WorldWideScience
 
 
1

Replicative senescence, telomere shortening and cell proliferation rate in Gaddi goat's skin fibroblast cell line.  

Science.gov (United States)

We assessed aging in continuous donor skin fibroblast cell line GGM5 up to the 25th passage by in vitro replicative senescence, telomere dynamics and chromosomal abnormalities. Cell proliferation rate increased from 0.84+/-0.26 (primary cells) to 1.20+/-0.17 (13-15 passage group) per day and reduced to 0.65+/-0.14 in 22-25 passages. Cell proliferation rate was reduced by 45.7% after 87.62 CPDs. Cell viability reduced from 100% to 97.4% up to the 25th passages. Frequency of beta gal(+) cells increased in successive passages and days in culture. The correlation coefficient between frequency of beta gal(+) cells and growth rate was -0.50 to -0.61. Loss of mean TRF length was 13.8 nucleotides (passage 15) to 95.4 nucleotides per cell division in later passages. All cells showed Robertsonian translocation in 22-25 passaged cells. The SCNT pre-implantation embryos production was highest (22.5%) in donor cells used from 10-15 passages as compared to early (

Gupta, Neelam; Taneja, Ritu; Pandey, Alok; Mukesh, Manishi; Singh, Hari; Gupta, S C

2007-10-01

2

Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line  

Directory of Open Access Journals (Sweden)

Full Text Available In this study the role of glutathione (GSH in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehydrogenase leakage. The intracellular GSH content was modulated by N-acetylcysteine (NAC, a GSH precursor, and buthionine sulfoximine (BSO, a specific GSH synthesis inhibitor. It was found that sulfur mustard exposure led to a dose-and time-dependent decrease in GSH content in HF2FF cells. NAC increased intracellular GSH level and protected the cells against sulfur mustard-induced reactive oxygen species formation and lactate dehydrogenase leakage. In contrast, buthionine sulfoximine pretreatment depleted cellular GSH and enhanced the susceptibility of HF2FF to the cytotoxic effects of sulfur mustard. These results indicated that GSH plays a critical role in protecting HF2FF cell line against sulfur mustar-induced cell injury, most probably through its antioxidant activity.

Ali Beman Zaree Mahmoudabad

2008-01-01

3

Lymphoblastoid lines and skin fibroblasts from patients with tuberous sclerosis are abnormally sensitive to ionizing radiation and to a radiomimetic chemical  

International Nuclear Information System (INIS)

Lymphoblastoid lines, derived by transforming peripheral blood lymphocytes with Epstein-Barr virus, and skin fibroblast lines were established from two patients with tuberous sclerosis. The number of viable lymphoblastoid cells was determined by their ability to exclude the vital dye trypan blue after their irradiation with x-rays or 254 nm ultraviolet light. The growth of fibroblasts was determined by their ability to form colonies after treatment with the radiomimetic, DNA-damaging chemical N-methyl-N'-nitro-N-nitrosoguanidine. The tuberous sclerosis lymphoblastoid lines were hypersensitive to x-rays but had normal sensitivity to the ultraviolet radiation. The tuberous sclerosis fibroblast lines were hypersensitive to the N-methyl-N'-nitro-N-nitrosoguanidine. The hypersensitivity of tuberous sclerosis cells to x-rays and to N-methyl-N'-nitro-N-nitrosoguanidine is believed to reflect defective repair of DNA damaged by these agents and may provide the basis for in vitro, including prenatal, diagnostic tests for tuberous sclerosis

4

Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis  

International Nuclear Information System (INIS)

Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture

5

Alteration of Skin Properties with Autologous Dermal Fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

Rajesh L. Thangapazham

2014-05-01

6

Protective and restorative effects of a Commiphora mukul gum resin and triheptanoin preparation on the CCL-110 skin fibroblast cell line.  

Science.gov (United States)

Coenzyme Q10 (CoQ10) is a major ingredient in skin care products because of its anti-wrinkle effects, although it has some side effects especially at higher amounts. In this study, we compare the anti-wrinkle related properties of CoQ10 and a proprietary Commiphora mukul gum resin (guggul) and triheptanoin preparation (GU-TC7). GU-TC7 is prepared with a supercritical CO?-co-solvent extraction with ethanol, standardized to 2% guggulsterones and triheptanoin, a triglyceride composed of three 7-carbon fatty acids. Treatment of CCL-110 skin fibroblasts with GU-TC7 demonstrates a mild proliferative effect compared to CoQ10 and increased type I collagen synthesis. Additionally, GU-TC7 inhibited matrix metalloproteinase-1 (MMP-1) expression in a dose-dependent manner at 20-100??g?mL?¹ and inhibited human elastase expression by more than 50% as compared to no elastase inhibition with CoQ10 treatment. These results suggest that GU-TC7 possesses properties that are applicable to the treatment of wrinkles and may be considered for its further evaluation in skin care products. PMID:22084831

Ramachandran, C; Quirin, K-W; Resek, A; Melnick, S J

2012-04-01

7

Induction of growth stimulation in skin fibroblasts from retinoblastoma donors after ionizing radiation  

International Nuclear Information System (INIS)

Skin fibroblasts from normal children and two children with a 13q14 deletion retinoblastoma (Rb) were submitted to fractionated doses of ? radiations. Irradiation reduced the population doublings in normal fibroblasts and the decline was inversely related to the dose. An increase in population doublings was obtained with one of the Rb cell lines. Foci appeared in the irradiated culture of the other Rb donor. It is suggested that fibroblasts from patients with Rb are able to express some phenotypical properties of transformed cells, perhaps related to factors rendering them more susceptible to carcinogens

8

Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts  

International Nuclear Information System (INIS)

The metabolism of [1,2,6,7-3H]testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC

9

Proliferation index of camel skin fibroblast cells as nuclear donor  

International Nuclear Information System (INIS)

Jaiselmeri is an excellent breed of riding camel, found in Jaiselmer and other adjoining districts of Western Rajasthan in India. Jaiselmeri camel like other pack animals are declining in India over the years due to increased mechanization and control of desert agriculture to some extent. The deep freezing technology on camel semen is poorly developed in India. The somatic cell technology has been developed at this Institute as an alternative tool of long-term conservation on endangered livestock breeds. For this study, samples of (0.25 cm2) skin tissue were collected from ear biopsy from elite male germplasm from National Research Centre on Camel, Bikaner. Skin tissues were cultured at 37 deg. C in Medium (DMEM+ Ham's F-12 nutritive mixture) supplemented with 10% fetal bovine serum, L-Glutamine and antibiotics in an incubator under 98% humidified and 5% Co2 atmosphere. The cell explants were visible from 12-16 days of culture. The cells were allowed to confluent in the TC flasks for additional 3-5 days till nearly 80% surface area is covered by the cells. The primary cells were harvested by usual trypsin-EDTA protocol. The cells were counted using Neubar's haemocytometer and cells were passaged subsequently. Since no reference values were available for camel skin fibroblasts, the present experiments were conducted to study the cell proliferation index, population doubling time, standard growth curve and cell viability using standard growth and MTT assays. It is shown that growth curves showed true sigmoid shape but a marked variation between the cell lines was observed. Moreover, cells, which grew faster attained plateau on day 6 while in slow growing cultures, the curve showed elevation even on day 8. This is probably due to non-availability of growing space for cells having faster growth rate. It was concluded that all animals do not produce karyoplast donors at equal rate or efficiency. Therefore, the growing cultures need to be compared with standard growth curve each time the cells are used as nuclear donor cells for cloning. Cell Proliferation Index: Cell multiplication rates vary considerably under different culture condition and slight change in environment or composition of medium may affect the proliferation of cells significantly. For camel skin fibroblast cells, the standard multiplication rate and the population doubling time was not known earlier. In order to study the proliferative indices of the growing cells using objective parameters, MTT assay was conducted. In this assay, the dividing and viable cells take up MTT [3- (4,5- dimethylthiozol- 2yl) 2,5 diphenyltetrazolium bromide] and a colour is developed. The intensity of colour is measured by ELISA reader at 540-570 nm. For this, 4000 cells per well were seeded in 96 well ELISA plate (flat bottom, Nunc) and cultured at 37 deg. C. First two rows of eight wells each were kept as negative and positive controls respectively. Rest of the 10 rows were kept as treatments. One row was harvested at an interval of 24 hours and adjoining row was treated with MTT solution for 4 hours. The MTT treated cells were fixed in 10% DMSO. Figures 2 and 3 show that the cell proliferation index both in terms of cell count and absorbance values in ELISA reader at appropriate wavelength was similar. From this study it is clear that MTT assay can give fairly accurate figures of cell proliferation rate of skin fibroblasts. Ploidy level: During long-term culture, the cells are likely to develop one or other type of chromosomal abnormalities. It must be ensured that the cells in different passages are checked for normal ploidy so that the viable clones can be developed from them. In order to see the utility of cells from Jaiselmeri camel as nuclear donor, the chromosomal profile was studied following the protocol described elsewhere. The 2N chromosomes up to passage No 4 (15th population doubling) was found to be normal (74XY) in 97% of the cells. From these preliminary studies it appears that camel skin fibroblast cells behave normally in culture and can serve as nuclear donors.

10

Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts.  

Science.gov (United States)

Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 ?M MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. PMID:24625837

Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

2014-05-15

11

Low dose rate ionizing radiation induces increased growth capacities of d-deletion retinoblastoma skin fibroblasts  

International Nuclear Information System (INIS)

Skin fibroblasts from normal children and three children with a 13q deletion retinoblastoma (Rb) were exposed to cumulative low doses of gamma rays. The typical response of normal donors was a reduction in the lifespan of irradiated fibroblasts, the precocity of the decline being inversely related to the dose received. In constrast, the lifespan of one Rb cell line (Rb1) was prolonged; irradiated cells with an increased growth potential showed a higher number of cells at confluency and more cells were entering DNA synthesis phase than in non-irradiated cells. Another Rb cell line (Rb2) demonstrated a normal lifespan following irradiation but foci were observed in irradiated cultures. Cytogenetic analysis revealed no selection of abnormal clones in these cell populations. The third Tb line examined (Rb3) responded like a normal cell line. It is suggested that irradiated skin fibroblasts derived from some patients with Rb are in certain cases able to express abnormal growth capacities which may be one of the manifestations of the high susceptibility of the individual's stromal cells to carcinogenic agents. (author)

12

[The influence of Mycoplasma salivarium in the absence and presence of L-arginine on karyotypic variability in cell line of the Indian muntjak skin fibroblasts under long-term cultivation].  

Science.gov (United States)

The influence of Mycoplasma salivarium on the numerical and structural karyotypic variability has been investigated in the "markerless" cell line of the Indian muntjak skin fibroblasts (line M) during long-term cultivation in the absence and presence of L-arginine. Cultivation of the mycoplasmal contaminated cells for 15 and 30 days did not change the character of cell distribution for the chromosome number. In the contaminated cells cultivated for 60 and 75 days, the character of cell distribution for the chromosome number was changed. These changes involved bimodal distribution for the chromosome number due to a significant decrease in the frequency of the cells with the modal number of chromosomes with main structural variant of karyotype (SVK)--2 + 2 + 1 + 1 + 1 and an increase in the frequency of cells with submodal number of chromosomes with main SVK--2 + 2 + 1 + 1. Besides, a significant increase in the frequency of the cells with lower chromosome number was observed in 60 days compared to that in 75 days of cultivation. Cultivation of the contaminated and control cells in the medium with increased concentration of L-arginine during 60 days did not change the numerical parameters relative to the control. Cultivation of the contaminated cells for 60 days followed by addition of L-arginine for 15 days restored the numerical parameters the numerical parameters to the control level. In the contaminated cells the frequency of chromosomal aberrations significantly increased for 30, 60 and 75 days cultivation relative to the control variant. In 30 days, the small but significant increase took place due to increase in the frequency of chromosomal aberrations of all the types. In 60 and 75 days, a greater increase took place due to a significant increase in the frequency of chromosomal and chromatid breaks. Moreover, in 60 days, the level of dicentrics (telomeric associations) mainly produced by chromosomes 1 and 2 increased significantly. The role of dicentrics as one of the ways for adaptation of the "markerless" cell lines to condition of cultivation and the role of L-arginine in the restoration of normal karyotypic structure of cell population of line M under mycoplasmal contamination are discussed. PMID:21427978

Polianskaia, G G; Efremova, T N

2010-01-01

13

Selective enrichment and biochemical characterization of seven human skin fibroblasts cell types in vitro  

International Nuclear Information System (INIS)

The mitotic and postmitotic populations of the human skin fibroblast cell line HH-8 are heterogeneous when studied in vitro. There are reproducible changes in the frequencies of the mitotic fibroblasts (MF), MF I, MF II, MF III, and the postmitotic fibroblasts (PMF), PMF IV, PMF V, PMF VI, and PMF VII. For biochemical characterization, methods for selective enrichment of homogeneous populations of these seven fibroblast cell types have been established. Clonal populations with 95% purity for the mitotic fibroblasts MF I, MF II, and MF III can be raised in uniform clone types of fibroblasts (CTF) CTF I, CTF II, and CTF III. Pure clonal subpopulations of MF I type cells are present in mass populations in the range of 1-20 cumulative population doublings (CPD). Populations of mitotic fibroblasts represent nearly homogeneous populations of MF II (75-85% purity) in the range of 28-34 CPD and MF III (73-86% purity) in the range of 48-53 CPD. These populations can be easily expanded to up to 10(7)-10(8) cells. The spontaneous transition of MF III to PMF VI takes 140-180 days. In order to shorten this period and increase the proportion of distinct postmitotic types, mitotic fibroblast mass populations (CPD 30-32, MF II: 75-85% purity) have been induced by uv-irradiation to differentiate to nearly homogeneous populations of PMF IV, PMF V, PMF VI, and PMF VII within 4 to 36 days of culture. Using this method, 10(7) cells of one differentiation stage can be obtained. Spontaneously arising and experimentally selected or induced homogeneous clonal and mass populations of MF I, MF II, MF III, PMF IV, PMF V, PMF VI, and PMF VII express an identical differentiation-dependent and cell-type-specific [35S]methionine-labeled polypeptide pattern

14

Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts  

Science.gov (United States)

NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

2009-01-01

15

The Level and Stability of Residual Catalase in Cultured Acatalasemic Skin Fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available In an attempt to determine the level and heat stability of residual catalase in somatic cells of acatalasemic Japanese, skin fibroblasts from an acatalasemic subject were cultured, and the catalase activity of the cultured fibroblasts was compared with that of cultured normal fibroblasts. Catalase activity was determined using an oxygen electrode. The residual catalase activity in cultured acatalasemic fibroblasts was 10% of the normal. The heat stability at 55 degrees C of residual catalase in the acatalasemic fibroblasts was similar to that of normal fibroblasts.

Ogata,Masana

1987-10-01

16

The Level and Stability of Residual Catalase in Cultured Acatalasemic Skin Fibroblasts  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In an attempt to determine the level and heat stability of residual catalase in somatic cells of acatalasemic Japanese, skin fibroblasts from an acatalasemic subject were cultured, and the catalase activity of the cultured fibroblasts was compared with that of cultured normal fibroblasts. Catalase activity was determined using an oxygen electrode. The residual catalase activity in cultured acatalasemic fibroblasts was 10% of the normal. The heat stability at 55 degrees C of residual catalase ...

Ogata, Masana; Fujii, Yasuhito; Meguro, Tadamichi; Kira, Shohei; Matsuda, Akira; Izushi, Fumio; Kimoto, Tetsuo; Takahara, Shigeo

1987-01-01

17

A Marfan syndrome gene expression phenotype in cultured skin fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

Emond Mary

2007-09-01

18

Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects.  

Science.gov (United States)

Few therapeutic options are available to patients with oxidative phosphorylation disorders. Administering pharmacological agents that are able to stimulate mitochondrial biogenesis have been put forward as a possible treatment, yet the approach remains in need of thorough testing. We investigated the effect of resveratrol in an in vitro setting. Mitochondrial enzymatic activities were tested in cultured skin fibroblasts from patients harboring a nuclear defect in either complex II or complex IV (n?=?11), and in fibroblasts from healthy controls (n?=?11). In the latter, preincubation with resveratrol resulted in a significant increase of citrate synthase, complex II and complex IV enzyme activity. In patients with complex II or complex IV deficiency, however, activity of the deficient complex could not be substantially augmented, and response was dependent upon the residual activity. We conclude that resveratrol is not capable of normalizing oxidative phosphorylation activities in deficient cell lines. PMID:23620374

De Paepe, Boel; Vandemeulebroecke, Katrien; Smet, Joél; Vanlander, Arnaud; Seneca, Sara; Lissens, Willy; Van Hove, Johan Lk; Deschepper, Ellen; Briones, Paz; Van Coster, Rudy

2014-02-01

19

Mutagenic effects of alpha particles in normal human skin fibroblasts  

International Nuclear Information System (INIS)

Alpha-irradiation to the bronchial airways from inhaled radon progeny increases the risk of developing lung cancer. The molecular mechanism of radon-induced lung cancer is not clear, but one of the most important genetic effects of ionizing radiation is the induction of gene mutation. Mutations, especially those associated with visible chromosome abnormalities in humans, have been associated with cancer. Therefore, our objective is to use a well-defined model system to determine the mutagenic potential of alpha particles in normal human skin cells and to define this action at the molecular level. Normal human skin fibroblasts were irradiated with alpha particles (3.59 MeV, LET 115 keV ?m-1) emitted from the decay of 238Pu. Mutagenicity was determined at the X-linked hypoxanthine guanine phosphoribosyl transferase (HPRT) locus. Results from this study indicate that beta particles were more efficient in mutation induction than gamma rays. Based on the initial slopes of the dose-response curves, the RBE for mutation is about 8 for alpha particles. HPRT-deficient mutants which are resistant to 6-thioguanine have been isolated and analyzed by the Southern blot technique. To date, we have characterized 69 gamma-ray-induced and 195 alpha-particle-induced HPRT-deficient mutants. Our data indicate that more than 50% of all gamma-ray-induced mutants have band patterns identical to that observed for the normal structural HPRT gene, whereas the remaining mutural HPRT gene, whereas the remaining mutants (45%) contain either a rearrangement, partial deletion, or total deletion of the HPRT gene. In contrast, only 30% of alpha-particle-induced human HPRT mutants contain a normal Southern blot pattern, and about 50% indicate total deletion of the HPRT gene. Our results support the notion that high-LET radiation produces more unrepaired or misrepaired DNA damage than do gamma rays

20

AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS  

Science.gov (United States)

Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

 
 
 
 
21

METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS  

Science.gov (United States)

METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

22

In vitro culture of skin fibroblast cells for potential cloning by nuclear transfer  

International Nuclear Information System (INIS)

Donor cell lines were developed from skin tissue for the conservation of the endangered Jaiselmeri camel breed of India. Average cell proliferation rates varied from 0.82 to 0.69 in different passages, and population doubling time from 29.3 h to 34.8 h. Around 15 population doublings were accomplished during this culturing. Cell viability was 97 to 99% in different passages. Growth curves of cells from the JC-5 cell line reached a plateau on day 7, while the slower-growing cultures of JC-3 showed elevation even on day 10, possibly due to donor age differences. Cell proliferation rates by both cell count and MTT absorbance showed similar patterns, with a correlation coefficient of 0.79. MTT assay, a colorimetric method, can handle large samples in somatic cell cultures. Diploid chromosomal counts in passages 1, 3 and 5 were normal (2N=74, XY) in 97% of the cells. Occasional metaphase plates showed polyploidy. The present baseline data on standard growth curve, linear relationship in colorimetric assay for estimation of cell proliferation rate, and normal ploidy and karyological levels in camel skin fibroblast cells in multiplication could be useful in developing competent donor somatic cell lines for conservation now and revival of this camel breed by cloning in the future. (author)

23

Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin.  

Science.gov (United States)

Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and alpha2beta1 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension, as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and alpha2beta1 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ(10) significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging. PMID:19116368

Fisher, Gary J; Quan, Taihao; Purohit, Trupta; Shao, Yuan; Cho, Moon Kyun; He, Tianyuan; Varani, James; Kang, Sewon; Voorhees, John J

2009-01-01

24

Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts  

Science.gov (United States)

Aim The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process. Materials and methods Collagen, [3H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 ?g/mL HA. Western immunoblot analysis was performed to evaluate expression of ?1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase). Results Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of ?1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis. Conclusion Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts.

Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Gluszuk, Katarzyna; Surazynski, Arkadiusz

2014-01-01

25

DNA repair in Bloom's syndrome skin fibroblasts after ultraviolet light irradiation  

International Nuclear Information System (INIS)

Skin fibroblasts from a patient with Bloom's syndrome (86NoKi) were assayed for various DNA repair activities after ultraviolet light (UV) irradiation. Cultured fibroblasts as well as lymphocytes obtained from this patient showed a high frequency of spontaneous sister chromatid exchanges (SCEs). There was no significant difference between 86NoKi fibroblasts and skin fibroblasts from normal donors in the sensitivity to UV as measured by inactivation of colony forming activity, the capacity of host-cell reactivation (HCR) of UV-irradiated virus, and the amount of unscheduled DNA synthesis (UDS) after UV irradiation. However, the yield of UV-induced SCEs in 86NoKi cells was significantly higher than that in normal cells. (author)

26

Hyaluronan uptake by adult human skin fibroblasts in vitro  

Directory of Open Access Journals (Sweden)

Full Text Available Low and high molecular weight hyaluronan (HA was added to adult human fibroblasts grown in monolayer to assess its influence on CD44 expression, its internalisation and effect on cell growth. CD44 expression on the surface of in vitro fibroblasts was not modified by different concentrations of FCS, whereas it was sensitive to cell cycle, being higher in the growing than in the resting phase. Independently from molecular weight, upon addition of exogenous HA (from 0.1 up to 1 mg/mL to fibroblasts in the growing phase, a slight but constant decrease of the expression of CD44 on the surface of fibroblasts was observed; moreover, HA induced a rearrangement of CD44 into patches in close relationship with the terminal regions of stress fibers, which became thicker and more rigid after a few hours from the addition of HA to the medium. Fluorescent HA, added to the culture medium, rapidly attached to the plasma membrane and in less than two minutes was observed within cells, partly in association with its receptor CD44. By the contemporary use of neutral red, which accumulates into functional lysosomes, the great majority of internalised HA was found within lysosomes. HA receptor RHAMM-IHABP was rather homogeneously localised within the cytoplasm of normal growing fibroblasts. Upon addition of HA, the RHAMM-IHABP distribution became discontinuous around the nucleus. Addition of HA to fibroblasts induced a significant inhibition of cell growth, which was dependent on HA concentration and irrespective of HA molecular weight, at least in the ranges tested. Results show that extra-cellular HA is rapidly taken up by human dermal fibroblasts together with its CD44 receptor, and transported mostly to the lysosomes. Both low and high molecular weight HA induced down-regulation of cell proliferation, which would seem to be mediated by HA catabolism.

I Pasquali-Ronchetti

2003-03-01

27

Hydroxyeicosatetraenoic acid metabolism in cultured human skin fibroblasts. Evidence for peroxisomal beta-oxidation.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

To determine whether the peroxisome is responsible for hydroxyeicosatetraenoic acid (HETE) oxidation, 12- and 15-HETE oxidation was measured in normal and peroxisomal deficient skin fibroblasts from patients with Zellweger's (cerebrohepatorenal) syndrome. When incubated for 1 h with normal fibroblasts, reverse phase HPLC indicated that 24% of the 12-HETE radioactivity was converted to one major polar metabolite. Chemical derivatization followed by reverse phase HPLC and TLC indicated that thi...

Gordon, J. A.; Figard, P. H.; Spector, A. A.

1990-01-01

28

Enhanced reactivation of ultraviolet-damaged herpes virus in ultraviolet pretreated skin fibroblasts of cancer prone donors  

International Nuclear Information System (INIS)

An enhanced reactivation of ultraviolet-damaged (u.v. at 254 nm) unclear replicating double-stranded DNA viruses occurs when corresponding host cells are treated with radiation or carcinogens prior to infection. This phenomenon seems to be due to an induced DNA repair activity the nature of which is yet unknown. The u.v.-induced enhanced reactivation (ER) of u.v.-damaged herpes simplex virus (u.v. - HSV) was compared in dividing skin fibroblasts of 30 donors either normal or afflicted by genetic disorders, some of which confer a high risk for sunlight induced skin cancers. Cultures were exposed to a single dose of 1.0-25 J.m-2 from 0-60 h before infection with u.v.-HSV (at about 10-3 survival) and the rate of viral production was determined. ER was maximal for a 36 h time interval in all lines. The u.v. dose eliciting maximal ER was 15 J.m-2 in fibroblasts from normal donors, xeroderma pigmentosum (XP) heterozygotes, Mibelli's porokeratosis, diffused naevomatosis, Down's syndrome, xerodermoids, XP variants and epidermodysplasia verruciformis. However, in the latter 3 cases, ER was almost 10 times more pronounced than in the normal cases. The u.v. dose eliciting maximal ER was 0.1, 0.3 and 2 J.m-2 in excision deficient XP fibroblasts from groups A, D and C, respectively, 2.5 J.m-2 in 11961 fibroblasts and 5 J.m-2 in fibroblast lines from cockayne s syndrome

29

Trisomy 13 mosaicism demonstrated only in skin fibroblasts in a patient presenting psychomotor retardation, pigmentary dysplasia and some dysmorphic features  

Directory of Open Access Journals (Sweden)

Full Text Available A Brazilian female infant presented delayed psychomotor development, skin pigmentary dysplasia and some dysmorphic features. Chromosome analysis from peripheral blood culture was normal, but the karyotype from skin fibroblasts revealed mosaicism for trisomy 13. This case demonstrates the relevance of performing chromosomal analysis of skin fibroblasts in patients with mental retardation, associated with pigmentary dysplasia of the skin and a normal karyotype in peripheral blood lymphocytes. To our knowledge, it is the first report of trisomy 13 demonstrated only in skin fibroblasts.

A.P.S. Ferreira

1996-01-01

30

The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.  

Science.gov (United States)

Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. PMID:25176070

Varkey, Mathew; Ding, Jie; Tredget, Edward E

2014-12-01

31

Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Magdalena Donejko,1 Andrzej Przylipiak,1 Edyta Rysiak,2 Katarzyna G?uszuk,2 Arkadiusz Sura?y?ski2 1Department of Esthetic Medicine, 2Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Bia?ystok, Bia?ystok, Poland Aim: The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA on this process. Materials and methods: Collagen, [3H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 µg/mL HA. Western immunoblot analysis was performed to evaluate expression of ß1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase. Results: Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of ß1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis. Conclusion: Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts. Keywords: collagen, caffeine, hyaluronic acid, fibroblast

Donejko M

2014-10-01

32

Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor  

Directory of Open Access Journals (Sweden)

Full Text Available Basic fibroblast growth factor (bFGF regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL. The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01. The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05, while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01. These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

Rui Song

2011-05-01

33

Possible role for metallothionein in the cellular defense mechanism against UVB irradiation in neonatal human skin fibroblasts  

International Nuclear Information System (INIS)

The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. (Author)

34

Possible role for metallothionein in the cellular defense mechanism against UVB irradiation in neonatal human skin fibroblasts  

Energy Technology Data Exchange (ETDEWEB)

The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. (Author).

Kobayashi, Shizuko; Hirota, Yumiko; Takehana, Makoto (Kyoritsu College of Pharmacy, Tokyo (Japan)); Sayato-Suzuki, Junko (Kyoritsu College of Pharmacy, Tokyo (Japan) National Inst. for Environmental Studies, Ibaraki (Japan). Environmental Health Sciences Div.); Nishimura, Hisao; Nishimura, Noriko (Aichi Medical Univ. (Japan). Dept. of Hygiene); Tohyama, Chiharu (National Inst. for Environmental Studies, Ibaraki (Japan). Environmental Health Sciences Div.)

1994-06-01

35

Hypersensitivity of ataxia telangiectasia skin fibroblasts to DNA alkylating agents.  

Science.gov (United States)

3 ataxia telangiectasia (AT) fibroblast cell strains, AT4BI, AT5BI and AT2BE (CRL1343) were studied for their colony-forming ability after treatment with various concentrations of 4 different DNA alkylating agents. The results were compared to the response of fibroblast strains from 3 normal individuals. None of the AT strains were abnormally sensitive to N-methyl-N'-nitro-N-nitrosoguanidine. 1 strain (AT5BI) was significantly more sensitive to treatment with methyl methanesulfonate (MMS) based on a survival curve D0 value of 0.29 mM vs. the normal average D0 of 0.38 mM (P less than 0.02) and a D10 value of 0.85 mM vs. the normal average D10 of 1.2 mM (P less than 0.025). Strain AT4BI was also significantly more sensitive to MMS treatment when D10 values were compared (0.73 mM, P less than 0.01). All 3 AT cell strains were significantly more sensitive to treatment with ethyl methanesulfonate when D10 values were the criterion of sensitivity, AT4BI 16 mM, AT5BI 13 mM and AT2BE 15 mM vs. the normal human fibroblast average D10 value of 28 mM (P less than 0.01 for all 3 AT strains). 2 of the 3 AT cell strains (AT4BI and AT2BE) were abnormally sensitive to treatment with 4-nitroquinoline-1-oxide; the D0 values were 0.045 microM and 0.05 microM, respectively, vs. the normal average D0 value of 0.11 microM (P less than 0.01 for both AT strains). The corresponding D10 values were 0.08 microM and 0.11 microM, respectively, vs. the normal average D10 value of 0.27 microM (P less than 0.01 for AT4BI and P less than 0.025 for AT2BE). These results indicate that there is a heterogeneity in the response of AT fibroblast cell strains to treatment with DNA alkylating agents, except possibly in the case of ethylating compounds. PMID:6810166

Barfknecht, T R; Little, J B

1982-06-01

36

Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders.  

Science.gov (United States)

Basement membrane is a highly specialized structure that binds the dermis and the epidermis of the skin, and is mainly composed of laminins, nidogen, collagen types IV and VII, and the proteoglycans, collagen type XVIII and perlecan, all of which play critical roles in the function and resilience of skin. Both dermal fibroblasts and epidermal keratinocytes contribute to the development of the basement membrane, and in turn the basement membrane and underlying dermis influence the development and function of the epidermal barrier. Disruption of the basement membrane results in skin fragility, extensive painful blistering, and severe recurring wounds as seen in skin basement membrane disorders such as epidermolysis bullosa, a family of life-threatening congenital skin disorders. Currently, there are no successful strategies for treatment of these disorders; we propose the use of tissue-engineered skin as a promising approach for effective wound coverage and to enhance healing. Fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of tissue from abdominoplasty patients were independently cocultured on collagen-glycosaminoglycan matrices, and the resulting tissue-engineered skin was assessed for functional differences based on the underlying specific dermal fibroblast subpopulation. Tissue-engineered skin with superficial fibroblasts and keratinocytes formed a continuous epidermis with increased epidermal barrier function and expressed higher levels of epidermal proteins, keratin-5, and E-cadherin, compared to that with deep fibroblasts and keratinocytes, which had an intermittent epidermis. Further, tissue-engineered skin with superficial fibroblasts and keratinocytes formed better basement membrane, and produced more laminin-5, nidogen, collagen type VII, compared to that with deep fibroblasts and keratinocytes. Overall, our results demonstrate that tissue-engineered skin with superficial fibroblasts and keratinocytes forms significantly better basement membrane with higher expression of dermo-epidermal adhesive and anchoring proteins, and superior epidermis with enhanced barrier function compared to that with deep fibroblasts and keratinocytes, or with superficial fibroblasts, deep fibroblasts, and keratinocytes. The specific use of superficial fibroblasts in tissue-engineered skin may thus be more beneficial to promote adhesion of newly formed skin and wound healing, and is therefore promising for the treatment of patients with basement membrane disorders and other skin blistering diseases. PMID:24004160

Varkey, Mathew; Ding, Jie; Tredget, Edward E

2014-02-01

37

Characterization of the camel skin cell line Dubca.  

Science.gov (United States)

A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells. PMID:8556315

Klopries, M; Wernery, U; Kaaden, O R

1995-01-01

38

Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication.  

Science.gov (United States)

We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing. PMID:19108884

Lee, Wonhye; Debasitis, Jason Cushing; Lee, Vivian Kim; Lee, Jong-Hwan; Fischer, Krisztina; Edminster, Karl; Park, Je-Kyun; Yoo, Seung-Schik

2009-03-01

39

Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin a [...] nd from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P

Rui, Song; Hui-Ning, Bian; Wen, Lai; Hua-De, Chen; Ke-Seng, Zhao.

40

Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy  

DEFF Research Database (Denmark)

To investigate if the occurrence of subcutaneous fibrosis after radiotherapy in an unselected group of breast cancer patients is related to cellular radiosensitivity of skin fibroblasts as measured in a clonogenic assay.

Johansen, J; Bentzen, SØren M

1996-01-01

 
 
 
 
41

Cultured skin fibroblasts from patients with porokeratosis are hypersensitive to the lethal effects of X-radiation  

International Nuclear Information System (INIS)

Porokeratosis is an autosomal dominant inherited skin disorder. The lesions are characterized by localized abnormal keratinization and may develop into malignant tumors. To determine the cellular basis of the cancer susceptibility associated with this skin condition, we examined the colony-forming ability of X-ray or ultraviolet (UV) light irradiated, cultured fibroblasts derived from porokeratosis patients' normal-appearing skin. Four fibroblast strains derived from four porokeratosis patients' skin were significantly hypersensitive to the lethal effects of X-radiation. However, they all showed a similar sensitivity to strains from normal donors to 254 nm UV light. The hypersensitivity to X-ray radiation in cultured skin fibroblasts from porokeratosis patients suggests an inherent instability of cellular DNA and may prbably be associated with the cancer-prone nature of this skin condition. (author)

42

Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in human skin fibroblasts  

International Nuclear Information System (INIS)

This study examined the optical properties of an oxidized form of maghemite (?-Fe2O3) nanoparticles and their protective effects against the photoaging of human skin fibroblasts irradiated with ultraviolet (UV) light. Nanoparticles with diameters ranging from 8.7 to 12 nm were prepared using a chemical co-precipitation method. The nanoparticles were coated with two surfactants to obtain a water-based product. The onset of the absorption of the ?-Fe2O3 nanoparticles in the UV-visible absorption spectra increased with increasing particle size. The ?-Fe2O3 nanoparticles significantly inhibited the production of matrix metalloproteinase-1 in human skin fibroblast HS 68 cells by 60% compared with the UV-irradiated control. These results suggest that ?-Fe2O3 nanoparticles have photoprotective properties, and have potential use as an agent against photoaging

43

Alzheimer's disease skin fibroblasts selectively express a bradykinin signaling pathway mediating tau protein Ser phosphorylation.  

Science.gov (United States)

Increased Ser phosphorylation of tau microtubule-associated protein in the brain is an early feature of Alzheimer's disease (AD) that precedes progression of the disease to frank neuronal disruption. We demonstrate that bradykinin (BK) B2 receptor activation leads to selective Ser phosphorylation of tau in skin fibroblasts from persons who have or will develop AD due to Presenilin 1 mutations or Trisomy 21, but not in skin fibroblasts from normal individuals at any age. The increased signal transduction in AD fibroblasts that culminates in tau Ser phosphorylation reflects modification of the G protein-coupled BK B2 receptors themselves. Both the BK B2 receptor modification and BK-mediated tau Ser phosphorylation are dependent on activation of protein kinase C and can be detected in fibroblasts from persons with Trisomy 21 two decades before the characteristic onset of AD. This dysregulated signaling cascade in AD may thus be expressed throughout life as an aberrant pathway in peripheral tissues more accessible than brain for molecular analysis. The sites of greatest BK B2 receptor expression in brain overlap with those areas displaying the earliest pathology in the course of AD, suggesting that BK receptor pathway dysfunction may be a molecular signature yielding information about the pathogenesis of AD. PMID:14563691

Jong, Yuh-Jiin I; Ford, Stephanie R; Seehra, Kuljeet; Malave, Victor Brian; Baenziger, Nancy Lewis

2003-12-01

44

Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts  

International Nuclear Information System (INIS)

The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells. (author)

45

DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment  

International Nuclear Information System (INIS)

Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects

46

Protective activity of hamamelitannin on cell damage of murine skin fibroblasts induced by UVB irradiation.  

Science.gov (United States)

The protective activities of hamamelitannin (2',5-di-O-galloyl-hamamelose) in Hamamelis virginiana L. and its related compound, gallic acid, on damaged murine skin fibroblasts induced by UVB irradiation were investigated. In order to exclude the UV absorbing effect of the compounds, the protection study was performed such that the fibroblasts were pretreated with hamamelitannin or gallic acid for 24 h before UVB irradiation. At 200 microM concentration, hamamelitannin gave the higher survival of 72.6 +/- 0.4% in comparison with that of gallic acid (35.5 +/- 1.0%), while UVB absorbers such as 2-ethylhexyl p-methoxycinnamate and hexylbenzoate did not show such protection. The scavenging activities of hamamelitannin and gallic acid against active oxygens such as superoxide anion radicals, hydroxyl radicals and singlet oxygens were evaluated using electron spin resonance (ESR-spin trapping method). Hamamelitannin and gallic acid showed potent scavenging activities against all active oxygens tested. Furthermore, the association of hamamelitannin to fibroblasts was examined by comparing it with that of gallic acid, and the following results were obtained: (1) hamamelitannin reduces the reaction rate of liposome entrapped-nitroblue tetrazolium (NBT) with external superoxide anions, and (2) several glycosides associate with fibroblasts. From these results, it was concluded that hamamelitannin protects murine fibroblasts against external active oxygens by associating with the cell surface through its sugar moiety. PMID:7577835

Masaki, H; Atsumi, T; Sakurai, H

1995-07-01

47

Radioprotective effect of c-ski on rat skin fibroblast in vitro  

International Nuclear Information System (INIS)

Objective: To examine radioprotective effect of c-ski on rat skin fibroblast in vitro and explore its possible mechanism. Methods: The effect of soft X-ray irradiation at dose varied from 2 to 8 Gy on cell apoptosis in rat skin fibroblast were determined by flow cytometry with Annexin-V-FITC-PI labelling. The effect of c-ski gene transfection on cell apoptosis was evaluated after soft X-ray irradiation of 4 Gy. The protein expressions of Bax and Bcl-2 after c-ski gene transfection were measured with the Western blot method. Results: Soft X-ray irradiation increases cell apoptosis, and the increase is proportional to the irradiation dose. Apoptosis ratio increases with time since the irradiation, and reaches its peak at 36h after the irradiation, c-ski gene was observed to markedly decrease apoptosis index at 24 h after soft X-ray irradiation of 4 Gy compared to the control group, significant increase of the protein expression of Bcl-2 was observed. C-ski gene was found no significant effect on the protein expression of Bax. Conclusion: c-ski gene can decrease radiation sensitivity of skin fibroblast, promoting Bcl-2 protein expression is one of its possible mechanism for this radioprotective effects. (authors)

48

The effects of baicalin against UVA-induced photoaging in skin fibroblasts.  

