatment of burns is complex and is associated with high morbidity and mortality. Duration and complexity of burn treatment require finding new ways of curing and rehabilitating burns. The result of burn treatment plays a significant role in post-traumatic status of a patient and his or her consequent adaptation in society. Chitosan is a natural safe non-toxic product compatible with human tissues, characterized by hydrosorbid, anticoagulant, antibacterial, and wound healing features. The study aims to  show a clinical application of chitosan-pectin scaffold with cultured human skin fibroblasts in the treatment of deep burns.Methods. The substrate was prepared by dissolving 3% chitosan in 0.5N acetic acid, which was then mixed with 3% solution of pectin dissolved in distillated water. Chitosan film was formed in a Petri dish for 20-24 hours at 20-25 °C. After drying the film, cultured allogeneic fibroblasts (patent number RK-25091 were seeded on its surface.Results. The results from an in vitro culture study showed that human allogeneic fibroblasts could adhere well and grow on the selected scaffold with a typical morphology. During autodermoplasty surgery, cultured allogeneic fibroblasts were applied on granulating wounds of 9 patients with IIIA to IVB degree burns and limited donor resources. Wounds treated with the fibroblast-seeded scaffold among all patients provided the highest level of re-epithelialization (day 5, in comparison to cell-free scaffold (day 7 and untreated surface of wounds (day 10.Conclusion. Our results indicate the potential use of chitosan for wound healing due to its allogenic fibroblast adherence to scaffolding as well as high epithelization. This warrants further studies on chitosan for use in wounds resulting from third and fourth degree burns.

  9. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Grant, Colin A.; Peter C. Twigg; Richard Baker; Tobin, Desmond J.

    2015-01-01

    Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufactu...

  10. The time-pattern of rises and falls in proliferation fades with senescence of mortal lines and is perpetuated in immortal rat hepatoma Fao cell line.

    Maigné, J; Deschatrette, J; Sarrazin, S; Hecquet, B; Guerroui, S; Wolfrom, C

    1998-02-01

    Immortal cells perpetuate the rises and falls of proliferation that are progressively damped in mortal long-term cultured cells. For immortal rat hepatoma Fao cells, similar waves of proliferation occurred about every 3-4 wk. Under the same conditions, embryonic human fibroblasts and transformed but not immortalized embryonic fibroblasts display similarly recurring proliferation waves that progressively decrease in amplitude until senescence of the lines. In addition, strains of diploid normal human skin fibroblasts cultured under different culture conditions display a similar time-pattern of proliferation. Although the amplitude and baseline of these fluctuations are characteristic for each cell line, a common point was marked slow down in proliferation after every sequence of about 25 population doublings for all cells. Renewed proliferation waves of Fao cells allow about 22-23 additional population doublings each. Normal embryonic fibroblast culture and its transformed counterpart accumulate about 30 and 60 population doublings, respectively, before senescence. Normal fibroblast strains accumulate about 25 population doublings over their entire life spans. This halt in proliferation after every stretch of about 25 population doublings may correspond to a structural or functional stop following attrition of telomeric DNA. This putative stop may be bypassed once in transformed embryonic cells and repetitively in immortal cells. In support of this hypothesis, we observed rapid telomere shortening, in two steps, during divisions of mortal embryonic cells, and maintenance of long telomeres in immortal Fao cells, which may indicate episodic repair of telomeres. Alternatively, such maintenance of long telomeres may reflect survival and successive clonal growth of rare cells with long telomeres. We suggest that the balance between telomere attrition and repair processes regulates the waves of proliferation. PMID:9542655

  11. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes.

    Kawecki, Marek; Kraut, Małgorzata; Klama-Baryła, Agnieszka; Łabuś, Wojciech; Kitala, Diana; Nowak, Mariusz; Glik, Justyna; Sieroń, Aleksander L; Utrata-Wesołek, Alicja; Trzebicka, Barbara; Dworak, Andrzej; Szweda, Dawid

    2016-06-01

    In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts. PMID:27153827

  12. Phenotype change and migration of adventitial fibroblasts during postangioplasty

    Objective: To verify fibroblasts translocation from adventitia into neointima by labeling adventitia cells with bromodeoxyuridine (BrDU) after angioplasty, and to explore the relationship of adventitial fibroblast with restenosis. Methods: Vascular restenosis model was created by injured intima of common carotid artery (CCA) of mouse with guide wire, adventitial fibroblasts were labeled with BrDU, and dynamic distribution of myofibroblasts in adventitia, media and neoitima was observed at different times (3 d, 7 d, 14 d and 28 d) by means of single/double-label immunohistochemistry, light microscope, electronic microscope and image analysis system. Results: 1.Immunohistochemistry: More adventitial fibroblasts combined with BrDU could be found in adventitia on the 3rd day of postangioplasty, and the number of this kind of cells reached the peak on 7th day, and at the same time fibroblasts changed their phenotypes and became myofibroblasts, which produced α-actin and extracellular matrix (ECM). On 14th day, the number of the positive cells decreased in adventitia, increased in media and neointima associated with intima thickening; on 28th day, while the number of fibroblasts labeled by BrDU returned to the basic-line in adventitia, media and intima, nevertheless, intima thickening and vascular stenosis and intimal ELM precipitation were still present. There were significant differences in the number of fibroblasts labeled with BrDU located in three layers of artery (P<0.05). 2. Electronic microscope: After angioplasty, the plasm of fibroblasts became rich, mitochondrious and increase of Golgi apparatus; and the amount of rough endoplasmic reticulums rose with more secretory granules, together with a great amount of collagen synthesized forming the microfilaments; on days of 7th and 14th, the wide pseudopodia of myofibroblasts could be found extending into the windows on the external elastic lamina (ELL) and the internal elastic lamina (ILL); and showing the tendency

  13. 尼纶线、薇荞线对缝合部位皮肤衰老因子影响的实验研究%Experimental study for comparing the effects of nylon line and vicryl line on the skin aging factors on the operation area

    马恬; 贾赤宇; 张辉; 徐凯

    2011-01-01

    Objective To explore a better clinical surgical suture by comparing the effect of nylon line and vicryl line on the skin aging on the operation area. Methods Twenty aging rabbits were randomly divided into 2 groups nnylon group and vicryl group. Two different kinds of lines were implanted under the skin of rabbits at day 1 ,30,45 ,60 , 75 , 83 , 87 , respectively. At day 90 , skin samples from surgical areas were cut and divided irUo two pafls in two goups. One part of samples was used to determine total antioxidant capacity ( T AOC) ,superoxide dismutase ( SOD) activity. the contents of hydrogen peroxide ( H202 ) and hydroxyproline( HYP) in aging skins,while the other part was used to observe the skin histopathological changes on the operation area. Results The total antioxidanc capacity,the superoxide dismutase capacity.and the hydroxyproline content in vicryl group were significantly higher than those in nylon group( P < 0. 05 ) . The level of hydrogen peroxide was significantly lower in vicryl group than that in nylon group( P< 0. 05 ) . Conclusion Compared with the nylon line,rhe vicryl line can delay the skin aging hy increasing the total antioxidant capacity and superoxide dismutase. activity and decreasing the hydrogen peroxide in the implantation site. Compared wiLh the nylon line, the vicryl line may be more favorable for wound healing by regulating the expression of skin aging factors in the operation region.%目的 建立家兔的衰老模型,通过比较尼龙线和薇荞线对于手术区局部皮肤衰老因子影响的研究,以此来指导临床选择缝线. 方法 20只衰老家兔随机分为尼龙线组和薇荞线组.将两种线植入家兔皮肤下,分别于3 d,7 d,15 d,30 d,45 d,60 d,90 d切取各缝线手术区皮肤样本,一份测定家兔皮肤组织中总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)活性、过氧化氢(H2O2)及羟脯氨酸的含量,另一份做HE染色,观察手术区皮肤组织学的改变. 结果 薇荞

  14. Skin Cancer in Skin of Color

    Bradford, Porcia T.

    2009-01-01

    Skin cancers in skin of color often present atypically or with advanced stage in comparison to Caucasian patients. Health care providers must maintain a high index of suspicion when examining skin lesions in skin of color.

  15. Evaluation of X-Inactivation Status and Cytogenetic Stability of Human Dermal Fibroblasts after Long-Term Culture

    Zhi-Gang Xue; Zhan-Ping Shi; Juan Dong; Ting-Ting Liao; Yan-Peng Wang; Xue-Ping Sun; Zheng-Jie Yan; Xiao-Qiao Qian; Yu-Gui Cui; Juan Chen; Jia-Yin Liu; Guoping Fan

    2010-01-01

    Human primary fibroblasts are a popular type of somatic cells for the production of induced pluripotent stem (iPS) cells. Here we characterized biological properties of primary fibroblasts in terms of cell-growth rate, cytogenetic stability, and the number of inactive X chromosomes during long-term passaging. We produced eight lines of female human dermal fibroblasts (HDFs) and found normal karyotype and expected pattern of X chromosome inactivation (XCI) at low passages (Passage P1-5). Howev...