Science.gov (United States)

Ultraviolet A (UVA) radiation contributes to skin photoaging. Baicalin, a plant-derived flavonoid, effectively absorbs UV rays and has been shown to have anti-oxidant and anti-inflammatory properties that may delay the photoaging process. In the current study, cultured human skin fibroblasts were incubated with 50 ?g/ml baicalin 24 hours prior to 10 J/cm(2) UVA irradiation. In order to examine the efficacy of baicalin treatment in delaying UVA-induced photoaging, we investigated aging-related markers, cell cycle changes, anti-oxidant activity, telomere length, and DNA damage markers. UVA radiation caused an increased proportion of ?-Gal positive cells and reduced telomere length in human skin fibroblasts. In addition, UVA radiation inhibited TGF-?1 secretion, induced G1 phase arrest, reduced SOD and GSH-Px levels, increased MDA levels, enhanced the expression of MMP-1, TIMP-1, p66, p53, and p16 mRNA, reduced c-myc mRNA expression, elevated p53 and p16 protein expression, and reduced c-myc protein expression. Baicalin treatment effectively protected human fibroblasts from these UVA radiation-induced aging responses, suggesting that the underlying mechanism involves the inhibition of oxidative damage and regulation of the expression of senescence-related genes, including those encoding for p53, p66(Shc) and p16. PMID:24871661

Min, Wei; Liu, Xin; Qian, Qihong; Lin, Bingjiang; Wu, Di; Wang, Miaomiao; Ahmad, Israr; Yusuf, Nabiha; Luo, Dan

2014-01-01

49

Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts  

International Nuclear Information System (INIS)

We evaluated the interaction of [3H]1,25(OH)2D3 with skin fibroblasts cultured from normal subjects or from affected members of six kindreds with rickets and resistance to 1-alpha, 25(OH)2D [1,25(OH)2D]. We analyzed two aspects of the radioligand interaction; nuclear uptake with dispersed, intact cells at 37 degrees C and binding at 0 degrees C with soluble extract (cytosol) prepared from cells disrupted in buffer containing 300 mM KCl and 10 mM sodium molybdate. With normal fibroblasts the affinity and capacity of nuclear uptake of [3H]1,25(OH)2D3 were 0.5 nM and 10,300 sites per cell, respectively; for binding with cytosol these were 0.13 nM and 8,900 sites per cell, respectively. In all cases where the radioligand bound with high affinity in nucleus or cytosol, the nucleus- or cytosol-associated radioligand exhibited normal sedimentation velocity on sucrose density gradients. When two kindreds exhibited similar patterns (i.e. pattern a or c) with the analyses of cultured fibroblasts, clinical features in affected members suggested that the underlying genetic defects were not identical. In conclusion: (a) Fibroblasts cultured from human skin manifest nuclear uptake and cytosol binding of [3H]1,25(OH)2D3 that is an expression of the genes determining these processes in target tissues. (b) Based upon data from clinical evaluations and from analyses om clinical evaluations and from analyses of cultured fibroblasts, severe resistance to 1,25(OH)2D resulted from five or six distinct genetic mutations in six kindreds

50

Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)  

International Nuclear Information System (INIS)

Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showed the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells

51

Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.  

Science.gov (United States)

One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 ?g/ml) than L-ascorbic acid (EC(50) = 22.9 ?g/ml) and ?-tocopherol (EC(50) = 29.3 ?g/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 ?M) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 ?g/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic. PMID:24602819

Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

2014-01-01

52

Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome.  

Science.gov (United States)

Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT), a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16) we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs), F4-Neuroprostanes (F4-NeuroPs), nonprotein bound iron (NPBI), and (4-HNE PAs), and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds), F2-IsoPs (7.5-folds) NPBI (2.3-folds), 4-HNE PAs (1.48-folds), and GSSG (1.44-folds) were detected, with significantly decreased GSH (-43.6%) and GSH/GSSG ratio (-3.05 folds). A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients. PMID:24987493

Signorini, Cinzia; Leoncini, Silvia; De Felice, Claudio; Pecorelli, Alessandra; Meloni, Ilaria; Ariani, Francesca; Mari, Francesca; Amabile, Sonia; Paccagnini, Eugenio; Gentile, Mariangela; Belmonte, Giuseppe; Zollo, Gloria; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Ciccoli, Lucia; Renieri, Alessandra; Hayek, Joussef

2014-01-01

53

Chitosan scaffold co-cultured with keratinocyte and fibroblast heals full thickness skin wounds in rabbit.  

Science.gov (United States)

This study evaluated the modulatory effect of chitosan sponge co-cultured with keratinocyte and fibroblast on wound healing. Dermal fibroblasts and keratinocyte isolated from rabbit skin were co-cultured on chitosan sponge, to fabricate cell-loaded chitosan tissue engineered construct. Full thickness excision wounds created on the rabbit dorsum were treated with three types of graft materials – a noncellular chitosan graft, homologous keratinocyte fibroblast loaded chitosan, and a commercial product. Postgraft skin-wound samples were examined histomorphologically at 7th, 14th, and 28th day after staining with hematoxylin and eosin, picrosirius red and/or immunohistochemistry. Wound healing parameters considered were the extent of re-epithelialization, collagen deposition, and neoangiogenesis. The number of proliferating cells, vimentin positive cells, and alpha smooth muscle actin cells were also quantified. The histology results suggested that the grafts aided wound healing but, the cell-loaded graft induced a differential pattern of healing and had lower scarring tendency. The cell-loaded tissue construct may be useful as a therapeutic graft for treating wounds where there is a total loss of tissue and cells as in burn injury. PMID:24133040

Revi, Deepa; Paul, Willi; Anilkumar, T V; Sharma, Chandra P

2014-09-01

54

Accumulation of phosphorus compounds in tissues and cultured skin fibroblasts in patients with hypophosphatasia  

International Nuclear Information System (INIS)

Patients with hypophosphatasia caused by a deficiency of alkaline phosphatase first showed marked accumulation of phosphoethanolamine and other phosphorus compounds in kidney and liver, while in placenta and intestine contents of these compounds were within a normal range. Furthermore, 32P-incorporation in cultured skin fibroblasts of patients with hypophosphatasia was increased about two to three times of control. FPLC chromatographic analysis also indicates that the accumulated phosphorus compounds in hypophosphatasia was smaller molecular phosphorus containing compounds. These data provide new pathophysiological aspect of hypophosphatasia

55

Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage  

International Nuclear Information System (INIS)

exhibited no overexpression of transforming growth factor ? or tissue inhibitor of metalloproteinase. Conclusion: Irradiation may lead to apparently contradictory effects such as fibrosis and necrosis in clinical practice. In cell culture, we observed two main cellular phenotypes which may be related to both processes, i.e. myofibroblast-like cells and fibrocyte-like cells. These two phenotypes may represent two steps in the differentiation induced as a long-term effect of therapeutic irradiation of the skin. Cell culture probably accelerates the induction of the terminal differentiation in RIF fibroblasts. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

56

P7-004??Histamine inhibits differentiation of skin fibroblasts into myofibroblasts.  

Science.gov (United States)

?Background? Histamine (HA) and TGF-?, major mediators secreted by mast cells are involved in skin inflammation and systemic sclerosis. However, it remains largely unclear how the respective signaling are integrated to achieve development of skin fibrosis. ?Objectives? Investigate the effect of HA signaling during myofibroblasts differentiation. ?Methods? Skin fibroblasts (SFBs) were stimulated with TGF-?, HA, or HA receptor antagonists. Expression of ? smooth muscle actin (?SMA), HA receptors, and Smads were analyzed at mRNA and protein. ?Results? Expression of H1-receptor (H1R) and H2-receptor (H2R) were detectable in SFBs at both mRNA and protein level. Interestingly, addition of HA inhibited ?SMA expression induced by TGF-? which was antagonized by H1R antagonist but not H2R antagonist. Correspondingly, phosphorylated Smad2 was induced by TGF-? stimulation whereas inhibited its phosphorylation after HA treatment. ?Conclusions? HA inhibited differentiation of SFBs into myofibroblast induced by TGF-? in a H1R dependent manner, which emphasized the cirtical functions of H1R in the development of skin fibrosis. Thus, H1R may be a therapeutic target for skin fibrosis. PMID:25297276

2014-01-01

57

Near-ultraviolet radiation-induced lipid peroxidation and membrane effects in Escherichia coli and human skin fibroblasts  

International Nuclear Information System (INIS)

The first part of this thesis examines the response of an unsaturated fatty acid auxotroph, Escherichia coli K1060 to broad-band near-UV radiation. Sensitivity, lipid peroxidation and leakage of rubidium from irradiated cells were found to increase with increasing unsaturation of membrane fatty acids. The involvement of singlet oxygen was implicated by an increase in sensitivity, lipid peroxidation and leakage of rubidium following irradiation in deuterium oxide. Some factors influencing survival following irradiation were investigated, where lower growth rates were shown to enhance survival. In the second part, the study was extended to human fibroblasts where a normal human skin fibroblast strain, GM730 and a strain derived from an actinic reticuloid patient, AR6LO, are compared. Lipid peroxidation was measured in both cell lines following broad-band near-UV irradiation. Membrane activity, as assessed by the pinocytic uptake of 14C-sucrose and its subsequent release from the cell, was measured. Near-UV irradiation was found to increase such activity in both strains. Vitamin E and Trolox-C were found to decrease this response in AR6LO but not GM730 cells. The final part consists of preliminary investigations into the near-UV induced peroxidation of fatty acids and liposomes, and the subsequent increase in the level of hydroperoxides in the hours following irradiation. (author)

58

Mitochondrial dysfunction in skin fibroblasts from a Parkinson's disease patient with an alpha-synuclein triplication.  

Science.gov (United States)

Mitochondrial dysfunction has been frequently implicated in the neurodegenerative process that underlies Parkinson's disease (PD), but the basis for this impairment is not fully understood. The goal of this study was to investigate the effects of ?-synuclein (?-syn) gene multiplication on mitochondrial function in human tissue. To investigate this question, human fibroblasts were taken from a patient with parkinsonism carrying a triplication in the ?-syn gene. Unexpectedly, the cells showed a significant decrease in cell growth compared to matched healthy controls. With regard to mitochondrial function, ?-syn triplication fibroblasts exhibited a 39% decrease in ATP production, a 40% reduction in mitochondrial membrane potential, and a 49% reduction in complex I activity. Furthermore, they proved to be more sensitive to the effects of the nigrostrial toxicant paraquat compared to controls. Finally, siRNA knockdown of ?-syn resulted in a partial rescue of mitochondrial impairment and reduction of paraquat-induced cell toxicity, suggesting that ?-syn plays a causative role for mitochondrial dysfunction in these patient-derived peripheral skin fibroblasts. PMID:23934919

Mak, Sally K; Tewari, Deepika; Tetrud, James W; Langston, J William; Schüle, Birgitt

2011-01-01

59

PCC-FISH in skin fibroblasts for local dose assessment: biodosimetric analysis of a victim of the Georgian radiological accident.  

Science.gov (United States)

We propose a new method of biodosimetry that could be applied in cases of localized irradiation. The approach is based on excess chromosome segments determination by the PCC-FISH technique in fibroblasts isolated from skin biopsy. Typically, 0 to 10 Gy ex vivo gamma-irradiated human skin biopsies were dissociated and fibroblasts were isolated and grown for several days. Cells next underwent PCC-FISH painting of whole chromosome 4, and the number of excess chromosome segments per metaphase was determined. An ex vivo reference curve correlating the number of excess chromosome segments per metaphase to the radiation dose was established and used to assess the dose delivered to the skin of one of the victims of the radiological accident that occurred at Lia in Georgia in December 2001. Specifically, the victim suffering from moist desquamation underwent skin excision in Hospital Percy (France). Measurement of excess chromosome segments per metaphase was done in fibroblasts isolated and grown from removed wounded skin and subsequent conversion to radiation doses was performed. The radiation dose map obtained was shown to be in accordance with clinical data and physical dosimetry as well as with conventional biodosimetry. These results demonstrated that PCC-FISH painting applied to skin fibroblasts may be a suitable technique for dose estimation. To assess its worth, this approach needs to be extended to future accidents involving localized radiation exposure. PMID:15447046

Pouget, J-P; Laurent, C; Delbos, M; Benderitter, M; Clairand, I; Trompier, F; Stéphanazzi, J; Carsin, H; Lambert, F; Voisin, P; Gourmelon, P

2004-10-01

60

Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis.  

Science.gov (United States)

It has been demonstrated that zinc exerts its beneficial influence on skin fibroblasts. Propolis, a complex mixture of plant-derived and bees' products, was reported to stimulate cicatrization processes in skin and prevent infections. The aim of this study was to find out how zinc and propolis influence human skin fibroblasts in cell culture and to compare the effect of individual compounds to the effect of a mixture of zinc and propolis. In this study, zinc, as zinc aspartate, at a concentration of 16 ?M, increased human fibroblasts proliferation in cell culture, whereas propolis at a concentration of 0.01% (w/v) revealed antiproliferative and cytotoxic action followed by mild cell necrosis. In culture, zinc was effectively transported into fibroblasts, and propolis inhibited the amount of zinc incorporated into the cells. An addition of propolis to the medium caused a decrease in the Zn(II) amount incorporated into fibroblasts. The obtained results also indicate an appreciable antioxidant property of propolis and revealed its potential as a supplement when applied at doses lower than 0.01% (w/v). In conclusion, the present study showed that zinc had a protective effect on human cultured fibroblasts' viability, although propolis revealed its antiproliferative action and caused mild necrosis. PMID:24913100

Tyszka-Czochara, Ma?gorzata; Pa?ko, Pawe?; Reczy?ski, Witold; Szlósarczyk, Marek; Bystrowska, Beata; Opoka, W?odzimierz

2014-07-01

 
 
 
 
61

Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents  

International Nuclear Information System (INIS)

Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 days until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 =inomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage

62

Improvement of skin flap perfusion by subdermal injection of recombinant human basic fibroblast growth factor.  

Science.gov (United States)

The effect of subcutaneously injected recombinant human basic fibroblast growth factor (bFGF) was studied in an arterial skin flap model on the ear of the hairless mouse. Fifty-three male, hairless mice were randomly assigned to 4 groups and pretreated in two different time intervals with different doses of human bFGF. Microvascular perfusion of the skin flaps was determined over a 5-day period by means of intravital microscopy after intravenous injection of the fluorescence marker fluorescein isothiocyanate-dextran (M(r) 150,000). Human bFGF (2,700 ng) injected 6 days before flap creation could not improve perfusion of the flap (n = 10) when compared with controls. However, when applied 18 days before flap creation (n = 13), the same dose resulted in a significant reduction of nonperfused tissue at day 5 after flap creation (12.3% vs 26.8%, p < 0.01). Eighteen-day pretreatment with 1,200 ng (n = 10) and 480 ng (n = 10) had no significant effect on skin flap perfusion. We conclude, therefore, that successful pretreatment with bFGF for prevention of skin flap necrosis is time and dose dependent. PMID:8210153

Uhl, E; Barker, J H; Bondàr, I; Galla, T J; Lehr, H A; Messmer, K

1994-04-01

63

Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases  

Energy Technology Data Exchange (ETDEWEB)

To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were /sup 14/C-protein hydrolysate, (/sup 14/C)uridine, and (/sup 14/C) thymidine. Stimulation was determined by measuring incorporation of (/sup 14/C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules.

Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

1985-07-01

64

Influence of hyperthermia on the phosphorylation of ribosomal protein S6 from human skin fibroblasts and meningioma cells.  

Science.gov (United States)

Skin fibroblasts and meningioma cells, derived from primary cultures of the same patients have been used to study the influence of hyperthermia on (i) cell morphology and (ii) phosphorylation pattern of ribosomal and ribosome-associated proteins. Incubation of tumour cells and fibroblasts up to 7 h at 42 degrees C did not significantly change the cell morphology as compared to control cells kept at 37 degrees C. At 42 degrees C ribosomal protein S6 is shifted cathodically indicating a loss of negative charge, however no quantitative dephosphorylation of S6 was observed. Meningioma cells and fibroblasts did not differ significantly with respect to S6 phosphorylation. PMID:6617858

Richter, W W; Zang, K D; Issinger, O G

1983-03-21

65

Melanin potentiates daunorubicin-induced inhibition of collagen biosynthesis in human skin fibroblasts.  

Science.gov (United States)

One of the recognized side effects of antineoplastic anthracyclines is poor wound healing, resulting from an impairment of collagen biosynthesis. The most affected tissue is skin. The mechanism underlying the tissue specificity of the side effects of anthracyclines has not been established. In view of the fact that a number of pharmacologic agents are known to form complexes with melanin and melanins are abundant constituents of the skin, we determined whether daunorubicin interacts with melanin and how this process affects collagen biosynthesis in cultured human skin fibroblasts. Results indicated that daunorubicin forms complexes with melanin. Scatchard analysis showed that the binding of daunorubicin to melanin was heterogeneous, suggesting the presence of two classes of independent binding sites with K1 = 1.83 x 10(5) M(-1) and K2 = 5.52 x 10(3) M(-1). The number of strong binding sites was calculated as n1 = 0.158 micromol/mg of melanin and the number of weak binding sites as n2 = 0.255 micromol/mg of melanin. We have suggested that prolidase, an enzyme involved in collagen metabolism, may be one of the targets for anthracycline-induced inhibition of collagen synthesis. We found that daunorubicin induced inhibition of prolidase activity (IC50 = 10 microM), collagen biosynthesis (IC50 = 70 microM) and DNA biosynthesis (IC50= 10 microM) in human skin fibroblasts. Melanin (100 microg/ml) by itself produced about 25% inhibition of DNA synthesis and prolidase activity but it had no effect on collagen biosynthesis in cultured fibroblasts. However, the addition of melanin (100 microg/ml) to daunorubicin-treated cells (at IC50 concentration) augmented the inhibitory action of daunorubicin on collagen and DNA biosynthesis without having any effect on prolidase activity. The same effect was achieved when the cells were treated with daunorubicin at one-fourth of the IC50 given at 0, 6, 12 and 18 h during a 24-h incubation. The data suggest that the melanin-induced augmentation of the inhibitory effects of daunorubicin on collagen and DNA biosynthesis may result from: (i) accumulation of the drug in the extracellular matrix, (ii) gradual dissociation of the complex, and (iii) constant action of the released drug on cell metabolism. The phenomenon may explain the potential mechanism for the organ specificity of daunorubicin-induced poor wound healing in patients administered this drug. PMID:11426835

Surazy?ski, A; Pa?ka, J; Wrze?niok, D; Buszman, E; Kaczmarczyk, P

2001-05-11

66

Mutagenicity of 8-methoxypsoralen and long-wave ultraviolet irradiation in diploid human skin fibroblasts  

International Nuclear Information System (INIS)

Cell killing and the induction of mutation were studied in dividing and non-dividing human skin fibroblasts as a result of treatment by 8-methoxypsoralen (8-MOP) and long-wave UV irradiation (UVA). The cytotoxic effect was highly dependent upon the duration of the UVA exposure. The frequency of mutations increased linearly with the UVA dose at concentrations of 10 and 0.25 ?l 8-MOP/ml, the latter representing the concentration in the skin during PUVA treatment. The number of mutations induced per unit dose (= per ?g 8-MOP/ml per joule UVA/m2) was calculated: for dividing cells this value was 3.3 x 10-8 per cell and for non-dividing cells 0.6 x 10.8-8 per cell. On the basis of these values the expected number of induced mutants in the human skin per session of photochemotherapy is 1.2 x 10-5, and per 30 years of maintenance therapy 1.3 x 10-2 per cell. A comparison was made between this frequency and the frequency to be expected from spontaneous mutation. In addition the significance of absence in patients of SCE induction by photochemotherapy is discussed. (orig.)

67

Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays  

International Nuclear Information System (INIS)

We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-?1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

68

Cerebrohepatorenal Syndrome (CHRS) of Zellweger: lysosomal enzyme activities, sulfation of glycosaminoglycans, and pipecolic acid levels in cultured skin fibroblasts  

Energy Technology Data Exchange (ETDEWEB)

The defect in the cerebrohepatorenal syndrome (CHRS), a fatal hereditary disorder primarily affecting neurological development, is unknown. Three areas were studied for specific biochemical abnormalities which might aid in diagnosis and understanding of the disorder: (1) Clinico-pathological similarities to inherited degenerative neurologic disorders suggested decreased activity of certain lysosomal enzymes. Assays of ..beta..-galactosidase, ..beta..-hexosaminidase, ..cap alpha..-mannosidase, and arylsulfatase A activities in fibroblasts from four infants with CHRS indicated no deficiency of enzyme activities. (2) Undersulfation of glycosaminoglycans (GAGs) has been reported in patients with the clinically similar Lowe's syndrome. The rate and amount of incorporation of /sup 35/SO/sub 4/ = into intracellular /sup 35/S-GAGs up to 48 hours was comparable in fibroblasts from six CHRS infants and controls. Loss of /sup 35/-GAGs also followed a normal pattern. (3) Because pipecolic acid (PA) has been reported to be elevated in body fluids of patients with CHRS, cultured skin fibroblasts were examined for such an abnormality. Lysosomal enzyme activities and metabolism of sulfated glycosaminoglycans appear to be normal in cultured skin fibroblasts from infants with CHRS. Despite the sensitivity of the method, examination of pipecolic acid in cultured skin fibroblasts does not seem to be useful for diagnosis of CHRS.

Johnson, E.C.P.

1985-01-01

69

Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays  

Energy Technology Data Exchange (ETDEWEB)

We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

Walter, M.N.M. [Institute for Science and Technology in Medicine, Keele University RJAH Orthopaedic Hospital, Oswestry, SY10 7AG (United Kingdom); School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ (United Kingdom); Wright, K.T.; Fuller, H.R. [Institute for Science and Technology in Medicine, Keele University RJAH Orthopaedic Hospital, Oswestry, SY10 7AG (United Kingdom); MacNeil, S. [Kroto Research Institute and Centre for Nanoscience and Technology, Sheffield University, Sheffield, S1 2UE (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ (United Kingdom)

2010-04-15

70

Cytogenetic study of skin fibroblasts in a case of accidental acute irradiation  

International Nuclear Information System (INIS)

The cytogenetic study of skin fibroblasts from a young boy, heavily irradiated by handling of an iridium-192 source of 25 curies is reported. About half of the cells examined had chromosomal abnormalities. The same clone, with multiple chromosome rearrangement, was observed in cultures from biopsies obtained 25 and 35 months after the accident. Several other clones were detected in vitro. The results obtained from cultures of biopsies from different locations show that no direct relationships were found between the absorbed dose and the frequency of stable chromosomal rearrangements. The comparison of the intrachromosomal rearrangements, mostly inversions, observed in this study with those detected in human pathology, in irradiation experiments in vitro, and in various species of primates indicates that these rearrangements do not occur at random. (orig.)

71

Close-packed vesicles for diclofenac skin delivery and fibroblast targeting.  

Science.gov (United States)

Concentrated and interconnected penetration enhancer containing vesicles (PEVs) are proposed as carriers for dermal delivery of diclofenac. PEVs were prepared by using a commercial phosphatidylcholine mixture (180 mg/m) and transcutol in different amounts. Conventional liposomes were also prepared and tested as control. All vesicles showed a mean size ranging from 75 to 253 nm with fairly narrow size distribution, negative zeta potential value, and drug loading capacity between 48 and 70%. SWAXS studies showed that composition affected vesicle structure and morphology: 10 and 30% transcutol PEVs were unilamellar while liposomes and 20% transcutol PEVs were multilamellar. Rheological studies demonstrated that control liposomes and 10 and 30% transcutol containing PEVs behaved as Newtonian fluids while 20% transcutol containing PEVs showed a plastic behavior. Ex vivo (trans)dermal delivery experiments showed an improved skin deposition of diclofenac when PEVs were used. Vesicle toxicity and uptake of fibroblasts, target of inflammation treatment, were evaluated by MTT test and fluorescence microscopy. Control liposomes and PEVs were both able to interact and being internalized by the 3T3 fibroblasts at all time exposure tested. Furthermore, PEVs showed to be able to reduce the in vitro drug toxicity. PMID:23907049

Manca, Maria Letizia; Manconi, Maria; Falchi, Angela Maria; Castangia, Ines; Valenti, Donatella; Lampis, Sandrina; Fadda, Anna Maria

2013-11-01

72

Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure  

Science.gov (United States)

The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (Pfibroblast cells.

Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

2014-02-01

73

Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells  

Directory of Open Access Journals (Sweden)

Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 ?M CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

Ali Beman Zaree Mahmodabady

2006-01-01

74

Dramatic increase in oxidative stress in carbon-irradiated normal human skin fibroblasts.  

Science.gov (United States)

Skin complications were recently reported after carbon-ion (C-ion) radiation therapy. Oxidative stress is considered an important pathway in the appearance of late skin reactions. We evaluated oxidative stress in normal human skin fibroblasts after carbon-ion vs. X-ray irradiation. Survival curves and radiobiological parameters were calculated. DNA damage was quantified, as were lipid peroxidation (LPO), protein carbonylation and antioxidant enzyme activities. Reduced and oxidized glutathione ratios (GSH/GSSG) were determined. Proinflammatory cytokine secretion in culture supernatants was evaluated. The relative biological effectiveness (RBE) of C-ions vs. X-rays was 4.8 at D? (irradiation dose corresponding to a surviving fraction of 37%). Surviving fraction at 2 Gy (SF2) was 71.8% and 7.6% for X-rays and C-ions, respectively. Compared with X-rays, immediate DNA damage was increased less after C-ions, but a late increase was observed at D(10%) (irradiation dose corresponding to a surviving fraction of 10%). LPO products and protein carbonyls were only increased 24 hours after C-ions. After X-rays, superoxide dismutase (SOD) activity was strongly increased immediately and on day 14 at D(0%) (irradiation dose corresponding to a surviving fraction of around 0%), catalase activity was unchanged and glutathione peroxidase (GPx) activity was increased only on day 14. These activities were decreased after C-ions compared with X-rays. GSH/GSSG was unchanged after X-rays but was decreased immediately after C-ion irradiation before an increase from day 7. Secretion of IL-6 was increased at late times after X-ray irradiation. After C-ion irradiation, IL-6 concentration was increased on day 7 but was lower compared with X-rays at later times. C-ion effects on normal human skin fibroblasts seemed to be harmful in comparison with X-rays as they produce late DNA damage, LPO products and protein carbonyls, and as they decrease antioxidant defences. Mechanisms leading to this discrepancy between the two types of radiation should be investigated. PMID:24376870

Laurent, Carine; Leduc, Alexandre; Pottier, Ivannah; Prévost, Virginie; Sichel, François; Lefaix, Jean-Louis

2013-01-01

75

A quantitative assessment of changes in the dermal fibroblast population of pig skin after single doses of X-rays  

International Nuclear Information System (INIS)

Changes in the density of fibroblast nuclei in reticular dermis of pigs was studied from 6 to 104 weeks after a single dose of 15.4 Gy of X-rays. The largest decrease in fibroblasts occurred between 12 and 26 weeks after irradiation; after this there was only a slight fall in fibroblast number until 104 weeks when observations ceased. At 26 weeks and later times after irradiation reduction in the density of fibroblast nuclei in the reticular dermis was dose-dependent for single doses in the range 8.0-20.7 Gy. The dose-response curve had an initial shoulder, after which the fall in the fibroblast nuclear density was linearly related to dose. Data obtained between 26 weeks and 104 weeks after irradiation, could be fitted by the same dose-response curve. The fall in the counts of fibroblast nuclei was compared with earlier studies. The loss of fibroblasts occurred after an initial reduction in blood flow in the pig skin but was concomitant with general reduction in dermal thickness. (author)

76

Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids  

International Nuclear Information System (INIS)

The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to ? radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several ?-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/I, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

77

Melanin potentiates gentamicin-induced inhibition of collagen biosynthesis in human skin fibroblasts.  

Science.gov (United States)

One of the recognized side effects of gentamicin is ototoxicity. The mechanism underlying the organ specificity of this side effect of gentamicin has not been fully established. In view of the fact that a number of pharmacologic agents are known to form complexes with melanin and melanin is an abundant constituent of the inner ear tissues, we determined whether gentamicin interacts with melanin and how this process affects the biosynthesis of collagen in cultured human skin fibroblasts. Our results indicate that gentamicin forms complexes with melanin. The amount of gentamicin bound to melanin increases with increasing of initial drug concentration. The Scatchard plot analysis of drug binding to melanin showed that at least two classes of independent binding sites are implicated in gentamicin-melanin complex formation: one class with an association constant K(1) approximately 4 x 10(3) M(-1), and the second class with an association constant K(2) approximately 3 x 10(2) M(-1). The number of total binding sites (n(1)+n(2)) was calculated as about 1.36 micromol gentamicin per 1 mg melanin. We have suggested that prolidase, an enzyme involved in collagen metabolism, may be one of the targets for gentamicin-induced inhibition of collagen biosynthesis. We found that gentamicin-induced inhibition of prolidase activity (IC(50) approximately 100 microM) and collagen biosynthesis (IC(50) approximately 100 microM). At this concentration of gentamicin, DNA biosynthesis in human skin fibroblasts was inhibited only by about 30%. Melanin at 100 microg/ml produced about 25% inhibition of DNA synthesis and about 30% inhibition of prolidase activity, but it had no effect on collagen biosynthesis in cultured fibroblasts. However, the addition of melanin (100 microg/ml) to gentamicin-treated cells (100 microM) augmented the inhibitory action of gentamicin on collagen and DNA biosynthesis and partially reversed its inhibitory effect on prolidase activity. A melanin-induced augmentation of the inhibitory effects of gentamicin on collagen and DNA biosynthesis may explain the mechanism for the organ specificity of gentamicin-induced hearing loss in patients administered this drug. PMID:12098580

Wrze?niok, Dorota; Buszman, Ewa; Karna, Ewa; Nawrat, Piotr; Palka, Jerzy

2002-06-20

78

The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts.  

Science.gov (United States)

Exposure to ultraviolet (UV) light causes matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging. The activation of MMP is related to increased interlukin-6 (IL-6) and type I procollagen production, which is regulated by transforming growth factor-?1 (TGF-?1). Activator protein-1 (AP-1) activation induces MMP-1 production and reduces type I procollagen secretion. Fucosterol, which is extracted and purified from the brown algae Hizikia fusiformis, is a phytosterol. We assessed the effects of fucosterol on photodamage and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts by using enzyme-linked immunosorbent assay, Western blot analysis, and reverse transcription-polymerase chain reaction. Our results showed that fucosterol significantly decreased the UVB-induced expression of MMP-1, IL-6, p-c-Jun, and p-c-Fos. Additionally, fucosterol markedly increased the UVB-induced production of type I procollagen and TGF-?1. Our results indicate that fucosterol regulates MMP-1 and type I procollagen expression by modulating AP-1 and TGF-?1 signaling and that MMP-1 activation is correlated with IL-6. These data suggest that fucosterol is a promising botanical agent to protect against skin photodamage. PMID:24142195

Hwang, Eunson; Park, Sang-Yong; Sun, Zheng-wang; Shin, Heon-Sub; Lee, Don-Gil; Yi, Tae Hoo

2014-06-01

79

Lack of correlation of human fibroblast radiosensitivity in vitro with early skin reactions in patients undergoing radiotherapy  

International Nuclear Information System (INIS)

Fibroblasts from breast cancer patients were obtained as outgrowths in vitro from punch biopsies and their radiosensitivity tested in early passages. Skin erythema reactions in the same patients were also measured, as degree of redness using reflectance spectrophotometry. Measurements were taken before and during a 4-week radiotherapy treatment with electrons to the thoracic wall. Of 59 biopsies studied, radiosensitivity and erythema were concurrently studied in 32. In 24, evaluable data from both clinic and laboratory were obtained. The data indicate that fibroblast radiosensitivity measured in vitro cannot be used to predict erythema reactions to radiotherapy in breast cancer patients. (author)

80

Normal rejoining of DNA strand breaks in ataxia telangiectasia fibroblast lines after low x-ray exposure  

Energy Technology Data Exchange (ETDEWEB)

The alkaline elution method was used to measure the enzymatic repair of x-ray-induced DNA strand breaks in skin fibroblasts derived from human subjects afflicted with ataxia telangiectasia (AT). Monolayer cultures of normal control and AT cell lines were exposed acutely to moderately lethal (250-rad) and highly lethal (1250-rad) doses of 250-kV x rays under aerobic conditions. Upon receiving 250 rad, the control fibroblasts from a clinically normal donor rejoined all detectable single-strand breaks (plus alkali-labile bonds) within 30 to 60 min of incubation. When challenged with 1250 rad the kinetics of strand rejoining by the normal control cells were biphasic. For both exposures, no significant difference in either the rate or the extent of strand rejoining was detected between the normal cell line (GM38) and three mutant cell lines (AT2BE, AT3BI, AT4BI) belonging to the three known genetic complementation groups in AT. It would thus appear that the enhanced radiosensitivity of cultured AT cells does not stem from faulty rejoining of radiogenic DNA strand breaks.

Hariharan, P.V. (Roswell Park Memorial Inst., Buffalo, NY); Eleczko, S.; Smith, B.P.; Paterson, M.C.

1981-06-01

 
 
 
 
81

Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy  

International Nuclear Information System (INIS)

Objective: To investigate if the occurrence of subcutaneous fibrosis after radiotheraphy in an unselected group of breast cancer patients is related to cellular radiosensitivity of skin fibroblasts as measured in a clonogenic assay. Materials and methods: An in vitro colony-forming assay of normal fibroblast radiosensitivity was applied to primary skin biopsies from 31 breast cancer patients who received post-mastectomy radiotherapy with large doses per fraction (2.7-3.9 Gy) more than 10 years earlier. Three clinical normal-tissue endpoints were assessed. Two late endpoints, subcutaneous fibrosis and telangiectasia, were evaluated in three treatments fields by a single experienced clinician. In addition, skin erythema had been assessed at the end of treatment by members of the staff and junior staff. >From previous analyses of normal tissue response, individual clinical radiosensitivity could be assessed as 'excess risk' of each of the three reactions. This was defined as the difference between the actual observed response in the patient and the expected response estimated from individual treatment characteristics in a linear quadratic (LQ) mixture model and, for the two late endpoints, with correction for the follow-up time. This clinical radioresponsiveness was compared with the in vitro radiosensitivity of the skin fibroblasts. To this end, the fractions of colony-forming cells after graded single doses were fitted by an LQ survival curve using non-linear and linea survival curve using non-linear and linear regression from which the surviving fraction at 3.5 Gy (SF3.5) was estimated. Assessment at 3.5 Gy was chosen to reflect the fraction size during clinical radiotherapy. Results: A statistically significant variability of in vitro radiosensitivity between patients could be detected for both SF2 (P = 0.0095) and SF3.5 (P = 0.0008). A significant correlation was observed between SF3.5 and excess risk of fibrosis (rs -0.46, P = 0.009) while no association was found between fibroblast radiosensitivity and either the occurrence of severe skin telangiectasia or the acute endpoint skin erythema. Conclusion: These results suggest that variability in the occurrence of subcutaneous fibrosis, but not telangiectasia or erythema, after radiotherapy is partly accounted for by differences in cellular radiosensitivity of normal skin fibroblasts

82

Melanin potentiates kanamycin-induced inhibition of collagen biosynthesis in human skin fibroblasts.  

Science.gov (United States)

Ototoxicity is one of the well known side effects of kanamycin. The mechanism underlying the organ specificity of the side effect is not understood. Since many pharmacologic agents are known to form complexes with melanin and melanin is an abundant constituent of the inner ear, we investigated whether kanamycin interacts with melanin and how this process affects biosynthesis of collagen in cultured human skin fibroblasts. We found that kanamycin forms complexes with melanin. The amount of kanamycin bound to melanin increases with increase of initial drug concentration. The Scatchard plot analysis of the drug binding to melanin has shown that at least two classes of independent binding sites are implicated in the kanamycin-melanin complex formation: strong binding sites with the association constant K1 - 3 x 10(5) M(-1), and the weak binding sites with K2 - 4 x 10(3) M(-1). The number of total binding sites (n1 + n2) was calculated as about 0.64 micromol kanamycin per 1 mg melanin. We found that kanamycin induced inhibition of collagen and DNA biosynthesis (IC50 - 5 microM). Melanin at 100 microg/ml produced about 25% inhibition of DNA synthesis, but it had no effect on collagen biosynthesis in cultured fibroblasts. However, the addition of melanin (100 microg/ml) to kanamycin-treated cells (5 microM) augmented the inhibitory action of kanamycin on collagen and DNA biosynthesis. We have suggested that IGF-I receptor expression, involved in cell growth and collagen metabolism, may be one of the targets for kanamycin-induced inhibition of these processes. As shown by Western immunoblot analysis melanin augmented kanamycin-induced decrease in the expression of IGF-I receptor as well MAP kinases expression: ERK1 and ERK2. The obtained results demonstrate that melanin potentiates the inhibitory effect of kanamycin on IGF-I receptor-dependent signaling pathway in cultured fibroblasts. The data suggest a potential mechanism for the organ specificity of kanamycin-induced hearing loss in patients which may result from melanin-induced augmentation of the inhibitory effects of kanamycin on collagen and DNA biosynthesis. PMID:15997833

Wrze?niok, D; Buszman, E; Karna, E; Pa?ka, J

2005-06-01

83

The cerebro-hepato-renal (Zellweger) syndrome. Impaired de novo biosynthesis of plasmalogens in cultured skin fibroblasts.  

Science.gov (United States)

In tissues of patients with the cerebro-hepato-renal (Zellweger) syndrome the plasmalogen content is very low. In order to study the biosynthesis of plasmalogens, skin fibroblasts of Zellweger patients, controls and heterozygotes, and amniotic fluid cells of controls were cultured in a medium supplemented with [1-14 C]hexadecanol or 1-O-[9,10-3H2]octadecylglycerol. The incorporation of 14C-label into the alkenyl moiety of plasmalogens was strongly reduced in Zellweger patients as compared to controls. The low concentration of 14C-labeled plasmalogens was not compensated for by an elevated levels of 14C-labeled alkyl phospholipids. Hexadecanol was partly oxidized to fatty acid in all cell lines and the incorporation of 14C-labeled fatty acid into phospholipids was comparable for patients and controls. [3H]Alkylglycerol was incorporated into plasmalogens with the same efficiency in Zellweger patients as in controls. These results indicate that only the reaction(s) involved in the introduction of the ether bond in the process of plasmalogen synthesis are deficient in Zellweger patients. The results also suggest that the hexadecanol incorporation patterns can be used for the (prenatal) diagnosis of the Zellweger syndrome. PMID:3967038

Schrakamp, G; Schutgens, R B; Wanders, R J; Heymans, H S; Tager, J M; Van den Bosch, H

1985-01-01

84

Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia telangiectasia patients  

International Nuclear Information System (INIS)

Skin fibroblasts from patients with the recessive genetic disorder ataxia telangiectasia (AT) are more sensitive to ionizing radiation than cells from normal subjects (N). Previously, it had been suggested that AT cells are like caffeine-treated normal cells in that their radiosensitivity is not caused by their inability to repair damage but by their failure to go through those x-ray induced delays that allow normal cells to repair damage before it can be expressed. This paper examines whether or not caffeine could potentiate x-ray induced potentially-lethal damage in AT human fibroblasts to the same extent as in N human fibroblast cells. If AT cells resemble caffeine-treated N cells the addition of caffeine to irradiated AT cells should not further enhance cell killing

85

Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.  

Science.gov (United States)

Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns. PMID:24637651

Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

2014-04-01

86

Recovery from x-ray induced damage in primary cultures of human skin fibroblast cells  

International Nuclear Information System (INIS)

Human skin fibroblast cells from six patients were obtained during surgical operations and grown in culture. Dose response survival curves from single dose exposures of X-rays were developed for the six cell strains. Individual Do values varied in the six strains from 61 to 83 cGy. The shouldered survival curves had extrapolation numbers (n) ranging from 2.2 to 4.8. To assess repair of sublethal damage, cells were exposed to a total dose of 304 cGy split into two equal fractions separated by varying time intervals. Maximal increase in cell survival was observed when the time interval was at least three hours. Dose-response curves were generated for the six cell strains by first irradiating cells with 152 cGy X-rays and then allowing four hours for recovery from sublethal damage before exposing them to second graded doses. The fractionated dose-response survival curves were distinctly different from the single dose exposure curves and confirmed the ability of these cells to recover from X-ray-induced damage. (author)

87

Repair of ?- or X-radiation-induced DNA damage in cultured human skin fibroblasts  

International Nuclear Information System (INIS)

The authors previously reported the RBE for cell killing and mutagenicity at the hgprt locus in cultured human skin fibroblasts (GM10) was 7 and 13-18, respectively, for high-LET /sup 238/Pu-emitted ?-particles compared to low-LET 250 kVp X-rays. Dose fractionation studies indicated repair of sublethal and mutational damages in X-irradiated cells, whereas, this repair was not observed in cells exposed to ?-radiation. In this report, the agents present data on radiation-induced DNA single-strand and double-strand breaks (ssb and dsb) and their repair in both proliferating and confluent monolayers of GM10 cells. Employing sensitive alkaline and neutral DNA filter elution analyses, rates of ssb induced by X-rays were 6-fold that observed for ?-particles, whereas rates of dsb induced by ?-particles were 2.4-fold greater than those induced by X-rays. Rejoining the ssb induced by either radiation was rapid and >90% were repaired within 60 min post-irradiation incubation at 370. The time necessary for 50% repair (t/sub 1/2/) of X-ray-induced dsb was --40 min, however, for ---irradiated cells (20-110 Gy) the t/sub 1/2/ was 4-8-fold greater. Even after prolonged post-irradiation incubation (48 hr) using confluent GM10, --30% dsb remained unrepaired. This class of unrepaired DNA lesions probably contributes to the elevated RBE for high-LET radiation

88

Cytotoxic and mutagenic effects of high let charged particles on human skin fibroblasts  

International Nuclear Information System (INIS)

Cytotoxic and mutagenic effects of high LET charged particles were quantitatively measured using primary cultures of human skin fibroblasts. The span of LETs selected were from 25 keV/?m(330 MeV/u) to 920 keV/?m (600 MeV/u). Mutations were scored at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus using 6-thioguanine (6-TG) for selection. Exposure to these high LET charged particles resulted in exponential survival curves whereas mutant induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/?m. The inactivation cross-section (?i) and the action cross-section for mutant induction (?m) ranged from 2.2 to 92.0 ?m2 and 0.09 to 5.56 x 10-3 ?m2 respectively, the maximum values were obtained by 56Fe with an LET of 200 keV/?m. The mutagenicity (?m/?i) ranged from 2.05 to 7.99 x 10-5 with the maximum value at 150 keV/?m. Furthermore, the results of multiplex polymerase chain reaction (PCR) of some of the mutants induced by charged particles indicate that higher LET beams are more likely to cause larger deletions in the hprt locus. (author)

89

Radiosensitivity of skin fibroblasts from atomic bomb survivors with and without breast cancer  

International Nuclear Information System (INIS)

Fibroblasts were established in vitro from skin biopsies obtained from 55 women and one man with or without breast cancer and with or without exposure to radiation from the atomic bomb explosion in Hiroshima. The radiosensitivity of these cells was evaluated by clonogenic assays after exposure to X rays or to fission neutrons from a 252Cf source. Data were fitted to a multitarget model, S/S0 = A[1-(1-ekD)N], for both X-ray and neutron dose-survival curves. A single-hit model, S/S0 = AekD, fits the neutron dose-survival responses as well. These was no difference in the means or variances of radiosensitivity between exposed and nonexposed groups, or between patients with or without breast cancer. Hence, although the sample is not large, it provides no support for the hypothesis that A-bomb radiation preferentially induces breast cancer in women whose cells in vitro are sensitive to cell killing by radiation. (author)

90

The effect of ursolic and oleanolic acids on human skin fibroblast cells  

Directory of Open Access Journals (Sweden)

Full Text Available In this article, we look at how ursolic and oleanolic acids can be used for the purpose of quality control of natural products used in dermatocosmetology as well as of various other therapeutic preparations. Ursolic acid (UA and oleanolic acid (OA are pentacyclic triterpenes and they are constituents of many medicinal herbs. In this study, we analyzed the cytotoxic and anti-proliferative activity of OA and UA against normal human skin fibroblasts (HSF. Additionally, the scavenging activity of free radicals of both acids was analyzed. The sensitivity of cells to OA and UA activity was determined using a standard spectrophotometric (MTT assay. The free radical scavenging activity of OA and UA was measured using the DPPH• test. The F-actin cytoskeletal proteins organization was analyzed using TRITC-phalloidine fluorescent staining. The cytotoxic activity of the analyzed acids was determined using Neutral Red (NR uptake assay. Of the two isomeric compounds, UA showed a higher cytotoxic activity against HSF cells than did OA. Our investigations showed that OA, in view of its non-toxic nature, may be used as a supplementary factor for dermal preparations. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 664–669

Helena Donica

2012-01-01

91

Ca2+ responses to interleukin 1 and tumor necrosis factor in cultured human skin fibroblasts. Possible implications for Reye syndrome.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Elevated concentrations of cytokines were found in the plasma of patients acutely ill with Reye syndrome (RS) but not in control subjects or recovered RS patients. To determine whether this disorder involves a genetically determined abnormal response to cytokines, the effects of tumor necrosis factor (TNF) and IL-1 on intracellular free Ca2+ were compared in cultured skin fibroblasts from control subjects and patients with RS. IL-1 and TNF caused rapid, transient, and concentration-dependent ...

Corkey, B. E.; Geschwind, J. F.; Deeney, J. T.; Hale, D. E.; Douglas, S. D.; Kilpatrick, L.

1991-01-01

92

Possible role of metallothionein in the cellular defense mechanism against UVB irradiation in neonatal human skin fibroblasts.  

Science.gov (United States)

The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. The sensitivity of HS-K and NB1RGB cells to UVB irradiation was similar; those of SV40-HSK and Pam 212 cells were two- and six-fold as sensitive to UVB irradiation as HS-K cells, respectively. The HS-K cells contained the greatest cellular reduced form of glutathione (GSH) levels compared to the three other skin cells: the levels were 13-, 7- and 6-fold of those in NB1RGB, SV40-HSK and Pam 212 cells, respectively. These results indicated that the sensitivity of skin cells to UVB irradiation was not always associated with their endogenous GSH levels. In particular, despite the fact that NB1RGB cells contained a relatively small amount of GSH, they were less sensitive to UVB irradiation. NB1RGB cells contained 4-30 times more MT than those in other skin cells examined. The sulfhydryl residues of MT molecules in the NB1RGB cells were estimated to be mostly unoccupied by metals, suggesting they act in a similar way to those of GSH. Moreover, NB1RGB cells in which the MT content was elevated by dexamethasone (1 microM) or Zn2+ (7 micrograms/mL) treatment were more resistant to UVB irradiation than nontreated ones. These results suggest that, at least in neonatal human skin fibroblasts, MT may play a role in protection against UVB irradiation. PMID:8066125

Kobayashi, S; Hirota, Y; Sayato-Suzuki, J; Takehana, M; Nishimura, H; Nishimura, N; Tohyama, C

1994-06-01

93

Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation.  

Science.gov (United States)

Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as "daily UV radiation" (DUVR) with a higher UVA (320-400 nm) to UVB (280-320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure. PMID:20706594

Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Sok, Juliette; Thomas, Marie; Bernerd, Françoise

2010-01-01

94

Melanin counter act puromycin-induced inhibition of collagen and DNA biosynthesis in human skin fibroblasts.  

Science.gov (United States)

Puromycin is an experimental anti-tumor antibiotic acting through inhibition of protein synthesis. Because of its untoward side effects (as inner ear and renal lesions) the antibiotic was not approved for clinical trials. The mechanism underlying the organ specificity of the side effect is not understood. In view of the fact that a number of drugs form with melanin complexes that affect their pharmacological activity, we determined whether puromycin interacts with melanin and how this process affects biosynthesis of collagen in cultured human skin fibroblasts. Our results indicate that puromycin forms complexes with melanin. The amount of puromycin bound to melanin increases with increase of initial drug concentration. The Scatchard plot analysis of the drug binding to melanin has shown that at least two classes of independent binding sites are implicated in the puromycin-melanin complex formation: one class of strong binding sites with the association constant K1 = 1.84 x 10(6) M(-1), and the second class of weak binding sites with the association constant K2 = 5.26 x 10(3) M(-1). The number of total binding sites were n1 = 0.1260 and n2 = 0.2861 mumol puromycin per 1 mg melanin. We found that puromycin induced inhibition of collagen and DNA biosynthesis (IC50 approximately 2 microM). Melanin at 100 microg/ml produced about 20% inhibition of DNA synthesis, but it had no effect on collagen biosynthesis in cultured fibroblasts. However, the addition of melanin (100 microg/ml) to puromycin - treated cells (2 microM) abolished the inhibitory action of puromycin on collagen and DNA biosynthesis. We have suggested that IGF-I receptor expression, involved in collagen metabolism, may be one of the targets for puromycin - induced inhibition of collagen biosynthesis. It was found that melanin abolished puromycin induced decrease in the expression of IGF-I receptor as well MAP kinases expression: ERK1 and ERK2 as shown by Western immunoblot analysis. These data suggest that tissue specific pharmacological activity of puromycin may depend on the melanin abundance in tissues. PMID:15904670

Wrze?niok, Dorota; Surazy?ski, Arkadiusz; Karna, Ewa; Buszman, Ewa; Pa?ka, Jerzy

2005-06-17

95

A diphtheria toxin/fibroblast growth factor 6 mitotoxin selectively kills fibroblast growth factor receptor-expressing cell lines.  

Science.gov (United States)

The fibroblast growth factors (FGFs) constitute a family of nine polypeptides implicated in a number of physiological and pathological processes. They bind to at least three types of cell surface molecules, including low and high affinity receptor families. The role of FGFs and their receptors in human tumorigenesis has been suspected but not formally proven. FGF6 is an oncogene encoding a precursor protein of 208 amino acids that has been shown to bind to FGF receptors. Its normal function has not been identified, but its restricted pattern of expression suggests a role in muscle development or function. We have constructed, produced, and purified a diphtheria toxin/FGF6 mitotoxin that selectively kills FGF receptor-expressing cells. Interestingly, at least two cell lines that normally respond to FGF6 have been found resistant to DT/FGF6, suggesting that FGF6 acts on these cells through a transduction pathway that does not involve FGF receptor. PMID:8519691

Batoz, M; Coll Fresno, P M; Pizette, S; Raffioni, S; Birnbaum, D; Coulier, F

1995-09-01

96

Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts  

Energy Technology Data Exchange (ETDEWEB)

Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

Yin, Lei; Morita, Akimichi; Tsuji, Takuo [Nagoya City Univ. (Japan). Medical School

2002-02-01

97

Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts  

International Nuclear Information System (INIS)

Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoeduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

98

Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation  

International Nuclear Information System (INIS)

Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated that skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS

99

Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation  

Energy Technology Data Exchange (ETDEWEB)

Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated that skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.

Applegate, L.A.; Goldberg, L.H.; Ley, R.D.; Ananthaswamy, H.N. (Univ. of Texas M. D. Anderson Cancer Center, Houston (USA))

1990-02-01

100

Elongation of 20-carbon polyunsaturated fatty acids by human skin fibroblasts  

International Nuclear Information System (INIS)

Human skin fibroblasts readily incorporate exogenous arachidonate (20:4(n-6)) and eicosapentaenoate (20:5(n-3)) into cellular phospholipids and triacylglycerol. The extent of incorporation of 1.25 ?M [14C]20:4(n-6) and [14C]20:5(n-3) from culture medium with delipidized serum protein is similar, 20% in 1 hr increasing to 60-70% within 8 hr. Elongation of incorporated [14C]20:5(n-3) to [14C]22:5(n-3) is extensive, 40% by 8 hr and 85% by 48 hr. Elongation of [14C]20:4(n-6) to [14C]22:4(n-6) is 1$C]20:5(n-3) and plateaus at ?20% of incorporated 14C-fatty acid. Although incorporated, exogenous 22:4(n-6) is not an effective inhibitor of the elongation of [14C]arachidonate; however, exogenous 20:5(n-3) is inhibitory, with an ID50 of 5 ?M. With exogenous concentrations of [14C]arachidonate from 0.4 - 10 ?M, the percentage incorporated in 24 hr remains relatively constant. By contrast, the extent of elongation of incorporated [14C]arachidonate increases from 12% at 0.4 ?M to 43% at 10 ?M. Under these conditions, elongation of incorporated [14C]20:5(n-3) is ?75%. Thus, in these cells, selectivity of the elongation system results in differential metabolism of 20-carbon n-6 and n-3 fatty acids. Furthermore, arachidonate appears to act as a positive modulator of its own elongation

 
 
 
 
101

Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Chikungunya virus (CHIKV is an arthritogenic member of the Alphavirus genus (family Togaviridae transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recognition receptors (including TLR7 and RIG-I to sense viruses and to induce production of type I IFNs which in turn will bind to their receptor. This should result in the phosphorylation and translocation of STAT molecules into the nucleus to promote the transcription of IFN-stimulated antiviral genes (ISGs. We herein tested the capacity of CHIKV clinical isolate to infect two different human fibroblast cell lines HS 633T and HT-1080 and we analyzed the resulting type I IFN innate immune response. Methods Indirect immunofluorescence and quantitative RT-PCR were used to test for the susceptibility of both fibroblast cell lines to CHIKV. Results Interestingly, the two fibroblast cell lines HS 633T and HT-1080 were differently susceptible to CHIKV infection and the former producing at least 30-fold higher viral load at 48 h post-infection (PI. We found that the expression of antiviral genes (RIG-I, IFN-?, ISG54 and ISG56 was more robust in the more susceptible cell line HS 633T at 48 h PI. Moreover, CHIKV was shown to similarly interfere with the nuclear translocation of pSTAT1 in both cell lines. Conclusion Critically, CHIKV can control the IFN response by preventing the nuclear translocation of pSTAT1 in both fibroblast cell lines. Counter-intuitively, the relative resistance of HT-1080 cells to CHIKV infection could not be attributed to more robust innate IFN- and ISG-dependent antiviral responses. These cell lines may prove to be valuable models to screen for novel mechanisms mobilized differentially by fibroblasts to control CHIKV infection, replication and spreading from cell to cell.

Thon-Hon Vincent G

2012-09-01

102

Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation  

International Nuclear Information System (INIS)

Purpose: To analyze the radiation-induced levels of ?H2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63). Methods and Materials: Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear ?H2AX foci intensity, with digital image analysis. Results: The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone ?H2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced ?H2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of ?H2AX disappearance, and its residual expression (?18 h after irradiation) did not correlate with SF2 values. Conclusions: The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation

103

[Karyological characteristics of cell sublines of the kidney of the kangaroo rat and of skin fibroblasts of the Indian muntjac].  

Science.gov (United States)

A study was made of the karyotypic structure of sublines derived from the kangaroo rat's kidney (NBL-3) and skin fibroblasts of the Indian muntjac, available in the cell culture bank of the Institute of Cytology Acad. Sci. USSR. A comparative karyologic analysis was made of subline NBL-3 both contaminated with mycoplasma (NBLK) and decontaminated with antibiotics (NBLD). Authentic differences in cell distribution according to chromosome number in NBLK and NBLD variants were shown. Modal numbers of chromosomes are 11 and 17, respectively. The modal number for the Indian muntjac cell subline (MT) is 9. 60-80% of the cells had an identical karyotype (the main structural variant of the karyotype is MSVK). Using the G-banding technique, all the MSVK variants were shown to display constant karyotypes. In NBLK there are 5 pairs of homologous chromosomes and one metacentric. In NBLD, the number of homologous chromosomes increased in all the groups (hypotriploid karyotype). In subline MT 3 homologous chromosomes were found in groups I and IV, 2 in group III in addition to one X-chromosome. A comparison with the Indian muntjac karyotype showed the absence of marker chromosomes in MT. The analysis of additional SVK shows that the deviations from MSVK are caused mostly by changes in the number of homologous chromosomes within the groups. A study of the frequency of deviations in chromosome numbers observed in the groups from MSVK showed that different chromosomes were involved in karyotypic changes in the same way in the "low-chromosome" variants of NBLK and MT, and in different ways in NBLD. A comparison of the "premycoplasmic" variants of line NBL-3 with NBLK shows no differences in the parameters studied.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3176180

Polianskaia, G G

1988-06-01

104

Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes.  

Science.gov (United States)

Over the past forty years, many efforts have been devoted to study low power laser light interactions with biological systems. Some of the investigations were performed in-vitro, on bulk cell populations. Our present work was undertaken to apply specially engineered fiber-optic based nano-probes for the precise delivery of laser light on to a single cell and to observe production of low power laser light induced reactive oxygen species (ROS). A normal human skin fibroblast (NHF) cell line was utilized in this investigation and the cells were irradiated under two different schemes of exposure: (1) an entire NHF cell population within a Petri dish using a fan beam methodology, and (2) through the precise delivery of laser energy on to a single NHF cell using fiber-optic nano-probe. Photobiostimulative studies were conducted through variation of laser intensity, exposure time, and the energy dose of exposure. Laser irradiation induced enhancement in the rate of cell proliferation was observed to be dependent on laser exposure parameters and the method of laser delivery. The total energy dose (fluence) had a greater influence on the enhancement in the rate of cellular proliferation than compared to laser intensity. The enhancement in the growth rate was observed to have a finite life-time of several days after the initial laser exposure. Fluorescent life-time imaging of ROS was performed during the nano-based single cell exposure method. The kinetics of ROS generation was found to depend strongly on the laser fluence and not on the laser intensity. PMID:17224276

Pal, Gopalendu; Dutta, Ashim; Mitra, Kunal; Grace, Michael S; Amat, Albert; Romanczyk, Tara B; Wu, Xingjia; Chakrabarti, Kristi; Anders, Juanita; Gorman, Erik; Waynant, Ronald W; Tata, Darrell B

2007-03-01

105

PTCH1+/? Dermal Fibroblasts Isolated from Healthy Skin of Gorlin Syndrome Patients Exhibit Features of Carcinoma Associated Fibroblasts  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisp...

Valin, Alexandre; Barnay-verdier, Ste?phanie; Robert, Thomas; Ripoche, Hugues; Brellier, Florence; Chevallier-lagente, Odile; Avril, Marie-franc?oise; Magnaldo, Thierry

2009-01-01

106

Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate  

International Nuclear Information System (INIS)

Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines

107

Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells.  

Science.gov (United States)

Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation. PMID:24253465

Myllylä, Riina M; Haapasaari, Kirsi-Maria; Lehenkari, Petri; Tuukkanen, Juha

2014-02-01

108

Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration  

International Nuclear Information System (INIS)

Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly(?-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

109

Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration  

Energy Technology Data Exchange (ETDEWEB)

Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(l-lactic acid)-co-poly({epsilon}-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration.

Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S, E-mail: nnijrv@nus.edu.s [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore)

2011-02-15

110

Lipid peroxidation-derived 4-hydroxynonenal-modified proteins accumulate in human facial skin fibroblasts during ageing in vitro  

DEFF Research Database (Denmark)

The reactive aldehyde, 4-hydroxynonenal (HNE), is recognized as a product of lipid peroxidation, which binds to macromolecules, in particuar proteins. HNE-modified proteins (HNE-MP) have been shown to accumulate during ageing, generally by using polyclonal antibodies, which increases the possibility of detecting false positives. Therefore, we have used a genuine monoclonal antibody specific for HNE-His adducts of proteins/peptides, which were revealed by immunoblotting method for whole-cell HNE-MP measurements in serially passaged human facial skin fibroblasts undergoing ageing in vitro. There was a significant increase in the levels of HNE-MP in serially passaged cells approaching a near senescent state at high passage level (P-61), as compared with low passage level (P-11) young and middle-aged (P-27) cells. However, if the cells were analyzed soon after re-initiation from the frozen samples without any further passaging, the amount of HNE-MP was low even in relatively high passage level (P-37) cells, which is an indication of selective elimination of cells with high molecular damage during the process of thawing and re-initiation in culture. This pilot study on normal human facial skin fibroblasts shows that HNE-MP detection by monoclonal antibody-based dot blot method can be used as a marker for age-related accumulation of lipid peroxidative molecular damage, and could be useful for testing and monitoring the effects of potential skin care products on ageing parameters.

JØrgensen, Peter; Milkovic, Lidija

2014-01-01

111

Lipid peroxidation-derived 4-hydroxynonenal-modified proteins accumulate in human facial skin fibroblasts during ageing in vitro.  

Science.gov (United States)

The reactive aldehyde, 4-hydroxynonenal (HNE), is recognized as a product of lipid peroxidation, which binds to macromolecules, in particular proteins. HNE-modified proteins (HNE-MP) have been shown to accumulate during ageing, generally by using polyclonal antibodies, which increase the possibility of detecting false positives. Therefore, we have used a genuine monoclonal antibody specific for HNE-His adducts of proteins/peptides, which were revealed by immunoblotting method for whole-cell HNE-MP measurements in serially passaged human facial skin fibroblasts undergoing ageing in vitro. There was a significant increase in the levels of HNE-MP in serially passaged cells approaching a near senescent state at high passage level (P-61), as compared with low passage level (P-11) young and middle-aged (P-27) cells. However, if the cells were analyzed soon after re-initiation from the frozen samples with little further passaging, the amount of HNE-MP was low even in relatively high passage level (P-37) cells, which is an indication of selective elimination of cells with high molecular damage during the process of thawing and re-initiation in culture. This pilot study on normal human facial skin fibroblasts shows that HNE-MP detection by monoclonal antibody-based dot blot method can be used as a marker for age-related accumulation of lipid peroxidative molecular damage, and could be useful for testing and monitoring the effects of potential skin care products on ageing parameters. PMID:24264997

Jørgensen, Peter; Milkovic, Lidija; Zarkovic, Neven; Waeg, Georg; Rattan, Suresh I S

2014-02-01

112

Effect of bradykinin on prostaglandin production by human skin fibroblasts in culture  

International Nuclear Information System (INIS)

In studying the effect of bradykinin on prostaglandin formation in fibroblasts, two general types of assays have been employed. Radioimmunoassays were utilized to determine specific prostaglandins, PGI2 and 6-keto-PGF, using tritium as radiolabel. A second procedure involved initial incubation of the fibroblasts with [14C]arachidonate and identification and quantification of the metabolites by chromatographic methods. After radiolabelling of fibroblasts with [14C]arachidonate, bradykinin was found to release radiolabel from membrane lipids approximately 2-fold. In the presence of bradykinin, there was a close coupling of phospholipase S2 activity, arachidonate mobilization, and synthesis of a specific prostaglandin, PGI2

113

Contact guidance of chick embryo neurons on single scratches in glass and on underlying aligned human skin fibroblasts.  

Science.gov (United States)

The influence of substratum topography on the morphology and orientation of neurites of chick embryo neurons was studied. Two series of experiments are reported. One concerned the behaviour of growth cones when the axons become contact-guided by the surface texture. The second studied contact guidance of neurites extending on a compact layer of fixed aligned human skin fibroblasts (HSF). It was observed that when the growth cones of sensory neurons isolated from dorsal root ganglions encountered a single scratch in a glass surface (0.1-2 microm in depth and diameter) they turned and continued movement following the axis of the scratch. These neurons became contact-guided as a result of the sequence of events. The growth cone filopodia recognized the irregularity in the substratum surface, whereas the growth cone lamella stabilized contact with the scratch and moved forward along the scratch axis. Scanning electron microscope revealed that the single scratches 150 nm in width and ca. 100 nm deep growth cone filopodia less than 200 nm in diameter could detect and react by turning into them. These filopodia extensions followed the edge of scratches. However, phase contrast and Nomarski's differential interference contrast appeared insufficient for analysis of primary contact guidance of fine growth cone filopodia which themselves are often less than 200 nm. In neuron cultures on fixed aligned HSF, the neuron aggregates assumed spindle-like shapes, and sparsely seeded individual neurons extended axons along the long axes of the fibroblasts. The axons extended significantly further on the fixed underlying fibroblasts than on collagen-covered glass. In crowded cultures of neurons, the cells extended neurites ignoring both the surface anisotropy (the scratches) and the orientation of the aligned fibroblasts. Immunofluorescence staining of neurons with antibodies against neurofilaments made it possible to analyse their shape and orientation on the fibroblasts. Computer-assisted image analysis permitted the observed alignment of the neurites to be characterized quantitatively. PMID:10561119

S?epie?, E; Stanisz, J; Korohoda, W

1999-01-01

114

DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation  

Science.gov (United States)

Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2, there was a significant increase in DNA damage in irradiated cells with and without the addition of FPG. These results are indicative of the importance of both cell injury model as well as fluence when assessing the effect of phototherapy on DNA integrity.

Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

2009-02-01

115

Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats  

Science.gov (United States)

Background Excessive expression of matrix metalloproteinase-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ?-cyclodextrin (?-CD) core and poly(amidoamine) dendron arms (?-CD-[D3]7) could be used as the gene carrier of small interfering RNA (siRNA) to reduce MMP-9 expression for enhanced diabetic wound healing. Methods The cytotoxicity of ?-CD-(D3)7 was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MMT) method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ?-CD-(D3)7/MMP-9-small interfering RNA (siRNA) complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT) polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ?-CD-(D3)7/MMP-9-siRNA complexes. The ?-CD-(D3)7/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results ?-CD-(D3)7 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ?-CD-(D3)7/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01). Animal experiments revealed that the treatment by ?-CD-(D3)7/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05). Conclusion ?-CD-(D3)7 may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats. PMID:25075185

Li, Na; Luo, Heng-Cong; Yang, Chuan; Deng, Jun-Jie; Ren, Meng; Xie, Xiao-Ying; Lin, Diao-Zhu; Yan, Li; Zhang, Li-Ming

2014-01-01

116

Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.  

Science.gov (United States)

Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (pmodeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs. PMID:24098394

Chen, Jian; Lin, Mingyan; Foxe, John J; Pedrosa, Erika; Hrabovsky, Anastasia; Carroll, Reed; Zheng, Deyou; Lachman, Herbert M

2013-01-01

117

Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts.  

Science.gov (United States)

The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions. PMID:19247475

Mendonsa, Graziella; Dobrowolska, Justyna; Lin, Angela; Vijairania, Pooja; Jong, Y-J I; Baenziger, Nancy L

2009-01-01

118

Influence of corticosteroids on chemotactic response and collagen metabolism of human skin fibroblasts.  

Science.gov (United States)

Following chronic administration of corticosteroids in vivo, a number of complications occur, which mainly involve the metabolism of connective tissue cells. Therefore, several attempts have been made to develop corticosteroids, which show less pronounced side effects. Fibroblasts were kept in monolayer cultures and were exposed to corticosteroids demonstrating similar anti-inflammatory activity (prednicarbate, desoximetasone). Chemotaxis of fibroblasts was studied over 4 hr, protein and collagen synthesis were estimated using proteinchemical methods and also by dot blot hybridization. Corticosteroids used in a high dosage (10 microM) affected all biosynthetic capacities of the investigated fibroblasts. Protein synthesis and production of collagen types I and III were reduced and a similar decrease of mRNA levels for collagen type I could be found indicating an influence on the pretranslational control. In the same concentrations desoximetasone was much more active than prednicarbate. Fibroblast migration was dosage dependently inhibited from 10(-9) M to 10(-5) M for desoximetasone, while incubation with prednicarbate did not cause a reduction of the chemotactic response at concentrations lower than 10(-7) M. These data suggest that modifications of corticosteroids might result in a dissociation of some of their biological activities and can specifically influence their effects on biosynthetic capacities of fibroblasts. PMID:3395353

Hein, R; Mauch, C; Hatamochi, A; Krieg, T

1988-07-15

119

Extracellular Matrix Modulates Morphology, Growth, Oxidative Stress Response and Functionality of Human Skin Fibroblasts during Aging In Vitro  

DEFF Research Database (Denmark)

The Hayflick system of cellular aging and replicative senescence in vitro has been used widely in both basic and applied research in biogerontology. The state of replicative senescence is generally considered to be irreversible, but is modifiable by genetic and environmental manipulations. Some recent observations indicate that replicative lifespan, senescence and functionality of cells in vitro can be significantly affected by the quality of the extra cellular matrix (ECM). Following up on those reports, here we show that using the ECM prepared from early passage young cells, partial rejuvenation of serially passaged human facial skin fibroblasts was possible in pre-senescent middle-aged cells, but not in fully senescent late passage cells. ECM from young cells improved the appearance, viability, stress tolerance and wound healing ability of skin fibroblasts. Furthermore, young ECM modulated the oxidative stress response transcription factor Nrf-2 and its downstream effector haem-oxygenase (HO-1), possibly through the amelioration of the environmental stress induced by the plastic surface of the culturing flasks. Therefore, it is important to consider the role of ECM in modulating the response of cells both for mechanistic understanding of cellular senescence and while testing for potential aging interventions.

JØrgensen, Peter; Rattan, Suresh

2014-01-01

120

Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer  

Energy Technology Data Exchange (ETDEWEB)

The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.

Parshad, R.; Sanford, K.K.; Jones, G.M.

1985-08-01

 
 
 
 
121

Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer  

International Nuclear Information System (INIS)

The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer

122

Supplementation with a complex of active nutrients improved dermal and epidermal characteristics in skin equivalents generated from fibroblasts from young or aged donors.  

Science.gov (United States)

Cultured skin equivalent (SE, Mimeskin) was generated by co-culturing skin fibroblasts and keratinocytes on a collagen-glycosaminoglycan-chitosan dermal substrate. In order to examine donor age effect, fibroblasts from 19- (young) or 49- (aged) year-old females were used. Culture medium was supplemented with nutrients complex containing soy extract, tomato extract, grape seed extract, white tea extract, sodium ascorbate, tocopherol acetate, zinc gluconate and BioMarine complex. Epidermal and dermal structure and composition were examined after 42 and 60 days of culture. In untreated samples, SE generated from young fibroblasts was superior to SE from aged fibroblasts in all characteristics. Those include number and regularity of keratinocyte layers, number of keratinocytes expressing proliferation marker Ki67, content of collagen type I, fibrillin-1, elastin, and SE lifespan. Effects of nutritional supplementation were observed in SE from both young and aged fibroblasts, however, those effects were more pronounced in SE from aged fibroblasts. In epidermis, the treatment increased number of keratinocyte layers and delayed epidermal senescence. The number of cells expressing Ki67 was nine folds higher than those of controls, and was similar to that of young cell SE. In dermis, the treatment increased mRNA synthesis of collagen I, fibrillin-1 and elastin. In conclusion, skin cell donor age had major important effect on formation of reconstructed SE. Imperfections in epidermal and dermal structure and composition as well as life span in SE from aged cells can be improved by supplementation with active nutrients. PMID:17028931

Lacroix, Sophie; Bouez, Charbel; Vidal, Sandrine; Cenizo, Valérie; Reymermier, Corinne; Justin, Virginie; Vicanová, Jana; Damour, Odile

2007-04-01

123

Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate.  

Science.gov (United States)

Carnitine palmitoyltransferase 2 (CPTII) deficiency is among the most common inborn errors of mitochondrial fatty acid beta-oxidation (FAO). Clinical phenotype varies in relation to the metabolic block, as assessed by studies of FAO in patient fibroblasts. Thus, fibroblasts from patients with mild manifestations have appreciable residual CPTII enzyme activity, in contrast to those from severely affected patients. In the present study, we hypothesized that the hypolipidemic drug bezafibrate, acting as an activator of the peroxisome proliferator-activated receptor alpha might stimulate FAO in CPTII-deficient cells. Data obtained show that bezafibrate treatment of mild-type CPTII-deficient cells resulted in a time- and dose- dependent increase in CPTII mRNA (from +47% to +66%) and residual enzyme activity (from +54% to 135%), and led to normalization of 3H-palmitate and 3H-myristate cellular oxidation rates. Bezafibrate did not correct FAO in fibroblasts from patients with severe phenotype. This study establishes for the first time that peroxisome proliferator-activated receptor activators, acting via stimulation of gene expression, can stimulate CPTII residual activity to a level sufficient to allow normal FAO flux in deficient human fibroblasts, and suggests that this approach should be tested in other inborn errors of mitochondrial beta-oxidation. PMID:12840153

Djouadi, Fatima; Bonnefont, Jean-Paul; Thuillier, Laure; Droin, Véronique; Khadom, Noman; Munnich, Arnold; Bastin, Jean

2003-10-01

124

Establishment of a novel immortalized cell line from ataxia telangiectasia fibroblasts and its use for the chromosomal assignment of radiosensitivity gene  

International Nuclear Information System (INIS)

An immortalized cell line was established from a female ataxia telangiectasia (AT) patient by the transfection of primary skin fibroblasts with origin-defective SV40 DNA. The cell line was characterized by a hypodiploid chromosome constitution and radiation hypersensitivity. The established cell line was used as a recipient for microcell-mediated chromosome transfer. Among seven G418-resistant clones obtained by the fusion with microcells from mouse A9 cells carrying a pSV2neo-tagged normal human chromosome 11, three clones showed restoration of radiation resistance with concomitant gain of an extra intact chromosome 11, while the others contained no recognizable or deleted chromosome 11. The association of the presence of 11q14?qter region with the radioresistance suggests the presence of AT gene in this chromosomal region. (author)

125

Establishment and Characterization of Fibroblast Cell Line Derived from Siberian Tiger (Panthera tigris altaica).  

Science.gov (United States)

The Siberian tiger ear marginal tissue fibroblast cell line (STF34) from 34 samples was successfully established using primary explants technique and cell cryoconservation technology. STF34 cells were adherent, with a population doubling time of 24?h. Chromosome analysis showed that 90.2%-91.6% of cells were diploid (2n?=?38). Isoenzyme analyses of lactate dehydrogenase and malate dehydrogenase showed that STF34 cells had no cross-contamination with other species. Tests for cell line contamination with bacteria, fungi, viruses, and mycoplasmas were all negative. Every index of the STF34 cell line meets all the standard quality controls of American Type Culture Collection. Not only has the germline of this important Siberian tiger species been preserved at the cell level, but also valuable material had been provided for genome, postgenome, and somacloning research. PMID:24845938

Liu, Changqing; Guo, Yu; Liu, Dan; Guan, Weijun; Ma, Yuehui

2010-06-01

126

Novel collagen/gelatin scaffold with sustained release of basic fibroblast growth factor: clinical trial for chronic skin ulcers.  

Science.gov (United States)

Chronic skin ulcers such as diabetic ulcers and venous leg ulcers are increasing and are a costly problem in healthcare. We have developed a novel artificial dermis, collagen/gelatin sponge (CGS), which is capable of sustained release of basic fibroblast growth factor (bFGF) for more than 10 days. The objective of this study was to investigate the safety and efficacy of CGS impregnated with bFGF in the treatment of chronic skin ulcers. Patients with chronic skin ulcers that had not healed in at least 4 weeks were treated with CGS impregnated with bFGF at 7 or 14 ?g/cm(2) after debridement, and the wound bed improvement was assessed 14 days after application. Wound bed improvement was defined as a granulated and epithelialized area on day 14 with a proportion to the baseline wound area after debridement of 50% or higher. The wound area, the wound area on day 14, and the granulation area on day 14 were independently measured by blinded reviewers in a central review using digital images of wounds taken with a calibrator. Patients were followed up until 28 days after application to observe the adverse reactions related to the application of CGS. From May 2010 to June 2011, 17 patients were enrolled and, in 16 patients, the wound bed improved. Among the randomized patients in step 2, no significant difference was seen between the low-dose group and the high-dose group. No serious adverse reactions were observed. Adverse reactions with a clear causal relationship to the study treatment were mild and patients quickly recovered from them. This study is the first-in-man clinical trial of CGS and showed the safety and efficacy of CGS impregnated with bFGF in the treatment of chronic skin ulcers. This combination therapy could be a promising therapy for chronic skin ulcers. PMID:23541061

Morimoto, Naoki; Yoshimura, Kenichi; Niimi, Miyuki; Ito, Tatsuya; Aya, Rino; Fujitaka, Junpei; Tada, Harue; Teramukai, Satoshi; Murayama, Toshinori; Toyooka, Chikako; Miura, Kazumi; Takemoto, Satoru; Kanda, Norikazu; Kawai, Katsuya; Yokode, Masayuki; Shimizu, Akira; Suzuki, Shigehiko

2013-09-01

127

Inhibition of elastin and collagen networks degradation in human skin by gingival fibroblast. In vitro, ex vivo and in vivo studies.  

Directory of Open Access Journals (Sweden)

Full Text Available Skin aging shows an imbalance between synthesis and degradation of the extracellular matrix. The overproduction of degradative enzymes (MMPs during the chronology- and photo-induced aging leads to a degradation of the elastic and collagen networks. In a model of collagen and elastin destruction, we showed that the gingival fibroblast was able to preserve these macromolecules by inhibiting the overproduction of metalloproteinases by overproduction of TIMP-1 and modulation of the inflammatory cytokines activity. The objective of this study is to evaluate the effect of the gingival fibroblasts on human skin. The results in vitro and ex vivo show that the gingival fibroblast protects the skin collagen and elastic network by the inhibition of MMPs which leads to an overproduction of the TIMP-1. Moreover, the gingival fibroblast modulates the activity of some enzymes responsible for the inflammation; they inhibit the IL-1? and stimulate the production of TGF-?1. In vivo studies with a duration of six months and 50 women with pronounced wrinkles show that the culture supernatant of gingival fibroblasts diluted to 5% leads to a statistically significant decrease in the number and length of wrinkles.

Adrien Naveau

2011-03-01

128

Molecular species of phospholipids with very long chain fatty acids in skin fibroblasts of Zellweger syndrome.  