  16. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  17. Fibroblasts and myofibroblasts in wound healing

    Darby IA

    2014-11-01

    Full Text Available Ian A Darby,1 Betty Laverdet,2 Frédéric Bonté3, Alexis Desmoulière2 1School of Medical Sciences, RMIT University, Melbourne, VIC, Australia; 2Department of Physiology and EA 6309, FR 3503, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France; 3LVMH Recherche, Saint Jean de Braye, France Abstract: (Myofibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myofibroblasts are embedded in a sophisticated extracellular matrix (ECM that they secrete, and a complex and interactive dialogue exists between (myofibroblasts and their microenvironment. In addition to the secretion of the ECM, (myofibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myofibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myofibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis, or during aging, this dialogue between the (myofibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myofibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment. Keywords: myofibroblast, fibroblast, α-smooth muscle actin

  18. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    Quan, Taihao; Fisher, Gary J.

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin d...

  19. Exposure of human lung fibroblasts to ozone: cell mortality and hyaluronan metabolism

    Mayer, D.; Branscheid, D. (Thoraxklinik Heidelberg-Rohrbach, Heidelberg, (West Germany))

    1992-04-01

    Exposure of cultures of human lung fibroblasts to 0.5 ppm ozone for 20 h resulted in a significant increase in cellular mortality by 29%; after exposure to 2.5 ppm ozone for 4 h, the increase amounted to 74%. A marked difference in sensitivity to ozone was observed between fibroblast lines from different individuals. This variability in resistance to ozone was more evident after exposure to 0.5 ppm ozone for 20 h, when compared with 2.5 ppm ozone for 4 h. In one fibroblast line, synthesis of hyaluronan was enhanced by exposure to 0.5 ppm ozone for 20 h. The concentrations of hyaluronan in culture media increased in experiments using different fibroblast cell lines, a phenomenon that was obvious both if cell numbers and combined protein concentrations of cells and media are selected as references for hyaluronan concentrations.

  20. Skin Pigment

    ... This Article Medical Dictionary Also of Interest (Quiz) Vitiligo (Video) Hives Additional Content Medical News Overview of ... Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment that ...

  1. Skin abscess

    ... infection (often staphylococcus) A minor wound or injury Boils Folliculitis (infection in a hair follicle) A skin ... Elsevier Churchill Livingstone; 2009:chap 90. Read More Boils Endocarditis Folliculitis MRSA Osteomyelitis Update Date 11/12/ ...

  2. Human fibroblasts (KMST-6/RAS line) transformed with 60Co gamma-rays and c-Ha-ras oncogene constitutively produce a large amount of human granulocyte-colony stimulating factor (G-CSF)

    Human fibroblasts (KMST-6/RAS) transformed with 60Co gamma-rays and the Ha-ras oncogene formed tumors in nude mice. These mice showed splenomegaly and an increase in granulocytes in the peripheral blood. There was a direct correlation between tumor size and spleen size. Histologically, prominent proliferation of granulocytes was observed in the enlarged spleen. These findings indicated that KMST-6/RAS cells might have been producing granulocyte colony-stimulating factor (G-CSF) in the nude mice. In fact, in vitro studies demonstrated that the cells produced G-CSF in the culture medium and that production of G-CSF was greater during the logarithmic growth than during the stationary phase. Nearly equal amounts of G-CSF were produced by cells grown in serum-free or 10% serum-supplemented medium. Neither expression of the ras oncogene nor the tumorigenicity of cells correlated with the production of G-CSF. G-CSF production in KMST-6/RAS cells was significantly stimulated by butyrate, but not by dexamethasone or 5-azacytidine. (author)

  3. Examining the Genomic Influence of Skin Antioxidants In Vitro

    James V. Gruber

    2010-01-01

    Full Text Available A series of well-known, purified antioxidants including: Resveratrol, Epigallocatechin Gallate (EGCG, Genistein, Rosavin, Puerarin, Chlorogenic Acid, Propolis and two newer unexplored isoflavonoids isolated from Maclura pomifera (Osage Orange including Pomiferin and Osajin, were applied to Normal Human Dermal Fibroblasts (NHDF and Normal Human Dermal Keratinocytes (NHEK for 24 hours. The resulting treated cells were then examined using human gene microarrays supplied by Agilent. These chips typically have somewhere on the order of 30,000 individual genes which are expressed in the human genome. For our study, this large list of genes was reduced to 205 principal genes thought to be important for skin and each individual ingredient was examined for its influence on the culled list of genes. Working on a hypothesis that there may be some common genes which are either upregulated or downregulated by all or most of these ingredients, a short list of genes for each cell line was developed. What appears to emerge from these studies is that several genes in the gene pool that was screened are influenced by most or all of the molecules of interest. Genes that appear to be upregulated in both cell lines by all the ingredients include: ACLY, AQP3, COX1, NOS3, and PLOD3. Genes that appear to be downregulated in both cell lines by all ingredients include only PGR.

  4. Examining the genomic influence of skin antioxidants in vitro.

    Gruber, James V; Holtz, Robert

    2010-01-01

    A series of well-known, purified antioxidants including: Resveratrol, Epigallocatechin Gallate (EGCG), Genistein, Rosavin, Puerarin, Chlorogenic Acid, Propolis and two newer unexplored isoflavonoids isolated from Maclura pomifera (Osage Orange) including Pomiferin and Osajin, were applied to Normal Human Dermal Fibroblasts (NHDF) and Normal Human Dermal Keratinocytes (NHEK) for 24 hours. The resulting treated cells were then examined using human gene microarrays supplied by Agilent. These chips typically have somewhere on the order of 30,000 individual genes which are expressed in the human genome. For our study, this large list of genes was reduced to 205 principal genes thought to be important for skin and each individual ingredient was examined for its influence on the culled list of genes. Working on a hypothesis that there may be some common genes which are either upregulated or downregulated by all or most of these ingredients, a short list of genes for each cell line was developed. What appears to emerge from these studies is that several genes in the gene pool that was screened are influenced by most or all of the molecules of interest. Genes that appear to be upregulated in both cell lines by all the ingredients include: ACLY, AQP3, COX1, NOS3, and PLOD3. Genes that appear to be downregulated in both cell lines by all ingredients include only PGR. PMID:20706672

  5. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts.

    Schumacher, Marion; Schuster, Christian; Rogon, Zbigniew M; Bauer, Tobias; Caushaj, Nevisa; Baars, Sebastian; Szabowski, Sibylle; Bauer, Christine; Schorpp-Kistner, Marina; Hess, Jochen; Holland-Cunz, Stefan; Wagner, Erwin F; Eils, Roland; Angel, Peter; Hartenstein, Bettina

    2014-05-01

    Previous studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs) , JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts. Although cocultured JNK1/JNK2-deficient fibroblasts did not affect keratinocyte proliferation, temporal monitoring of the transcriptome of differentiating keratinocytes revealed that efficient keratinocyte differentiation not only requires the support by fibroblast-derived soluble factors, but is also critically dependent on JNK1 and JNK2 signaling in these cells. Moreover, we showed that the repertoire of fibroblast transcripts encoding secreted proteins is severely disarranged upon loss of JNK under the coculture conditions applied. Finally, our data demonstrate that efficient keratinocyte terminal differentiation requires constant presence of JNK-dependent and fibroblast-derived soluble factors. Taken together, our results imply that mesenchymal JNK has a pivotal role in the paracrine cross talk between dermal fibroblasts and epidermal keratinocytes during wound healing. PMID:24335928

  6. Nucleolin enhances the proliferation and migration of heat-denatured human dermal fibroblasts.

    Jiang, Bimei; Li, Yuanbin; Liang, Pengfei; Liu, Yanjuan; Huang, Xu; Tong, Zhongyi; Zhang, Pihong; Huang, Xiaoyuan; Liu, Ying; Liu, Zhenguo

    2015-01-01

    Denatured dermis, a part of dermis in burned skin, has the ability to restore its normal morphology and functions after their surrounding microenvironment is improved. However, the cellular and molecular mechanisms by which the denatured dermis could improve wound healing are still unclear. This study aimed to investigate the role of nucleolin during the recovery of heat-denatured human dermal fibroblasts. Nucleolin mRNA and protein expression were significantly increased time-dependently during the recovery of heat-denatured human dermal fibroblasts (52 °C, 30 seconds). Heat-denaturation promoted a time-dependent cell proliferation, migration, chemotaxis, and scratched wound healing during the recovery of human dermal fibroblasts. These effects were prevented by knockdown of nucleolin expression with small interference RNA (siRNA), whereas overexpression of nucleolin enhanced cell proliferation, migration, and chemotaxis of human dermal fibroblasts with heat-denaturation. In addition, the expression of transforming growth factor-beta 1(TGF-β1) was significantly increased during the recovery of heat-denatured dermis and human dermal fibroblasts. TGF-β1 expression was up-regulated by nucleolin in human dermal fibroblasts. The results suggest that nucleolin expression is up-regulated, and play an important role in promoting cell proliferation, migration, and chemotaxis of human dermal fibroblasts during the recovery of heat-denatured dermis with a mechanism probably related to TGF-β1. PMID:26148015

  7. Minced Skin for Tissue Engineering of Epithelialized Subcutaneous Tunnels

    Fossum, Magdalena; Zuhaili, Baraa; Hirsch, Tobias; Spielmann, Malte; Reish, Richard G.; Mehta, Priyesh; Eriksson, Elof

    2009-01-01

    We used minced, autologous skin for neoepithelialization of surgically created subcutaneous tunnels in a large animal model. Partial-thickness skin grafts were harvested from the back region of five 50–60 kg Yorkshire pigs. The skin was minced to 0.8 × 0.8 × 0.3 mm particles. Silicone-latex tubes were covered with fibrin, rolled in minced skin, and placed in subcutaneous tunnels created in the abdominal area. For comparison, single cell suspensions of keratinocytes and fibroblasts in fibrin o...