Science.gov (United States)

The ratio of C 26:0/C 22:0 fatty acids in patient lipids is widely accepted as a critical clinical criterion of peroxisomal diseases, such as Zellweger syndrome and X-linked adrenoleukodystrophy (X-ALD). However, phospholipid molecular species with very long chain fatty acids (VLCFA) have not been precisely characterized. In the present study, the structures of such molecules in fibroblasts of Zellweger syndrome and X-ALD were examined using LC-ESI-MS/MS analysis. In fibroblasts from Zellweger patients, a large number of VLCFA-containing molecular species were detected in several phospholipid classes as well as neutral lipids, including triacylglycerol and cholesteryl esters. Among these lipids, phosphatidylcholine showed the most diversity in the structures of VLCFA-containing molecular species. Some VLCFA possessed longer carbon chains and/or larger number of double bonds than C 26:0-fatty acid (FA). Similar VLCFA were also found in other phospholipid classes, such as phosphatidylethanolamine and phosphatidylserine. In addition, VLCFA-containing phospholipid species showed some differences among fibroblasts from Zellweger patients. It appears that phospholipids with VLCFA, with or without double bonds, as well as C 26:0-FA might affect cellular functions, thus leading to the pathogenesis of peroxisomal diseases, such as Zellweger syndrome and X-ALD. PMID:24122089

Hama, Kotaro; Nagai, Toru; Nishizawa, Chiho; Ikeda, Kazutaka; Morita, Masashi; Satoh, Noriko; Nakanishi, Hiroki; Imanaka, Tsuneo; Shimozawa, Nobuyuki; Taguchi, Ryo; Inoue, Keizo; Yokoyama, Kazuaki

2013-12-01

129

Effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines  

International Nuclear Information System (INIS)

The effects of 450C hyperthermia and ? radiation have been studied in three normal human fibroblast lines (GM38, GM730, WI38) and compared to the effects in two lines derived from patients with the hereditary disease ataxia telangiectasia (AR3BI, AT5BI). All lines, both normal and ?-sensitive AT, showed a similar resistance to killing by heat alone, suggesting that the defect responsible for the increased radiation sensitivity in AT lines does not confer increased heat sensitivity. Shouldered survival curves were obtained in each case indicating the ability to accumulate sublethal heat damage. All normal and AT cell lines exhibited increased resistance to the lethal effects of heat in response to a thermal stress, indicating that the defect that causes radiosensitivity in AT cell lines does not prevent the induction of thermotolerance. It was hypothesized that in normal cells, this heat treatment inactivates the process which is already defective in AT lines, and that this process may be required for the proper rejoining of double-strand breaks produced during the repair of other radiation-induced lesions

130

Effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines  

Energy Technology Data Exchange (ETDEWEB)

The effects of 45/sup 0/C hyperthermia and ..gamma.. radiation have been studied in three normal human fibroblast lines (GM38, GM730, WI38) and compared to the effects in two lines derived from patients with the hereditary disease ataxia telangiectasia (AR3BI, AT5BI). All lines, both normal and ..gamma..-sensitive AT, showed a similar resistance to killing by heat alone, suggesting that the defect responsible for the increased radiation sensitivity in AT lines does not confer increased heat sensitivity. Shouldered survival curves were obtained in each case indicating the ability to accumulate sublethal heat damage. All normal and AT cell lines exhibited increased resistance to the lethal effects of heat in response to a thermal stress, indicating that the defect that causes radiosensitivity in AT cell lines does not prevent the induction of thermotolerance. It was hypothesized that in normal cells, this heat treatment inactivates the process which is already defective in AT lines, and that this process may be required for the proper rejoining of double-strand breaks produced during the repair of other radiation-induced lesions.

Mitchel, R.E.J.; Chan, A.; Smith, B.P.; Child, S.D.; Paterson, M.C.

1984-09-01

131

Exposure to transforming growth factor-?1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.  

Science.gov (United States)

Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-?1 (TGF?1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGF?1 after bFGF (bFGF/TGF?1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGF?1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGF?1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGF?1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGF?1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium. PMID:23324989

Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

2013-05-01

132

Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.  

Science.gov (United States)

Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor ?B induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. PMID:24845645

Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

2014-09-01

133

Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents  

International Nuclear Information System (INIS)

Fibroblast cell strains derived from different patients all afflicted with genetic predisposing to the development of intestinal polyposis and cancer were tested for their sensitivity to the lethal effects of the DNA alkylating agents methylmethanesulfonate (MMS), ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and 4-nitroquinoline 1-oxide. The genetic syndromes studied were: (a) adenomatosis of the colon and rectum only, an autosomal dominant trait; (b) Turcot's syndrome, a rare autosomal recessive polyposis syndrome also characterized by central nervous system tumors; and (c) Gardner's syndrome, an autosomal dominant syndrome which, in addition to intestinal polyposis, is also clinically characterized by osteomas and soft tissue tumors. Fibroblasts from a patient with Turcot's syndrome were hypersensitive to MMS, having a D0 value of 0.24 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 value of 0.95 mM (p less than 0.01) compared with the normal average value of 1.3 mM. Fibroblasts from the Gardner's syndrome proband were moderately sensitive to MMS, ethyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine due to significant differences of D10 values of 0.60 mM (p less than 0.01), 15 mM (p less than 0.01), and 4.8 microM (p less than 0.025), respectively, versus the normal average values of 1.3 mM, 28 mM, and 9.4 microM. Fibroblasts from the clinically affected Gardner's syndrome daughter of the proband were significantl daughter of the proband were significantly more sensitive to MMS treatment, D0 of 0.22 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 of 0.97 mM (p less than 0.01) versus the normal average. This differential sensitivity to the several DNA alkylating agents suggests that different mechanisms of hypersensitivity to these chemicals may be associated with fibroblasts from the various forms of familial polyposis

134

In vitro study for laser gene transfer in BHK-21 fibroblast cell line  

Science.gov (United States)

Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated that, no ultradamages or changes for cell; membrane, organilles or any component of transfected fibroblast cell as a result of using laser microbeam compared with control cell.

Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.

2009-02-01

135

Vitamin D-dependent rickets type II. Defective induction of 25-hydroxyvitamin D3-24-hydroxylase by 1,25-dihydroxyvitamin D3 in cultured skin fibroblasts.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

1,25(OH)2D3 induces 25(OH)D3-24-hydroxylase (24-OHase) in cultured skin fibroblasts from normal subjects. We evaluated 24-OHase induction by 1,25(OH)2D3 in skin fibroblasts from 10 normal subjects and from four unrelated patients with hereditary resistance to 1,25(OH)2D or vitamin D-dependent rickets type II (DD II). Fibroblasts were preincubated with varying concentrations of 1,25(OH)2D3 for 15 h and were then incubated with 0.5 microM [3H]25(OH)D3 at 37 degrees C for 30 min; lipid extracts ...

Gamblin, G. T.; Liberman, U. A.; Eil, C.; Downs, R. W.; Degrange, D. A.; Marx, S. J.

1985-01-01

136

ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY  

Science.gov (United States)

ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...

137

Effects of CO2 laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia  

International Nuclear Information System (INIS)

Human skin fibroblast cells in vitro responses on the surface of a bioinert zirconia ceramic partially stabilised with magnesia partially stabilised zirconia (MgO-PSZ) bioinert ceramic before and after CO2 laser treatment were investigated to find the interrelationship between the cell adhesion, wettability and laser parameters. Contact angle, ?, measurements of a set of test liquids were a clear indication that surface treatment of the MgO-PSZ with a CO2 laser brought about a reduction in ?, indicating that the wettability of the MgO-PSZ had been enhanced. A relationship was found between the wettability and the microstructure of the MgO-PSZ surface and laser processing parameters. It was subsequently deduced that the factors active in causing the observed modification in the wettability of the MgO-PSZ were the increases in the surface O2 content and the polar component of the surface energy, ?svp, the latter resulting from surface melting and resolidification. Moreover, the investigation into the human skin fibroblast cell response revealed that the CO2 laser treatment of the MgO-PSZ had resulted in a surface favourable for cell adhesion, as the extent of cell attachment and adhesion on the MgO-PSZ surface was enhanced depending on laser parameters. Such an improvement in cell adhesion, which could be greatly beneficial to developing enhanced bonding at the tissue and implant interface, was influenssue and implant interface, was influenced by the surface properties of the modified MgO-PSZ, particular wettability

138

Cholesterol Metabolism in Brain and Skin Fibroblasts from Sarda Breed Sheep With Scrapie-resistant and Scrapie-susceptible Genotypes  

Directory of Open Access Journals (Sweden)

Full Text Available Scrapie is a fatal spongiform encephalopathy of sheep, a transmissible form of prion disease caused by neuronal accumulation of the aberrantly conformed prion protein (PrPsc. Currently, no ante-mortem diagnostic tests are available to detect this untreatable disease in the pre-clinical stage, thus making difficult to control its spread. Recent evidence suggests that the production of PrPsc can be modulated by the levels of membrane cholesterol in neuronal cells. Since cholesterol levels in cell membranes are dependent on cholesterol homeostasis in the whole organism, we studied cholesterol metabolism in brain tissues, plasma and skin fibroblasts of Sarda breed sheep with scrapie-resistant (ARR/ARR and scrapie-susceptible (ARQ/ARQ prion protein genotypes, both not infected (ARQ/ARQ- and infected (ARQ/ARQ+ with scrapie. We found that, the levels of cytoplasmic cholesterol esters (CE in brains and skin fibroblasts from sheep with the ARQ/ARQ genotype were consistently higher than those from sheep with the ARR/ARR genotype. Conversely, the levels of free cholesterol (FC were lower in ARQ/ARQ, as compared to ARR/ARR sheep, thus resulting in a sharp reduction of the FC/CE ratio. Moreover, both uninfected and infected ARQ/ARQ sheep showed abnormally low levels of high density lipoprotein-cholesterol (HDL-C in their plasma, as compared to ARR/ARR sheep. These data other than adding new strength to the notion that altered levels of intracellular cholesterol may indicate the presence of a lipid metabolic state that predisposes to infection with, and accumulation of, PrPsc in the brain, discriminate for the first time between two distinct but related cellular pools of cholesterol, namely membrane FC on one hand and cytoplasmic CE on the other.

Alessandra Pani

2007-01-01

139

Establishment and characterization of immortalized Gli-null mouse embryonic fibroblast cell lines  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Hedgehog (Hh signaling is a conserved morphogenetic pathway which plays critical roles in embryonic development, with emerging evidence also supporting a role in healing and repair processes and tumorigenesis. The Gli family of transcription factors (Gli1, 2 and 3 mediate the Hedgehog morphogenetic signal by regulating the expression of downstream target genes. We previously characterized the individual and cooperative roles of the Gli proteins in Hh target gene regulation using a battery of primary embryonic fibroblasts from Gli null mice. Results Here, we describe the establishment of spontaneously immortalized mouse embryonic fibroblast (iMEF cell lines lacking single and multiple Gli genes. These non-clonal cell lines recapitulate the unique ligand mediated transcriptional response of primary MEFs. While loss of Gli1 had no effect on target gene induction, Gli2 null cells demonstrated reduced target gene induction while Gli3 null cells exhibited elevated basal and ligand-induced expression. Target gene response in Gli1-/-2-/- iMEFs was severely reduced while Gli2-/-3-/- iMEFs were incapable of ligand-induced transcriptional response. However, we found that both Gli1-/-2-/- and Gli2-/-3-/- iMEFs exhibited robust leukotriene synthesis-dependent migration responses to Hh ligand, demonstrating that this response is not transcriptionally-dependent. Conclusion This study provides fundamental characterizations of the transcriptional and non-transcriptional Hh responsiveness of a battery of Gli-null iMEFs. Moving forward, these cell lines should prove a valuable tool set to study the unique functional regulation of the Gli proteins in a Hh-responsive cell-type.

Gipp Jerry J

2008-09-01

140

Application of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in cultured skin fibroblasts from sphingolipidosis patients.  

Science.gov (United States)

Sphingolipidoses are caused by defects of enzymes involved in the hydrolysis of sphingolipids. Using delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF-MS), we analyzed sphingolipids in cultured skin fibroblasts from patients with sphingolipidoses, including: (a) Farber disease (FD, acid ceramidase deficiency); (b) Gaucher disease (GD); (c) Niemann-Pick disease type C (NPDC); and (d) GM1-gangliosidosis (GM1G). Crude lipids were extracted from about 50 mg wet weight of cultured skin fibroblasts. After mild alkaline treatment, a sphingolipid fraction was prepared from the crude lipids and analyzed by DE MALDI-TOF-MS. The results were as follows: (a) in fibroblasts from the FD patient, the ceramide/sphingomyelin and ceramide/monohexosylceramide ratios were both significantly high; (b) in the GD patient, the glucosylceramide/sphingomyelin ratio was increased; on the other hand; (c) in the NPDC patient, the monohexosylceramide/sphingomyelin ratio was within normal range; and (d) in the GM1G patient, no specific data were obtained. Sphingolipids in cultured fibroblasts can be evaluated by DE MALDI-TOF-MS, whereas GM1-ganglioside or its asialo derivatives are not detectable. With this DE MALDI-TOF-MS method, ceramide or monohexosylceramide accumulating in cultured fibroblasts from cases of sphingolipidoses, such as FD and GD, respectively, can be easily detected. PMID:11934514

Fujiwaki, Takehisa; Yamaguchi, Seiji; Sukegawa, Kazuko; Taketomi, Tamotsu

2002-04-01

 
 
 
 
141

Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts  

International Nuclear Information System (INIS)

The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 ?g N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

142

Photochemical damage to skin fibroblasts caused by protoporphyrin and violet light  

International Nuclear Information System (INIS)

Foreskin fibroblasts cultured in a medium containing protoporphyrin and exposed to violet light lose the capacity to proliferate. This phenomenon can be assessed on the basis of the ability of the irradiated cells to form colonies. Potentially lethal injuries can, however, be repaired during post-irradiation incubation under optimal growth conditions. We investigated the photodynamically induced transformations of certain molecular targets in the irradiated cells. Biochemical analysis showed that only traces of unsaturated fatty acids were oxidized, but SH groups of both the membranes and the cytosol appeared to be very sensitive targets. Of the tryptophan content, 20% was damaged during irradiation. Recovery was observed during post-irradiation incubation. The tryptophan content and the SH groups recovered to some extent, and these results showed a good correlation with the regeneration of surviving cells. (orig.)

143

Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats  

Directory of Open Access Journals (Sweden)

Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05. Conclusion: ß-CD-(D37 may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats. Keywords: gene carrier, small interfering RNAs, matrix metalloproteinase-9, diabetic foot ulceration

Li N

2014-07-01

144

Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach.  

Science.gov (United States)

The conversion of differentiated cells into insulin-producing cells is a promising approach for the autologous replacement of pancreatic cells in patients with type 1 diabetes (T1D). At present, cellular reprogramming strategies encompass ethical problems, epigenetic failure or teratoma formation, which has prompted the development of new approaches. Here, we report a novel technique for the conversion of skin fibroblasts from T1D patients into insulin-expressing clusters using only drug-based induction. Our results demonstrate that skin fibroblasts from diabetic patients have pancreatic differentiation capacities and avoid the necessity of using transgenic strategies, stem cell sources or global demethylation steps. These findings open new possibilities for studying diabetes mechanisms, drug screenings and ultimately autologous transgenic-free regenerative medicine therapies in patients with T1D. PMID:24963634

Pereyra-Bonnet, Federico; Gimeno, María L; Argumedo, Nelson R; Ielpi, Marcelo; Cardozo, Johana A; Giménez, Carla A; Hyon, Sung-Ho; Balzaretti, Marta; Loresi, Mónica; Fainstein-Day, Patricia; Litwak, León E; Argibay, Pablo F

2014-01-01

145

Frequency changes with time in vivo of radiation-induced chromosomal aberrations in skin fibroblasts  

International Nuclear Information System (INIS)

5 Syrian hamster litter mates were each irradiated with X-rays on one flank to 300 rad. Skin biopsies were taken from both the irradiated and unirradiated (control) flanks of each animal at one day and at about 6 months after irradiation. The cells cultured from these biopsies were used to determine the frequencies of chromosomal aberrations. During the 6-month period there were significant reductions in the frequencies of both reciprocal translocations and terminal deletions. Translocations involving the short arm of the Y-chromosome, however, showed a significant increase during this period. It is possible that while the latter phenomenon was due to cell selection in vivo the general fall off in translocations and deletions was the result of a long term in vivo repair mechanism or perhaps the results of certain aberrations proving to be lethal with prolonged expression times. (Auth.)

146

The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-  

International Nuclear Information System (INIS)

We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of [3H]histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of [3H] histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism

147

[The effect of culturing conditions on the karyotypic structure of two cell sublines of Indian muntjak skin fibroblasts].  

Science.gov (United States)

The "therapeutic" doses of antibiotics, routinely applied to prevent microbial contamination in cultured cells, decrease the frequency of modal class cells and increase that of cells of other classes in sublines of Indian muntjak skin fibroblasts. In MT-subline, with 9 chromosomes in the modal class, the loss of cells with some large chromosomes occurred almost frequently. In terms of the formula of the karyotype main structural variant, this change is described as (-1-0-1-1). In M-subline, with 7 chromosomes in the modal class, the similar result is mainly achieved due to a decrease in the cell number with Y1-chromosome to be described as (0-0-0-0-1). The study of frequency of deviation from the chromosome number in the MSVK has shown that in the MT-subline, rather than in the M-subline, different chromosomes are incidentally involved in the karyotypic rearrangement. In both the sublines antibiotics induced chromosomal aberrations, primarily increasing the number of dicentrics. Preferential involvement of some chromosomes in the dicentric formation was observed. Cytogenetical parameters are more affected by antibiotics in the MT-subline. The data obtained indicate that even low concentrations of antibiotics may induce karyotypic changes in cells cultures. PMID:2815339

Polianskaia, G G

1989-07-01

148

Charged-particle mutagenesis. 1. Cytotoxic and mutagenic effects of high-LET charged iron particles on human skin fibroblasts.  

Science.gov (United States)

Cytotoxic and mutagenic effects of high-LET charged iron (56Fe) particles were measured quantitatively using primary cultures of human skin fibroblasts. Argon and lanthanum particles and gamma rays were used in comparative studies. The span of LETs selected was from 150 keV/microns (330 MeV/u) to 920 keV/microns (600 MeV/u). Mutations were scored at the hypoxanthine guanine phosphoribosyl transferase (HPRT) locus using 6-thio-guanine (6-TG) for selection. Exposure to these high-LET charged particles resulted in exponential survival curves. Mutation induction, however, was fitted by the linear model. The relative biological effectiveness (RBE) for cell killing ranged from 3.7 to 1.3, while that for mutation induction ranged from 5.7 to 0.5. Both the RBE for cell killing and the RBE for mutagenesis decreased with increasing LET over the range of 1.50 to 920 keV/microns. The inactivation cross section (sigma i) and the action cross section for mutation induction (sigma m) ranged from 32.9 to 92.0 microns2 and 1.45 to 5.56 X 10(-3) microns2; the maximum values were obtained by 56Fe with an LET of 200 keV/microns. The mutagenicity (sigma m/sigma i) ranged from 2.05 to 7.99 X 10(-5) with an inverse relationship to LET. PMID:1734447

Tsuboi, K; Yang, T C; Chen, D J

1992-02-01

149

Activation of NF-?B in human skin fibroblasts by the oxidative stress generated by UVA radiation  

International Nuclear Information System (INIS)

We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-?B that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-?B in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-?B appeared to be correlated with membrane damage, and activation could be prevented by ?-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-?B by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-?B over all wavelength ranges examined. (Author)

150

The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-  

Energy Technology Data Exchange (ETDEWEB)

We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of (3H)histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of (3H) histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism.

Haddock, R.C.; Mack, P.; Leal, S.; Baenziger, N.L. (Washington Univ. School of Medicine, St. Louis, MO (USA))

1990-08-25

151

Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts  

International Nuclear Information System (INIS)

Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to UV radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a UV fluence of 5 J/m2. At this same UV fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the UV fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in UV-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semiconservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity

152

PMN Leukocytes and Fibroblasts Numbers on Wound Burn Healing on the Skin of White Rat after Administration of Ambonese Plantain Banana  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A study of ambonese plantain banana (Musa paradisiaca var sapientum Lamb) treatment in burn wound healing on the skin of white rats (Rattus novergicus) has been conducted. The wound healing of burn injuries was evaluated by counting the number of PMN leukocytes and fibroblasts at the 7th, 14th, and 21st days following the treatment. The study showed that the decrease in number of PMN leukocytes of subjects treated with ambonese plantain banana was relatively more significant compared to both ...

Juniarti; Yuhernita; Suryadi; Aryenti

2012-01-01

153

Peroxisomal very long-chain fatty acid [beta]-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Since very long-chain fatty acids with a chain length of 24 carbons or more are known to accumulate in tissues and body fluids from patients with the cerebro-hepato-renal (Zellweger) syndrome, infantile Refsum disease, neonatal adrenoleukodystrophy and X-linked adrenoleukodystrophy, we studied very long-chain fatty acid oxidation in cultured skin fibroblasts from these patients. In this paper, we report that in accordance with earlier results the first step in the ?-oxidation of the very lon...

Wanders, R. J. A.; Roermund, C. W. T.; Wijland, M. J. A.; Heikoop, J.; Schutgens, R. B. H.; Schram, A. W.; Tager, J. M.; Bosch, H. Den; Poll-the?, B. T.; Saudubray, J. M.; Moser, H. W.; Moser, A. B.

1987-01-01

154

Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis  

International Nuclear Information System (INIS)

The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca2+/calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

155

The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fibroblasts in vitro.  

Science.gov (United States)

Although adipose stem cell-conditioned medium (ASC-CM) has demonstrated the effect of promoting the cutaneous wound healing, the mechanism for this response on the effector cells (e.g., dermal fibroblasts) during the process remains to be determined. In this study, we aim to investigate the types and contents of cytokines in ASC-CM and the effects of some kinds of common cytokines in ASC-CM, such as EGF, PDGF-AA, VEGF, and bFGF, on dermal fibroblasts proliferation and migration in wound healing process. Results showed that these four cytokines had high concentrations in ASC-CM. The migration of skin fibroblasts could be significantly stimulated by VEGF, bFGF, and PDGF-AA, and the proliferation could be significantly stimulated by bFGF and EGF in ASC-CM. Additionally, ASC-CM had more obvious promoting effect on fibroblasts proliferation and migration than single cytokine. These observations suggested that ASC-CM played an important role in the cutaneous injury partly by the synergistic actions of several cytokines in promoting dermal fibroblasts proliferation and migration, and ASC-CM was more adaptive than each single cytokine to be applied in promoting the wound healing. PMID:24416724

Zhao, Jiajia; Hu, Li; Liu, Jiarong; Gong, Niya; Chen, Lili

2013-01-01

156

EFFECTS OF CIPROFLOXACIN ON GROWTH OF HUMAN RHABDOMYOSARCOMA (RD AND RAT EMBRYO FIBROBLASTS (REF CELL LINES: IN VITRO STUDY  

Directory of Open Access Journals (Sweden)

Full Text Available The possible anti-proliferative effects of ciprofloxacin utilizing cell lines obtained from different sources [human rhabdomyosarcoma (RD and transitional rat embryo fibroblasts (REF – (passage89] were studied. The present study was carried out from January 2011 to May 2011.Each of cell lines mentioned above was exposed to various concentrations of ciprofloxacin at concentrations (from 62.5 to 1000 mcg/ml for 48hours in addition to control (zero concentration. Four replicates were used for each data point and the results were expressed as mean ± SD. Ciprofloxacin caused significant growth inhibition on both cell lines only at 1000 mcg/ml concentration; but does not exert in vitro inhibitory effect on either human rhabdomyosarcoma (RD or transformed rat embryo fibroblasts (REF when assayed at concentrations of less than 1000 micrograms/ml.

Nada N. Al-Shawi

2012-12-01

157

Skin graft rejection in mice repopulated with marrow of the skin donor type: a Skn gene in a congenic line  

International Nuclear Information System (INIS)

Genetically anemic W/Wv mice and lethally irradiated wild-type mice were cured and populated by grafted marrow cells from donor mice of three congenic lines that differed at non-H-2 histocompatibility loci. Tail skin from mice of the same congenic lines was grafted 3-4 weeks later. In two cases, the recipients behaved as expected, no longer rejecting skin syngeneic with the marrow graft that had repopulated them. However, B6-H-24c skin was rejected by WBB6F1-W/Wv mice that were cured with B6-H-24c marrow showing a mean survival time of 9.9 weeks. It was rejected somewhat faster, with a mean survival time of 5.9 weeks, by W/Wv mice cured with marrow from other types of donors. Results were more variable in lethally irradiated WBB6F1-+/+ recipients of B6-H-24c marrow, but they also rejected B6-H-24c skin. Both types of recipients remained chimeras after the skin was rejected, showing more than 90% of the B6-H-24c hemoglobin type. This is the first report of a Skn gene in a congenic line

158

Selection of reference genes for gene expression studies in ultraviolet B-irradiated human skin fibroblasts using quantitative real-time PCR  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental studies as reference genes. Our previous studies have demonstrated that the expression of vimentin, one cytoskeletal protein, was increased in ultraviolet B (UVB-irradiated fibroblasts. Thus, we examined the expression of other cytoskeleton protein genes, ACTB (actin, beta, TUBA1A (tubulin, alpha 1a, and TUBB1 (tubulin, beta 1, in human dermal fibroblasts irradiated by UVB to determine which of these candidates were the most appropriate reference genes. Results Quantitative real-time PCR followed by analysis with the NormFinder and geNorm software programmes was performed. The initial screening of the expression patterns demonstrated that the expression of VIM was suppressed after UVB irradiation at doses ?25 mJ/cm2 and that the expression of TUBA1A was significantly reduced by UVB doses ?75 mJ/cm2 in cultured human dermal fibroblasts. The analysis of the experimental data revealed ACTB to be the most stably expressed gene, followed by GAPDH (aglyceraldehyde-3-phosphate dehydrogenase, under these experimental conditions. By contrast, VIM was found to be the least stable gene. The combination of ACTB and TUBB1 was revealed to be the gene pair that introduced the least systematic error into the data normalisation. Conclusion The data herein provide evidence that ACTB and TUBB1 are suitable reference genes in human skin fibroblasts irradiated by UVB, whereas VIM and TUBA1A are not and should therefore be excluded as reference genes in any gene expression studies involving UVB-irradiated human skin fibroblasts.

Qu Tao

2011-02-01

159

Studies on cryopreservation of luc gene transfected bluegill sunfish fibroblast cell line.  

Science.gov (United States)

The effect of cryopreservation on the survival of luc gene transfected bluegill sunfish fibroblast (BF-2) cells was investigated. Propane-1,2-diol was found to be the least toxic cryoprotectant when compared with DMSO and methanol. Both propane-1,2-diol and DMSO are effective in protecting cells from freezing damage. Whilst there were no significant differences in cell survival between cryoprotectant concentration (10 or 15%) and culture age used in this study, 7-day old culture appeared to be more resistant to freezing without cryoprotectant when compared with 3- and 14-day old culture. The highest cell survival values obtained with propane-1,2-diol (10%) and DMSO (10%) protection were 96.2 1.2% and 94.0 3.1% respectively. Initial subsequent cell growth after cryopreservation was slower than their non-frozen controls. The survival of transfected BF-2 cells (BF-2/luc1) after cryopreservation were very similar to those obtained with wild type cells being: 94.0 3.1% and 95.2 1.5% respectively with 10% DMSO protection. These results suggested that genetically modified fish cell lines may be equally amenable to cryopreservation as the wild type. PMID:12148022

Zhang, Tiantian; Rawson, David M

2002-01-01

160

Ionising radiation response of mouse embryonic fibroblast cell lines lacking cohesin REC8  

International Nuclear Information System (INIS)

Full text: The cohesin complex is required for the cohesion of sister chromatids. Cohesin is loaded onto chromosomes during DNA replication and maintains sister chromatid association until anaphase. The cohesin complex is also implicated in homologous recombination, the upkeep of chromosome stability, the repair of double stranded DNA breaks (dsbs) and most recently, chromatin remodelling. REC8 is a key component of the meiotic cohesin complex that we showed was conserved from yeast to humans (Parisi, et. al., 1999). We identified a mouse ortholog of the Rec8 gene and generated Rec8 mutant mice by targeted deletion. To determine the role of REC8 in DNA repair, we derived embryonic fibroblast cell lines from Rec8 mutant mice. By clonogenic assay we are evaluating the resistance of Rec8 -/- cells to ionising (IR) radiation, an indirect measure of repair of dsbs. The study may provide insights into the involvement of cohesins in recombination and IR response. Reference: Parisi, S., McKay, M.J., Molnar, M., Thompson, M.A., van der Spek, P.J., van Drunken-Schoenmaker, E., Kanaar, R., Lehmann, E., Hoeijmakers, J.H.J. and Kohli, J., 1999. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21 family conserved from fission yeast to humans. Mol Cell Biol. 19(5):3515-3528

 
 
 
 
161

Extracts of Sarcoptes scabiei De Geer downmodulate secretion of IL-8 by skin keratinocytes and fibroblasts and of GM-CSF by fibroblasts in the presence of proinflammatory cytokines.  

Science.gov (United States)

Previous in vitro studies showed that molecules in an extract of the mite Sarcoptes scabiei variety canis De Geer could modulate the secretion of cytokines from cultured normal human epidermal keratinocytes and dermal fibroblasts in the absence of proinflammatory cytokines in the cell culture media. The purpose of this study was to investigate whether scabies extract could also modulate cytokine and chemokine secretion from epidermal keratinocytes and dermal fibroblasts in the presence of proinflammatory cytokines that are likely present in the scabietic lesion in vivo. In particular, could the downmodulating properties of this ectoparasitic mite on skin cells be maintained in the presence of proinflammatory cytokines? We found that even in the presence of the proinflammatory cytokines interleukin (IL)-1alpha, IL-beta, and a mixture of tumor necrosis factor (TNF)alpha + IL-17, scabies extract still downregulated the levels of IL-8 secretion from keratinocytes and fibroblasts and of granulocyte/macrophage-colony stimulating factor (GM-CSF) secretion from fibroblasts that were induced by stimulation of the cells with proinflammatory cytokines alone. This study also showed that scabies molecules induced secretions of growth-related oncogene alpha (GROalpha), transforming growth factor alpha (TGFalpha), and cutaneous T-cell attracting chemokine (CTACK) from keratinocytes and IL-6 and granulocyte-colony stimulating factor (G-CSF) from fibroblasts. These findings, coupled with the previous findings that molecules in scabies extract could downregulate expression of intracellular adhesion molecule-1 (ICAM-1) and E-selectin by normal dermal microvascular endothelial cells and secretion of IL-1alpha from keratinocytes, suggest that multiple factors from scabies mites play a role in the characteristic delayed inflammatory response to a primary infestation with S. scabiei. These are adaptations that favor invasion of the host by the parasite. PMID:19645287

Mullins, Jeremi S; Arlian, Larry G; Morgan, Marjorie S

2009-07-01

162

The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines  

Directory of Open Access Journals (Sweden)

Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 ?mol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

Mohammad Reza Salahshoor

2013-10-01

163

Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro  

DEFF Research Database (Denmark)

Repeated exposure to mild heat shock (HS) has been shown to induce a wide range of health promoting hormetic effects in various biological systems, including human cells undergoing aging in vitro. In order to understand how cells distinguish between mild and severe stress, we have investigated the extent of early and immediate HS response by analyzing the nuclear translocation of the transcription factor heat shock factor-1 (HSF1), in serially passaged normal adult human facial skin fibroblasts exposed to mild (41°C) or severe (43°C) HS. Cells respond differently when exposed to mild and severe HS at different passage levels in terms of the extent of HSF1 translocation. In early passage young cells there was a 5-fold difference between mild and severe HS in the extent of HSF1 translocation. However, in near senescent late passage cells, the difference between mild and severe stress in terms of the extent of HSF1 translocation was reduced to less than 2-fold. One of the reasons for this age-related attenuationof heat shock response is due to the fact there was a higher basal level of HSF1 in the nuclei of late passage cells, which is indicative of increased intrinsic stress during cellular aging. These observations are consistent with previously reported data that whereas repeated mild stress given at younger ages can slow down aging and increase the lifespan, the same level of stress given at older ages may not provide the same benefits. Therefore, elucidating the early and immediate steps in the induction of stress response can be useful in deciding whether a particular level of stress is potentially hormetically beneficial or not.

Demirovic, Dino; de Toda, Irene Martinez

2014-01-01

164

CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 ?M, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

Dong-Hee Kim

2014-05-01

165

Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts.  

Science.gov (United States)

Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2',7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor ? (TGF-?)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-?/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. PMID:23037157

Lee, Kyung-Eun; Mun, Sukyeong; Pyun, Hee-Bong; Kim, Myung-Suk; Hwang, Jae-Kwan

2012-01-01

166

Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy  

International Nuclear Information System (INIS)

A colony-forming assay of human skin fibroblast radiosensitivity was established in our laboratory and applied to primary skin biopsies from 12 women belonging to an unselected group of patients who received postmastectomy radiotherapy 10-12 years prior to this study. The aim was to investigate the relationship between in vitro radiosensitivity and the occurrence of subcutaneous fibrosis after radiotherapy. Early generations of normal skin fibroblasts in exponential growth were irradiated at room temperature at a high dose-rate to estimate the surviving fraction of colony-forming cells after single doses ranging from 1 to 8 Gy. A linear-quadratic cell survival curve was fitted to the data and from these fits the surviving fraction at 3.5 Gy (SF3.5) was estimated. Replicate experiments of different cell generations were made to validate the assay, and the between-patients variability was significantly larger than the assay variability for both SF2(p=0.002) and SF3.5(p=0.04). Patients were treated in the period 1978-1982 with a dose per fraction between 2.7 and 3.9 Gy, a total of 12 fractions at two fractions per week. They were evaluated with respect to the occurence of marked subcutaneous fibrosis in a total of 36 independent treatment fields. In each treatment field the total dose and dose per fraction at the relevant dosimetric reference depth as well as the length of follow-up were recorded. (Author)

167

Effects of macelignan isolated from Myristica fragrans (nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts  

International Nuclear Information System (INIS)

Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2', 7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor ? (TGF-?)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-?/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. (author)

168

Similarity between the interleukin 1 receptors on a murine T-lymphoma cell line and on a murine fibroblast cell line  

International Nuclear Information System (INIS)

Interleukin 1? (IL-1?), one of two different polypeptide hormones with interleukin 1 (IL-1) biological activity, produced by activated human monocytes, is a 17.5-kDa protein. IL-1? binds specifically to a variety of cells; the cellular distribution of binding is consistent with reported biological responsiveness. In this report the authors show that two unrelated, but IL-1-responsive, cell lines, LBRM-33-1A5, a T-lymphoma line, and BALB/3T3, a fibroblast line, bind 125I-labeled IL-1? via similar plasma membrane receptor molecules. The T-lymphoma cells possess 238 +/- 16 plasma membrane receptors per cell and bind 125I-labeled IL-1? with an affinity of 3.6 +/- 0.9 x 109 M-1. The IL-1 receptor has a molecular size of ? 79.5 kDa, as estimated by affinity cross-linking. The fibroblasts possess 4.8 +/- 0.5 x 103 IL-1 receptor per cell and bind 125I-labeled IL-1? with an affinity of 2.6 +/- 0.5 x 109 M-1. The molecular size of the receptor molecule on the fibroblasts is ? 78 kDa. Despite the similarity in the characteristics of the ligand-receptor system on the two different cell types, the biological responses of the two cell types to IL-1? occur at IL-1? concentrations that differ by four orders of magnitude

169

Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range  

International Nuclear Information System (INIS)

The aim of this study was to determine the effect of single and multiple irradiations on the differentiation and proliferation pattern of the stem cell system of human fibroblasts. The pattern of differentiation of fibroblast cultures was analyzed by morphological criteria using colony forming assays. Proliferation rates were assessed by cell counting and measuring the incorporation of BrdU. Ionizing radiation both in low and high dose ranges exerts differential effects on the cellular processes of differentiation and proliferation in human fibroblasts. Single irradiations of fibroblasts in the dose range of 1 to 8 Gy induced terminal differentiation into postmitotic fibrocytes at high percentage level. Irradiation of longterm cultures of fibroblasts with repeated doses of 0.2, 0.6 and 1.0 Gy revealed that only in cultures, which were irradiated repeatedly (x10) with 0.6 and 1.0 Gy a marked reduction of the proliferation capacity was apparent. Inhibition of proliferation by repeated irradiations with cumulative doses up to 10 Gy was not more pronounced as compared to single irradiations. 1. These results of radiation-induced changes in the proliferation and differentiation pattern of cells may be a basis for the understanding of the cellular processes leading to radiation-induced fibrosis and tissue aging. 2. Multiple irradiations with single doses up to 1 Gy and cumulative doses up to 10 Gy did not change the radiosensitivity of fibroblast cultures regarding effects on cell proliferation. (orig.)

170

Screening of medicinal and edible plants in Okinawa, Japan, for enhanced proliferative and collagen synthesis activities in NB1RGB human skin fibroblast cells.  

Science.gov (United States)

To identify plants with bioactive potential for skin care, methanol extracts of 56 plant parts from 47 medical and edible plants cultivated in Okinawa were tested for their proliferative effects on NB1RGB skin fibroblast cells. Extracts from six plants, Bischofia javanica, Colocasia esculenta, Melaleuca alternifolia, Piper angustifolia, Jasminum sambac, and Curcuma longa, showed higher NB1RGB cell proliferation activity (>10%) than the control, at various concentrations. Among the six extracts, only the C. longa extract caused an increase in collagen synthesis in NB1RGB cells, as compared to treatment with the positive control, ascorbic acid (AsA). Expression of the collagen synthesis marker, transforming growth factor-?1, was higher after treatment with the C. longa extract than with AsA. PMID:23221723

Takahashi, Makoto; Asikin, Yonathan; Takara, Kensaku; Wada, Koji

2012-01-01

171

Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Abstract Background Chikungunya virus (CHIKV) is an arthritogenic member of the Alphavirus genus (family Togaviridae) transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN) response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recogn...

Li-Pat-Yuen Ghislaine; Jaffar-Bandjee Marie-Christine; Gasque Philippe

2012-01-01

172

Two-stage implantation of the skin- and bone-integrated pylon seeded with autologous fibroblasts induced into osteoblast differentiation for direct skeletal attachment of limb prostheses.  

Science.gov (United States)

Angio- and osteogenesis following the two-stage (TS) implantation of the skin- and bone-integrated pylon seeded with autologous fibroblasts was evaluated. Two consecutive animal substudies were undertaken: intramedullary subcutaneous implantation (15 rabbits) and a TS transcutaneous implantation (12 rabbits). We observed enhanced osseointegrative properties of the intramedullary porous component seeded with fibroblasts induced into osteoblast differentiation, as compared to the untreated porous titanium pylon. The three-phase scintigraphy and subsequent histological analysis showed that the level of osteogenesis was 1.5-fold higher than in the control group, and significantly so (p < 0.05). The biocompatibility was further proved by the absence of inflammatory response or encapsulation and sequestration on the histology assay. Treatment of the transcutaneous component with autologous fibroblasts was associated with nearly a 2-fold decrease in the period required for the ingrowth of dermal and subdermal soft tissues into the implant surface, as compared to the untreated porous titanium component. Direct dermal attachment to the transcutaneous implant prevented superficial and deep periprosthetic infections in rabbits in vivo. PMID:24115308

Shevtsov, Maxim A; Galibin, Oleg V; Yudintceva, Nataliya M; Blinova, Miralda I; Pinaev, George P; Ivanova, Anna A; Savchenko, Olga N; Suslov, Dmitriy N; Potokin, Igor L; Pitkin, Emil; Raykhtsaum, Grigory; Pitkin, Mark R

2014-09-01

173

Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields  

Energy Technology Data Exchange (ETDEWEB)

Sinusoidal extremely low-frequency electromagnetic fields (ELF-EMF; 7-8 mT, 20 Hz) have already been shown to inhibit proliferation and to accelerate terminal differentiation of human skin fibroblasts in vitro. In order to elucidate the underlying processes of signal transduction, we analysed the activity of cAMP-dependent protein kinase (PKA). EMF exposure for 60 min resulted in an increased PKA activity in human skin fibroblasts (2-fold) and rat embryonic osteoblasts (1.7-fold). Long-term exposure for up to 7 days with a constant 1 h-on/1 h-off EMF exposure rhythm indicated a transient stimulation of PKA activity during the first two exposure rhythms followed by a decrease to the baseline levels of sham-exposed controls. Based on these results, we postulate that a modulation of proliferation and differentiation processes in cells of mesenchymal origin is triggered by an immediate and transient EMF-induced increase in PKA activity. (orig.)

Thumm, S.; Glock, S.; Haemmerle, H. [Natural and Medical Sciences Institute Reutlingen, University of Tuebingen (NMI), Markwiesenstrasse 55, D-72770 Reutlingen (Germany); Loeschinger, M.; Rodemann, H.P. [Section of Radiobiology and Molecular Environmental Research, University of Tuebingen, Roentgenweg 11, D-72076 Tuebingen (Germany)

1999-09-01

174

Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation  

Energy Technology Data Exchange (ETDEWEB)

Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients after 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA.

Bredberg, A.; Lambert, B.; Lindblad, A.; Swanbeck, G.; Wennersten, G.

1983-08-01

175

Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation  

International Nuclear Information System (INIS)

Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients after 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA

176

Semi-Quantitative Histological Analysis of the Effect of Intense Pulsed Light (IPL and Carbon Dioxide (CO2 Intradermic Injection on Fibroblast and Collagen Proliferation in the Skin of Wistar Rats  

Directory of Open Access Journals (Sweden)

Full Text Available Background: In recent years, so-called “non-ablative rejuvenation” has been carried out with the use of lasers or intense pulsed light (IPL to stimulate collagen production by dermal fibroblasts. Intradermal infusion of CO2 stimulates fibroblasts and the synthesis of collagen and elastin, contributing to the retraction of the skin and tissue rejuvenation. Objectives: To evaluate the effects of IPL and the intradermal infusion of CO2 on fibroblast proliferation and collagen in the skin of female rats. Methods: Sixteen adult female Wistar rats were divided into two groups of eight animals. Group 1 underwent IPL and group 2 underwent intradermal CO2 infusion. There was a total of 8 weeks of treatment. We conducted a punch in each animal before any procedure (T0, another punch in the middle of treatment at 4 weeks post-procedure (T1 and a punch at the end of treatment at 8 weeks post-procedure (T2. The cells involved in inflammation, fibrosis and vascularization of the injured tissue by histopathology were analyzed. Results: There was statistically significant fibroblast proliferation and collagen proliferation noted when analyzing all 16 animals together and also when considering the two study groups separately. In both groups, the greatest proliferation of fibroblasts coincided with periods of increased collagen production. Conclusion: Both IPL and intradermal CO2 infusion stimulated fibroblast and collagen proliferation in the skin of the rats studied.

Tamara Lemos Maia-Figueiró

2012-09-01

177

Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

Coppock Donald L

2008-12-01

178

Functional expression of sv40 in normal human prostatic epithelial and fibroblastic cells - differentiation pattern of nontumorigenic cell-lines.  

Science.gov (United States)

To study mesenchymal-epithelial interactions associated with the normal and pathological human prostate, we have developed a model of well differentiated human prostate epithelial and fibroblastic cells. Normal human prostatic cells, either of epithelial or fibroblastic origins were successfully transfected with SV40 and strains with extended lifespan were selected until the crisis was reached, within 20 and 30 passages for the epithelial and fibroblastic cells, respectively. Only a few clones emerged from the crisis: PNT1A (Cussenot et al: J Urol 143: 881-886, 1991), PNT1B and PNT2 epithelial cell lines. Successful immortalisation was achieved only with SV40 expressing both large T and small t oncogenes, while attempts to immortalise with a vector expressing SV40 large T alone have given a few strains showing no extended lifespan and no cells which overcame the crisis. A PNT2 subclone named PNT2-LSD which developed spontaneously (less serum dependent) was selected, characterised and included in the analysed series. The epithelial cell lines displayed a differentiation pattern which has been classified as follows (from high to low): PNT2>PNT2-LSD>PNT1A>PNT1B. Differentiation features studied were (i) the colony-forming ability of the PNT2 and PNT2-LSD compared to PNT1A and PNT1B, (ii) their respective doubling time of 39, 29, 30 and 28 hours, (iii) their decreasing serum dependency, (iv) the expression of cytokeratin 19 (a feature of well differentiated luminal cells of the glandular prostate) for PNT2 and PNT2-LSD. Furthermore, the mesenchymal derived pflsv1 cells were confirmed to be of fibroblastic nature. None of the cell lines analysed showed any tumourigenicity in nude mice over a period of 12 months. Serum deprivation and direct steroid withdrawal during the culture triggered cell death by apoptosis, an event which could be overcome by EGF stimulation, particularly for the well differentiated PNT2 cells. This interesting characteristic, which is similar to the high apoptotic rate observed ipl vivo for normal prostate, particularly after castration should lead, together with the other properties of these cell lines, to a better understanding of the biology of the different cell compartments involved in the progression of prostate towards neoplasia. PMID:21556542

Berthon, P; Cussenot, O; Hopwood, L; Leduc, A; Maitland, N

1995-02-01

179

Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties.  

Science.gov (United States)

Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 (PANK2) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells. PMID:22692681

Campanella, Alessandro; Privitera, Daniela; Guaraldo, Michela; Rovelli, Elisabetta; Barzaghi, Chiara; Garavaglia, Barbara; Santambrogio, Paolo; Cozzi, Anna; Levi, Sonia

2012-09-15

180

IN VITRO EFFECTS OF CEFTRIAXONE ON GROWTH OF HUMAN RHABDOMYOSARCOMA (RD AND ON RAT EMBRYO FIBROBLASTS (REF CELL LINES  

Directory of Open Access Journals (Sweden)

Full Text Available Many reports demonstrated that antibiotics like cefazoline, ciprofloxacin, trimethoprime-sulfamethoxazole and others have the ability to inhibit growth of various cell lines. Thus, this study was designed to investigate whether or not ceftriaxone may possess cell growth inhibition using In vitro study and utilizing two cell lines (human rhabdomyosarcoma (RD and rat embryo fibroblasts (REF. Various concentrations of Ceftriaxone (62.5, 125, 250, 500 and 1000 mcg/ml were utilized in this study. The drug relatively caused concentration-dependent inhibition on growth of the intended cell lines used in this study, where, the growth inhibition induced by the drug was statistically significant at 125mcg/ml and above. The results obtained from this work encourage further study of the possibility of clinical application of ceftriaxone to prevent the occurrence of different tumors.

Nada N. Al-Shawi

2013-02-01

 
 
 
 
181

Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.  

Science.gov (United States)

The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2. PMID:15589118

Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

2004-12-01

182

Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy  

DEFF Research Database (Denmark)

A colony-forming assay of human skin fibroblast radiosensitivity was established in our laboratory and applied to primary skin biopsies from 12 women belonging to an unselected group of patients who received postmastectomy radiotherapy 10-12 years prior to this study. The aim was to investigate the relationship between in vitro radiosensitivity and the occurrence of subcutaneous fibrosis after radiotherapy. Early generations of normal skin fibroblasts in exponential growth were irradiated at room temperature at a high dose-rate to estimate the surviving fraction of colony-forming cells after single doses ranging from 1 to 8 Gy. A linear-quadratic cell survival curve was fitted to the data and from these fits the surviving fraction at 3.5 Gy (SF3.5) was estimated. Replicate experiments of different cell generations were made to validate the assay, and the between-patients variability was significantly larger than the assay variability for both SF2(p = 0.002) and SF3.5 (p = 0.04). Patients were treated in the period 1978-1982 with a dose per fraction between 2.7 and 3.9 Gy, a total of 12 fractions at two fractions per week. They were evaluated with respect to the occurrence of marked subcutaneous fibrosis in a total of 36 independent treatment fields. In each treatment field the total dose and dose per fraction at the relevant dosimetric reference depth as well as the length of follow-up were recorded. A previously derived LQ mixture model was applied to these data in order to determine the probability of marked fibrosis in that particular field. From this probability and the actually observed fibrosis, the excess risk of fibrosis was calculated, and this was averaged over the three treatment fields to obtain a single measure of clinical radiosensitivity. Increasing values of SF3.5 were statistically significantly correlated with decreasing probabilities of developing subcutaneous fibrosis (p = 0.014, Spearman's rank correlation test). Thus, this pilot study has demonstrated a positive correlation between in vivo radiosensitivity and normal skin fibroblasts and the clinical expression of subcutaneous fibrosis.

Johansen, J; Bentzen, SØren M

1994-01-01

183

A high molecular arabinogalactan from Ribes nigrum L.: influence on cell physiology of human skin fibroblasts and keratinocytes and internalization into cells via endosomal transport.  

Science.gov (United States)

An arabinogalactan protein (F2) was isolated in 1.5% yield from the seeds of Ribes nigrum L. (Grossulariaceae) by aqueous extraction and a one-step anion exchange chromatography on DEAE-Sephacel with 24% galactose, 43% arabinose, and 20% xylose as main carbohydrate residues. Methylation analysis revealed the presence of a 1,3-/1,3,6-galactose backbone, side chains from arabinose in different linkages, and terminal xylose residues. The polysaccharide which turned out to be an arabinogalactan protein had a molecular weight of >10(6) Da and deaggregated under chaotropic conditions. The cellular dehydrogenase activities (MTT and WST-1 tests) of human skin cells (fibroblasts, keratinocytes) as well as the proliferation rate of keratinocytes (BrdU incorporation ELISA) were significantly stimulated by the polymer at 10 and 100 microg/mL. F2 had no influence on differentiation status of keratinocytes and did not exhibit any cytotoxic potential (LDH test). The biological activity of F2 was not dependent on the high molecular weight. Influence of the polysaccharide on the gene expression of specific growth factors, growth factor receptors, signal proteins and marker proteins for skin cell proliferation, and differentiation by RT-PCR could not be shown. Gene array investigations indicated an increased expression of various genes encoding for catabolic enzymes, DNA repair, extracellular matrix proteins, and signal transduction factors. Removal of terminal arabinose residues by alpha-L-arabinofuranosidase did not influence the activity toward skin cells, while the treatment with beta-D-galactosidase yielded an inactive polysaccharide. The FITC-labeled polysaccharide was incorporated in a time-dependent manner into human fibroblasts (laser scanning microscopy) via endosomal transport. This internalization of the polysaccharide was inhibited by Cytochalasin B. PMID:19368904

Zippel, Janina; Deters, Alexandra; Pappai, Dirk; Hensel, Andreas

2009-05-26

184

Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative  

International Nuclear Information System (INIS)

A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignat was deficient or absent in their malignant derivatives

185

Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative  

International Nuclear Information System (INIS)

A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H2O2, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

186

Ultraviolet irradiation represses TGF-? type II receptor transcription through a 38-bp sequence in the proximal promoter in human skin fibroblasts.  

Science.gov (United States)

Transforming growth factor-? (TGF-?) is a major regulator of collagen gene expression in human skin fibroblasts. Cellular responses to TGF-? are mediated primarily through its cell surface type I (T?RI) and type II (T?RII) receptors. Ultraviolet (UV) irradiation impairs TGF-? signalling largely due to reduced T?RII gene expression, thereby decreasing type I procollagen synthesis, in human skin fibroblasts. UV irradiation does not alter either T?RII mRNA or protein stability, indicating that UV reduction in T?RII expression likely results from transcriptional or translational repression. To understand how UV irradiation regulates T?RII transcription, we used a series of T?RII promoter-luciferase 5'-deletion constructs (covering 2 kb of the T?RII proximal promoter) to determine transcriptional rate in response to UV irradiation. We identified a 137-bp region upstream of the transcriptional start site that exhibited high promoter activity and was repressed 60% by UV irradiation, whereas all other T?RII promoter reporter constructs exhibited either low promoter activities or no regulation by UV irradiation. Mutation of potential transcription factor binding sites within the promoter region revealed that an inverted CCAAT box (-81 bp from transcription start site) is required for promoter activity. Mutation of the CCAAT box completely abolished UV irradiation regulation of the T?RII promoter. Protein-binding assay, as determined by electrophoretic mobility-shift assays (EMSAs) using the inverted CCAAT box as probe (-100/-62), demonstrated significantly enhanced protein binding in response to UV irradiation. Super shift experiments indicated that nuclear factor Y (NFY) is able to binding to this sequence, but NFY binding was not altered in response to UV irradiation, indicating additional protein(s) are capable of binding this sequence in response to UV irradiation. Taken together, these data indicate that UV irradiation reduces T?RII expression, at least partially, through transcriptional repression. This repression is mediated by a 38-bp sequence in T?RII promoter, in human skin fibroblasts. PMID:25234828

He, Tianyuan; Quan, Taihao; Fisher, Gary J

2014-10-01

187

Collagen expression in fibroblasts with a novel LMNA mutation.  

Science.gov (United States)

Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy. PMID:17150192

Nguyen, Desiree; Leistritz, Dru F; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M; Oshima, Junko

2007-01-19

188

Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Previous studies suggest oxygen free radicals' involvement in the etiology of cardiomyopathy with cataracts. To investigate the role of free radicals in the pathogenesis of the cardiomyopathy with cataracts and complex I deficiency, fibroblasts from patients were assessed for hydroxyl radical formation and aldehydic lipid peroxidation products with and without redox active agents that increase free radicals. The rate of hydroxyl radical formation in patient cells was increased over 2-10-fold ...

Luo, X.; Pitka?nen, S.; Kassovska-bratinova, S.; Robinson, B. H.; Lehotay, D. C.

1997-01-01

189

Studying the Activity of Fibroblast Growth Factor 18 and Urokinase Plasminogen Activator Receptor Promoters in Two Colon Cancer Cell Lines  

Directory of Open Access Journals (Sweden)

Full Text Available Introduction: Wnt and k-ras are two main signaling pathways activated in colon cancer.Many genes are upregulated downstream of these signaling pathways. The aim of this studywas to assess the activity of Wnt and k-ras in HCT116 and SW480 cell lines by makingtwo reporter constructs using promoters downstream of these pathways (fibroblast growthfactor18 [FGF18] and urokinase plasminogen activator receptor [UPAR].Materials and Methods: UPARLacZ, FGF18LacZ, negative (pUCLacZ and positive (CMVLacZcontrol plasmids and pRc/CMV2CAT were constructed. Expressions of LacZ in bothcell lines were studied by ?gal staining and ELISA after normalization with CAT expression.Results: In both cell lines, FGF18LacZ transfected cells stained more than UPARLacZ transfectedones. This difference was more prominent in SW480. Both constructs have the abilityof expression in both cell lines. It was also proven that FGF18LacZ was significantly moreactive than UPARLacZ in both cell lines. Expression of FGF18LacZ in HCT116 and SW480cell lines was respectively 1.34 and 4.4 times more than UPARLacZ.Conclusion: Despite the fact that in HCT116 the Ras pathway is activated, FGF18LacZ ismore active than UPARLacZ although the UPAR promoter is more active in HCT116 cell linethan SW480 cell line. These findings are in accordance with previous studies that in all coloncancer cell lines Wnt signaling pathway is active even though there is no mutation in anypart of it. Wnt is the main signaling pathway responsible for carcinogenesis in colon epithelialcells. These constructs can be used as reporters for studying the above mentioned signalingpathways in other cell lines.

Ladan Teimoori-Toolabi

2009-01-01

190

The wavelength dependence of u.v.-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts  

International Nuclear Information System (INIS)

We determined the wavelength dependence of u.v.-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts. Pyrimidine dimers were quantified using the T4 endonuclease V assay, cell killing was measured as loss of colony forming ability and mutation induction was detected at the HPRT locus. U.v. irradiation was performed with monochromatic light of four different wavelengths (254, 297, 302 and 365 nm) and with polychromatic light of a Philips TL-01 lamp (predominantly 312 nm). The relative wavelength dependence for cell killing and mutation induction did not correlate with that for dimer formation. Toxicity and mutagenicity per equivalent initial dimer load increase with increasing wavelength. The relative wavelength dependence for cell killing and mutation induction is essentially the same, except at 365 nm. (author)

191

Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365 nm) radiation: evidence for the involvement of the hydroxyl radical  

International Nuclear Information System (INIS)

The induction of heme oxygenase by both hydrogen peroxide and UVA (365 nm) radiation in normal human skin fibroblasts is prevented by prior treatment of cells with the specific iron chelators, o-phenanthroline or desferrioxamine. In addition, both iron chelators protected cells against the lethal effects of H2O2 treatment or UVA irradiation. We propose that the generation of the highly reactive hydroxyl radical by an iron catalyzed Fenton reaction is involved both in the induction of this stress response and, at least in part, in cell killing by the two treatments. These results are also consistent with the idea that the heme oxygenase gene is induced in response to oxidative stress and that its induction may constitute an inducible protective mechanism against oxidative damage induced by both hydrogen peroxide and UVA radiation. (author)

192

HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1  

International Nuclear Information System (INIS)

Purpose: Despite the comparably high cure rates observed for HPV-positive HNSCC, there is still a great need for specific tumor radiosensitization due to the often severe side effects resulting from intense radiochemotherapy. We recently demonstrated that HPV-positive HNSCC cell lines are characterized by a defect in DNA double-strand break repair associated with a pronounced G2-arrest. Here we tested whether abrogation of this radiation-induced G2-arrest by the inhibition of Chk1 results in specific radiosensitization of HPV-positive HNSCC cells. Materials and methods: Experiments were performed with five HPV and p16-positive (93-VU-147T, UM-SCC-47, UT-SCC-45, UD-SCC-2, UPCI-SCC-154) and two HPV and p16-negative HNSCC cell lines, as well as two normal human fibroblast strains. Chk1 was inhibited by the selective inhibitor PF-00477736. Cell cycle distribution was determined by flow cytometry, Chk1-activity via Western blot and cell survival by colony formation assay. Results: With the exception of UPCI-SCC-154, the inhibition of Chk1 was found to abolish the pronounced radiation-induced G2-arrest in all HPV-positive cells utilized. All tumor cell lines that demonstrated the abrogation of G2-arrest also demonstrated radiosensitization. Notably, in G1-arrest-proficient normal human fibroblasts no radiosensitization was induced. Conclusion: Abrogation of the G2 checkpoint through the inhibition of Chk1 may be used to selectively increase the cellular radiosensitivity of HPV-positive HNSCC without affecting the surrounding normal tissue

193

[Copper level and metallothionein-like Cu-binding protein in cultured skin fibroblasts from patients with Menkes' disease and Wilson's disease].  

Science.gov (United States)

Copper concentration, intracellular copper distribution, and inducibility of metallothionein-like metal-binding protein (MLP) by copper or cadmium addition to culture medium were compared among three types of skin fibroblasts derived from patients with Menkes' disease and Wilson's disease, both exhibiting genetic defects of copper metabolism, and from normal subjects (control). Skin fibroblasts were cultivated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and antibiotics in 5% CO2 at 37 degrees C. Cells were harvested with rubber-policeman, washed twice with phosphate-buffered saline, pH 7.2, suspended in deionized water, and homogenized. The homogenate from each cell type was used to determine the concentration of copper by atomic absorption spectrophotometry employing graphite-rod atomizer after lyophilization, ashing in HNO3, and coprecipitation with zirconium. Intracellular copper concentration was elevated in Menkes' cells (420 ng Cu/mg of protein) and Wilson's cells (217 ng Cu/mg of protein) than in control cells (90.0 ng Cu/mg of protein), although one of four Wilson's strains showed normal copper level (70.5 ng Cu/mg of protein). Cytosol copper concentration was 5.8-fold higher in Menkes' cells but only 1.3-fold in Wilson's cells than in control cells, and cytosol copper accounted for only 35% of total intracellular copper in Wilson's cells as compared with 68% and 52% in Menkes' and control cells, respectively. These suggest that accumulated copper in each cell type is differently distributed within cells; in Menkes' cells exclusively into cytosol, but in Wilson's cells into particulates rather than cytosol. Elution profiles from Sephadex G-75 columns indicated that most of copper had bound to MLP in Menkes' cells, though no Cu-MLP was detectable in Wilson's or control cells under these experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6525319

Sato, M; Hayashi, A; Ito, H; Tojo, M; Arima, M

1984-11-01

194

Ellagitannins from Phyllanthus muellerianus (Kuntze) Exell.: Geraniin and furosin stimulate cellular activity, differentiation and collagen synthesis of human skin keratinocytes and dermal fibroblasts.  

Science.gov (United States)

Leaves from Phyllanthus muellerianus (Kuntze) Exell. are traditionally used for wound healing in Western Africa. Aqueous extracts of dried leaves recently have been shown to stimulate proliferation of human keratinocytes and dermal fibroblasts. Within bioassay-guided fractionation the ellagitannins geraniin (1), corilagin (2), furosin (3), the flavonoids quercetin-3-O-?-D-glucoside (isoquercitrin), kaempferol-3-O-?-D-glucoside (astragalin), quercetin-3-O-D-rutinoside (rutin), gallic acid, methyl gallate, caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid and caffeoylmalic acid (phaselic acid) have been identified in P. muellerianus for the first time. Geraniin was shown to be the dominant component of an aqueous extract. Suitable analytical methods for quality control of geraniin in P. muellerianus extract (methanol/water, 70/30) have been developed and validated based on ICH guidelines (ICH-compliant protocol). Geraniin and furosin increased the cellular energy status of human skin cells (dermal fibroblasts NHDF, HaCaT keratinocytes), triggering the cells towards higher proliferation rates, with fibroblasts being more sensitive than keratinocytes. Highest stimulation of NHDF by geraniin was found at 5 ?M, and of keratinocytes at 50-100 ?M. Furosin stimulated NHDF at about 50 ?M, keratinocytes at about 150-200 ?M. Necrotic cytotoxicity of geraniin, as measured by LDH release, was observed at 20 ?M for NHDF and 150 ?M for keratinocytes. Toxicity of furosin--less than that of geraniin--was observed at > 400 ?M. Furosin and geraniin stimulated the biosynthesis of collagen from NHDF at 50 ?M and 5-10 ?M respectively. Geraniin at 105 ?M significantly stimulated the differentiation in NHEK while furosin had a minor influence on the expression of involucrin and cytokeratins K1 and K10. The study proves clearly that hydrophilic extracts from P. muellerianus and especially the lead compound geraniin exhibit stimulating activity on dermal fibroblasts and keratinocytes, leading to increased cell proliferation, barrier formation and formation of extracellular matrix proteins. From these findings the traditional clinical use of such extracts for wound healing seems to be justified. PMID:21036574

Agyare, Christian; Lechtenberg, Matthias; Deters, Alexandra; Petereit, Frank; Hensel, Andreas

2011-05-15

195

Various cells retrovirally transduced with N-acetylgalactosoamine-6-sulfate sulfatase correct Morquio skin fibroblasts in vitro.  

Science.gov (United States)

Gene therapy may provide a long-term approach to the treatment of mucopolysaccharidoses. As a first step toward the development of an effective gene therapy for mucopolysaccharidosis type IVA (Morquio syndrome), a recombinant retroviral vector, LGSN, derived from the LXSN vector, containing a full-length human wildtype N-acetylgalactosamine-6-sulfate sulfatase (GALNS) cDNA, was produced. Severe Morquio and normal donor fibroblasts were transduced by LGSN. GALNS activity in both Morquio and normal transduced cells was several fold higher than normal values. To measure the variability of GALNS expression among different transduced cells, we transduced normal and Morquio lymphoblastoid B cells and PBLs, human keratinocytes, murine myoblasts C2C12, and rabbit synoviocytes HIG-82 with LGSN. In all cases, an increase of GALNS activity after transduction was measured. In Morquio cells co-cultivated with enzyme-deficient transduced cells, we demonstrated enzyme uptake and persistence of GALNS activity above normal levels for up to 6 days. The uptake was mannose-6-phosphate dependent. Furthermore, we achieved clear evidence that LGSN transduction of Morquio fibroblasts led to correction of the metabolic defect. These results provide the first evidence that GALNS may be delivered either locally or systematically by various cells in an ex vivo gene therapy of MPS IVA. PMID:11686941

Toietta, G; Severini, G M; Traversari, C; Tomatsu, S; Sukegawa, K; Fukuda, S; Kondo, N; Tortora, P; Bordignon, C

2001-11-01

196

Repair of sublethal damage in diploid human fibroblasts: a comparison between human and rodent cell lines  

International Nuclear Information System (INIS)

The repair of sublethal damage has been compared in the human cell lines GM-498 and GM 3440 with that which occurs in the rodent lines CHO and V-79. The data suggests that the human cell lines repair sublethal damage at least as well as the rodent cell lines. Another object of this investigation was to determine if the repair of sublethal damage can be observed in the initial region of the survival curve. While repair of sublethal damage can be observed in the second decade, it cannot be observed in the first, assuming no redistribution in the cell cycle. 12 references, 6 figures

197

Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates.  

Science.gov (United States)

Mechanical stress is a decisive factor for the differentiation, proliferation, and general behavior of cells. However, the specific signaling of mechanotransduction is not fully understood. One basic problem is the clear distinction between the different extracellular matrix (ECM) constituents that participate in cellular adhesion and their corresponding signaling pathways. Here, a system is proposed that enables mechanical stimulation of human-skin-derived keratinocytes and human dermal fibroblasts that specifically interact with peptide sequences immobilized on a non-interacting but deformable substrate. The peptide sequences mimic fibronectin, laminin, and collagen type IV, three major components of the ECM. To achieve this, PDMS is activated using ammonia plasma and coated with star-shaped isocyanate-terminated poly(ethylene glycol)-based prepolymers, which results in a functional coating that prevents unspecific cell adhesion. Specific cell adhesion is achieved by functionalization of the layers with the peptide sequences in different combinations. Moreover, a method that enables the decoration of deformable substrates with cell-adhesion peptides in extremely defined nanostructures is presented. The distance and clustering of cell adhesion molecules below 100 nm has been demonstrated to be of utmost importance for cell adhesion. Thus we present a new toolbox that allows for the detailed analysis of the adhesion of human-skin-derived cells on structurally and biochemically decorated deformable substrates. PMID:17455182

Salber, Jochen; Gräter, Stefan; Harwardt, Marc; Hofmann, Matthias; Klee, Doris; Dujic, Jadranka; Jinghuan, Huang; Ding, Jiandong; Kippenberger, Stefan; Bernd, August; Groll, Jürgen; Spatz, Joachim P; Möller, Martin

2007-06-01

198

Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.  

Science.gov (United States)

Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

2012-01-01

199

DNA macroarray study of skin aging-related genes expression modulation by antioxidant plant extracts on a replicative senescence model of human dermal fibroblasts.  

Science.gov (United States)

The formation of reactive oxygen species (ROS) is a widely accepted pivotal mechanism leading to skin aging. It increases with age, while the endogenous defense mechanisms that counter them decrease. This imbalance, called oxidative stress, leads to the progressive damage of cellular structures and results in accelerated aging. Antioxidant compounds can provide protection from endogenous and exogenous oxidative stress by scavenging free radicals. The main phenolic compounds of oak wood, mate leaf and benjoin resin antioxidant extracts were identified and the effects of these extracts on skin aging markers were evaluated using DNA macroarray technology. The transcriptional effect of the three antioxidant extracts was evaluated in vitro on a replicative senescence model of normal human dermal fibroblasts (NHDF), using a customized DNA macroarray specifically designed to investigate aging markers such as dermal structure, cell renewal, inflammatory response and oxidative stress mechanisms. Among the 149 genes detected, the three antioxidant extracts presented a significant regulation of five genes involved in inflammatory response, cell renewal and antioxidant defenses. The collective transcriptional effects of these extracts suggest interesting antiaging properties which could be utilized in nutraceutical antiaging formulations. PMID:21077257

Dudonné, Stéphanie; Coutière, Philippe; Woillez, Marion; Mérillon, Jean-Michel; Vitrac, Xavier

2011-05-01

200

In Vitro Culture of Fibroblast-Like Cells From Sheep Ear Skin Stored at 25-26°C for 10 Days After Animal Death  

Directory of Open Access Journals (Sweden)

Full Text Available Successful somatic cell nuclear transfer aka cloning requires good quality undamaged nuclear DNA from desired cell types. In vitro culture of cells is one way of ensuring nuclear integrity. Cellular contents including nucleus gradually decompose postmortem, if not preserved within a reasonable time, leading to cell and ultimately nuclear DNA damage. The goal of this study was to determine time limits within which live and culturable cells can be obtained, after death of an animal, using sheep as a model. How long the somatic cells are alive and have potential to replicate after the animal death is not precisely known. Here we show, for the first time, that the sheep ear skin stored at 25-26°C after animal death can be cultured up to 10 days postmortem. The culture confluence is inversely correlated with increasing postmortem time interval. The cultured fibroblast-like cells have 95±5.2 % post cryopreservation cell-viability; have normal karyotype, and a comparable growth profile to that of fresh tissue derived cells. This study shows that sheep skin has potential for in vitro culture of its cells up to 10 days postmortem. Cultured cells can be successfully used for preservation of biodiversity for possible future cloning of animals.

Mahipal Singh

2014-06-01

 
 
 
 
201

Chlorhexidine gluconate-impregnated central-line dressings and necrosis in complicated skin disorder patients.  

Science.gov (United States)

Although chlorhexidine gluconate (CHG) disks have been shown to help reduce the incidence of central line-associated blood stream infections, their use can result in local skin necrosis. The effects of CHG disks on patients with complex skin pathology have not been studied. We report 6 cases of dermal necrosis associated with Biopatch (Ethicon Inc, Somerville, NJ) CHG disks in adults with complex skin pathology including those with Stevens-Johnson syndrome, toxic epidermal necrolysis syndrome, graft-versus-host disease, burns, and anasarca. All patients had a CHG disk placed at a central venous catheter insertion site. Age range was from 21 to 84 years. Discovery of the reaction ranged from 4 to 14 days after disk placement. Resultant skin erosions required 2 to 10 weeks to reepithelialize. Complicated skin disorder patients represent a rare subset of the critically ill who appear prone to CHG disk necrosis. Continuous contact of CHG under occlusive dressings is speculated to predispose Stevens-Johnson syndrome, toxic epidermal necrolysis syndrome, graft-versus-host disease, and burn patients to local chemical injury secondary to loss of the epithelial tissue barrier, decreased cohesion of the epidermal-dermal junction, and increased tissue permeability. In these patients, the risk of placing the CHG disk may present more risk than using alternative antimicrobial dressings. PMID:25035049

Wall, Jennifer B; Divito, Sherrie J; Talbot, Simon G

2014-12-01

202

Murine embryonic fibroblast cell lines differentiate into three mesenchymal lineages to different extents: new models to investigate differentiation processes.  

Science.gov (United States)

Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as "feeder cells." Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation. PMID:25068630

Dastagir, Khaled; Reimers, Kerstin; Lazaridis, Andrea; Jahn, Sabrina; Maurer, Viktor; Strauß, Sarah; Dastagir, Nadjib; Radtke, Christine; Kampmann, Andreas; Bucan, Vesna; Vogt, Peter M

2014-08-01

203

Growth and Replication of Infectious Bursal Disease Virus in the DF-1 Cell Line and Chicken Embryo Fibroblasts  

Science.gov (United States)

Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chicks and leads to significant economic losses in the poultry industry. To determine a suitable cell line for IBDV infection, replication, and growth kinetics of the virus, DF-1 cells and chicken embryo fibroblasts (CEF) were used. The population doubling per day (Pd/D) was found to be higher in DF-1 as compared to CEF cells. A suitable time of infection (TOI) was established for increased production of virus and greater infectivity titers. The DF-1 and CEF cells were found to be susceptible to infection by producing marked cytopathic effects (CPEs), and the growth curves of IBDV in DF-1 and CEF cells were evaluated by infectivity assay using tissue culture infectious dose (TCID50). The cytopathic effects of the virus in DF-1 and CEF cells were found to be similar, but higher viral titers were detected in the DF-1 cells as compared to CEF. Thus the DF-1 cell line had a higher growth potential and infectivity, which will be of advantage in vaccine production. PMID:24949455

Rekha, Kaliyaperumal; Sivasubramanian, Chandran; Chung, Ill-Min; Thiruvengadam, Muthu

2014-01-01

204

Quantitative differences in host cell reactivation of ultraviolet-damaged virus in human skin fibroblasts and epidermal keratinocytes cultured from the same foreskin biopsy  

International Nuclear Information System (INIS)

Repair efficiency of cultured cells may be estimated by measuring the ability of a particular cell type to support virus damaged by an appropriate agent. In this study we have compared the inactivation of ultraviolet (254 nm)-damaged herpes simplex virus in human fibroblast and epidermal keratinocyte cell lines derived from the same foreskin biopsy and found the epithelial cells to be a factor of 3 times less efficient in supporting the damaged virus. The two different cell types show comparable ultraviolet inactivation of clone-forming ability, indicating that the difference is specific to viral host cell reactivation. This study required the development of a quantitative infectious centers assay for the measurement of viral titer in human epithelial cells, a system which may be of more general application in studies of potential human carcinogens

205

Parthenolide inhibits proliferation of fibroblast-like synoviocytes in vitro.  

Science.gov (United States)

Parthenolide is a bioactive constituent of an aromatic herb Feverfew (Tanacetum parthenium). It has been found that both parthenolide and extract of feverfew have anti-inflammatory and antinociceptive properties. Moreover, they demonstrate antiproliferative activities on different human tumour cells. The massive hyperplasia of synovial fibroblasts is the one of the most striking features of rheumatoid arthritis. It is not known whether this is due to the proliferation of synovial fibroblasts or to defective apoptosis. We investigated the effect of parthenolide on the proliferation of rabbit synoviocytes cell line HIG-82, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and human skin fibroblasts (HSF) in vitro. Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5'-bromo-2'-deoxy-uridine methods. Parthenolide inhibited proliferation of HIG-82 and human RA-FLS. The proliferation of HSF was inhibited less effectively. The antiproliferative potential of parthenolide was demonstrated. PMID:18568393

Parada-Turska, Jolanta; Mitura, Agata; Brzana, Wojciech; Jab?o?ski, Miros?aw; Majdan, Maria; Rzeski, Wojciech

2008-08-01

206

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells  

Directory of Open Access Journals (Sweden)

Full Text Available In the current study, we explored the effect of LDR on theactivation of Nrfs transcription factor involved in cellular redoxevents. Experiments were carried out utilizing 0.05 and 0.5 GyX-ray irradiated normal human skin fibroblast HS27 cells. Theresults showed LDR induced Nrf1 and Nrf2 activation andexpression of antioxidant genes HO-1, Mn-SOD, and NQO1.In particular, 0.05 Gy-irradiation increased only Nrf1 activation,but 0.5 Gy induced both Nrf1 and Nrf2 activation.LDR-mediated Nrf1/2 activation was accompanied by reactivespecies (RS generation and Ca2+ flux. This effect was abolishedin the presence of N-acetyl-cysteine and BAPTA- AM.Furthermore, Nrf1/2 activation by LDR was suppressed byPD98059, an inhibitor of ERK1/2. In conclusion, LDR inducesNrf1 and Nrf2 activation and expression of Nrf-regulatedantioxidant defense genes through RS and Ca2+/ERK1/2pathways, suggesting new insights into the molecularmechanism underlying the beneficial role of LDR in HS27cells. [BMB Reports 2013; 46(5: 258-263

Eun Kyeong Lee

2013-05-01

207

Low-dose radiation activates Nrf1/2 through reactive species and the Ca(2+)/ERK1/2 signaling pathway in human skin fibroblast cells.  

Science.gov (United States)

In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and Ca(2+) flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and Ca(2+)/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells. PMID:23710636

Lee, Eun Kyeong; Kim, Jin-Ah; Park, Seong Joon; Kim, Jeung Ki; Heo, Kyu; Yang, Kwang Mo; Son, Tae Gen

2013-05-01

208

A correlation between ultraviolet-induced sister chromatid exchanges and ultraviolet-indced mutagenesis in ''Muntiacus muntjak'' (Indian Muntjac) skin fibroblasts in culture  

International Nuclear Information System (INIS)

The purpose of this thesis was to develop the capability of simultaneously assaying SCEs and mutations in Indian muntjac cells to determine (1) the relationship between the ultraviolet radiation (UVR) induction of SCEs and the UVR induction of mutations at the (UVR) HGPRT locus in Indian muntjac cells and (2) the possible role of DNA repair in the UVR induction of these two events. Indian muntjac skin fibroblasts were chosen for this study because of a unique karyotype consisting of a diploid chromosome number of 6 in females and 7 in males. An HGPRT mutation assay in Indian muntjac cells was developed by this author since at the time this study was undertaken no mutational assay system utilizing Indian muntjac cells existed. It is concluded from this study that a linear correlation exists betwen the UVR-induction of SCEs and of mutations to 6TG resistance in Indian muntjac cells. As more time is allowed between the UVR-induced DNA damage and onset of DNA replication, more of the lesions leading to both mutations and SCE formation are repaired. The fact that SCE and mutation frequencies are reduced at different rates may indicate that the lesions responsible for SCEs and for mutations are repaired differently

209

Molecular analysis of gamma-ray-induced mutations at the hprt locus in primary human skin fibroblasts by multiplex polymerase chain reaction  

International Nuclear Information System (INIS)

A total of 153 hprt mutants (23 spontaneous, 130 ?-ray-induced) of primary human skin fibroblasts were isolated and genetic alterations at the locus were studied by multiplex polymerase chain reaction (PCR). The analyses showed that 51% (66/130) of ?-ray-induced genetic changes were large deletions, whereas the majority of spontaneous mutants (21/23) exhibited point mutations. The spectrum of large genetic alterations appeared to be dependent on dose in ?-ray-induced (1-4 Gy) mutations; mutants with complete loss of the hprt locus comprised 21 (3/14) or 39% (15/38) of clones isolated after irradiation with 1 or 4 Gy, respectively. The frequency of partial deletions was found to be higher in the mutants isolated from clones irradiated with 2 Gy (38%) than from those irradiated with 4 Gy (8%). Mapping of all intragenic depletion breakpoints exhibited a nonrandom distribution of breakpoints toward the 3' end of the hprt gene. 46 refs., 4 figs., 2 tabs

210

Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols  

Energy Technology Data Exchange (ETDEWEB)

Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

Mei Xin [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Key Laboratory of Horticultural Plant Growth Development and Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029 (China); Wu Yuanyuan; Mao Xiao [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Tu Youying, E-mail: youytu@zju.edu.c [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China)

2011-01-15

211

Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols  

International Nuclear Information System (INIS)

Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

212

Zac1 (Lot1), a Potential Tumor Suppressor Gene, and the Gene for ?-Sarcoglycan Are Maternally Imprinted Genes: Identification by a Subtractive Screen of Novel Uniparental Fibroblast Lines  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Imprinted genes are expressed from one allele according to their parent of origin, and many are essential to mammalian embryogenesis. Here we show that the ?-sarcoglycan gene (Sgce) and Zac1 (Lot1) are both paternally expressed imprinted genes. They were identified in a subtractive screen for imprinted genes using a cDNA library made from novel parthenogenetic and wild-type fibroblast lines. Sgce is a component of the dystrophin-sarcoglycan complex, Zac1 is a nuclear protein inducing growth ...