  8. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing.

    Rognoni, Emanuel; Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L; Simons, Ben D; Watt, Fiona M; Driskell, Ryan R

    2016-07-15

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  9. Lysine hydroxylation of collagen in a fibroblast cell culture system

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  10. Skin color - patchy

    Patchy skin color is areas where the skin color is irregular. Mottling or mottled skin refers to blood vessel changes in ... in the skin cells that gives skin its color Growth of bacteria or other organisms on the ...

  11. Skin Cancer Screening

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease in ...

  12. Skin Health and Skin Diseases

    ... watch for with the moles on your skin: Asymmetry : the shape of one half does not match ... Number 4 Pages 22 - 25 MedlinePlus | Subscribe | Magazine Information | Contact Us | Viewers & Players Friends of the National ...

  13. Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung.

    Steven K Huang

    Full Text Available Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF, a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6 with those of nonfibrotic patient controls (n = 3 and commercially available normal lung fibroblast cell lines (n = 3. We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2 in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels. We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT; these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF

  14. Use of lymphoblastoid cell lines to evaluate the hypersensitivity to ultraviolet radiation in Cockayne syndrome

    Cockayne syndrome (CS) is a rare autosomal recessive disease characterized by acute sun sensitivity, cachectic dwarfism, and neurologic and skeletal abnormalities. Cultured skin fibroblasts from patients with this disease are known to be hypersensitive to the lethal effects of 254-nm UV radiation. The authors have studied the sensitivity of 254-nm UV radiation of lymphoblastoid lines derived from 3 typical CS patients, 1 atypical CS patient who had a very late age of onset of clinical manifestations, 2 patients who had both xeroderma pigmentosum (XP) and typical CS, and 3 heterozygous parents of these patients. Post-UV survival was determined by the trypan-blue dye-exclusion method. The lymphoblastoid lines from the 3 typical CS patients, the atypical CS patient, and the 2 patients with both CS and XP had decreased post-UV viability in comparison with lines from normal donors. Lines from the heterozygous parents had normal post-UV viability. The post-UV viability of the typical CS lines was similar to that of a XP complementation group C line. The relative post-UV viability of lymphoblastoid lines from the typical CS patients was similar to the relative post-UV survival of their fibroblast lines. The lymphoblastoid line from the atypical CS patient had a post-UV viability similar to that of the typical CS patients. Thus, the relative hypersensitivity of CS patients cells in vitro does not reflect the severity or age of onset of the patients clinical manifestations. The lymphoblastoid lines from the 2 patients who had both CS and XP were significantly more sensitive to the UV radiation than those from patients with only CS. Our studies demonstrate that lymphoblastoid lines from patients with CS are appropriate and useful cell lines for the study of the inherited hypersensitivity to UV radiation

  15. Low dose radiation effects on the transcription of consensus radiation response genes in primary and immortalized human fibroblast cells

    Complete text of publication follows. OBJECTIVE: The linear non-threshold model suggests that tumors might be induced even by low radiation doses. Still, most of the conventional methods are unable to detect damages below 100 mGy. We have studied whether transcriptional responses of consensus radiation response genes can be detected after low dose radiation exposure in directly exposed or bystander primary human fibroblast cells. The short term proliferation capacity of primary fibroblast cells in culture limits their long term application. Therefore we tried to immortalize the cells by the introduction of the human telomerase gene using retroviral vectors. METHODS: Primary human fibroblast cell lines were established from skin biopsies of cancer patients and foreskin samples of young children. To create immortalized cell lines the human telomerase gene was cloned into a retroviral vector. Primary fibroblast cells were transduced and their proliferation capacity studied. To investigate radiation induced transcriptional alterations, cells were irradiated with 60Co γ-rays (0; 0.01; 0,04; 0,1; 2 and 8 Gy) and 2 hours later total cellular RNA was isolated both from directly exposed and bystander cells. Transcriptional alterations were followed in consensus radiation response genes (CDKN1, GADD45, GDF15, IER5, PLK3, TP53INP1) with quantitative real time PCR (Corbett/ SybrGreen). RESULTS: There is an elevated expression of CDKN1, GADD45, GDF15, PLK3, TP53INP1 in the exposed cells. We see only for the PLK3 a dose-dependent increase which manifested also at low doses. It seems this gene is the most sensitive to radiation at low doses. The hTERT-immortalized cells were morphologically identical to the primary cells. the radiation-induced transcriptional profile of immortalized cells were very similar to the primary ones. CONCLUSIONS: hTERT immortalized cells can be used to mimic alterations in primary cells. Low dose irradiation doesn't influence the expression of most of

  16. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts

    Sara E. Howden

    2015-12-01

    Full Text Available The derivation of genetically modified induced pluripotent stem (iPS cells typically involves multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal events. We report the generation of gene-targeted iPS cell lines following a single electroporation of patient-specific fibroblasts using episomal-based reprogramming vectors and the Cas9/CRISPR system. Simultaneous reprogramming and gene targeting was tested and achieved in two independent fibroblast lines with targeting efficiencies of up to 8% of the total iPS cell population. We have successfully targeted the DNMT3B and OCT4 genes with a fluorescent reporter and corrected the disease-causing mutation in both patient fibroblast lines: one derived from an adult with retinitis pigmentosa, the other from an infant with severe combined immunodeficiency. This procedure allows the generation of gene-targeted iPS cell lines with only a single clonal event in as little as 2 weeks and without the need for drug selection, thereby facilitating “seamless” single base-pair changes.

  17. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin, to...... metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed a...

  18. Chick embryo fibroblasts produce two forms of hyaluronidase

    Orkin, RW; Toole, BP

    1980-01-01

    Cultured chick embryo fibroblasts derived from skin and skeletal muscle exhibit hyaluronidase activity both associated with the cell layer and secreted into the medium. Although both forms of the enzyme have a number of similar characteristics (R.W. Orkin and B.P. Toole, 1980, J. Biol. CHem. 255), they differ in thermal stability at neutral pH and in behavior on ion-exchange chromatography. Both forms of the enzyme are equally stable at acidic pH for long intervals, but the cell-associated hy...

  19. Intracellular accumulation of azithromycin by cultured human fibroblasts.

    Gladue, R P; Snider, M E

    1990-01-01

    Azithromycin was shown to achieve high concentrations in human skin fibroblasts. Intracellular penetration occurred rapidly (10 micrograms/mg of cellular protein after 3 h) and then increased progressively over a 3-day period; azithromycin accumulated up to 21 times more than erythromycin (61.1 versus 2.9 micrograms/mg of protein). Uptake was dependent on the extracellular concentration, was inhibited at 4 degrees C, did not occur in nonviable cells, and was reduced by a low pH. Intracellular...

  20. So You Can Teach Old Fibroblasts New Tricks.

    Virós, Amaya; Girotti, Maria Romina; Marais, Richard

    2016-06-01

    New data show that as dermal fibroblasts grow old, they increase their secretion of the WNT antagonist sFRP2 to drive melanoma cell metastasis. sFRP2 suppresses β-catenin and MITF signaling in melanoma cells, downregulating the redox regulator APE1, making melanoma cells more sensitive to oxidative stress and driving resistance to BRAF inhibitors. Thus, the aging microenvironment in elderly patient skin activates a signaling pathway that drives more aggressive melanoma cell behavior. Cancer Discov; 6(6); 581-3. ©2016 AACR. PMID:27261482

  1. Study of mast cell count in skin tags

    Zaher Hesham

    2007-01-01

    Full Text Available Background: Skin tags or acrochordons are common tumors of middle-aged and elderly subjects. They consist of loose fibrous tissue and occur mainly on the neck and major flexures as small, soft, pedunculated protrusions. Objectives: The aim was to compare the mast cells count in skin tags to adjacent normal skin in diabetic and nondiabetic participants in an attempt to elucidate the possible role of mast cells in the pathogenesis of skin tags. Participants and Methods: Thirty participants with skin tags were divided into group I (15 nondiabetic participants and group II (15 diabetic participants. Three biopsies were obtained from each participant: a large skin tag, a small skin tag and adjacent normal skin. Mast cell count from all the obtained sections was carried out, and the mast cell density was expressed as the average mast cell count/high power field (HPF. Results: A statistically significant increase in mast cells count in skin tags in comparison to normal skin was detected in group I and group II. There was no statistically significant difference between mast cell counts in skin tags of both the groups. Conclusion: Both the mast cell mediators and hyperinsulinemia are capable of inducing fibroblast proliferation and epidermal hyperplasia that are the main pathologic abnormalities seen in all types of skin tags. However, the presence of mast cells in all examined skin tags regardless of diabetes and obesity may point to the possible crucial role of mast cells in the etiogenesis of skin tags through its interaction with fibroblasts and keratinocytes.

  2. Neutron skin in Osmium isotopes

    Here we have made an attempt to calculate neutron skin thickness in rare earth even-even osmium isotopes. The selected isotopes ranges from 2-p to 2-n drip line. Neutron skin is an important feature of neutron rich nuclei. The ground state proton and neutron rms radii have been calculated using HFB approximation. A comparison of calculated radii have been done by using two different Skyrme parameterizations and two different basis

  3. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.

    Pellman, Jason; Zhang, Jing; Sheikh, Farah

    2016-05-01

    Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field. PMID:26996756

  4. How to Approach Finnish Retail Market when Launching a New Skin Care Line: a Case Study of Créations Couleurs

    Nordenswan, Katarina; Huttunen, Anne

    2012-01-01

    The cosmetics industry is one of the biggest lines of businesses in the world. In Finland people spend thousands of Euros per year on cosmetic and hygiene products. Everything changes constantly and this has reflected to the cosmetics industry as well as consumers. People increasingly desire several options to choose from and want quick results. The topic for this thesis came from a French cosmetic company Créations Couleurs which develops and manufactures raw materials for different cosm...

  5. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome

    Coelho, Adriano C.; Oliveira, Jordana C.; Espada, Caroline R.; Reimão, Juliana Q.; Trinconi, Cristiana T.; Uliana, Silvia R. B.

    2016-01-01

    Background Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine. Methodology/Principal Findings A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine. Conclusions/Significance Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration. PMID:27144739

  6. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome.

    Adriano C Coelho

    2016-05-01

    Full Text Available Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine.A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine.Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration.

  7. Effect of radiation on reconstitution of skin equivalent (dermal alterations)

    Dermal equivalents have been treated by single doses of gamma irradiation of 10, 20, 30 and 50 Gray. Numerations at different times show a dose and time dependant diminution of cellular population. This diminution is histologically observed in dermal part of reconstituted skin, in association with cellular and functional alterations of fibroblast cells. Modifications of epidermal epithelia are also noted in some reconstituted skin. This model would be useful to apprehend the effect of a dermal irradiation lesion on the later epidermization. (author)

  8. 高葡萄糖高游离脂肪酸对皮肤成纤维细胞β-连环蛋白表达的影响%Effects of high glucose level and free fatty acids on expression of β-catenin in skin fibroblasts

    主父中印; 林樾; 刘恿铂; 蒋亚楠; 谭谦

    2014-01-01

    Objective To study the effects of high glucose,high free fatty acids (FFA) and combination on the expression of β-catenin in skin fibroblasts in vivo.Methods Normal human skin firbroblasts (HSFs) were pelleted and grown in high-glucose Dulbecco' s modified Eagle' s medium (DMEM,glucose concentration:25 mmol/L) supplemented with 10% fetal bovine serum (FBS).Cells in passage three were used for the following experiments.They were seeded in 96-well plates and cultured in nutrient solution with different concentrations of glucose and FFA respectively.First,the optimized concentration was selected by methyl thiazol tetrazolium (MTT) assay.Following two groups were set up:high-glucose medium groups (with different glucose concentrations of 30,35,40,50,60 and 70 mmol/L) and highFFA groups (with different concentrations of 100,200,400,600,800 amd 1000 μmol/L).Neither glucose nor FFA was given in control group.80% confluent fibroblasts were incubated for 24 h and then proliferation was measured by using MTT assay.Second,in another experiment,the expression of β-catenin was detected by using Western blotting.HSFs were harvested before (0 h) or 4,8,12,16,20,24,and 48 h after stimulation with glucose (35 mmol/L),FFA (200 μmol/L) and both (35 mmol/L ± 200 μmol/L).Total protein was extracted from those cells.Protein levels of β-catenin were determined using Western blotting.Results (1) As compared with control group,the absorbance values of HSFs in glucose 35 mmol/L group and FFA 200 μmol/L group after culture for 24 h began to reduce (t =1.70 and 2.48respectively,P < 0.05).With the increases of glucose and FFA,the absorbance values were significantly decreased (P < 0.05).(2) HSFs exposed to high-FFA showed a low expression of β-catenin protein at 4.h (P <0.05),and the level of β-catenin protein began to reduce at 12 h after treatment with high-glucose medium (P<0.05).However,the β-catenin protein expression in HSFs stimulated with glucose combined with

  9. Studies on cultured fibroblasts in a case of methylmalonic aciduria

    A case of methylmalonic aciduria is described. The clinical course was unusually mild, the child surviving to the age of 8 years. Studies on cultured fibroblasts confirmed a defect in propionate metabolism which was non-responsive to hydroxycobalamin in vitro. Polyethylene-glycol-induced cell fusion with a known methylmalonyl co-enzyme apomutase-deficient cell line showed genetic complementation indicating that in this patient the defect was in one of the enzymes required for 5-deoxyadenosyl cobalamin synthesis

  10. Distribution of adenosine receptors in human sclera fibroblasts

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin; Ge, Jian

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines...

  11. Electrically excitable normal rat kidney fibroblasts: A new model system for cell-semiconductor hybrids.

    Parak, W. J.; Domke, J; George, M.; Kardinal, A; Radmacher, M; Gaub, H E; Roos, A.D.; Theuvenet, A P; Wiegand, G.; Sackmann, E.; Behrends, J. C.

    1999-01-01

    In testing various designs of cell-semiconductor hybrids, the choice of a suitable type of electrically excitable cell is crucial. Here normal rat kidney (NRK) fibroblasts are presented as a cell line, easily maintained in culture, that may substitute for heart or nerve cells in many experiments. Like heart muscle cells, NRK fibroblasts form electrically coupled confluent cell layers, in which propagating action potentials are spontaneously generated. These, however, are not associated with m...

  12. Immortalization of human fibroblasts transformed by origin-defective simian virus 40.

    Neufeld, D S; Ripley, S; Henderson, A; Ozer, H L

    1987-01-01

    Simian virus 40 (SV40)-mediated transformation of human diploid fibroblasts has provided an effective experimental system for studies of both "senescence" in cell culture and carcinogenesis. Previous interpretations may have been complicated, however, by the semipermissive virus-cell interaction. In earlier studies, we previously demonstrated that the human diploid fibroblast line HS74 can be efficiently transformed by DNA from replication-defective mutants of SV40 containing a deletion in th...

  13. A simple technique for preparation of chicken-embryo-skin cell cultures.

    Silim, A; El Azhary, M A; Roy, R S

    1982-01-01

    A simple, rapid technique was developed for preparing chicken-embryo-skin cell cultures utilizing trypsinization of the skin of intact 12-day-old chicken embryos. When cell cultures were inoculated with fowl pox virus, those that consisted of at least 80% epithelial cells yielded a higher virus titer than fibroblast cell cultures. PMID:6284112

  14. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Kumar, L M Sharath; Prakash, N S; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  15. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  16. Effects of the basic fibroblast growth factor and its anti-factor in the healing and collagen maturation of infected skin wound Efeitos do fator de crescimento de fibroblastos básico e do seu anti-fator na cicatrização e maturação do colágeno de feridas infectadas de pele