Piras, Graziella; El Kharroubi, Aboubaker; Kozlov, Serguei; Escalante-alcalde, Diana; Hernandez, Lidia; Copeland, Neal G.; Gilbert, Debra J.; Jenkins, Nancy A.; Stewart, Colin L.

2000-01-01

213

A Comparison between the Colony Formation of Adult Mouse Spermatogonial Stem Cells in Co cultures with Sertoli and STO (Mouse Embryonic Fibroblast Cell Line)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Objective: The aim of this study was to compare the colony formation of spermatogonialstem cells (SSCs) on sertoli and STO (Mouse embryonic fibroblast cell line) feeder celllayers during a two-week period.Materials and Methods: Initially, sertoli cells and SSCs were isolated from adultmouse testes using a two-step enzymatic digestion and lectin immobilization. Characteristicsof the isolated cells were immunocytochemically confirmed by examiningfor the presence of Oct-4, CDH1, promyelocytic le...

Seyed Morteza Koruji; Mansoureh Movahedin; Syede Momeneh Mohamamadi

2010-01-01

214

Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher ce...

Senevirathne, Mahinda; Kim, Soo-hyun; Jeon, You-jin

2010-01-01

215

Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen  

Energy Technology Data Exchange (ETDEWEB)

Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

1992-08-01

216

Extracts of Sarcoptes scabiei De Geer Downmodulate Secretion of IL-8 by Skin Keratinocytes and Fibroblasts and of GM-CSF by Fibroblasts in the Presence of Proinflammatory Cytokines  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Previous in vitro studies showed that molecules in an extract of the mite Sarcoptes scabiei variety canis De Geer could modulate the secretion of cytokines from cultured normal human epidermal keratinocytes and dermal fibroblasts in the absence of proinflammatory cytokines in the cell culture media. The purpose of this study was to investigate whether scabies extract could also modulate cytokine and chemokine secretion from epidermal keratinocytes and dermal fibroblasts in the presence of pro...

Mullins, Jeremi S.; Arlian, Larry G.; Morgan, Marjorie S.

2009-01-01

217

Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: Model systems for equine sarcoids  

International Nuclear Information System (INIS)

It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independently of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology

218

The common properties and the heterogeneity of dermal fibroblast subpopulations.  

Directory of Open Access Journals (Sweden)

Full Text Available Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular fibroblasts, which reside in the deep dermis. Both of these subpopulations of fibroblasts differ from the fibroblasts that are associated with hair follicles. Fibroblasts engage in fibroblast-epidermal interactions during hair development and in interfollicular regions of skin. They also play an important role in cutaneous structural transformations.

Makarchuk O.I.

2007-01-01

219

Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1?, IL-2, IL-6, IL-8 and TGF-? for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1?, IL-2, TGF-?, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

Matthaei Klaus I

2004-07-01

220

Cloning of a new fibroblast cell line from an early primary culture from mandarin fish (Siniperca chuatsi) fry for efficient proliferation of megalocytiviruses.  

Science.gov (United States)

Megalocytiviruses are important emerging pathogens in both freshwater and marine finfish aquaculture. However, a limited number of piscine cell lines are persistently susceptible to these viruses, which greatly limits the study of megalocytiviruses. In this study, a new fibroblast-like cell line was established from an early primary culture from mandarin fish fry by a single cell cloning and was designated as MFF-8C1. The MFF-8C1 cells grow well in Dulbecco's modified Eagle's medium supplemented with 10 % fetal bovine serum and had been subcultured more than 60 passages since the initial recovery culture in October 2009. Chromosomal analysis revealed that 91 % of the MFF-8C1 cells maintained a normal diploid chromosome number (2n = 48) in the 46th passage. Infection experiments showed that both freshwater-borne and marine-borne megalocytiviruses induce severe cytopathic effects in infected MFF-8C1 cells characterized by the rounding and enlargement of cells, which are highly consistent with the previous description of the infection in other susceptible cells with megalocytivirus. Megalocytivirus infections were further confirmed by a transmission electron microscopy. Furthermore, the MFF-8C1-cultured megalocytiviral suspension was highly virulent to infected mandarin fish. In summary, a new fibroblast cell line from mandarin fish fry that was highly permissive to megalocytiviruses was established. The MFF-8C1 cell line is a promising cellular substrate candidate for cell-cultured vaccine production of megalocytivirus. PMID:24101440

Dong, Chuanfu; Shuang, Fan; Weng, Shaoping; He, Jianguo

2014-12-01

 
 
 
 
221

Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts  

International Nuclear Information System (INIS)

Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [3H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody ?IR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125I-labeled IGF-I but not 125I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. ?IR-3 competitively inhibits IGF-I-mediated stimulation of [3H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of ?IR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3H]thymidine incorporation is not inhibited by ?IR-3. However, the incremental effects of higher concentrations (> 1 ?g/ml) of insulin on [3H]thymidine incorporation are inhibited by ?IR-3. ?IR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also mulate DNA synthesis but can also activate this effect through the insulin receptor itself

222

PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line  

International Nuclear Information System (INIS)

While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

223

Valproic acid increases SMN2 expression and modulates SF2/ASF and hnRNPA1 expression in SMA fibroblast cell lines.  

Science.gov (United States)

Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is caused by loss of the survival motor neuron gene, SMN1. SMA treatment strategies have focused on production of the SMN protein from the almost identical gene, SMN2. Valproic acid (VPA) is a histone deacetylase inhibitor that can increase SMN levels in some SMA cells or SMA patients through activation of SMN2 transcription or splicing correction of SMN2 exon 7. It remains to be clarified what concentration of VPA is required and by what mechanisms the SMN production from SMN2 is elicited. We observed that in two fibroblast cell lines from Japanese SMA patients, more than 1mM of VPA increased SMN2 expression at both the transcript and protein levels. VPA increased not only full-length (FL) transcript level but also exon 7-excluding (?7) transcript level in the cell lines and did not change the ratio of FL/?7, suggesting that SMN2 transcription was mainly activated. We also found that VPA modulated splicing factor expression: VPA increased the expression of splicing factor 2/alternative splicing factor (SF2/ASF) and decreased the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). In conclusion, more than 1mM of VPA activated SMN2 transcription and modulated the expression of splicing factors in our SMA fibroblast cell lines. PMID:21561730

Harahap, Indra Sari Kusuma; Saito, Toshio; San, Lai Poh; Sasaki, Naoko; Gunadi; Nurputra, Dian Kesuma Pramudya; Yusoff, Surini; Yamamoto, Tomoto; Morikawa, Satoru; Nishimura, Noriyuki; Lee, Myeong Jin; Takeshima, Yasuhiro; Matsuo, Masafumi; Nishio, Hisahide

2012-03-01

224

Liposomes encapsulating Aloe vera leaf gel extract significantly enhance proliferation and collagen synthesis in human skin cell lines.  

Science.gov (United States)

Aloe vela leaf gel extract (AGE) are widely used as cosmetic and pharmaceutical ingredients because of its versatile skin care properties. In order to enhance the bioavailability of AGE, liposomes encapsulating AGE were prepared and examined for their interfacial and biochemical properties. The liposomes prepared from a soybean lecithin (SLP-WHITE, 1.0 wt%) by the Bangham method gave relatively a good trapping efficiency up to the AGE concentration of 0.5 wt%. The stable liposomes were then prepared from 1.0 wt% of SLP-WHITE and different concentrations of AGE by the mechanochemical method using a homogenizer and microfluidizer. The liposomes obtained from 0.25 wt% of AGE were confirmed to be small unilamellar vesicles with a diameter of less than 200 nm, and remained well dispersed for at least two weeks. The obtained liposomes encapsulating AGE were further examined for the effects on proliferation and type I collagen synthesis in normal human neonatal skin fibroblasts, NB1RGB cells. Liposomal AGE clearly showed higher proliferation rate than that of AGE alone. In addition, compared to the control, liposomal AGE significantly increased the collagen synthesis by 23%, while AGE alone showed a small effect. Liposomal AGE was also assayed for the effect on proliferation in normal human epidermal keratinocytes, NHEK(F) cells. Interestingly, liposomal AGE fractions containing 4 and 20 microg/mL of the extract considerably increased the proliferation rate by 77% and 101%, respectively. In contrast, AGE alone fractions containing 4 and 20 microg/mL of the extract increased the rate by 41% and 60%, respectively. Accordingly, the bioavailability and skin care properties of AGE will be significantly enhanced by liposome encapsulation, and the present liposomal AGE should have a great potential as an effective skin care formulation. PMID:19915322

Takahashi, Makoto; Kitamoto, Dai; Asikin, Yonathan; Takara, Kensaku; Wada, Koji

2009-01-01

225

Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

Hari H. P. Cohly

2003-01-01

226

Differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields  

Energy Technology Data Exchange (ETDEWEB)

We studied the effect of symmetric, biphasic sinusoidal electromagnetic fields (EMF) (20 Hz, 6 mT) on the differentiation of normal human skin fibroblasts (HH-8), normal human lung fibroblasts (WI38), and SV40-transformed human lung fibroblasts (WI38SV40) in in vitro cultures. Cells were exposed up to 21 days for 2 x 6 h per day to EMF. Normal mitotic human skin and lung fibroblasts could be induced to differentiate into postmitotic cells upon exposure to EMF. Concomitantly, the synthesis of total collagen as well as total cellular protein increased significantly by a factor of 5-13 in EMF-induced postmitotic cells. As analyzed by two-dimensional gel electrophoresis of (/sup 35/S)methionine-labeled polypeptides, EMF-induced postmitotic cells express the same differentiation-dependent and cell type-specific marker proteins as their spontaneously arising counterparts. In SV40-transformed human lung fibroblasts (cell line WI38SV40) the exposure to EMF induced the differentiation of mitotic WI38SV40 cells into postmitotic and degenerating cells in subpopulations of WI38SV40 cell cultures. Other subpopulations of WI38SV40 cells did not show any effect of EMF on cell proliferation and differentiation. These results indicate that long-term EMF exposure of fibroblasts in vitro induces the differentiation of mitotic to postmitotic cells that are characterized by differentiation-specific proteins and differentiation-dependent enhanced metabolic activities.

Rodemann, H.P.; Bayreuther, K.; Pfleiderer, G.

1989-06-01

227

Preventive and protective effects of Turkish propolis on H?O?-induced DNA damage in foreskin fibroblast cell lines.  

Science.gov (United States)

The aim of the present study was to evaluate the potential of Turkish propolis extracts if they prevent or protect foreskin fibroblast cells against hydrogen peroxide (H?O?)-induced oxidative DNA damage. Hydrogen peroxide (40 ?M) was used as an inducer of oxidative DNA damage. The damage of DNA was evaluated by using the alkaline single cell gel electrophoresis (comet) assay. Turkish propolis extracts at concentrations of 25, 50, 75 and 100 ?g/ml were prepared by ethanol. Anti-genotoxicity was assessed before, simultaneously, and after treatment of propolis extract (50 ?g/ml) with H?O?. The results showed a significant decrease in H?O?-induced DNA damage in cultures treated with propolis extract. The antioxidant activity of phenolic components found in propolis may contribute to reduce the DNA damage induced by H?O?. Our findings confirmed the chemopreventive activity of propolis and showed that this effect may occur under different mechanisms. PMID:22119868

Aliyazicioglu, Yuksel; Demir, S; Turan, I; Cakiroglu, Tugba Nigar; Akalin, I; Deger, O; Bedir, A

2011-12-01

228

Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.  

Science.gov (United States)

Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro. PMID:20607062

Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

2010-06-01

229

Increased susceptibility of spinal muscular atrophy fibroblasts to camptothecin is p53-independent  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Deletion or mutation(s of the survival motor neuron 1 (SMN1 gene causes spinal muscular atrophy (SMA. The SMN protein is known to play a role in RNA metabolism, neurite outgrowth, and cell survival. Yet, it remains unclear how SMN deficiency causes selective motor neuron death and muscle atrophy seen in SMA. Previously, we have shown that skin fibroblasts from SMA patients are more sensitive to the DNA topoisomerase I inhibitor camptothecin, supporting a role for SMN in cell survival. Here, we examine the potential mechanism of camptothecin sensitivity in SMA fibroblasts. Results Camptothecin treatment reduced the DNA relaxation activity of DNA topoisomerase I in human fibroblasts. In contrast, kinase activity of DNA topoisomerase I was not affected by camptothecin, because levels of phosphorylated SR proteins were not decreased. Upon camptothecin treatment, levels of p53 were markedly increased. To determine if p53 plays a role in the increased sensitivity of SMA fibroblasts to camptothecin, we analyzed the sensitivity of SMA fibroblasts to another DNA topoisomerase I inhibitor, ?-lapachone. This compound is known to induce death via a p53-independent pathway in several cancer cell lines. We found that ?-lapachone did not induce p53 activation in human fibroblasts. In addition, SMA and control fibroblasts showed essentially identical sensitivity to this compound. By immunofluorescence staining, SMN and p53 co-localized in gems within the nucleus, and this co-localization was overall reduced in SMA fibroblasts. However, depletion of p53 by siRNA did not lessen the camptothecin sensitivity in SMA fibroblasts. Conclusion Even though p53 and SMN are associated, the increased sensitivity of SMA fibroblasts to camptothecin does not occur through a p53-dependent mechanism.

Funanage Vicky L

2009-05-01

230

Construção de substituto da pele composto por matriz de colágeno porcino povoada por fibroblastos dérmicos e queratinócitos humanos: avaliação histológica / Construction of a skin substitute composed of porcine collagen matrix populated with human dermal fibroblasts and keratinocytes: histological evaluation  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese INTRODUÇÃO: O uso de enxertos autólogos é limitado pela extensão da área doadora e pelo estado clínico dos pacientes, no caso de lesões extensas. Alotransplantes coletados de cadáveres ou voluntários são rejeitados após uma ou duas semanas, servindo apenas como cobertura temporária para essas lesões [...] . O tratamento de grandes lesões cutâneas com tegumento autólogo reconstruído constitui alternativa atraente, já que, a partir de um pequeno fragmento de pele do paciente, pode-se obter culturas de células que se multiplicam rapidamente e podem ser criopreservadas, permitindo, assim, sua utilização em novos tratamentos por tempo indeterminado. Este estudo pretendeu avaliar o comportamento histológico de queratinócitos e fibroblastos humanos cultivados sobre uma matriz de colágeno porcino derivada da submucosa intestinal. MÉTODO: Células da epiderme e derme humana foram cultivadas separadamente e semeadas sobre matriz de colágeno porcino, onde permaneceram em ambiente controlado por 21 dias, antes de serem submetidas a análise histológica. RESULTADOS: Observou-se que os fibroblastos invadem e colonizam a matriz de colágeno, enquanto os queratinócitos se organizam de forma laminar e estratificada sobre a superfície em que foram semeados. CONCLUSÕES: A utilização da matriz de colágeno porcino como carreador de células da pele humana é possível e a organização dessas células se assemelha à arquitetura da pele humana. Abstract in english BACKGROUND: In the case of extensive lesions, the use of autologous grafts is limited by the extent of the donor area and the clinical condition of patients. Allografts collected from cadavers or volunteers are usually rejected after 1 to 2 weeks, thus serving only as temporary cover for these lesio [...] ns. Treating major cutaneous lesions with reconstructed autologous skin is an attractive alternative, because it is possible to obtain cultures of cells that multiply rapidly and can be cryopreserved from a small fragment of the patient's skin, thereby facilitating its indefinite use in new treatments. This study evaluated the histological behavior of cultured human keratinocytes and fibroblasts on a collagen matrix derived from porcine small intestinal submucosa. METHODS: Cells from human epidermis and dermis were grown separately and seeded on porcine collagen matrix, which was maintained in a controlled environment for 21 days before being subjected to histological analysis. RESULTS: Fibroblasts invaded and colonized the collagen matrix, whereas keratinocytes were organized in laminated and stratified layers on the surface on which they were seeded. CONCLUSIONS: The use of porcine collagen matrix as a support for human skin cells is feasible, and the organization of these cells resembles the architecture of human skin.

Cesar, Isaac; Francinni M. P., Rego; Pedro Ribeiro Soares de, Ladeir; Silvana C., Altram; Renata C. de, Oliveira; Johnny L. C. B., Aldunate; André O., Paggiaro; Marcus Castro, Ferreira.

2012-12-01

231

Construção de substituto da pele composto por matriz de colágeno porcino povoada por fibroblastos dérmicos e queratinócitos humanos: avaliação histológica / Construction of a skin substitute composed of porcine collagen matrix populated with human dermal fibroblasts and keratinocytes: histological evaluation  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese INTRODUÇÃO: O uso de enxertos autólogos é limitado pela extensão da área doadora e pelo estado clínico dos pacientes, no caso de lesões extensas. Alotransplantes coletados de cadáveres ou voluntários são rejeitados após uma ou duas semanas, servindo apenas como cobertura temporária para essas lesões [...] . O tratamento de grandes lesões cutâneas com tegumento autólogo reconstruído constitui alternativa atraente, já que, a partir de um pequeno fragmento de pele do paciente, pode-se obter culturas de células que se multiplicam rapidamente e podem ser criopreservadas, permitindo, assim, sua utilização em novos tratamentos por tempo indeterminado. Este estudo pretendeu avaliar o comportamento histológico de queratinócitos e fibroblastos humanos cultivados sobre uma matriz de colágeno porcino derivada da submucosa intestinal. MÉTODO: Células da epiderme e derme humana foram cultivadas separadamente e semeadas sobre matriz de colágeno porcino, onde permaneceram em ambiente controlado por 21 dias, antes de serem submetidas a análise histológica. RESULTADOS: Observou-se que os fibroblastos invadem e colonizam a matriz de colágeno, enquanto os queratinócitos se organizam de forma laminar e estratificada sobre a superfície em que foram semeados. CONCLUSÕES: A utilização da matriz de colágeno porcino como carreador de células da pele humana é possível e a organização dessas células se assemelha à arquitetura da pele humana. Abstract in english BACKGROUND: In the case of extensive lesions, the use of autologous grafts is limited by the extent of the donor area and the clinical condition of patients. Allografts collected from cadavers or volunteers are usually rejected after 1 to 2 weeks, thus serving only as temporary cover for these lesio [...] ns. Treating major cutaneous lesions with reconstructed autologous skin is an attractive alternative, because it is possible to obtain cultures of cells that multiply rapidly and can be cryopreserved from a small fragment of the patient's skin, thereby facilitating its indefinite use in new treatments. This study evaluated the histological behavior of cultured human keratinocytes and fibroblasts on a collagen matrix derived from porcine small intestinal submucosa. METHODS: Cells from human epidermis and dermis were grown separately and seeded on porcine collagen matrix, which was maintained in a controlled environment for 21 days before being subjected to histological analysis. RESULTS: Fibroblasts invaded and colonized the collagen matrix, whereas keratinocytes were organized in laminated and stratified layers on the surface on which they were seeded. CONCLUSIONS: The use of porcine collagen matrix as a support for human skin cells is feasible, and the organization of these cells resembles the architecture of human skin.

Cesar, Isaac; Francinni M. P., Rego; Pedro Ribeiro Soares de, Ladeir; Silvana C., Altram; Renata C. de, Oliveira; Johnny L. C. B., Aldunate; André O., Paggiaro; Marcus Castro, Ferreira.

232

In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin  

Science.gov (United States)

We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP+. After differentiation, some GFP+ OLCs reached 40–45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ?0.3% of the freshly isolated skin cells were GFP+. The GFP-positive cells increased to ?7% after differentiation, suggesting that the GFP+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis. PMID:21629667

Dyce, Paul W.; Liu, Jinghe; Tayade, Chandrakant; Kidder, Gerald M.; Betts, Dean H.; Li, Julang

2011-01-01

233

Cytotoxic Evaluation of Elastomeric Dental Impression Materials on a Permanent Mouse Cell Line and on a Primary Human Gingival Fibroblast Culture  

Directory of Open Access Journals (Sweden)

Full Text Available The need for clinically relevant in vitro tests of dental materials is widely recognized. Nearly all dental impression materials are introduced into the mouth just after mixing and allowed to set in contact with the oral tissues. Under these conditions, the materials may be toxic to cells or may sensitize the tissues. The aim of the present study is to evaluate the potential cytotoxicity of new preparations of elastomeric dental impression materials: A four vinylpolysiloxanes: Elite H-D Putty and Elite H-D Light Body (Zhermack, Badia Polesine, Rovigo, Italy; Express Putty and Express Light Body (3M ESPE AG Seefeld, Germany and B two polyethers: Impregum Penta and Permadyne Penta L (3M ESPE AG Seefeld, Germany. The cytotoxicity of these impression materials were examined using two different cell lines: Balb/c 3T3 (permanent cell line and human gingival fibroblasts (primary cell line and their effects were studied by indirect and direct tests. The direct tests are performed by placing one sample of the impression materials in the centre of the Petri dishes at the time of the seeding of cells. The cell growth was evaluated at the 12th and 24th hours by cell number. The indirect tests were performed by incubating a square of 1 cm diameter impression material in 5 mL of medium at 37 °C for 24 hours (“eluates”. Subconfluent cultures are incubated with “eluates” for 24 hours. The MTT-formazan production is the method used for measuring the cell viability. The results indicate that: a polyether materials are cytotoxic under both experimental conditions; b among vinylpolysiloxanes, only Express Light Body (3M ESPE AG Seefeld, Germany induces clear inhibition of cellular viability of Balb/c 3T3 evaluated by direct and indirect tests and c the primary cell line is less sensitive to the toxic effect than the permanent cell line.

Roberta Tiozzo

2009-08-01

234

Cytotoxic and mutagenic effects of carcinogenic aromatic amides and polycyclic hydrocarbons and ultraviolet irradiation in normally repairing and repair-deficient (xeroderma pigmentosum) diploid human skin fibroblasts  

International Nuclear Information System (INIS)

The cloning ability of fibroblasts taken from a xeroderma pigmentosum patient proved 2.5 to 3.5 times more sensitive to the cytotoxic effect of active derivatives of carcinogens or to uv irradiation than that of normal cells. They also exhibited a corresponding 2.5- to 3.5-fold greater increase in the frequency of induced mutations to 8-azaguanine resistance per survivor, which might have been expected since these XP cells exhibit less than 20 percent of the DNA-repairing capacity of the normal cells following exposure to such DNA-damaging agents

235

Direct contact of fibroblasts with neuronal processes promotes differentiation to myofibroblasts and induces contraction of collagen matrix in vitro.  

Science.gov (United States)

Wound healing is often delayed in the patients whose sensory and autonomic innervation is impaired. We hypothesized that existence of neurites in the skin may promote wound healing by inducing differentiation of fibroblasts into myofibroblasts with consequent wound contraction. In the current study, we examined the effect of neurons on differentiation of fibroblasts and contraction of collagen matrix in vitro using a new co-culture model. Neuronal cell line, PC12 cells, of which the neurite outgrowth can be controlled by adding nerve growth factor, was used. Rat dermal fibroblasts were co-cultured with PC12 cells extending neurites or with PC12 cells lacking neurites. Then, differentiation of fibroblasts into myofibroblasts and contraction of the collagen matrix was evaluated. Finally, we examined whether direct or indirect contact with neurites of PC12 cells promoted the differentiation of fibroblasts. Our results showed that fibroblasts co-cultured with PC12 extending neurites differentiated into myofibroblasts more effectively and contracted the collagen matrix stronger than those with PC12 lacking neurites. Direct contact of fibroblasts with neurites promoted more differentiation than indirect contact. In conclusion, direct contact of fibroblasts with neuronal processes is important for differentiation into myofibroblasts and induction of collagen gel contraction, leading to promotion of wound healing. PMID:23758129

Fujiwara, Toshihiro; Kubo, Tateki; Kanazawa, Shigeyuki; Shingaki, Kenta; Taniguchi, Manabu; Matsuzaki, Shinsuke; Gurtner, Geoffrey C; Tohyama, Masaya; Hosokawa, Ko

2013-01-01

236

Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro  

International Nuclear Information System (INIS)

value of this approach for hazard identification. Its technical simplicity, the high-throughput format and the good predictivity may make this assay a candidate for rapid validation to meet the tight deadline to replace animal tests for skin sensitization by 2013 set by the European authorities.

237

Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia  

Science.gov (United States)

The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (?660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

2011-03-01

238

Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A  

Digital Repository Infrastructure Vision for European Research (DRIVER)

LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing kno...

Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

2008-01-01

239

Full-pupil versus divided-pupil confocal line-scanners for reflectance imaging of human skin in vivo  

Science.gov (United States)

A full-pupil confocal line-scanning microscope is under development for imaging human skin in vivo in reflectance. The new design potentially offers an alternative to current point- and line-scanners that may simplify the optics, electronics and mechanics, and lead to simpler and smaller confocal microscopes. With a combination of a cylindrical lens and an objective lens, the line-scanner creates a focused line of laser light in the object plane within tissue. An oscillating galvanometric mirror scans the focused line transverse to its axis. The backscattered light from the tissue is de-scanned and focused onto a linear CMOS detector array. Preliminary measurements of the axial line-spread function, with a 30x, 0.9-NA water immersion objective lens and illumination wavelength of 633 nm, determined the optical sectioning to be 10 ?m. The new design is simple, requiring only eight optical components. However, the disadvantage is non-confocality in one dimension that results in 20% weaker sectioning than with a point-scanner, and reduced contrast in scattering tissue. The images of standard reflective targets such as a mirror and grating as well as dermis-like scattering target such as paper offer a preliminary glimpse into the performance of the line-scanner. A similar alternative design is the divided-pupil (theta) line-scanner, which provides 50% weaker sectioning than with a point scanner, but better contrast and less speckle due to the theta configuration. Such line scanners may prove useful for routine imaging of humans in clinical settings.

Gareau, Dan; Abeytunge, Sanjeewa; Rajadhyaksha, Milind

2007-02-01

240

Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients  

International Nuclear Information System (INIS)

Caffeine was found to potentiate x-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 h postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +- 0.13 which did not vary significantly with treatment time or x-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +- 0.12 at 30 h, rose to 1.66 +- 0.17 at 41 h, and decreased to 1.31 +- 0.13 at 66 h. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment

 
 
 
 
241

The potentiation by caffeine of X-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients  

Energy Technology Data Exchange (ETDEWEB)

Caffeine was found to potentiate X-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 hr postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +/- 0.13 which did not vary significantly with treatment time or X-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +/- 0.12 at 30 hr, rose to 1.66 +/- 0.17 at 41 hr, and decreased to 1.31 +/- 0.13 at 66 hr. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment.

Furcinitti, P.S.

1983-07-01

242

Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome  

International Nuclear Information System (INIS)

Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1? (IL-1?), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1? expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

243

Radiosensitivity of pig fibroblasts. In-vitro clonal growth assay  

International Nuclear Information System (INIS)

The radiosensitivity of dermal fibroblasts, freshly extracted from pig skin, was characterised during primary culture. Cells were irradiated either in vitro or in vivo. The radiosensitivity of cells in primary culture (D0 = 2.3 Gy) was different from that of the cell lines derived from them (D0 = 1.3 Gy). The clonal growth parameters of primary cells (number of colonies at 72h, doubling time during exponential growth phase) were correlated with radiation dose. The in-vitro clonal growth assay could be used for dosimetric purposes in accidental cases of local exposure to radiation. (author)

244

The treatment effects of cultured epidermis, basic fibroblast growth factor and the combination of these two treatments in a radiation skin ulcer model (rat)  

International Nuclear Information System (INIS)

lative hardness of scars got lower. Wounds without X-ray: Mean wound healing rate of combination group was significantly lower than that of cultured epidermis group and control group on 5 days after treatment. Cultured epidermis graft can be an effective treatment for radiation skin ulcer. b-FGF can weaken the treatment effect of cultured epidermis graft depending on its density. There can be a positive correlation between relative hardness of scars and the days from making scars. (author)

245

Differential susceptibilities of human lung, breast and skin cancer cell lines to killing by five sea anemone venoms  

Directory of Open Access Journals (Sweden)

Full Text Available Although sea anemones are well known for being rich sources of toxins, including cytolysins and neurotoxins, their venoms and toxins have been poorly studied. In the present study, the venoms from five sea anemones (Heteractis crispa, Heteractis magnifica, Heteractis malu, Cryptodendrum adhaesivum and Entacmaea quadricolor were obtained by the milking technique, and the potential of these venoms to kill cancer cells was tested on three cell lines (A549 lung cancer, T47D breast cancer and A431 skin cancer. The total protein level in the crude extract was determined by the bicinchoninic acid (BCA protein assay. The cytotoxicity on different cell lines was assayed using the 3-(4, 5-dimethylthiazol-2yl-2, 5-diphenyltetrazolium bromide (MTT assay which measures survival based on the detection of mitochondrial activity and by the crystal violet assay, which measures survival based on the ability of cells to remain adherent to microplates. The results indicate that the sea anemone venom is cytotoxic to human cancer cells. The A549 cell line was the most sensitive of the cell lines tested with a significant reduction in viability observed at 40 µg/mL. H. malu, C. adhaesivum and E. quadricolor had a significant inhibitory effect on A431 cells. Furthermore, H. malu and C. adhaesivum had a significant inhibitory effect on T47D cell line at 40 µg/mL. In conclusion, the sea anemone venoms tested have the potential to be developed as anticancer agents.

M Ramezanpour

2012-01-01

246

Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

G Rossi

2009-12-01

247

Egr-1 Is Necessary for Fibroblast Growth Factor-2-induced Transcriptional Activation of the Glial Cell Line-derived Neurotrophic Factor in Murine Astrocytes*  

Science.gov (United States)

Glial cell line-derived neurotrophic factor (Gdnf) promotes neurite outgrowth and survival of neuronal cells, but its transcriptional regulation is poorly understood. Here, we sought to investigate the mechanism underlying fibroblast growth factor-2 (FGF2) induction of Gdnf expression in astrocytes. We found that FGF2 stimulation of rat astrocytes induced expression of Egr-1 at a high level. Sequence analysis of the rat Gdnf gene identified three overlapping Egr-1-binding sites between positions ?185 and ?163 of the rat Gdnf promoter. Transfection studies using a series of deleted Gdnf promoters revealed that these Egr-1-binding sites are required for maximal activation of the Gdnf promoter by FGF2. Chromatin immunoprecipitation analysis indicated that Egr-1 binds to the Gdnf promoter. Furthermore, the induction of Gdnf expression by FGF2 is strongly attenuated both in C6 glioma cells stably expressing Egr-1-specific small interfering RNA and in primary cultured astrocytes from the Egr-1 knock-out mouse. Additionally, we found that stimulation of the ERK and JNK pathways by FGF2 is functionally linked to Gdnf expression through the induction of Egr-1. These data demonstrate that FGF2-induced Gdnf expression is mediated by the induction of Egr-1 through activation of the ERK and JNK/Elk-1 signaling pathways. PMID:19721135

Shin, Soon Young; Song, Haengseok; Kim, Chang Gun; Choi, Yang-Kyu; Lee, Kyoung Sun; Lee, Seung-Jae; Lee, He-Jin; Lim, Yoongho; Lee, Young Han

2009-01-01

248

Studies of molecular species of the human androgen receptor (AR): comparison of the physicochemical properties of the [3H]methyltrienolone-AR complex formed in cytosol to the complex produced in intact genital skin fibroblasts  

International Nuclear Information System (INIS)

Two forms of the human genital skin fibroblast (GSF) androgen receptor (AR) complexed with [3H]17 alpha-methyltrienolone were compared: 1) the intact complex formed in cytosol at 4 C (broken cell or B/C complex); and 2) the complex formed in the whole cell at 37 C (W/C complex). The intact form of the B/C complex was distinguished from partly degraded forms by the gel filtration profile in 0.5 M KCl. The W/C complex was considered to represent the transformed state of the receptor. The W/C complex had a smaller molecular radius than the B/C complex by gel filtration (Kav = 0.26-0.28 vs. 0.11-0.18). By low salt density gradient centrifugation, the B/C complex sedimented at 8.8S and the W/C complex at 6.6S. However, in 0.5 M KCl, each sedimented at 5.1S, and they were homogeneous, indicating that the monomeric forms differed markedly in molecular radius, but by only about 20,000 daltons in calculated mol wt (134,500 vs. 114,300 daltons). The complexes were separated from DNA, desalted, and compared by chromatography on DEAE-Sephacel and hydroxylapatite (HAP). The B/C complex bound readily to both column matrices and eluted from each as a sharp homogeneous peak: from DEAE at 172-190 mM KCl and from HAP at 123 mM phosphate. The W/C complex, however, was heterogeneous. One component did not bind to DEAE, and one eluted at 22-40 mM KCl. The W/C complex eluted from HAP as a peak at 42 mM, with a shoulder at 102 mM phosphate. Thus, transformation of the human genital skin fibroblast androgen receptor involves a major decrease in molecular radius and loss of negative charge with a possible loss of a 20,000-dalton macromolecular component

249

Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line.  

Science.gov (United States)

Synovial fibroblasts (SF) contribute to the pathogenesis of osteoarthritis (OA), but the effects of intra-articular cytokines on SF are not completely understood. The aim of this study was to characterize the interplay between tumor necrosis factor (TNF)? and the anti-inflammatory interleukin (IL)-10. Non-immortalized human SF and SF of the human cell line K4IM were stimulated with recombinant TNF?, IL-10, or TNF??+?IL-10 (10 ng/ml each) for 24 h or transduced with an adenoviral vector overexpressing human IL-10 (hIL-10) and subsequently treated with 10 ng/ml TNF? for 24 h. Effects on the gene expression and protein synthesis of IL-6, IL-10, matrix metalloproteinases (MMP)-1, -3, type I collagen, ?1-integrin, and CD44 were investigated via real-time detection polymerase chain reaction, immunofluorescence labeling, flow cytometry, and Western blotting. IL-10 release by transduced SF was confirmed with enzyme-linked immunosorbent assay. Both cell populations were activated by TNF? and by TNF??+?IL-10, increasing their gene expression and protein synthesis of IL-6, IL-10, MMP-1, and MMP-3 and altering the synthesis of type I collagen, ?1-integrin, and CD44. hIL-10 overexpression greatly elevated the gene expression and protein synthesis of IL-10. However, transduction did not significantly affect the gene expression of IL-6, MMP-1, and MMP-3 in SF. The increased expression of pro-inflammatory and catabolic mediators in TNF?-activated SF indicates their role in OA pathogenesis, suggesting they are a potential therapeutic target. Although the vigorousness of the responses of non-immortalized SF and K4IM clearly differ, the K4IM cell line seems to be a suitable model for non-immortalized human SF. PMID:24816983

Mrosewski, I; Jork, N; Gorte, K; Conrad, C; Wiegand, E; Kohl, B; Ertel, W; John, T; Oberholzer, A; Kaps, C; Schulze-Tanzil, G

2014-07-01

250

Fibroblast cultures in duchenne muscular dystrophy  

International Nuclear Information System (INIS)

Primary skin fibroblast cultures were grown from forearm pinch skin biopsies obtained from 24 patients with Duchenne muscular dystrophy (DMD) and ten normal controls matched for sex and age. The first subcultures were grown for 7 days and incubated with L-(3H)-proline for 24 hours. Intracellular collagen incoption was significantly decreased (2.2 X) and extracellular collagen incorporation significantly increased (1.8 X) in fibroblast cultures from patients with DMD by both collagenase assay and polyacrylamide gel electrophoresis. The synthesis of noncollagen proteins showed low values from the DMD fibroblast cultures. The alterations in synthesis and secretion of collagen and noncollagen proteins were characteristic only for the log phase of DMD fibroblasts. (author)

251

Reduced temperature (22 degrees C) results in enhancement of cell killing and neoplastic transformation in noncycling HeLa x skin fibroblast human hybrid cells irradiated with low-dose-rate gamma radiation  

International Nuclear Information System (INIS)

The effect of reduced temperature (22 degrees C) or serum deprivation during low-dose-rate (0.66 cGy/min) ? irradiation on cell killing and neoplastic transformation has been examined using the HeLa x skin fibroblast human hybrid cell system. The reduced temperature stops progression of these cells through the cell cycle while serum deprivation slows down cell turnover markedly. The data demonstrate an enhancement in both of the end points when cells are held at 22 degrees C compared to parallel experiments done at 37 degrees C. In operational terms, the decreased survival and increased neoplastic transformation are consistent with our earlier hypothesis of a higher probability of misrepair at reduced temperature. The interpretation that this damage enhancement was associated with the reduced temperature, and not the fact that the cells were noncycling, was supported by the results of experiments performed with cells cultured at 37 degrees C in serum-free medium for 35 h prior to and then during the 12.24 h low-dose-rate radiation exposure. Under these conditions, cell cycle progression, as shown by reduction in growth rate and dual-parameter flow cytometric analysis, was considerable inhibited (cell cycle time increased from 20 h to 40 h), and there was no significant enhancement of cell killing or neoplastic transformation. 23 refs., 2 figs., 1 tab

252

Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose polymerase-1 (PARP-1. In this study, the underlying mechanisms of Chlorella derived peptide (CDP activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm2. After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4 pyrimidone photoproducts DNA concentration and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.

Jong Yuh Cherng

2012-08-01

253

The lazaroid tirilazad is a new inhibitor of direct and indirect UVA-induced lipid peroxidation in human dermal fibroblasts.  

Science.gov (United States)

Lipid peroxidation caused by oxidative stress within the tissue leads to destruction and dysfunction of cellular membranes. Human dermal fibroblasts in the skin are subject to constant photooxidative stress caused mainly by deeply penetrating UVA irradiation. Therefore, the membrane damage caused by this photooxidative stress may be a major promoter of photoaging and photocarcinogenic processes initiated and promoted by long-term UVA exposure of the skin. The oxidative destruction is counterbalanced by a complex network of enzymatic and nonenzymatic antioxidants creating the skin's line of defence against UVA-induced reactive oxygen species. The lazaroid tirilazad represents a new synthetic group of antioxidants with structural molecular similarity to glucocorticosteroids. We investigated the antioxidative capacity of tirilazad by determining its effects on the levels of malondialdehyde (MDA), as a marker of lipid peroxidation, induced directly or indirectly by UVA in human dermal fibroblasts. In a time- and dose-dependent kinetic, we demonstrated that fibroblasts incubated with tirilazad are well protected against subsequent UVA irradiation and show no increase in MDA levels similar to the unirradiated controls. This was also observed when lipid peroxidation was caused chemically by incubation of human dermal fibroblasts with 200 micro M Fe(3+)-citrate and 1 m M ascorbyl phosphate as a model of indirect UVA-induced skin damage. Lysates of fibroblasts treated this way showed a tenfold increase in MDA levels, whereas preincubation with tirilazad resulted in a significantly lower increase in MDA levels. Furthermore, in a comparison with the well-established radical scavenger Trolox, an alpha-tocopherol analogue, tirilazad offered better protection to the membranes. Our results demonstrate for the first time that the lazaroid tirilazad is an effective inhibitor of direct and indirect UVA-induced increases in MDA as a marker of lipid peroxidation in human dermal fibroblasts. PMID:14593485

Dissemond, J; Schneider, L A; Wlaschek, M; Brauns, T C; Goos, M; Scharffetter-Kochanek, K

2003-12-01

254

Aqueous extract of Arbutus unedo inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation.  