    Antonio Medeiros Dantas Filho

    2007-01-01

    Full Text Available PURPOSE: The infection is one of the main factors that affect the physiological evolution of the surgical wounds. The aim of this work is to evaluate the effects of fibroblast growth factor (FGFâ and anti-FGFâ in the healing, synthesis and maturation of collagen when topically used on infected skin wounds of rats. METHODS: An experimental study was perfomed in 60 male Wistar rats. All animals were divided in two groups (A and B. Each group was divided in three subgroups A1, B1; A2, B2 and A3, B3. After anesthesia with pentobarbital, two open squared wounds (1cm², 4cm distant to each other, were done in the dorsal skin of all the rats. In group A (n=30 the wounds were contaminated with multibacterial standard solution, and in group B(n=30 the wounds were maintained sterile. These wounds were named F1 (for inflammation analysis and F2 (for collagen study. The open wounds of A1 and B1 rats were topically treated with saline solution, A2 and B2 were treated with FGFâ and subgroups A3 and B3 were treated with FGFâ and anti-FGFâ. The rats were observed until complete epitelization of F2 wounds for determination of healing time and the expression of types I and III collagen, using Picro Sirius Red staining. Inflammatory reaction in F1 wounds was studied using hematoxilineosin staining. The three variable was measured by the Image Pro-Plus Média Cybernetics software. The statistical analysis was performed by ANOVA and Tukey test, considering pOBJETIVO: Avaliar os efeitos do fator de crescimento de fibroblastos básico (FCFâ e do anti-FCFâ na cicatrização e maturação do colágeno em feridas infectadas na pele de ratos. MÉTODOS: Um estudo experimental foi realizado em 60 ratos Wistar, divididos em dois grupos (A e B. Cada grupo foi divididos em 03 subgrupos A1,B1; A2,B2 e A3,B3. Após anestesia com pentobarbital sódico intraperitoneal, foram feitas duas feridas abertas de 1cm² na pele no dorso distando 4cm uma da outra. Essas feridas foram

  17. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings

  18. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  19. A Study on the Insulin Receptor of the Cultured Human Fibroblasts

    To evaluated the usefulness of cultured human fibroblast for insulin receptor assay, the authors cultured fibroblast from biopsied normal adult female eyelid skin and assayed the insulin receptor with radioreceptor assay method. From the data obtained, percent of labeled insulin bound, numbers of insulin binding sites, affinity constants(Ka) and affinity of the empty sites(Ke) were calculated. The results were as follow; 1) The percent radioactivity bound of cultured fibroblast reached plateau at 4 hours 15 .deg. C incubation. 2) The scatchard plot of insulin binding to cultured human fibroblast was curvilinear and the affinity to receptor was decreased with increased receptor occupancy. 3) The numbers of high affinity, low affinity and total insulin receptor of cultured fibroblasts were 852, 24,800 and 25,652 sites per cell. 4) High and low affinity constants of cultured fibroblasts were 3.4 X 1010M-1, and l.08 X 108M-1, and the affinity of empty site was 5.0 X 108M-1.

  20. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M.; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A.; Glover, Leanne; McMillan, James R.; Chen, Mei; Thrasher, Adrian J.; McGrath, John A.; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgammanull recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  1. Construction of fat-1 adipose tissue specific expression vector and production of goat transgenic fibroblast cell line%fat-1基因脂肪组织特异性表达载体的构建及其山羊转基因细胞系的建立

    陈建文; 刘星; 桂涛; 李运生; 章孝荣; 张瑾; 张运海

    2012-01-01

    The aim of this study is to construct a marker removable, fat-1 adipose tissue specific expression vector and produce the transgenic goat fibroblast cell line for nuclear transfer. Firstly, the fat-1 gene was syn-thezised and a fat-1 adipose tissue specific expression vector was constructed. Secondly, the adipose tissue specific expression cassette was subcloned into a marker removable backbone vector (MCS-3s-LoxP-RFP) to construct a fat-1 marker removable adipose tissue specific expression vector driven by mouse Fabp4 promoter. Fi-nally, the goat fetal fibroblasts was transfected with the vector by Lipofectmine 2000 and selected in medium with G418 for two weeks, and then G418 resistant transfectants were identified by PCR. The results showed that the fat-1 marker removable adipose tissue specific expression vector was successfully constructed and the transgenic goat fibroblast cell lines were well established. It would pave the way for obtaining the marker-free fat-1 transgenic goat by SCNT.%旨在构建一种筛选标记可全部去除的脂肪组织特异性表达fat-1基因的载体,将其转染山羊胎儿成纤维细胞,筛选出稳定整合fat-1基因的转基因细胞系.首先将人工合成的fat-1基因连接至L28-Wnt10b载体(1种带有小鼠脂肪组织特异性启动子Fabp4的载体)上,构建成fat-1基因脂肪组织特异性表达载体L28-fat1;同时经多次克隆构建成1种筛选标记可全部去除的骨架载体MCS-3s-LoxP-RFP;然后,利用Hind Ⅲ和Not 1对上述2种载体进行双酶切,接着进行连接,构建出筛选标记可全部去除的脂肪组织特异性表达fat-1基因的表达载体.采用脂质体介导的方法转染山羊胎儿成纤维细胞,通过G418筛选转基因细胞.酶切鉴定及PCR检测结果表明,成功构建了3s-LoxP-RFP-FABP4-fat1表达载体,并首次获得了脂肪组织特异性表达fat-1基因的山羊胎儿成纤维转基因细胞系,为将来通过体细胞核移植创

  2. Allergy testing - skin

    Patch tests - allergy; Scratch tests - allergy; Skin tests - allergy; RAST test ... There are three common methods of allergy skin testing. The skin prick test involves: Placing a small amount of substances that may be causing your symptoms on the skin, ...

  3. Skin Care and Aging

    ... Home » Skin Care and Aging Heath and Aging Skin Care and Aging Dry Skin and Itching Bruises Wrinkles Age Spots ... doctor. For More Information About Skin Care and Aging American Academy of Dermatology 1-866-503-7546 ( ...

  4. Skin Care and Aging

    ... page please turn Javascript on. Skin Care and Aging How Aging Affects Skin Your skin changes with age. It ... if they bother you. See additional resources on aging skin, including information on treatment options, specific conditions, ...

  5. Skin Pigmentation Disorders

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  6. Skin Substitutes

    Zavan, Barbara; Vindigni, Vincenzo; Cortivo, Roberta; Abatangelo, Giovanni

    2010-01-01

    The many studies conducted so far reveal that Tissue Engineering of the skin is only at the beginning of its use in human applications. Burns patients were the first targets for such tissue substitutes, then chronic diseases, such as venous ulcers, have followed. The more experience is gained from the surgeon, the more feedback for the basic scientist to improve the product and to broaden clinical indications. Nowadays, progress in cell culture and biomedical material technologies have added ...

  7. Skin aging:

    Puizina-Ivić, Neira

    2008-01-01

    There are two main processes that induce skin aging: intrinsic and extrinsic. A stochastic process that implies random cell damage as a result of mutations during metabolic processes due to the production of free radicals is also implicated. Extrinsic aging is caused by environmental factors such as sun exposure, air pollution, smoking, alcohol abuse, and poor nutrition. Intrinsicaging reflects the genetic background and depends on time. Various expressions of intrinsic aging include smooth, ...

  8. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Y Boza

    2010-12-01

    Full Text Available The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM, primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001. HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05. The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip.

  9. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions.

    Valentina Bizzarro

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we have evaluated whether Annexin A1 derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. Using normal human skin fibroblasts WS1 in low glucose (LG or high glucose (HG we observed the enrichment of Annexin A1 protein at cell movement structures like lamellipodial extrusions and interestingly, a significant decrease in levels of the protein in HG conditions. The analysis of the translocation of Annexin A1 to cell membrane showed lower levels of Annexin A1 in both membrane pool and supernatants of WS1 cells treated with HG. Wound-healing assays using cell line transfected with Annexin A1 siRNAs indicated a slowing down in migration speed of cells suggesting that Annexin A1 has a role in the migration of WS1 cells. In order to analyze the role of extracellular Annexin A1 in cell migration, we have performed wound-healing assays using Ac2-26 showing that peptide was able to increase fibroblast cell migration in HG conditions. Experiments on the mobilization of intracellular calcium and analysis of p-ERK expression confirmed the activity of the FPR1 following stimulation with the peptide Ac2-26. A wound-healing assay on WS1 cells in the presence of the FPR agonist fMLP, of the FPR antagonist CsH and in the presence of Ac2-26 indicated that Annexin A1 influences fibroblast cell migration under HG conditions acting through FPR receptors whose expression was slightly increased in HG. In conclusion, these data demonstrate that (i Annexin A1 is involved in migration of WS1 cells, through interaction with FPRs; (ii N- terminal peptide of Annexin A1 Ac2-26 is able to stimulate direct migration of WS1 cells in high glucose treatment possibly due to the increased receptor expression observed in hyperglycemia conditions.

  10. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

    Baek, Beomyeol; Lee, Su Hee; Lim, Hye-Won

    2016-01-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  11. Generation of 3D Skin Equivalents Fully Reconstituted from Human Induced Pluripotent Stem Cells (iPSCs)

    Itoh, Munenari; Umegaki-Arao, Noriko; Guo, Zongyou; Liu, Liang; Higgins, Claire A.; Christiano, Angela M.

    2013-01-01

    Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPS...

  12. Variable radiosensitivity in fibroblasts from patients with tuberous sclerosis

    It has been reported that some of the cultured cell strains derived from patients with tuberous sclerosis (TS) showed hypersensitivity to gamma-rays or a radiomimetic chemical. Thirteen fibroblast cell strains from 11 patients with TS were examined for their sensitivity to x-rays as determined from their colony-forming ability. All strains derived from normal-appearing skin of patients, either sporadic or familial cases, showed sensitivity within the normal control range. Five cell strains originating from tumorous skin of 3 patients did not show hypersensitivity. It was concluded that the sensitivity to x-rays of cultured cells of TS is essentially normal. However, the mean D0 or D10 values of the strains from tumorous skin tended to be lower compared to those for normal skin of patients. In addition, the hypersensitivity to x-rays was confirmed in the cell strains of TS which had been shown to be hypersensitive to gamma-rays. These results appear to indicate that at least some of the cells of TS are liable to change to exhibit a hypersensitive trait in unknown acquired conditions

  13. Cutaneous skin tag

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  14. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Highlights: → Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. → Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. → We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. → Collagen type I and collagen type III mRNA level was higher in differentiated cells. → UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.

  15. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Han, Yanfu [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Chai, Jiake, E-mail: cjk304@126.com [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Sun, Tianjun; Li, Dongjie; Tao, Ran [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China)

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  16. Diagnosing Common Benign Skin Tumors.

    Higgins, James C; Maher, Michael H; Douglas, Mark S

    2015-10-01

    Patients will experience a wide range of skin growths and changes over their lifetime. Family physicians should be able to distinguish potentially malignant from benign skin tumors. Most lesions can be diagnosed on the basis of history and clinical examination. Lesions that are suspicious for malignancy, those with changing characteristics, symptomatic lesions, and those that cause cosmetic problems may warrant medical therapy, a simple office procedure (e.g., excision, cryosurgery, laser ablation), or referral. Acrochordons are extremely common, small, and typically pedunculated benign neoplasms. Simple scissor or shave excision, electrodesiccation, or cryosurgery can be used for treatment. Sebaceous hyperplasia presents as asymptomatic, discrete, soft, pale yellow, shiny bumps on the forehead or cheeks, or near hair follicles. Except for cosmesis, they have no clinical significance. Lipomas are soft, flesh-colored nodules that are easily moveable under the overlying skin. Keratoacanthomas are rapidly growing, squamoproliferative benign tumors that resemble squamous cell carcinomas. Early simple excision is recommended. Pyogenic granuloma is a rapidly growing nodule that bleeds easily. Treatment includes laser ablation or shave excision with electrodesiccation of the base. Dermatofibromas are an idiopathic benign proliferation of fibroblasts. No treatment is required unless there is a change in size or color, bleeding, or irritation from trauma. Epidermal inclusion cysts can be treated by simple excision with removal of the cyst and cyst wall. Seborrheic keratoses and cherry angiomas generally do not require treatment. PMID:26447443

  17. Ultrastructure of elastosis in facial rhytidectomy skin

    Skin from 19 facial rhytidectomies performed in patients with chronic solar damage was compared with postauricular skin from patients of similar age. Light microscopy demonstrated large areas of amorphous material that stained PAS positive in all 19 face-lift specimens, while none of the controls had such material. Electron microscopy of the ''elastotic'' material revealed large amorphous masses of granular material, with loss of the microfilament component of normal elastin. Current theories suggest that the elastotic material in solar-damaged skin is a product of radiation-damaged fibroblasts, rather than being either collagen or degenerated elastin. Such knowledge may help the plastic surgeons encourage rhytidectomy patients to protect themselves from solar radiation

  18. Effect of estrogens on skin aging and the potential role of SERMs

    Susan Stevenson; Julie Thornton

    2007-01-01

    Susan Stevenson1, Julie Thornton21Burns & Plastic Surgery Research Unit, 2Cutaneous Research, Medical Biosciences, School of Life Sciences, University of Bradford, Bradford, UKAbstract: In humans, structural and functional changes attributable to aging are more visibly evident in the skin than in any other organ. Estrogens have significant effects on skin physiology and modulate epidermal keratinocytes, dermal fibroblasts and melanocytes, in addition to skin appendages including the h...

  19. Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake.

    Zhang, Yong-Tai; Shen, Li-Na; Wu, Zhong-Hua; Zhao, Ji-Hui; Feng, Nian-Ping

    2014-10-01

    This study investigated the effect of skin viability on its permeability to psoralen delivered by ethosomes, as compared with liposomes. With decreasing skin viability, the amount of liposome-delivered psoralen that penetrated through the skin increased, whereas skin deposition of psoralen from both ethosomes and liposomes reduced. Psoralen delivery to human-immortalized epidermal cells was more effective using liposomes, whereas delivery to human embryonic skin fibroblast cells was more effective when ethosomes were used. These findings agreed with those of in vivo studies showing that skin psoralen deposition from ethosomes and liposomes first increased and then plateaued overtime, which may indicate gradual saturation of intracellular drug delivery. It also suggested that the reduced deposition of ethosome- or liposome-delivered psoralen in skin with reduced viability may relate to reduced cellular uptake. This work indicated that the effects of skin viability should be taken into account when evaluating nanocarrier-mediated drug skin permeation. PMID:25070929

  20. Skin to skin care:heat balance.

    Karlsson, H.

    1996-01-01

    Skin to skin care has been practised in primitive and high technology cultures for body temperature preservation in neonates. Regional skin temperature and heat flow was measured in moderately hypothermic term neonates to quantitate the heat transfer occurring during one hour of skin to skin care. Nine healthy newborns with a mean rectal temperature of 36.3 degrees C were placed skin to skin on their mothers' chests. The mean (SD) rectal temperature increased by 0.7 (0.4) degrees C to 37.0 de...

  1. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.

    Auxenfans, Céline; Thépot, Amélie; Justin, Virginie; Hautefeuille, Agnès; Shahabeddin, Lili; Damour, Odile; Hainaut, Pierre

    2009-01-01

    Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes. PMID:20042803

  2. Transcriptional Profiling of Rapamycin-Treated Fibroblasts From Hypertrophic and Keloid Scars

    Wong, Victor W.; You, Fanglei; Januszyk, Michael; Gurtner, Geoffrey C.; Kuang, Anna A.

    2016-01-01

    Excess scar formation after cutaneous injury can result in hypertrophic scar (HTS) or keloid formation. Modern strategies to treat pathologic scarring represent nontargeted approaches that produce suboptimal results. Mammalian target of rapamycin (mTOR), a central mediator of inflammation, has been proposed as a novel target to block fibroproliferation. To examine its mechanism of action, we performed genomewide microarray on human fibroblasts (from normal skin, HTS, and keloid scars) treated with the mTOR inhibitor, rapamycin. Hypertrophic scar and keloid fibroblasts demonstrated overexpression of collagen I and III that was effectively abrogated with rapamycin. Blockade of mTOR specifically impaired fibroblast expression of the collagen biosynthesis genes PLOD, PCOLCE, and P4HA, targets significantly overexpressed in HTS and keloid scars. These data suggest that pathologic scarring can be abrogated via modulation of mTOR pathways in procollagen and collagen processing. PMID:24835866

  3. Dermal Wound Fibroblasts and Matrix Metaloproteinases (MMPs: Their Possible Role in Allergic Contact Dermatitis

    Mohammad Reza Khorramizadeh

    2004-03-01

    Full Text Available This study was conducted to examine if allergic contact dermatitis (ACD alters the expression of MMPs in human dermal fibroblasts. Fibroblasts are the primary source for MMP and matrix production in skin. MMPs are known to involve in a number of physiological and pathological processes. Some published data indicated a gelatinase-like activity in acute and chronic phases of allergic contact dermatitis. However, no exact source of gelatinase activity was demonstrated. Moreover, little is known about the role of MMPs in immune responses.To study and predict the pathophysiological effects of (MMP-2 in allergic contact dermatitic (ACD patients, we established an in vitro tissue culture survey based on fibroblast explanted from ACD wounds and normal tissues respectively. We also employed a precise proliferation assay [i.e. MTT; 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] to analyze and compare three ACD vs. three normal cell strains. Parallel to MTT assay, we assessed the activity as well as the kinetics of gelatinase (MMP-2 in conditioned media using a zymogeraphy analysis. There was a significant difference in proliferation capacity between mean ACD fibroblast strains vs. mean normal cells, particularly in days 6 to 8 post explantation, 492.5±6.6 vs. 361.75±8.25 respectively. Zymoanalyses indicated significant differences between ACD cells and normal fibroblasts both in time-course and MMP-2 activity per cell fashions, 163.7±16.21 for mean ACD fibroblasts vs. 130±9.09 for normal cells respectively. These data suggest that fibroblasts overproliferated in the process of ACD.  Moreover, simultaneous overexpression of MMPs observed in ACD fibroblasts vs. normal strains, is indicative of altered fibroblast functionality in the process of allergic contactdermatitis. The activity per cell analysis showed that MMP-2 expression in ACD fibroblasts is independent of cell number, suggesting that either intra- or inter-cellular control

  4. An expandable, inducible hemangioblast state regulated by fibroblast growth factor.

    Vereide, David T; Vickerman, Vernella; Swanson, Scott A; Chu, Li-Fang; McIntosh, Brian E; Thomson, James A

    2014-12-01

    During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that "trap" murine cells in a proliferative state and endow them with a hemangioblast potential. These "expandable" hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. PMID:25458896

  5. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  6. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  7. Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis.