Science.gov (United States)

Arbutus unedo L. has been for a long time employed in traditional and popular medicine as an astringent, diuretic, urinary anti-septic, and more recently, in the therapy of hypertension and diabetes. Signal transducer and activator of transcription 1 (STAT1) is a fascinating and complex protein with multiple yet contrasting transcriptional functions. Although activation of this nuclear factor is finely regulated in order to control the entire inflammatory process, its hyper-activation or time-spatially erroneous activation may lead to exacerbation of inflammation. The modulation of this nuclear factor, therefore, has recently been considered as a new strategy in the treatment of inflammatory diseases. In this study, we present data showing that the aqueous extract of Arbutus unedo's leaves exerts inhibitory action on interferon-gamma (IFN-gamma) elicited activation of STAT1, both in human breast cancer cell line MDA-MB-231 and in human fibroblasts. This down-regulation of STAT1 is shown to result from a reduced tyrosine phosphorylation of STAT1 protein. Evidence is also presented indicating that the inhibitory effect of this extract may be mediated through enhancement of tyrosine phosphorylation of SHP2 tyrosine phosphatase. The modulation of this nuclear factor turns out into the regulation of the expression of a number of genes involved in the inflammatory response such as inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1). Taken together, our results suggest that the employment of the Arbutus unedo aqueous extract is promising, at least, as an auxiliary anti-inflammatory treatment of diseases in which STAT1 plays a critical role. PMID:18473914

Mariotto, S; Ciampa, A R; de Prati, A Carcereri; Darra, E; Vincenzi, S; Sega, M; Cavalieri, E; Shoji, K; Suzuki, H

2008-05-01

255

Mitogenic activity of fetal bovine serum, fish fry extract, insulin-like growth factor-I, and fibroblast growth factor on brown bullhead catfish cells - BB line  

Directory of Open Access Journals (Sweden)

Full Text Available Biossays were performed to assess the effects of different levels of growth medium supplementation with fetal bovine serum (FBS, fish fry extract (FE, combinations of FBS and FE, and addition of insulin-like growth factor I (IGF-I and fibroblast growth factor (FGF on the proliferation of brown bullhead catfish cells (BB line. Treatments (n = 4 were: 2.5, 5, 10, and 15.0% FBS or FE and 5/2.5, 5/5, 10/2.5, and 10/5 of a FBS/FE combination as supplement to the growth medium, or the addition of 0.1, 1, 2.5, 10, 25, and 75 ng/ml of either IGF-I or FGF to the growth media. Initial cell density was 1.1 x 10(6 cells per well on uncoated 24-well plates. Incubation temperature was 29.5 ± 0.7ºC. Six hours after plating, initial culture medium was removed, plates rinsed with Dulbecco?s phosphate buffered saline, treatment media added, and cells allowed to proliferate for 24 hours. Another bioassay was performed with rat myoblast omega cells (RMo using the same levels of growth medium supplemented with FBS, FE and FBS/FE. Base growth medium was Dulbecco?s MEM. The initial cell density was 7.2 x 10(6 cells per well, and the bioassay was carried out at 36.0 ± 0.5ºC, on a 95% air, 5% CO2 incubator. Increasing levels of FBS had a positive effect (P < 0.05 on the proliferation of both BB and RMo cells. Increasing levels of FE had a negative effect (P < 0.05 on the proliferation of BB cells and totally inhibited the proliferation of RMo cells at any level of supplementation. Higher levels of FE on the FBS/FE combinations presented a negative effect on the proliferation of both BB and RMo cells (P < 0.05. Insulin-like growth factor I had a positive quadratic effect (P < 0.05 on the proliferation of BB cells. Apparently, mammalian growth factors slightly stimulated mitogenic activity in fish cells, while FE contained factors which inhibited the mitogenic activity of RMo and BB cell lines.

CYRINO J. E. P.

1999-01-01

256

Neoplastic transformation of human diploid fibroblasts treated with chemical carcinogens and Co-60 ?-rays  

International Nuclear Information System (INIS)

Two fibroblast cell strains derived from human embryonic lungs (WI-38 and IMR-90) were transformed into neoplastic cells by treatment with Co-60 ?-rays. Four other fibroblast cell strains (two from human embryonic liver and the other two from human adult skin) were transformed into neoplastic cells by treatment with 4-nitroquinoline 1-oxide (4NQO). The transformation was obtained by repeated treatments with these carcinogenic agents, but not by a single treatment in a variety of experimental conditions. These results suggest that transformation of normal human cells might be a multistep process. All of the transformed cell lines had the following characteristics: 1) epithelial-like morphology; 2) unlimited growth potential; 3) abnormal karyotype; 4) increased saturation cell density; 5) low serum requirement for growth; 6) elevated colony formation in soft agar; 7) growth capability in theophylline containing medium; 8) increase of the B(H) subunit of lactate dehydrogenase (LDH) isozyme; and 9) loss of large external transformation sensitive (LETS) protein. The first three characteristics (morphological changes, unlimited growth and abnormal karyotype) are proposed to be sufficient to conclude that neoplastic transformation of normal human fibroblasts has occurred. In order to conduct quantitative transformation experiments with human fibroblasts, criteria of the morphology of transformed colonies were defined. Advantages and disadvantages in the use of normal human disadvantages in the use of normal human fibroblasts for transformation studies are discussed. Finally, future problems in transformation of human cells are described. (J.P.N.)

257

A Comparison between the Colony Formation of Adult Mouse Spermatogonial Stem Cells in Co cultures with Sertoli and STO (Mouse Embryonic Fibroblast Cell Line  

Directory of Open Access Journals (Sweden)

Full Text Available Objective: The aim of this study was to compare the colony formation of spermatogonialstem cells (SSCs on sertoli and STO (Mouse embryonic fibroblast cell line feeder celllayers during a two-week period.Materials and Methods: Initially, sertoli cells and SSCs were isolated from adultmouse testes using a two-step enzymatic digestion and lectin immobilization. Characteristicsof the isolated cells were immunocytochemically confirmed by examiningfor the presence of Oct-4, CDH1, promyelocytic leukaemia zinc finger factor (PLZF,SSC C-kit, and the distribution of Sertoli cell vimentin. SSCs were then cultured abovethe Sertoli, STO and the control (without co-culture separately for two weeks. In allthree groups, the number and diameter of colonies were evaluated using an invert microscopeon the 3rd, 7th, 10th and 14th day. ?1 and ?6-integrin m-RNA expressions wereassessed using a reverse transcription polymerase chain reaction (RT-PCR and realtimePCR. Furthermore, Oct-4 m RNA expression was assessed using real time PCR.Statistical analysis was performed using ANOVA; and the paired two-sample t test andTukey’s test were used as post-hoc tests for the data analysis of the three sertoli, STOand control cocultures.Results: At the four specified time points, our results showed significant differences (p<0.05in colony numbers and diameters among the sertoli, STO and control groups. The numberand diameter of colonies increased more rapidly in the sertoli coculture than in the othertwo Our results at all four time points also showed significant differences (p<0.05 in themean colony numbers and diameters between the three groups, with the Sertoli coculturehaving the highest mean values for colony numbers and diameters. The RT-PCR results,after two-weeks of culturing, showed that ?1-integrin was expressed in all three groups cocultures,but ?6-integrin was not expressed. Additionally, based on real time PCR results,the three genes (?1-integrin, ?6-integrin, Oct-4 mentioned were also expressed in all threeco cultures groups.Conclusion: Based on the optimal effects of sertoli feeder cells on spermatogonial stemcells in a co culture system, as also confirmed by several other studies, their use is suggestedto achieve better colonization of SSCs.

Seyed Morteza Koruji

2010-01-01

258

Comparison of toad skins Bufo bufo gargarizans Cantor from different regions for their active constituents content and cytotoxic activity on lung carcinoma cell lines  

Science.gov (United States)

Background: The skin of Bufo bufo gargarizans Cantor, rich in bufadienolides, peptides, and alkaloids, has approved pharmacological activity for preliminary anti-liver and lung tumor treatment. However, few studies have systematically focused on the influence of the producing regions on the content and antitumor activity of the active constituents in toad skins. Objective: This study aims to compare toad skins obtained from six different regions in China (Jiangsu, Anhui, Henan, Hebei, Jiangxi, and Shandong province) for their bufadienolide and alkaloid content, and their cytotoxic activity on two lung carcinoma cell lines (SPC-A-1 cells and A549 cells). Materials and Methods: High performance liquid chromatography (HPLC) was used to quantificationally determine four bufadienolides, which included bufotalin, bufalin, cinobufagin, and resibufogenin in toad skins, from six different regions, respectively. In addition, an ultraviolet (UV) spectrophotometer was also employed to identify the content of the total alkaloids using 5-hydroxytryptamine (5-HT) as the reference substance. An MTT assay was performed to compare the antiproliferative effects of the toad skins’ ethanolic extracts from the different regions against SPC-A-1 and A549 cells. Results: In this study, the toad skins from Jiangsu province had the highest amount of bufadienolides (472.6 ?g/g crude drug) and alkaloids (1.51 mg/g crude drug). Meanwhile, according to the extract, it exhibited the strongest cytotoxic effect against the lung carcinoma cell line (SPC-A-1 cells and A549 cells) with IC50 values of 24.82 ± 0.76 and 23.77 ± 0.63 ?g crude drug/mL, respectively. Conclusion: The toad skins that originated from the Jiangsu province, have comparatively greater advantages over samples from other regions as far as active constituent content and potential anti-lung cancer activity is concerned, suggesting that it can be a promising chemotherapeutic agent in lung cancer therapy, in further studies.

Liu, Congyan; Cao, Wei; Chen, Yan; Qu, Ding; Zhou, Jing

2014-01-01

259

Development of an Ussuri catfish Pseudobagrus ussuriensis skin cell line displaying differential cytopathic effects to three aquatic animal viruses.  

Science.gov (United States)

An Ussuri catfish Pseudobagrus ussuriensis skin (UCS) cell line was developed and subcultured for more than 60 passages. UCS cells consisted of mostly epithelial-like cells and multiplied well in TC199 medium supplemented with 10% fetal bovine serum at 25°C. Chromosome analysis revealed that most UCS cells had a normal diploid karyotype with 2n=52. UCS cells showed differential cytopathic effects (CPEs) after inoculation of spring viremia of carp virus (SVCV, a negative-strand RNA virus), grass carp reovirus (GCRV, a multi-segmented double-stranded RNA virus) and Rana grylio virus (RGV, a large double-stranded DNA virus), and were indicative of high sensitivities to these three aquatic animal viruses by a virus titration study. The CPE caused by SVCV appeared as rounded and granular cells, grape-like clusters and small lytic plaques. Characteristic CPE containing plaque-like syncytia was induced by GCRV. RGV-infected cells produced typical CPE characterized by cells shrinkage and aggregation, formation of clear plaques and cell sheet detachment. Furthermore, significant fluorescent signals were observed after UCS cells were transfected with green fluorescent protein reporter plasmids, and the development of CPE induced by a recombinant RGV, ?TK-RGV, in UCS cells was illustrated using a combination of light and fluorescence microscopy. The data from this study suggested that UCS cell line can potentially serve as a useful tool for the comparison study of different aquatic animal viruses and the isolation of some newly emerging viruses in Ussuri catfish farming. PMID:24794839

Ou, Tong; Lei, Xiao-Ying; He, Li-Bo; Zhou, Feng-Jian; Zhang, Qi-Ya

2014-08-30

260

Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enh...

Szymanski, Pawel T.; Kuppast, Bhimanna; Ahmed, Safwat A.; Khalifa, Sherief; Fahmy, Hesham

2012-01-01

 
 
 
 
261

Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enh...

Hesham Fahmy; Ahmed, Safwat A.; Szymanski, Pawel T.; Bhimanna Kuppast; Sherief Khalifa

2011-01-01

262

Induction and rejoining of DNA double-strand breaks and interphase chromosome breaks after exposure to x-rays in one normal and two hypersensitive human fibroblast cell lines  

International Nuclear Information System (INIS)

The aim of this work was to measure simultaneously and in a quantitative manner double-strand breaks (DSBs), interphase chromosome breaks and cell lethality either immediately after irradiation, or at various times thereafter (up to 24 h), in cells of three nontransformed human fibroblast cell lines of widely different intrinsic radiosensitivity. We wished to assess initial damage, repair kinetics and residual damage at the DNA and the chromosome level, and to correlate these parameters with cell killings. We employed HF19 cells, a normal fibroblast cell line, AT2 cells, a radiosensitive cell line from a patient suffering from ataxia telangiectasia (AT), and 180BR cells, a radiosensitive cell line from a patient with no clinical symptoms of AT. AT2 and 180BR cells, in addition to being radiosensitive, also display a reduced ability to repair potentially lethal damage compared to HF19 cells. The yield of DSBs, as measured by pulsed-field gel electrophoresis, is similar in all three cell lines (slopes correspond to 1.6-1.7% Gy-1 of DNA-associated radioactivity released from the gel well into the lane). In contrast, residual DSBs measured 24 h after irradiation are almost zero for HF19 cells (0.1% confidence interval=0-1.4%), but are 12.5% (±2.3%) and 43.8% (±1.2%) of those measured immediately after irradiation in HF19, AT2 and 180BR cells, respectively. Neither the initial yield of DSBs nor that of excess interphase chromosomes breaks can explain the differences in radiosensitivity between the three cell lines; however, there is a correlation between residual DSBs, rate of DSB rejoining at 24 h, residual interphase chromosome breaks on the one hand and cell survival on the other hand. 74 refs., 6 figs., 4 tabs

263

Cytotoxicity of silver dressings on diabetic fibroblasts.  

Science.gov (United States)

A large number of silver-based dressings are commonly used in the management of chronic wounds that are at risk of infection, including diabetic foot ulcers. However, there are still controversies regarding the toxicity of silver dressings on wound healing. The purpose of this study was to objectively test the cytotoxicity of silver dressings on human diabetic fibroblasts. Human diabetic fibroblasts were obtained from the foot skin of four diabetic foot ulcer patients and cultured. The effect of five silver-containing dressing products (Aquacel Ag, Acticoat*Absorbent, Medifoam Ag, Biatain Ag and PolyMem Ag) and their comparable silver-free dressing products on morphology, proliferation and collagen synthesis of the cultured human diabetic fibroblasts were compared in vitro. In addition, extracts of each dressing were tested in order to examine the effect of other chemical components found in the dressings on cytotoxicity. The diabetic fibroblasts cultured with each silver-free dressing adopted the typical dendritic and fusiform shape. On the other hand, the diabetic fibroblasts did not adopt this typical morphology when treated with the different silver dressings. All silver dressings tested in the study reduced the viability of the diabetic fibroblasts and collagen synthesis by 54-70 and 48-68%, respectively, when compared to silver-free dressings. Silver dressings significantly changed the cell morphology and decreased cell proliferation and collagen synthesis of diabetic fibroblasts. Therefore, silver dressings should be used with caution when treating diabetic wounds. PMID:22533495

Zou, Shi-Bo; Yoon, Won-Young; Han, Seung-Kyu; Jeong, Seong-Ho; Cui, Zheng-Jun; Kim, Woo-Kyung

2013-06-01

264

Tight skin 2 mice exhibit a novel time line of events leading to increased extracellular matrix deposition and dermal fibrosis.  

Science.gov (United States)

The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-?1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-?1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production. PMID:24820199

Long, Kristen B; Artlett, Carol M; Blankenhorn, Elizabeth P

2014-09-01

265

Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.  

Science.gov (United States)

This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), ?-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3?µg?mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity. PMID:21939371

Kathirvel, Poonkodi; Ravi, Subban

2012-01-01

266

Localization of the coding region for an Epstein-Barr virus early antigen and inducible expression of this 60-kilodalton nuclear protein in transfected fibroblast cell lines.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Expression of a component of the Epstein-Barr virus early antigen (EA) complex has been studied in fibroblast cells transfected with both wild-type and P3HR-1 defective DNA fragments covering the BamHI-M-S region of the Epstein-Barr virus genome. Baby hamster kidney (BHK) cells transfected with the BglII-J fragment and stained with human serum that was positive for the diffuse component of EA [EA(D)] in an indirect immunofluorescence assay exhibited positive nuclear staining in 5% of the cell...

Cho, M. S.; Jeang, K. T.; Hayward, S. D.

1985-01-01

267

Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts  

International Nuclear Information System (INIS)

Glutathione is not effectively transported into human lymphoid cells, normal human skin fibroblasts, and fibroblasts from patients with genetic deficiencies of ?-glutamylcysteine synthetase or glutathione synthetase. On the other hand, the monoethyl ester of glutathione, in which the carboxyl group of the glycine residue is esterified, is readily transported into these cells and is hydrolyzed intracellularly. This leads to greatly increased cellular levels of glutathione, which often exceed those found normally. Glutathione ester was found to protect human lymphoid cells of the CEM line against the lethal effects of irradiation. Under the conditions employed, complete protection was found when the ester was added prior to irradiation. Addition of the ester after irradiation was partially effective, suggesting that GSH may also function in repair processes. 20 references, 3 figures, 1 table

268

Small interfering RNA mediated Poly (ADP-ribose Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Poly (ADP-ribose polymerase-1 (PARP-1 is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+ and adenosine triphosphate (ATP contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70 is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression. These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1, the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation.

Zingarelli Basilia

2011-02-01

269

Radiosensitivity in cultured human fibroblasts  

International Nuclear Information System (INIS)

Caution is urged in the use of freshly isolated cultures of human diploid fibroblasts for quantitative studies of radiosensitivity. The distribution of x ray sensitivities of 'normal' human fibroblast cultures of foetal origin (10 subjects, skin or lung biopsy) and post-foetal origin (34 subjects, skin biopsy) are compared with the distribution in 12 patients with ataxia telangiectasia (probability of including any one of these in a normal post-foetal distribution is 0.01%). Cultures from nominally normal subjects showed a broad distribution of D0 range of 98 +- 160 rad and assuming normal distribution, a mean +- one standard deviation of 122 +- 17 rad. Mean D0 values for foetal origin cultures were 117 +- 12; values for post-foetal cultures D0 were 124 +- 18. No systematic variation in D0 was observed for age of donor, number of cell divisions in culture or for cloning efficiency. For ataxia telangiectasia D0 values were 46 +- 7 rad. (U.K.)

270

Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles  

Directory of Open Access Journals (Sweden)

Full Text Available Squamous cell carcinoma (SCC and melanoma are malignant human cancers of the skin with an annual mortality that exceeds 10,000 cases every year in the USA alone. In this study, the lysosomal protein saposin C (SapC and the phospholipid dioloylphosphatidylserine (DOPS were assembled into cancer-selective nanovesicles (SapC-DOPS and successfully tested using several in vitro and in vivo skin cancer models. Using MTT assay that measures the percentage of cell death, SapC-DOPS cytotoxic effect on three skin tumor cell lines (squamous cell carcinoma, SK-MEL-28, and MeWo was compared to two normal nontumorigenic skin cells lines, normal immortalized keratinocyte (NIK and human fibroblast cell (HFC. We observed that the nanovesicles selectively killed the skin cancer cells by inducing apoptotic cell death whereas untransformed skin cancer cells remained unaffected. Using subcutaneous skin tumor xenografts, animals treated with SapC-DOPS by subcutaneous injection showed a 79.4% by volume tumor reduced compared to the control after 4 days of treatment. We observed that the nanovesicles killed skin cancer cells by inducing apoptotic cell death compared to the control as revealed by TUNEL staining of xenograft tumor sections.

Shadi Abu-Baker

2012-08-01

271

Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components  

International Nuclear Information System (INIS)

Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility

272

Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components  

Energy Technology Data Exchange (ETDEWEB)

Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

2014-01-03

273

Development, characterization and application of a new fibroblastic-like cell line from kidney of a freshwater air breathing fish Channa striatus (Bloch, 1793).  

Science.gov (United States)

A new cell line, Channa striatus kidney (CSK), derived from the kidney tissue of murrel, was established and characterized. The CSK cell line was maintained in Leibovitz's L-15 supplemented with 10% fetal bovine serum and has been subcultured more than 140 times. This cell line was able to grow in a range of temperatures from 22 to 32°C with optimal growth at 28°C. The plating efficiency was very high (67.54%) and doubling time was approximately 29h. The kidney cell line was cryopreserved at different passage levels and revived successfully with 90-92% survival. Polymerase chain reaction amplification of mitochondrial 16S rRNA using primer specific to C. striatus confirmed the origin of this cell line from murrel. The cell line was further characterized by chromosome number, transfection and mycoplasma detection. A marine fish nodavirus was tested to determine the susceptibility of this new cell line. The CSK cell line was found to be susceptible to nodavirus and the infection was confirmed by cytopathic effect (CPE), reverse transcriptase-polymerase chain reaction (RT-PCR), immunodot blot, enzyme linked immunosorbent assay (ELISA), virus replication efficiency and real time RT-PCR. The present study highlights the development and characterization of a new kidney cell line from an air breathing fish that could be used as an in vitro tools for propagation of fish viruses and gene expression studies. PMID:23558109

Abdul Majeed, S; Nambi, K S N; Taju, G; Sahul Hameed, A S

2013-07-01

274

Validation of PCR-reverse line blot, a method for rapid detection and identification of nine dermatophyte species in nail, skin and hair samples.  

Science.gov (United States)

A dermatophyte-specific PCR-reverse line blot (PCR-RLB) assay based on internal transcribed sequences was developed. This assay allows the rapid detection and identification of nine clinically relevant species within the three dermatophyte genera Trichophyton, Microsporum and Epidermophyton in nail, skin and hair samples within 1 day. Analysis of 819 clinical samples (596 nail, 203 skin and 20 hair) revealed a positive PCR-RLB result in 93.6% of 172 culture-positive and microscopy-positive samples. PCR-RLB was superior to culture and direct microscopy, in both detection and species identification. Comparison of identification results of 208 PCR-positive and culture-positive clinical samples showed five discrepancies (2.4%) between PCR-RLB identification and classical microscopic/biochemical identification of isolates. Comparison of PCR-RLB identification and classical identification of 98 other isolates (dermatophytes and non-dermatophytes) revealed 13 discrepancies (13.3%) and five incomplete identifications of Trichophyton spp. Sequence analysis of ITS1 regions of 23 samples with discrepant or incomplete identification results (four Centraalbureau voor Schimmelcultures dermatophyte strains, four clinical samples and 15 clinical isolates) confirmed identification results of PCR-RLB in 21 of the 23 analyzed samples. PCR-RLB proved to be extremely suitable for routine detection and identification of dermatophytes directly in nail, skin and hair samples because it is rapid, sensitive, specific and accurate. PMID:18727802

Bergmans, A M C; Schouls, L M; van der Ent, M; Klaassen, A; Böhm, N; Wintermans, R G F

2008-08-01

275

On-line monitoring of UV-induced lipid peroxidation products from human skin in vivo using proton-transfer reaction mass spectrometry  

Science.gov (United States)

Proton-transfer reaction mass spectrometry (PTR-MS) was used to study ultraviolet (UV) light-induced lipid peroxidation in human skin, in vivo. Emissions of volatile organic compounds (VOCs) in the mass range between 20 and 150 amu in the headspace of the skin of 16 healthy volunteers were monitored before, during and after irradiation in an on-line and non-invasive fashion. From these experiments, five volatile substances were found to reflect the damage caused by UV-radiation. The two major compounds (monitored at mass 45 and 59 amu) were identified as acetaldehyde and propanal using a combination of Tenax-based gas chromatographic pre-separation with PTR-MS. The other volatiles (with characteristic ions at, among others, masses 73 and 87 amu) could not be identified. Simultaneous measurement of the established lipid peroxidation biomarker ethene using laser-based photoacoustic trace gas detection revealed a similar pattern and statistically significant correlations between VOC production measured with PTR-MS and ethene. Variations in UV-radiation intensity were reflected by the amount of acetaldehyde and propanal emitted from the skin. Our results show that acetaldehyde and propanal can be used as biomarkers for lipid peroxidation.

Steeghs, Marco M. L.; Moeskops, Bas W. M.; van Swam, Karen; Cristescu, Simona M.; Scheepers, Paul T. J.; Harren, Frans J. M.

2006-06-01

276

Pyruvate Dehydrogenase Complex Activity in Normal and Deficient Fibroblasts  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Pyruvate dehydrogenase complex (PDC) activity in human skin fibroblasts appears to be regulated by a phosphorylation-dephosphorylation mechanism, as is the case with other animal cells. The enzyme can be activated by pretreating the cells with dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, before they are disrupted for measurement of PDC activity. With such treatment, the activity reaches 5-6 nmol/min per mg of protein at 37°C with fibroblasts from infants. Such values...

Sheu, Kwan-fu Rex; Hu, Chii-whei C.; Utter, Merton F.

1981-01-01

277

Fetal ACL Fibroblasts Exhibit Enhanced Cellular Properties Compared with Adults  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice...

Stalling, Simone S.; Nicoll, Steven B.

2008-01-01

278

Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes  

Energy Technology Data Exchange (ETDEWEB)

Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

2011-07-01

279

Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes  

International Nuclear Information System (INIS)

Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

280

Resveratrol inhibits fibrogenesis and induces apoptosis in keloid fibroblasts.  

Science.gov (United States)

Keloids are benign dermal fibrotic tumors arising during the wound healing process. The mechanisms of keloid formation and development still remain unknown, and no effective treatment is available. Resveratrol, a dietary compound, has anticancer properties and, from recent studies, it has been suggested that resveratrol may have an antifibrogenic effect on organs such as the liver and kidney. Based on this idea, we investigated its effect on the regulation of extracellular matrix expression, proliferation, and apoptosis of keloid fibroblasts. Type I collagen, ?-smooth muscle actin, and heat shock protein 47 expression decreased in resveratrol-treated keloid fibroblasts in a dose-dependent manner. In addition, resveratrol diminished transforming growth factor-?1 production by keloid fibroblasts. We also demonstrated that it suppressed their proliferation and induced apoptosis of the fibroblasts. Conversely, resveratrol did not decrease type I collagen, ?-smooth muscle actin, and heat shock protein 47 mRNA expression in normal skin fibroblasts and barely suppressed cell proliferation. Our data indicate that resveratrol may have an antifibrogenic effect on keloid fibroblasts without any adversely effects on normal skin fibroblasts, suggesting the potential application of resveratrol for the treatment of keloids. PMID:23815229

Ikeda, Kanae; Torigoe, Toshihiko; Matsumoto, Yoshitaka; Fujita, Tatsuya; Sato, Noriyuki; Yotsuyanagi, Takatoshi

2013-01-01

 
 
 
 
281

Polypeptide structure of a human dermal fibroblast-activating factor (FAF) derived from the U937 cultured line of human monocyte-like cells  

International Nuclear Information System (INIS)

Six liter batches of 1 x 106 U937 cells/ml of serum-free RPMI medium were incubated with 100 ng/ml of phorbol myristate acetate for 48 hr at 370C in 5% CO2 in air to generate FAFs, as quantified by the stimulation of uptake of [3H]thymidine by quiescent human dermal fibroblasts. Filtration of the supernatants on Sephadex G-75 resolved two FAFs of approximately 40,000 and 10-13,000 daltons. The latter principle was purified to homogeneity by sequential Sephadex G-50 filtration, revealing an apparent m.w. of 7-8000, Mono-Q FPLC anion-exchange chromatography with a linear gradient from 20 mM Tris-HCl (pH 8.3) to 0.5 M NaCl-20 mM Tris-HCl in 30 min, and two cycles of high-performance liquid chromatography (HPLC) on a 300 A pore 10 ?m C4 column at 1 ml/min with 0.05% trifluoroacetic acid (TFA) in water to 30:70 (v:v) and then to 60:40 (v:v) acetonitrile: 0.05% TFA linearly in 15 min and 30 min, respectively, The FAF activity eluted from HPLC in a sharp peak of O.D. 215 nm at 45% acetonitrile. Analyses of amino acid composition of the highly purified 7-8000 dalton FAF-U937 revealed 37% hydrophobic, 14% basic, and 21% acidic or amide residues, as well as one tryrosine and one methionine. This U937 cell-derived FAF appears to be a unique acidic polypeptide growth factor

282

Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach.  

Science.gov (United States)

We present an integrated study to understand the key role of senescent fibroblasts in driving melanoma progression. Based on the hybrid cellular automata paradigm, we developed an in silico model of normal skin. The model focuses on key cellular and microenvironmental variables that regulate interactions among keratinocytes, melanocytes, and fibroblasts, key components of the skin. The model recapitulates normal skin structure and is robust enough to withstand physical as well as biochemical perturbations. Furthermore, the model predicted the important role of the skin microenvironment in melanoma initiation and progression. Our in vitro experiments showed that dermal fibroblasts, which are an important source of growth factors in the skin, adopt a secretory phenotype that facilitates cancer cell growth and invasion when they become senescent. Our coculture experiments showed that the senescent fibroblasts promoted the growth of nontumorigenic melanoma cells and enhanced the invasion of advanced melanoma cells. Motivated by these experimental results, we incorporated senescent fibroblasts into our model and showed that senescent fibroblasts transform the skin microenvironment and subsequently change the skin architecture by enhancing the growth and invasion of normal melanocytes. The interaction between senescent fibroblasts and the early-stage melanoma cells leads to melanoma initiation and progression. Of microenvironmental factors that senescent fibroblasts produce, proteases are shown to be one of the key contributing factors that promoted melanoma development from our simulations. Although not a direct validation, we also observed increased proteolytic activity in stromal fields adjacent to melanoma lesions in human histology. This leads us to the conclusion that senescent fibroblasts may create a prooncogenic skin microenvironment that cooperates with mutant melanocytes to drive melanoma initiation and progression and should therefore be considered as a potential future therapeutic target. Interestingly, our simulations to test the effects of a stroma-targeting therapy that negates the influence of proteolytic activity showed that the treatment could be effective in delaying melanoma initiation and progression. PMID:24080279

Kim, Eunjung; Rebecca, Vito; Fedorenko, Inna V; Messina, Jane L; Mathew, Rahel; Maria-Engler, Silvya S; Basanta, David; Smalley, Keiran S M; Anderson, Alexander R A

2013-12-01

283

A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair  

International Nuclear Information System (INIS)

Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

284

[Fibroblasts and lung fibrosis].  

Science.gov (United States)

Fibroblasts are key cells in the fibrotic process. Their profibrotic phenotype is influenced by the environment in which they operate, both extracellular matrix and mediators which they are exposed. The pharmacologic modulation of the fibroblast phenotype allows to identify potential therapeutic targets which might interrupt the vicious cycle of pulmonary fibrogenesis. PMID:25362768

Crestani, Bruno

2014-09-01

285

Dry skin  

Science.gov (United States)

Skin - dry; Winter itch ... Dry skin is common. It happens more often in the winter when cold air outside and heated air inside cause low humidity. Forced-air furnaces make skin even drier. The skin loses moisture and may ...

286

Unscheduled DNA synthesis after ?-irradiation of mouse skin in situ  

International Nuclear Information System (INIS)

The skin of ICR mouse was irradiated with ?-rays from 90Sr-90Y with surface doses up to 30 krad. Unscheduled DNA synthesis (UDS) was measured by autoradiography after labeling the skin with radioactive thymidine using the forceps-clamping method. The level of UDS in epithelial cells of the skin was detected as an increasing function of radiation dose. Fibroblastic cells, compared with epithelial cells and hair follicle cells at the same depth of the skin, showed a lower level of UDS, indicating a lower DNA repair activity in fibroblasts. Cancer risk of the skin was discussed. (Auth.)

287

Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts.  

Science.gov (United States)

Cosmeceuticals represent a marriage between cosmetics and pharmaceuticals. There are numerous cosmeceutically active products which can be broadly classified into the following categories: antioxidants, oligopeptides, growth factors and pigment lightning agents. Much attention has been focused on the tripeptides such as Gly-His-Lys (GHK) and Gly-Gly-His (GGH) and their copper complexes, which have a high activity and good skin tolerance. Recent data suggested their physiological role in process of wound healing, tissue repair and skin inflammation. The mechanism of anti-inflammatory properties of these peptides is not clear. The aim of the study was evaluation of influence of two peptides GGH. GHK and their copper complexes and saccharomyces/copper ferment (Oligolides Copper) on secretion of pro-inflammatory IL-6 in normal human dermal fibroblasts NHDF cell line. IL-6 was evaluated using the ELISA kit. GGH, GHK, CuCl2 and their copper complexes decreased TNF-alpha-dependent IL-6 secretion in fibroblasts. IL-6 is crucial for normal wound healing, skin inflammation and UVB-induced erythema. Because of the anti-inflammatory properties, the copper-peptides could be used on the skin surface instead of corticosteroids or non-steroidal anti-inflammatory drugs, which have more side effects. Our observations provide some new information about the role of these tripeptides in skin inflammation. PMID:23285694

Gruchlik, Arkadiusz; Jurzak, Magdalena; Chodurek, Ewa; Dzierzewicz, Zofia

2012-01-01

288

Zeaxanthin inhibits PDGF-BB-induced migration in human dermal fibroblasts.  

Science.gov (United States)

Zeaxanthin is the dihydroxy carotenoid and is distributed in our daily foods. Various natural carotenoids, including zeaxanthin, have been shown to inhibit proliferation of several types of cancer cells, but available data on the effect of zeaxanthin on skin fibroblasts and melanoma cells are limited. Platelet-derived growth factor (PDGF) functions as a chemotactic factor for dermal fibroblasts and plays an important role in the progression of melanoma. In this study, we investigated the effects of zeaxanthin on the migration of skin fibroblasts induced by PDGF-BB and melanoma cells. We demonstrated that zeaxanthin inhibited PDGF-BB-induced skin fibroblast migration on collagen and gelatin by a modified Boyden chamber system. The electric cell-substrate impedance sensing (ECIS) method also showed similar inhibitory effects of zeaxanthin on the migration of fibroblasts. In functional studies, zeaxanthin decreased melanoma-induced fibroblast migration in a non-contact coculture system and also the migration stimulated by melanoma-derived conditioned medium. Further analysis showed that zeaxanthin attenuated PDGF-BB and melanoma-conditioned medium induced phosphorylation of PDGFR-beta and MAP kinase in a concentration-dependent manner in human skin fibroblasts. However, these effects did not result from direct interaction of zeaxanthin with PDGF-BB. Thus, our results provide the first evidence showing that zeaxanthin is an effective inhibitor of migration of stromal fibroblasts induced by PDGF-BB and melanoma cells and this effect may further support its antitumor potential. PMID:20482615

Wu, Nan-Lin; Chiang, Yuh-Chiau; Huang, Chieh-Chen; Fang, Jia-You; Chen, Der-Fang; Hung, Chi-Feng

2010-08-01

289

Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line  

Directory of Open Access Journals (Sweden)

Full Text Available Sarcodiol (SD is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3 and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4. SD treatment also enhances cellular level of tumor suppressor protein 53 (p53 and stimulates cleavage of the nuclear poly (ADP-ribose polymerase (cleaved-PARP. SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells.

Hesham Fahmy

2011-12-01

290

Oncogene N-ras mediates selective inhibition of c-fos induction by nerve growth factor and basic fibroblast growth factor in a PC12 cell line.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A cell line was generated from U7 cells (a subline of PC12 rat pheochromocytoma cells) that contains a stably integrated transforming mouse N-ras (Lys-61) gene under the control of the long terminal repeat from mouse mammary tumor virus. Such cells, designated UR61, undergo neuronal differentiation upon exposure to nanomolar concentrations of dexamethasone, as a consequence of expression of the activated N-ras gene (I. Guerrero, A. Pellicer, and D.E. Burstein, Biochem, Biophys. Res. Commun. 1...

Thomson, T. M.; Green, S. H.; Trotta, R. J.; Burstein, D. E.; Pellicer, A.

1990-01-01

291

DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age  

Energy Technology Data Exchange (ETDEWEB)

The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

2004-10-04

292

DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age  

International Nuclear Information System (INIS)

The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, s from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

293

Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.).  

Science.gov (United States)

Skin cancers are often resistant to conventional chemotherapy. This study examined the anti-skin cancer properties of crude ethanol extract of mangosteen pericarp (MPEE) on human squamous cell carcinoma A-431 and melanoma SK-MEL-28 lines. Significant dose-dependent reduction in% viability was observed for these cell lines, with less effect on human normal skin fibroblast CCD-1064Sk and keratinocyte HaCaT cell lines. Cell distribution in G(1) phase (93%) significantly increased after 10 ?g/ml of MPEE versus untreated SK-MEL-28 cells (78%), which was associated with enhanced p21(WAF1) mRNA levels. In A-431 cells, 10 ?g/ml MPEE significantly increased the sub G(1) peak (15%) with concomitant decrease in G(1) phase over untreated cells (2%). In A-431 cells, 10 ?g/ml MPEE induced an 18% increase in early apoptosis versus untreated cells (2%). This was via caspase activation (15-, 3- and 4-fold increased caspse-3/7, 8, and 9 activities), and disruption of mitochondrial pathways (6-fold decreased mitochondrial membrane potential versus untreated cells). Real-time PCR revealed increased Bax/Bcl-2 ratio and cytochrome c release, and decreased Akt1. Apoptosis was significantly increased after MPEE treatment of SK-MEL-28 cells. Hence, MPEE showed strong anti-skin cancer effect on these two skin cancer cell lines, with potential as an anti-skin cancer agent. PMID:22705325

Wang, Jing J; Shi, Qing H; Zhang, Wei; Sanderson, Barbara J S

2012-09-01

294

Loss of PPAR? expression by fibroblasts enhances dermal wound closure  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Peroxisome proliferator-activated receptor (PPAR? may be a key regulator of connective tissue deposition and remodeling in vivo. PPAR? expression is reduced in dermal fibroblasts isolated from fibrotic areas of scleroderma patients; PPAR? agonists suppress the persistent fibrotic phenotype of this cell type. Previously, we showed that loss of PPAR? expression in fibroblasts resulted in enhanced bleomycin-induced skin fibrosis. However, whether loss of PPAR? expression in skin fibroblasts affects cutaneous tissue repair or homeostasis is unknown. Results Mice deleted for PPAR? in skin fibroblasts show an enhanced rate of dermal wound closure, concomitant with elevated phosphorylation of Smad3, Akt and ERK, and increased expression of proliferating cell nuclear antigen (PCNA, collagen, ?-smooth muscle actin (?-SMA and CCN2. Conversely, dermal homeostasis was not appreciably affected by loss of PPAR? expression. Conclusion PPAR? expression by fibroblasts suppresses cutaneous tissue repair. In the future, direct PPAR? antagonists and agonists might be of clinical benefit in controlling chronic wounds or scarring, respectively.

Sha Wei

2012-04-01

295

Differential susceptibilities of human lung, breast and skin cancer cell lines to killing by five sea anemone venoms  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Although sea anemones are well known for being rich sources of toxins, including cytolysins and neurotoxins, their venoms and toxins have been poorly studied. In the present study, the venoms from five sea anemones (Heteractis crispa, Heteractis magnifica, Heteractis malu, Cryptodendrum adhaesivum and Entacmaea quadricolor) were obtained by the milking technique, and the potential of these venoms to kill cancer cells was tested on three cell lines (A549 lung cancer, T47D breast cancer and A43...