    Jin, Wei; Jia, Kuntong; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng

    2013-06-01

    The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells. PMID:23661087

  8. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. PMID:27346872

  9. Differential gene expression induced by high LET charged particles in normal human fibroblasts

    We investigated differential gene expression of normal human skin HSF42 fibroblasts induced by heavy ions using cDNA microarray technology. Irradiation with 3 types of heavy ions was performed at Heavy Ion Medical Accelerator in Chiba (HIMAC) facility. Out of 7458 genes, we found 61 significant genes (40 up-regulated and 21 down-regulated) that distinguished between human skin fibroblast HSF42 cells non-irradiated and irradiated with 1 Gy of neon particles and 62 significant genes (48 up-regulated and 14 down-regulated) that distinguished between HSF42 cells non-irradiated and irradiated with 1 Gy of silicon particles. Furthermore, we are going to analyze profiles of HSF42 cells exposed to carbon particles and compare those profiles between different types of beams. (author)

  10. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  11. c-Jun氨基末端激酶1反义真核表达载体及其蛋白缺陷细胞株的构建与鉴定%Construction and identification of antisense c-Jun N-terminal kinase 1 eukaryotic fluorescent expressing plasmids and JNK1+ human embryo lung fibroblasts cell line

    徐辉; 何晓庆; 陈瑞; 尹仕伟; 彭雷; 王国强; 李爱萍; 周建伟; 刘起展

    2008-01-01

    目的 构建反义JNK1荧光真核细胞表达载体,建立JNK1蛋白缺陷人胚肺成纤维细胞(HELF)株.方法 用Trizol试剂抽提HELF细胞中总RNA,以反转录PCR扩增JNK1目的 片断,双酶切,纯化PCR产物后,反向插入pEGFP-C1绿色荧光质粒,构建反义pEGFP-C1-asJNK1真核表达载体;大量抽提质粒并转染至HELF细胞中.24 h后使用G418筛选,挑选单克隆细胞扩大培养,经荧光显微成像和蛋白免疫印迹鉴定.结果 pEGFP-C1-asJNK1表达载体DNA测序结果与预期目的 片断序列一致,且JNK1蛋白表达水平明显抑制.结论 反义pEGFP-C1-asJNK1真核表达载体构建成功,JNK1蛋白质缺陷HELF细胞株成功建立.%Objective To construct antisense c-Jun N-terminal kinase 1 (JNK1) eukaryotic fluorescent expressing vector and JNK1+ human embryo lung fibroblasts cell line. Methods Trizol reagent was used to extract total RNA in HELF. The proper primers of JNK1 were chosen and synthesized. RT-PCR and gene recombinant techniques were used to construct the fragment of JNK1. After purification, the PCR products were cut, and JNK1 were inserted reversely into eukaryotic fluorescent expressing vector pEGFP-C1. Enzyme-cutting and DNA auto-sequencing were used to prove the successful construction of JNK1 eukaryotic expressing vector. Then plasmids were extracted and transfected into HELF cells and screen by G418 24 h later. Monoclone was chosen and cultured. Fluorescent imaging and Western blot were used to identify the JNK+HELF cell line. Results Sequence analysis of pEGFP-C1-as JNK1 plasmids was same as expected. The expression level of JNK1 was inhibited markedly. Conclusion Construction of antisensc JNK1 eukaryotic fluorescent expressing vectors and JNK + HELF cell line is successful.

  12. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  13. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress

    Worman Howard J

    2005-06-01

    Full Text Available Abstract Background Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare sporadic disorder with an incidence of approximately 1 per 8 million live births. The phenotypic appearance consists of short stature, sculptured nose, alopecia, prominent scalp veins, small face, loss of subcutaneous fat, faint mid-facial cyanosis, and dystrophic nails. HGPS is caused by mutations in LMNA, the gene that encodes nuclear lamins A and C. The most common mutation in subjects with HGPS is a de novo single-base pair substitution, G608G (GGC>GGT, within exon 11 of LMNA. This creates an abnormal splice donor site, leading to expression of a truncated protein. Results We studied a new case of a 5 year-old girl with HGPS and found a heterozygous point mutation, G608G, in LMNA. Complementary DNA sequencing of RNA showed that this mutation resulted in the deletion of 50 amino acids in the carboxyl-terminal tail domain of prelamin A. We characterized a primary dermal fibroblast cell line derived from the subject's skin. These cells expressed the mutant protein and exhibited a normal growth rate at early passage in primary culture but showed alterations in nuclear morphology. Expression levels and overall distributions of nuclear lamins and emerin, an integral protein of the inner nuclear membrane, were not dramatically altered. Ultrastructural analysis of the nuclear envelope using electron microscopy showed that chromatin is in close association to the nuclear lamina, even in areas with abnormal nuclear envelope morphology. The fibroblasts were hypersensitive to heat shock, and demonstrated a delayed response to heat stress. Conclusion Dermal fibroblasts from a subject with HGPS expressing a mutant truncated lamin A have dysmorphic nuclei, hypersensitivity to heat shock, and delayed response to heat stress. This suggests that the mutant protein, even when expressed at low levels, causes defective cell stability, which may be responsible for phenotypic

  14. Anyone Can Get Skin Cancer

    ... Cancer Skin Cancer Screening Research Anyone Can Get Skin Cancer Order the free Anyone Can Get Skin Cancer ... true that only people with light skin get skin cancer? No. Anyone can get skin cancer. It's more ...

  15. CCN2: a mechanosignaling sensor modulating integrin-dependent connective tissue remodeling in fibroblasts?

    Leask, Andrew

    2013-01-01

    Tensegrity (tensional integrity) is an emerging concept governing the structure of the body. Integrin-mediated mechanical tension is essential for connective tissue function in vivo. For example, in adult skin fibroblasts, the integrin β1 subunit mediates adhesion to collagen and fibronectin. Moreover, integrin β1, through its abilities to activate latent TGFβ1 and promote collagen production through focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive...

  16. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  17. Altered nerve growth factor in fibroblasts from patients with familial dysautonomia.

    Schwartz, J P; Breakefield, X O

    1980-01-01

    Nerve growth factor was measured in cultured human skin fibroblasts from controls and from patients with familial dysautonomia and dystonia musculoram deformans. Cells from these sources grown over a range of cell densities contained similar levels of beta-nerve growth factor as measured by radioimmunoassay. Results of bioassay demonstrated that the nerve growth factor from dysautonomic cells was only approximately 10% as active per ng of immunoreactive protein as that from control and dyston...

  18. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome.

    Quentin, E; Gladen, A; Rodén, L; Kresse, H.

    1990-01-01

    A small proteoglycan that contains only a single dermatan sulfate chain is the main proteoglycan synthesized by skin fibroblasts. Fibroblasts from a patient with progeroidal appearance and symptoms of the Ehlers-Danlos syndrome have a reduced ability of converting the core protein of this proteoglycan into a mature glycosaminoglycan chain-bearing species. This abnormality is the consequence of a deficiency in galactosyltransferase I (xylosylprotein 4-beta-galactosyltransferase; EC 2.4.1.133),...

  19. Age-Related Changes in the Mechanical Properties of Human Fibroblasts and Its Prospective Reversal After Anti-Wrinkle Tripeptide Treatment

    Dulińska-Molak, Ida; Pasikowska, Monika; Pogoda, Katarzyna; Lewandowska, Małgorzata; Eris, Irena; Lekka, Małgorzata

    2013-01-01

    One of an essential characteristic of human skin are time dependent mechanical properties. Here, we demonstrate that stiffness of human dermal fibroblast correlates with age and it can be restored after anti-wrinkle tripeptide treatment. The stiffness of human fibroblasts isolated from donors of 30-, 40- and 60 years old were examined. Additionally the effect of anti- wrinkle tripeptide of latter cells was investigated. The atomic force microscopy measurements were performed on untreated fibr...

  20. Keratinocytes in tissue engineering of human skin: invitro and in vivo studies

    Fredriksson, Camilla

    2008-01-01

    Full thickness wounds, such as deep burns, need restoration of both the dermal and epidermal layers of the skin. In normal wound healing, re-epithelialization occurs by migration and proliferation of keratinocytes from the wound edges and by differentiation of stem cells from remaining hair follicles. Restoration of dermis occurs by influx of growth factors secreted by macrophages, platelets, and fibroblasts; by fibroblast proliferation and subsequent synthesis and remodeling of collagenous d...

  1. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice.

    Stefanie Michael

    Full Text Available Tissue engineering plays an important role in the production of skin equivalents for the therapy of chronic and especially burn wounds. Actually, there exists no (cellularized skin equivalent which might be able to satisfactorily mimic native skin. Here, we utilized a laser-assisted bioprinting (LaBP technique to create a fully cellularized skin substitute. The unique feature of LaBP is the possibility to position different cell types in an exact three-dimensional (3D spatial pattern. For the creation of the skin substitutes, we positioned fibroblasts and keratinocytes on top of a stabilizing matrix (Matriderm®. These skin constructs were subsequently tested in vivo, employing the dorsal skin fold chamber in nude mice. The transplants were placed into full-thickness skin wounds and were fully connected to the surrounding tissue when explanted after 11 days. The printed keratinocytes formed a multi-layered epidermis with beginning differentiation and stratum corneum. Proliferation of the keratinocytes was mainly detected in the suprabasal layers. In vitro controls, which were cultivated at the air-liquid-interface, also exhibited proliferative cells, but they were rather located in the whole epidermis. E-cadherin as a hint for adherens junctions and therefore tissue formation could be found in the epidermis in vivo as well as in vitro. In both conditions, the printed fibroblasts partly stayed on top of the underlying Matriderm® where they produced collagen, while part of them migrated into the Matriderm®. In the mice, some blood vessels could be found to grow from the wound bed and the wound edges in direction of the printed cells. In conclusion, we could show the successful 3D printing of a cell construct via LaBP and the subsequent tissue formation in vivo. These findings represent the prerequisite for the creation of a complex tissue like skin, consisting of different cell types in an intricate 3D pattern.

  2. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p migration speed, and is associated with increased reactive oxygen species generation in a dose-dependent manner without altering viability. LED-BL has the potential to contribute to the treatment of keloids and other fibrotic skin diseases and is worthy of further translational and clinical

  3. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 and micro;g/ml, 25 and micro;g/ml, and 50 and micro;g/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Intercult Ethnopharmacol 2016; 5(1.000: 1-6

  4. Adaptive skin detection based on online training

    Zhang, Ming; Tang, Liang; Zhou, Jie; Rong, Gang

    2007-11-01

    Skin is a widely used cue for porn image classification. Most conventional methods are off-line training schemes. They usually use a fixed boundary to segment skin regions in the images and are effective only in restricted conditions: e.g. good lightness and unique human race. This paper presents an adaptive online training scheme for skin detection which can handle these tough cases. In our approach, skin detection is considered as a classification problem on Gaussian mixture model. For each image, human face is detected and the face color is used to establish a primary estimation of skin color distribution. Then an adaptive online training algorithm is used to find the real boundary between skin color and background color in current image. Experimental results on 450 images showed that the proposed method is more robust in general situations than the conventional ones.

  5. Skin color - patchy

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  6. Skin Cancer Foundation

    ... Fundraising Event | About Us | Store The Skin Cancer Foundation The Skin Cancer Foundation is the only international organization devoted solely to ... About Us Contact Us © 2016 The Skin Cancer Foundation | 149 Madison Avenue Suite 901 New York, NY ...

  7. Learning about Skin Cancer

    ... Why Deadly Skin Cancers Spread 2000 News Release Learning About Skin Cancer What are the most common ... skin surface. When a melanoma becomes thick and deep, the disease often spreads to other parts of ...

  8. Skin care and incontinence

    Incontinence - skin care ... or bowels (called incontinence) are at risk of skin problems around the buttocks, hips, genitals, and the ... rectum (perineum). Excess moisture in these areas makes skin problems such as redness, peeling, irritation, and yeast ...

  9. Effect of estrogens on skin aging and the potential role of SERMs

    Susan Stevenson

    2007-10-01

    Full Text Available Susan Stevenson1, Julie Thornton21Burns & Plastic Surgery Research Unit, 2Cutaneous Research, Medical Biosciences, School of Life Sciences, University of Bradford, Bradford, UKAbstract: In humans, structural and functional changes attributable to aging are more visibly evident in the skin than in any other organ. Estrogens have significant effects on skin physiology and modulate epidermal keratinocytes, dermal fibroblasts and melanocytes, in addition to skin appendages including the hair follicle and the sebaceous gland. Importantly, skin aging can be significantly delayed by the administration of estrogen. This paper reviews the effects of estrogens on skin and the mechanisms by which estrogens can alleviate the changes due to aging that occur in human skin. The relevance of estrogen replacement therapy (HRT in postmenopausal women and the potential value of selective estrogen receptor modulators (SERMs as a therapy for diminishing skin aging are also highlighted.Keywords: estrogen receptors, skin, menopause, SERMs, HRT

  10. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation

  11. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  12. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts.

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-10-01

    COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts. PMID:22683859

  13. Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-01-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the ve...

  14. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging

    Genji Imokawa

    2015-04-01

    Full Text Available The repetitive exposure of skin to ultraviolet B (UVB preferentially elicits wrinkling while ultraviolet A (UVA predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity.

  15. Snapshot RGB mapping of skin melanin and hemoglobin

    Spigulis, Janis; Oshina, Ilze

    2015-05-01

    The concept of snapshot red-green-blue (RGB) multispectral imaging was applied for skin chromophore mapping. Three monochromatic spectral images have been extracted from a single RGB image dataset at simultaneous illumination of skin by 473-, 532-, and 659-nm laser lines. The spectral images were further transformed into distribution maps of skin melanin, oxyhemoglobin, and deoxyhemoglobin, related to pigmented and vascular skin malformations. The performance and clinical potential of the proposed technique are discussed.

  16. Role of fibroblast growth factors in organ regeneration and repair.

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases. PMID:26459973

  17. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw.

    Qian, Zhong-Ji; Jung, Won-Kyo; Kim, Se-Kwon

    2008-04-01

    In the present study, a peptide having antioxidant properties was isolated from bullfrog skin protein, Rana catesbeiana Shaw. Bullfrog skin protein was hydrolyzed using alcalase, neutrase, pepsin, papain, alpha-chymotrypsin and trypsin. Antioxidant activities of respective hydrolysates were evaluated using lipid peroxidation inhibition assay and direct free radical scavenging activity by using electron spin resonance (ESR) spectrometer. Among hydrolysates, alcalase derived hydrolysate exhibited the highest antioxidant activities than those of other enzyme hydrolysates. In order to purity a peptide having potent antioxidant properties, alcalase hydrolysate was separated using consecutive chromatographic methods on a Hiprep 16/10 DEAE FF anion exchange column, Superdex Peptide 10/300 GL gel filtration column and highan octadecylsilane (ODS) C18 reversed phase column. Finally, a potent antioxidative peptide was isolated and its sequence was identified to be LEELEEELEGCE (1487 Da) by Q-TOF ESI mass spectroscopy. This antioxidant peptide from bullfrog skin protein (APBSP) inhibited lipid peroxidation higher than that of alpha-tocopherol as positive control and efficiently quenched different sources of free radicals: DPPH radical (IC(50)=16.1 microM), hydroxyl radical (IC(50)=12.8 microM), superoxide radical (IC(50)=34.0 microM) and peroxyl radical (IC(50)=32.6 microM). Moreover, MTT assay showed that this peptide does not exert any cytotoxicity on human embryonic lung fibroblasts cell line (MRC-5). PMID:17512726

  18. Skin photoaging and the role of antioxidants in its prevention.

    Pandel, Ruža; Poljšak, Borut; Godic, Aleksandar; Dahmane, Raja

    2013-01-01

    Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin (skin phototype). In addition to direct or indirect DNA damage, UVR activates cell surface receptors of keratinocytes and fibroblasts in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the structural integrity of the skin, formation of a solar scar, and ultimately clinically visible skin atrophy and wrinkles. Many studies confirmed that acute exposure of human skin to UVR leads to oxidation of cellular biomolecules that could be prevented by prior antioxidant treatment and to depletion of endogenous antioxidants. Skin has a network of all major endogenous enzymatic and nonenzymatic protective antioxidants, but their role in protecting cells against oxidative damage generated by UV radiation has not been elucidated. It seems that skin's antioxidative defence is also influenced by vitamins and nutritive factors and that combination of different antioxidants simultaneously provides synergistic effect. PMID:24159392

  19. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    Anna Meilana

    2015-08-01

    Full Text Available BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin, it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis. SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play

  20. Reprogramming of Fibroblasts From Older Women With Pelvic Floor Disorders Alters Cellular Behavior Associated With Donor Age

    Wen, Yan; Wani, Prachi; Zhou, Lu; Baer, Tom; Phadnis, Smruti Madan; Reijo Pera, Renee A.; Chen, Bertha

    2013-01-01

    The effect of donor age on induced pluripotent stem cell (iPSC) lines and on the cells redifferentiated from these iPSCs was examined. iPSCs were derived from vaginal fibroblasts from women with pelvic organ prolapse. Donor age did not appear to affect reprogramming and cell mitotic activity in fibroblasts redifferentiated from iPSCs, and donor age differences were not observed in the iPSCs using standard senescence markers.