Ramezanpour, M.; Burke Da Silva, K.; Bj, Sanderson

2012-01-01

296

How to Approach Finnish Retail Market when Launching a New Skin Care Line: a Case Study of Créations Couleurs  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The cosmetics industry is one of the biggest lines of businesses in the world. In Finland people spend thousands of Euros per year on cosmetic and hygiene products. Everything changes constantly and this has reflected to the cosmetics industry as well as consumers. People increasingly desire several options to choose from and want quick results. The topic for this thesis came from a French cosmetic company Créations Couleurs which develops and manufactures raw materials for different cos...

Nordenswan, Katarina; Huttunen, Anne

2012-01-01

297

Octyl Methoxycinnamate Modulates Gene Expression and Prevents Cyclobutane Pyrimidine Dimer Formation but not Oxidative DNA Damage in UV-Exposed Human Cell Lines  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Octyl methoxycinnamate (OMC) is one of the most widely used sunscreen ingredients. To analyze biological effects of OMC, an in vitro approach was used implying ultraviolet (UV) exposure of two human cell lines, a primary skin fibroblast (GM00498) and a breast cancer (MCF-7) cell lines. End points include cell viability assessment, assay of cyclobutane pyrimidine dimers (CPDs) and oxidated DNA lesions using alkaline elution and lesion-specific enzymes, and gene expression analysis of a panel o...

Duale, Nur; Olsen, Ann-karin; Christensen, Terje; Butt, Shamas T.; Brunborg, Gunnar

2010-01-01

298

Insulin-like growth factor-binding protein-2 inhibits proliferation of human embryonic kidney fibroblasts and of IGF-responsive colon carcinoma cell lines.  

Science.gov (United States)

So far, the physiological role of insulin-like growth factor binding protein-2 (IGFBP-2) has not been demonstrated directly. Therefore, we transfected 293 cells with an expression vector containing the CMV promoter and the complete cDNA of mouse IGFBP-2. Secretion of bioactive IGFBP-2 into conditioned medium was demonstrated by Western ligand and Western immunoblotting and quantified by specific RIA. For the analysis of cell proliferation three clones exhibiting either high or low/no IGFBP-2 expression were selected and compared to non-transfected parental 293 cells. IGFBP-2 secreting clones displayed reduced conversion of thiazolyl blue when compared to negative clones or non-transfected parental 293 cells (P LS513, HT-29) while those of negative clones did not. In addition, conditioned medium from a clone expressing high levels of IGFBP-2 inhibited anchorage-independent growth of LS513 and HT-29 cells. In contrast, growth of an IGF-unresponsive tumor cell line (Co-115) was not affected by the conditioned media. We hypothesize that IGFBP-2 might sequester the IGFs and thus prevent them from transferring their mitogenic signals. PMID:9742949

Höflich, A; Lahm, H; Blum, W; Kolb, H; Wolf, E

1998-09-01

299

Skin Conditions  

Science.gov (United States)

Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

300

Sagging Skin  

Science.gov (United States)

... In Forgot your password? ASDS — American Society for Dermatologic Surgery Expertise for the life of your skin (TM) Public Resources Dermatologic Surgery Conditions Treatments and Procedures Skin Cancer Skin Care ...

 
 
 
 
301

Application of genomics to breakthroughs in the cosmetic treatment of skin ageing and discoloration.  

Science.gov (United States)

The use of global gene expression profiling, also known as transcriptomics or genomics, provides a means to identify key pathways affected in ageing skin that can be improved with appropriate cosmetic compounds. Aspects of skin ageing that can be addressed include matrix production, barrier, lipid synthesis, antioxidant capacity and hyperpigmentation. Gene expression profiling together with in vitro human skin cell cultures for compound screening and verification have led to the identification of cosmetic compounds and an understanding of the biological effects of compounds such as niacinamide, Pal-KTTKS, hexamidine, retinyl propionate and sodium dehydroacetate. In addition, understanding of the decreased antioxidant capacity of aged skin has led to the identification of new antiageing ingredients, olive-derived fatty acid ethoxylates, which have been shown to restore antioxidant enzymes in skin keratinocytes and fibroblasts. Gene expression profiling of age spots has also provided an understanding of the role of undecylenoyl phenylalanine in reducing melanin production by an adrenergic receptor mechanism in melanocytes. The use of these compounds in cosmetic formulations for skin care can aid improvements in the appearance of aged skin, including the improved appearance of fine lines, wrinkles and age spots. PMID:22670614

Osborne, R; Hakozaki, T; Laughlin, T; Finlay, D R

2012-06-01

302

Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy  

DEFF Research Database (Denmark)

In order to acquire a better understanding of the mechanism of radiation-induced fibrosis, we studied the differentiation of normal skin fibroblasts cultured from breast cancer radiotherapy patients with different risk of fibrosis. The differentiation state of fibroblasts was characterized in clonal cultures using established cytomorphological criteria. Collagen synthesis was determined by 3H-proline incorporation into pepsin-resistant protein. Radiation-induced inactivation of fibroblasts was paralleled by an increase in terminally differentiated fibrocytes, demonstrating that premature terminal differentiation is an important response to irradiation of fibroblasts from radiotherapy patients. Surviving colony-forming fibroblasts showed a change in differentiation with an increase in the ratio L:E of progenitor fibroblasts in late (L) compared to early (E) differentiation states. Furthermore, increased collagen production was observed after irradiation. The results provide evidence supporting a role of terminal fibroblast differentiation in radiation-induced fibrosis and imply that the progenitor population surviving radiotherapy might be more prone to terminal differentiation than before radiotherapy.

Herskind, C; Johansen, J

2000-01-01

303

Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy  

International Nuclear Information System (INIS)

In order to acquire a better understanding of the mechanism of radiation-induced fibrosis, we studied the differentiation of normal skin fibroblasts cultured from breast cancer radiotherapy patients with different risk of fibrosis. The differentiation state of fibroblasts was characterized in clonal cultures using established cytomorphological criteria. Collagen synthesis was determined by 3H-proline incorporation into pepsin-resistant protein. Radiation-induced inactivation of fibroblasts was paralleled by an increase in terminally differentiated fibrocytes, demonstrating that premature terminal differentiation is an important response to irradiation of fibroblasts from radiotherapy patients. Surviving colony-forming fibroblasts showed a change in differentiation with an increase in the ratio L:E of progenitor fibroblasts in late (L) compared to early (E) differentiation states. Furthermore, increased collagen production was observed after irradiation. The results provide evidence supporting a role of terminal fibroblast differentiation in radiation-induced fibrosis and imply that the progenitor population surviving radiotherapy might be more prone to terminal differentiation than before radiotherapy

304

Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy  

Energy Technology Data Exchange (ETDEWEB)

In order to acquire a better understanding of the mechanism of radiation-induced fibrosis, we studied the differentiation of normal skin fibroblasts cultured from breast cancer radiotherapy patients with different risk of fibrosis. The differentiation state of fibroblasts was characterized in clonal cultures using established cytomorphological criteria. Collagen synthesis was determined by 3H-proline incorporation into pepsin-resistant protein. Radiation-induced inactivation of fibroblasts was paralleled by an increase in terminally differentiated fibrocytes, demonstrating that premature terminal differentiation is an important response to irradiation of fibroblasts from radiotherapy patients. Surviving colony-forming fibroblasts showed a change in differentiation with an increase in the ratio L:E of progenitor fibroblasts in late (L) compared to early (E) differentiation states. Furthermore, increased collagen production was observed after irradiation. The results provide evidence supporting a role of terminal fibroblast differentiation in radiation-induced fibrosis and imply that the progenitor population surviving radiotherapy might be more prone to terminal differentiation than before radiotherapy.

Herskind, C.; Johansen, J.; Bentzen, S.M.; Overgaard, M.; Overgaard, J.; Bamberg, M.; Rodemann, H.P. [Univ. of Tuebingen (Germany). Section of Radiobiology and Molecular Environmental Research

2000-07-01

305

Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro  

International Nuclear Information System (INIS)

Highlights: ? ABA is an endogenous hormone in humans, regulating different cell responses. ? ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ? UV-B irradiation increases ABA content in SSc cultures. ? SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-? (TGF-?). Conversely, migration toward ABA, but not toward TGF-?, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

306

Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro  

Energy Technology Data Exchange (ETDEWEB)

Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

2012-05-25

307

Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells  

Energy Technology Data Exchange (ETDEWEB)

Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

Gilead, L.; Bibi, O.; Razin, E. (Hebrew Univ.-Hadassah Medical School, Jerusalem (Israel))

1990-09-15

308

Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells  

International Nuclear Information System (INIS)

Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers

309

Lines  

Science.gov (United States)

National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

Mires, Peter B.

2006-01-01

310

Retinal neovascularization after intravitreal fibroblast injection.  

Science.gov (United States)

We have developed a new model of retinal neovascularization in the rabbit. After intravitreal autotransplantation of 250,000 tissue-cultured skin fibroblasts, we observed strand formation in the midvitreous cavity. These strands grew toward the vascularized part of the retina and attached to it. Once the attachment was established, retinal neovascularization began with growth of vessels along the fibrous strand. After three months, this retinal neovascularization regressed. The presence of immature capillaries was confirmed by electron microscopic examination. Of 43 eyes, 31 (72%) developed neovascularization. PMID:6167170

Tano, Y; Chandler, D B; Machemer, R

1981-07-01

311

Doubling potential of fibroblasts from different species after ionising radiation  

International Nuclear Information System (INIS)

It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

312

Immortalization of Werner syndrome and progeria fibroblasts  

Energy Technology Data Exchange (ETDEWEB)

Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents.

Saito, H.; Moses, R.E. (Baylor College of Medicine, Houston, TX (USA))

1991-02-01

313

Immortalization of Werner syndrome and progeria fibroblasts  

International Nuclear Information System (INIS)

Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents

314

Induction and rejoining of DNA double-strand breaks in normal human skin fibroblasts after exposure to radiation of different linear energy transfer: possible roles of track structure and chromatin organization.  

Science.gov (United States)

DNA double-strand breaks are nonrandomly induced by high-LET radiation. Differences in the induction and rejoining of DSBs after irradiation with ions having different LET were detected by fragment analysis. The data obtained indicate that the track structure of the traversing particle and its interaction with the different chromatin structures of the cellular DNA influence the yield as well as the distribution of the induced damage. The induction and rejoining of clustered DSBs induced by the same nitrogen ion fluence at LETs of 80-225 keV/microm were investigated by a detailed analysis of the DNA fragmentation patterns in normal human fibroblasts. The DSBs in the cells were allowed to rejoin during incubations for 0-20 h. Two separate pulsed-field gel electrophoresis protocols were used, optimized for separation of fragments in the size ranges 1-6 Mbp and 5 kbp-1.5 Mbp. A strong influence of LET on the level of DSB induction was evident. The DSB yield increased from 4.5 +/- 0.2 to 10.0 +/- 0.3 DSBs per particle traversal through the cell nucleus when LET increased from 80 to 225 keV/microm. Further, the size distribution of the DNA fragments showed a significant dependence on radiation quality, with an excess of fragments at 50-200 kbp and around 1 Mbp. Differences in repair kinetics were also evident, with slower rejoining for increasing LET, and the initial nonrandom fragment distributions were still present after 1 h of repair. PMID:11352764

Höglund, H; Stenerlöw, B

2001-06-01

315

Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields  

International Nuclear Information System (INIS)

Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

316

Chloride transport in human fibroblasts is activated by hypotonic shock  

Energy Technology Data Exchange (ETDEWEB)

Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

1989-05-15

317

Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts  

International Nuclear Information System (INIS)

The authors have previously shown that (i) human skin fibroblasts of fetal and adult origin display distinctive migratory phenotypes, (ii) this difference in cell behavior results from the production of a soluble migration stimulating factor (MSF) by fetal cells, and (iii) skin fibroblasts from breast cancer patients commonly resemble fetal fibroblasts both in migratory phenotype and in production of MSF. Data are now presented indicating that MSF present in the conditioned medium of fetal and cancer patient fibroblasts is precipitated at 10% saturation ammonium sulfate and binds to heparin and cation-exchange resins. Based on this information, they have devised a scheme for the purification of MSF involving the sequential application of ammonium sulfate precipitation, heparin affinity, gel filtration, and reverse-phase chromatography. Purified MSF has an estimated molecular mass of 70 kDa; amino acid analysis reveals a relatively high level of proline (13.34 residues per 100). The results further suggest that skin fibroblasts from breast cancer patients produce an additional factor with migration stimulating activity; this factor is precipitated at higher concentrations of ammonium sulfate and binds to anion-exchange resins. They have previously discussed the possible direct involvement of fetal-like fibroblasts in cancer pathogenesis. The availability of MSF obtained from cancer patient fibroblasts provides a potential means with which to examine the complex cellula with which to examine the complex cellular interactions contributing to this process as well as develop a screening regime for identifying individuals at elevated risk of developing cancer

318

A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts.  

Science.gov (United States)

There is growing evidence that chromosome territories have a probabilistic non-random arrangement within the cell nucleus of mammalian cells. Other than their radial positioning, however, our knowledge of the degree and specificity of chromosome territory associations is predominantly limited to studies of pair-wise associations. In this study we have investigated the association profiles of eight human chromosome pairs (numbers 1, 2, 3, 4, 6, 7, 8, 9) in the cell nuclei of G(0)-arrested WI38 diploid lung fibroblasts. Associations between heterologous chromosome combinations ranged from 52% to 78% while the homologous chromosome pairs had much lower levels of association (3-25%). A geometric computational method termed the Generalized Median Graph enabled identification of the most probable arrangement of these eight chromosome pairs. Approximately 41% of the predicted associations are present in any given nucleus. The association levels of several chromosome pairs were very similar in a series of lung fibroblast cell lines but strikingly different in skin and colon derived fibroblast cells. We conclude that a large subset of human chromosomes has a preferred probabilistic arrangement in WI38 cells and that the resulting chromosomal associations show tissue origin specificity. PMID:19507193

Zeitz, Michael J; Mukherjee, Lopamudra; Bhattacharya, Sambit; Xu, Jinhui; Berezney, Ronald

2009-10-01

319

Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts  

Science.gov (United States)

Background When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times (“probing”) before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. Methodology/Principal Findings Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFN?, TNF?, defensin 5 (HB5) and ? defensin 2 (H?D2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. Conclusions/Significance In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral particles that may contribute to subsequent viral dissemination. PMID:22206025

Bustos-Arriaga, Jose; Garcia-Machorro, Jazmin; Leon-Juarez, Moises; Garcia-Cordero, Julio; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Mendez-Cruz, A. Rene; Juarez-Delgado, Francisco J.; Cedillo-Barron, Leticia

2011-01-01

320

Chaperonin containing T-complex polypeptide (CCT) subunit expression in oral mucosal wounds and fibroblasts.  

Science.gov (United States)

Mucosal wound healing in adults has been reported to feature diminished scar formation compared to healing skin wounds. We sought to determine if the expression pattern of chaperonin containing T-complex polypeptide (CCT) subunits in mucosal wounds and fibroblasts is different from that observed in skin wounds and fibroblasts. We found that CCT-beta is the only subunit message to be reduced in wounded mucosa versus unwounded control, and this reduction was confirmed at the protein level. In contrast, mRNA levels of CCT-zeta, -delta, -eta, and -epsilon were significantly increased in mucosal wounds. The increase in CCT-eta was also confirmed at the protein level. Expression levels of CCT-alpha, -beta, -delta; -epsilon, and -theta mRNAs were significantly increased in adult mucosal fibroblasts in culture compared to skin-derived fibroblasts. Western blot analyses confirmed a modest increase in CCT-beta in adult mucosal fibroblasts relative to skin fibroblasts, but CCT-eta protein was unaffected. These differences may contribute to the reported difference in healing outcomes between these two tissue types. PMID:21710295

Satish, Latha; Lo, Nancy; Gallo, Phillip H; Johnson, Sandra; Haberman, Stephanie; Kathju, Sandeep

2011-11-01

 
 
 
 
321

Skin Cancer  

Science.gov (United States)

Skin cancer is the most common form of cancer in the United States. The two most common types ... face, neck, hands, and arms. Another type of skin cancer, melanoma, is more dangerous but less common. Anyone ...

322

Skin Aging  

Science.gov (United States)

... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

323

Decreased host cell reactivation of UV-irradiated adenovirus 5 by fibroblasts from Cockayne's syndrome patients  

International Nuclear Information System (INIS)

Over a period of 5 years, 29 experiments were performed in which survival curves of UV-irradiated adenovirus were determined using fibroblast strains from 10 normal persons and from 7 persons having Cockayne's syndrome. In all of these, the survival of UV-irradiated adenovirus 5 was less when assayed using monolayers of fibroblasts from Cockayne's syndrome patients than from normal persons. Survival curves using normal fibroblasts were, within error, straight lines on a log survival vs. linear fluence plot. Survival curves obtained using Cockayne's syndrome fibroblasts showed 2 components: an initial sensitive component, reflecting the behavior of approx. 75% of the infected cells, followed by a component having normal sensitivity. In the 28 experiments that were considered reliable, 58 curves were done using Cockayne's fibroblasts, 41 using normal human fibroblasts. Although experimental variation was encountered, there was no individual case in which sensitivity as measured using Cockayne's was equal to (or less than) the sensitivity measured using normal fibroblasts. (author)

324

Development and evaluation of a skin organ model for the analysis of radiation effects  

Energy Technology Data Exchange (ETDEWEB)

Background and purpose: the reaction of tissues to ionizing radiation involves alterations in cell-cell and cell-matrix interactions mediated by cellular adhesion molecules. The aim of this study was to develop and evaluate an artificial skin organ model for the analysis of radiation effects. Material and methods: a human co-culture system consisting of the spontaneously immortalized keratinocyte cell line HaCaT and primary HDFa fibroblasts embedded into a collagen sponge was established. This skin organ model has been characterized and evaluated for its suitability for radiobiological investigations. For that purpose, expression of {beta}{sub 1}-integrin following irradiation was compared in the skin organ model and in HaCaT monolayer cells (FACScan and immunohistochemistry). Furthermore, the influence of ionizing radiation on DNA fragmentation was investigated in the skin organ model (TUNEL assay). Results: the novel skin organ model showed characteristics of human skin as demonstrated by cytokeratin and Ki-67 immunoreactivity and by electron microscopy. A single dose of 5 Gy X-irradiation induced an upregulation of {beta}{sub 1}-integrin expression both in the skin organ model and in HaCaT cells. Following irradiation, {beta}{sub 1}-integrin immunoreactivity was intensified in the upper layers of the epidermis equivalent whereas it was almost absent in the deeper layers. Additionally, irradiation of the skin organ model also caused a marked increase of DNA fragmentation. Conclusion: these results demonstrate that the novel skin organ model is suitable to investigate cellular radiation effects under three-dimensional conditions. This allows to investigate radiation effects which cannot be demonstrated in monolayer cell cultures. (orig.)

Meineke, V.; Mueller, K.; Ridi, R.; Cordes, N.; Beuningen, D. van [Inst. of Radiobiology of the German Armed Forces, Munich (Germany); Koehn, F.M.; Ring, J. [Clinic of Dermatology and Allergology at Biederstein, Technical Univ. of Munich (Germany); Mayerhofer, A. [Anatomic Inst., Univ. of Munich (Germany)

2004-02-01

325

Salmon and king crab trypsin stimulate interleukin-8 and matrix metalloproteinases via protease-activated receptor-2 in the skin keratinocytic HaCaT cell line.  

Science.gov (United States)

Occupational skin symptoms are prevalent among the workers of the seafood processing industry. In this study we investigate the role of salmon (Salmo salar) and king crab trypsin (Paralithodes camtschaticus) as inducers of inflammation in skin via secretion of inflammatory mediators. Human skin keratinocytes (HaCaT cells) were exposed to purified salmon and king crab trypsin. We observed that salmon trypsin enhanced the secretion of IL-8 and MMP-2 and crab trypsin enhanced the secretion of IL-8, MMP-2 and MMP-9 in a dose dependent manner. As protease activated receptors (PAR)-2 in skin are known to play an important role in physiology and pathology, we explored the involvement of these receptors in mediating the release of interleukin (IL)-8 and matrix metalloproteinase (MMP)-2 and -9 subsequent to exposure of skin keratinocytes to salmon and crab trypsin. In addition we observed that salmon and crab trypsin exhibit individual differences in stimulating the release of these inflammatory mediators. Finally, using specific small interfering RNA (siRNA) against PAR-2, we confirmed that the increase in secretion of IL-8, MMP-2 and MMP-9 in skin keratinocytes following exposure to salmon and crab trypsin was mediated via activation of PAR-2. These results suggest that exposure to proteases from the seafood may lead to inflammatory reactions in skin. PMID:24795235

Bhagwat, Sampada S; Larsen, Anett K; Winberg, Jan-Olof; Seternes, Ole-Morten; Bang, Berit E

2014-07-01

326

Age-related skin changes  

Directory of Open Access Journals (Sweden)

Full Text Available Age-related skin changes can be induced by chronological ageing, manifested in subcutaneous fat reduction, and photo-ageing eliciting increased elastotic substance in the upper dermis, destruction of its fibrilar structure, augmented intercellular substance and moderate inflammatory infiltrate. Forty-five biopsy skin samples of the sun-exposed and sun-protected skin were analyzed. The patients were both males and females, aged from 17 to 81 years. The thickness of the epidermal layers and the number of cellular living layers is greater in younger skin. The amount of keratohyaline granules is enlarged in older skin. Dermoepidermal junction is flattened and the presence of elastotic material in the dermis is pronounced with age. The amount of inflammatory infiltrate is increased, the fibrous trabeculae are thickened in older skin and the atrophy of the hypodermis is observed. Chronological ageing alters the fibroblasts metabolism by reducing their life span, capacity to divide and produce collagen. During ageing, the enlargement of collagen fibrils diminishes the skin elasticity.

Božani? Snežana

2012-01-01

327

Repair of DNA strand breaks in progeric fibroblasts and aging human diploid cells  

International Nuclear Information System (INIS)

The rate of rejoining of DNA strand breaks induced by 10 krad of ?-irradiation has been studied in normal human diploid skin fibroblasts and skin fibroblasts from six patients with symptoms of progeria. Although slightly more rapid in very early passage, the repair rate in normal cells was similar throughout most of their life span in vitro. The appearance of cells with reduced repair capacity was evident as the cultures became senescent. The progeric fibroblasts varied greatly in their response to irradiation. The rate of repair was greatly reduced in two strains, whereas in two others extensive DNA degradation was consistently observed in unirradiated cells. Degradation was apparently related to the radiation received from the incorporated radiolabel. Normal repair was seen in progeric fibroblasts transformed by SV40 virus

328

Effects of platelet-rich plasma on proliferation and myofibroblastic differentiation in human dermal fibroblasts.  

Science.gov (United States)

Platelet-rich plasma (PRP) is plasma that is produced from autologous blood, and its usefulness in plastic surgery and dermal wound healing has garnered attention in recent years. The aim of this study was to investigate the effects of PRP and platelet-poor plasma on the proliferation and differentiation of skin fibroblasts into myofibroblasts and on wound contraction using Western blotting, immunofluorescence staining, and collagen gels containing an embedded fibroblast model. PRP promotes proliferation of human dermal fibroblasts. PRP addition enhanced the expression of alpha-smooth muscle actin protein, a myofibroblast marker, as shown by immunofluorescence staining and Western blotting. PRP-treated groups demonstrated more marked contraction in the collagen gel model than the platelet-poor plasma and vehicle groups. PRP promotes proliferation, causes the differentiation of human dermal fibroblasts into myofibroblasts and promotes wound contraction, thus providing a potential therapeutic agent for skin wound healing. PMID:23038148

Kushida, Satoshi; Kakudo, Natsuko; Suzuki, Kenji; Kusumoto, Kenji

2013-08-01

329

Modulation of cellular senescence in fibroblasts and dermal papillae cells in vitro.  

Science.gov (United States)

A hexapeptide (Hexapeptide-11) of structure Phe-Val-Ala-Pro-Phe-Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity has demonstrated an ability to influence the onset of senescence in intrinsically aged fibroblasts, extrinsically aged fibroblasts, and extrinsically aged dermal papillae cells in vitro. The mechanism of senescence control is believed to be related to the peptide's ability to reversibly downregulate ataxia telangiectasia mutated (ATM) and p53 protein expression. The importance of p53 as the gatekeeping protein for monitoring cellular DNA damage is strategic for maintaining cellular health. ATM activates p53 by direct phosphorylation, causing cells to move into senescence which effectively moves them out of reproductive processes. Technologies that can influence ATM and p53 expression may offer unique benefits for controlling cellular senescence and effectively delaying cellular aging processes. The influence on ATM and p53 expression is noted to occur in both cell lines at peptide concentrations between 0.1% and 1.0%. The implications of these effects for aging benefits for skin and hair is important as, to date, no known small peptide has been suggested to demonstrate this effect in such a reversible and dose-dependent fashion. PMID:23578831

Gruber, James V; Ludwig, Philip; Holtz, Robert

2013-01-01

330

UV-induced DNA excision repair in rat fibroblasts during immortalization and terminal differentiation in vitro  

International Nuclear Information System (INIS)

UV-induced DNA excision repair was studied as DNA repair synthesis and dimer removal in rat fibroblast cultures, initiated from either dense or sparse inocula of primary cells grown from skin biopsies. During passaging in vitro an initial increase in DNA repair synthesis, determined both autoradiographically as unscheduled DNA synthesis (UDS) and by means of the BrdU photolysis assay as the number and average size of repair patches, was found to be associated with a morphological shift from small spindle-shaped to large pleiomorphic cells observed over the first twenty generations. In cell populations in growth crisis, a situation exclusively associated with thin-inoculum cultures in which the population predominantly consisted of large pleiomorphic cells, UDS was found to occur at a low level. After development of secondary cultures into immortal cell lines, both repair synthesis and morphology appeared to be the same as in the original primary spindle-shaped cells. At all passages the capacity to remove UV-induced pyrimidine dimers was found to be low, as indicated by the persistence of Micrococcus luteus UV endonuclease-sensitive sites. These results are discussed in the context of terminal differentiation and immortalization of rat fibroblasts upon establishment in vitro

331

Cell survival and DNA damage in fibroblasts following irradiation in vivo  

International Nuclear Information System (INIS)

The in vitro radiosensitivity of fibroblasts derived from patients undergoing radiotherapy has been investigated by a number of groups for possible prediction of normal tissue effects. Some studies have suggested a weak correlation between radiosensitivity and late normal tissue effects, such as fibrosis, but others have not. One possible reason may be that radiosensitivity in vivo is not always reflected by radiosensitivity in vitro. We are investigating whether heterogeneity in the normal tissue response of individual soft tissue sarcoma patients receiving pre-operative radiotherapy can be assessed by determining the number of micronuclei (DNA damage) in fibroblasts obtained and assayed directly from their skin after irradiation. The micronuclei are counted in binucleate cells in primary cultures of the fibroblasts at 72 hrs after treatment with cytochalasin B. This endpoint is dose responsive and in rats we have demonstrated that the presence of micronuclei can be detected months after irradiation. The assay can thus provide data for fibroblasts irradiated with fractionated doses in situ in tissue or for fibroblasts irradiated in vitro following outgrowth from the tissue. We have demonstrated that fibroblasts obtained directly from irradiated skin at surgery (approx 5-6 weeks after the end of radiotherapy) from a small number of soft tissue sarcoma patients given nominally similar preoperative irradiation (50Gy in 20 fractions to the tumor) show significant variability in response. Estimates of radiation dose to the skin have suggested that much of this variability may be dose related but further studies are underway with skin samples from regions given carefully measured doses. Comparisons with micronucleus formation for fibroblasts from the same patient irradiated in vitro are also underway. Our results demonstrate that DNA damage in fibroblasts in irradiated tissue can be assessed directly ex vivo and that DNA damage can be detected at 1-2 months after irradiation

332

Normal level of unscheduled DNA synthesis in Werner's syndrome fibroblasts in culture  

International Nuclear Information System (INIS)

We investigated UV-induced unscheduled DNA synthesis (UDS) in skin fibroblasts from seven unrelated patients with clinically apparent Werner's syndrome (WS). WS cells exhibited greatly abbreviated in vitro lifespans, the extents of which ranged from about 20 to 50% of the normal. However, WS cells in early and senescent phases of growth showed the same quantity of DNA repair following UV exposure as did normal fibroblasts

333

Experience of ReCell in Skin Cancer Reconstruction  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The ReCell system (Avita Medical) is a cell culture product that allows the immediate processingof a small split-thickness skin biopsy to produce a complete population of cells includingkeratinocytes, melanocytes, Langerhans cells and fibroblasts. This series is the first to highlightthe reconstructive applications of ReCell following ablative skin cancer surgery. The ReCell systemwas utilized for three patients following skin cancer excision. In two cases, the cells were appliedto forehead f...

Onur Gilleard; Nicholas Segaren; Ciaran Healy

2013-01-01

334

Morfometria de fibroblastos e fibrócitos durante o processo cicatricial na pele de coelhos da raça Nova Zelândia Branco tratados com calêndula / Morphometry of fibroblasts and fibrocytes during wound healing in the skin of rabbits of the New Zeland White breed treated with marigold  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O objetivo deste estudo foi avaliar a capacidade cicatrizante da calêndula (Calendula officinalis L.) sobre feridas cutâneas experimentais, em 15 coelhos, distribuídos em três grupos denominados: excipiente, calêndula e controle. Cada animal foi submetido à uma incisão cirúrgica de 6cm de compriment [...] o, lateral à coluna vertebral e suturada no padrão U. Os produtos avaliados foram colocados sobre as incisões durante sete dias na quantidade de 0,1ml (loção cremosa não-iônica - grupo excipiente; tintura de calêndula a 5% - grupo calêndula) e nos animais do grupo controle não se utilizou nenhum produto. A biópsia de pele foi realizada no 1°, 3°, 5° e 7° dia após a incisão cirúrgica para avaliação morfométrica do processo cicatricial, analisando-se o número de fibroblastos e fibrócitos. A morfometria foi realizada por meio de microscópio óptico adaptado a um sistema computadorizado de análise de imagens. De acordo com os resultados, a calêndula propiciou obtenção dos maiores valores médios das células envolvidas no processo cicatricial, os fibroblastos, deduzindo que a mesma, inferiu uma resposta mais satisfatória na cicatrização em relação aos demais tratamentos. Abstract in english The aim of this study was to evaluate the scarring capability of marigold (Calendula officinalis L.) on experimental skin wounds in 15 rabbits, distributed in three groups: excipient, marigold and control. Each animal was subjected to a surgical incision measuring 6cm in length, laterally to the spi [...] nal column and sutured in U-shape. Products evaluated were placed on the incisions for 7 days, at a rate of 0.1ml (nonionic creamy lotion - excipient group; 5% marigold extract) and no treatment was provided to control animals. Skin biopsy was performed on 1, 3, 5, and 7 days after wounding, for morphometric and cicatricial process evaluations. The morphometry was performed with an optical microscope adapted to a computadorized picture analysis system. The results showed that marigold allowed the highest growth rate in cells directly involved in the cicatricial process, the fibroblasts and fibrocytes and can therefore be considered the most satisfactory on the wound healing in comparison to the other treatments.

Leonardo de Oliveira, Pagnano; Silvana Martinez, Baraldi-Artoni; Maria Rita, Pacheco; Edanir dos, Santos; Daniela, Oliveira; Jeffrey Frederico, Lui.

335

Morfometria de fibroblastos e fibrócitos durante o processo cicatricial na pele de coelhos da raça Nova Zelândia Branco tratados com calêndula Morphometry of fibroblasts and fibrocytes during wound healing in the skin of rabbits of the New Zeland White breed treated with marigold  

Directory of Open Access Journals (Sweden)

Full Text Available O objetivo deste estudo foi avaliar a capacidade cicatrizante da calêndula (Calendula officinalis L. sobre feridas cutâneas experimentais, em 15 coelhos, distribuídos em três grupos denominados: excipiente, calêndula e controle. Cada animal foi submetido à uma incisão cirúrgica de 6cm de comprimento, lateral à coluna vertebral e suturada no padrão U. Os produtos avaliados foram colocados sobre as incisões durante sete dias na quantidade de 0,1ml (loção cremosa não-iônica - grupo excipiente; tintura de calêndula a 5% - grupo calêndula e nos animais do grupo controle não se utilizou nenhum produto. A biópsia de pele foi realizada no 1°, 3°, 5° e 7° dia após a incisão cirúrgica para avaliação morfométrica do processo cicatricial, analisando-se o número de fibroblastos e fibrócitos. A morfometria foi realizada por meio de microscópio óptico adaptado a um sistema computadorizado de análise de imagens. De acordo com os resultados, a calêndula propiciou obtenção dos maiores valores médios das células envolvidas no processo cicatricial, os fibroblastos, deduzindo que a mesma, inferiu uma resposta mais satisfatória na cicatrização em relação aos demais tratamentos.The aim of this study was to evaluate the scarring capability of marigold (Calendula officinalis L. on experimental skin wounds in 15 rabbits, distributed in three groups: excipient, marigold and control. Each animal was subjected to a surgical incision measuring 6cm in length, laterally to the spinal column and sutured in U-shape. Products evaluated were placed on the incisions for 7 days, at a rate of 0.1ml (nonionic creamy lotion - excipient group; 5% marigold extract and no treatment was provided to control animals. Skin biopsy was performed on 1, 3, 5, and 7 days after wounding, for morphometric and cicatricial process evaluations. The morphometry was performed with an optical microscope adapted to a computadorized picture analysis system. The results showed that marigold allowed the highest growth rate in cells directly involved in the cicatricial process, the fibroblasts and fibrocytes and can therefore be considered the most satisfactory on the wound healing in comparison to the other treatments.

Leonardo de Oliveira Pagnano

2008-09-01

336

Immunohistochemical characterization of human ?-irradiated skin  

International Nuclear Information System (INIS)

An immunohistochemical analysis was carried out in order to characterize the phenotypic modifications induced by ?-rays in human skin and to study the expression of some growth factors and growth factor receptors. Following radiotherapy for breast carcinoma, dermal fibroblasts of mammary skin are located superficially near the dermo-epidermal junction. They exhibit either vimentin-positive/smooth muscle cells (SMC) ?-actin-negative quiescent phenotype or vimentin-positive/SMC ?-actin-positive 'reactive' myofibroblastic phenotype but no desmin intermediate filaments. Using two polyclonal antibodies against Transforming Growth Factor ? (TGF?), we observed a specific intranuclear staining in fibroblasts and epidermal cells. Epidermal Growth Factor-Receptors (EGFR) were detected as membrane-associated in all the epidermal cell layers of irradiated skin and this pattern appears strongly associated with previous irradiation. These data suggest that complex cellular interactions are involved between epidermal and dermal cells and with extracellular matrix components, mediated by various cytokines, including TGF? and EGF-like factors

337

Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing.  

Science.gov (United States)

This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(?-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 ?m. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze. PMID:22415364

Huang, Wen-Ying; Yeh, Chia-Lin; Lin, Jui-Hsiang; Yang, Jai-Sing; Ko, Tse-Hao; Lin, Yu-Hsin

2012-06-01

338

Increased fibroblast functionality on CNN2-loaded titania nanotubes  

Directory of Open Access Journals (Sweden)

Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective tissue growth factor, fibroblast

Wei HB

2012-02-01

339

IMPACT OF AGE AND AUTOANTIBODY STATUS ON THE GENE EXPRESSION OF SCLERODERMA FIBROBLASTS IN RESPONSE TO SILICA STIMULATION  

Science.gov (United States)

Environmental factors are believed to play an important role in the pathogenesis of systemic sclerosis (SSc). Silica exposure has been implicated as potentially hazardous in epidemiological studies of SSc. It can activate fibroblasts to express profibrotic genes at certain conditions. The aim of this study is to examine whether the fibroblasts of SSc patients respond to silica particles with specific gene expressions differentially from normal control fibroblasts. The fibroblasts obtained from skin biopsies of 96 SSc patients and 104 controls were examined. Silica particles were used to perturb the cultures of the fibroblasts in time-course and dose-response assays. The transcript levels of COL1A2, COL3A1, MIVIP1, MMP3, TIMP3 and CTGF genes of the fibroblasts were measured with quantitative RT-PCR. The results showed that the expressions of all six genes in SSc fibroblasts under silica perturbation appeared significantly different from normal control fibroblasts. In age stratified analysis, compared to control fibroblasts, SSc fibroblasts from patients at age 30–40 years and 50–60 years displayed significantly decreased expressions of MMP1 gene in all dosage assays and increased expression of COL3A1 genes started at low dosages perturbation of silica particles, respectively. In autoantibody stratified analysis, specific gene expression patterns were significantly associated with autoantibody-subgroups of fibroblasts. A common feature of SSc fibroblasts was unstable and a wide range of gene expression changes in response to silica perturbation. Our studies may suggest an altered intrinsic dynamic control in SSc fibroblasts. In addition, sensitivity and specificity of SSc fibroblasts to potentially hazardous environmental trigger is age and autoantibody-subgroup-dependent. The fibroblasts of SSc patients at age 30–60 years may be more sensitive to silica perturbation toward a profibrotic gene expression.

Yang, Y.; Wei, P.; Guo, X.J.; Zhou, D.; Zhang, W.Z.; Assassi, S.; Zhou, X. D.

2014-01-01

340

Heparin fragments modulate the collagen phenotype of fibroblasts from radiation-induced subcutaneous fibrosis  

International Nuclear Information System (INIS)

Acute local gamma irradiation of porcine skin induces, as in human skin, an extensive and mutilating sclerosis characterized by continuous expansion of the fibrosis invading the adjacent muscle and by accumulation of the macromolecular components of the extracellular matrix. Collagen synthesis, content, and types were studied in the presence of heparin fragments (100 micrograms/10(6) cells) in the culture medium, by measuring the incorporation of the radiolabeled precursor [3H]proline into confluent primary cultures of porcine fibroblasts obtained from normal and irradiated fibrotic dermis. Enhancement in collagen biosynthesis and deposition and preferential increase in collagen type III synthesis were observed in fibrotic fibroblast cultures when compared to those in normal dermis fibroblasts. The total collagen synthesis and the rate of collagen hydroxylation appear unmodified by heparin fragments both in normal and in fibrotic fibroblast cultures. But heparin fragments induce a 10- and 2-fold decrease, respectively, in collagen type III and type V syntheses by fibrosis fibroblasts. As only minor effects upon collagen type III and V are observed in cultures of normal dermis fibroblasts, these results highly suggest that heparin fragments are capable of specifically modulating the collagen phenotype of fibroblasts derived from radiation-induced dermis fibrosis and thus are able to regulate the fibrotic process

 
 
 
 
341

Evaluation of the Behaviour of Wrinkles Fibroblasts and Normal Aged Fibroblasts in the Presence of Poly-L-Lactic Acid  

Directory of Open Access Journals (Sweden)

Full Text Available Background: Wrinkles are characterized by changes in the organization and structure of the dermis. Human wrinkle fibroblasts (WF have a different functional behaviour in comparison with normal-aged fibroblasts (NF. Decreases in migration capacities and collagen I synthesis are observed. Mitochondrial function is impaired with an increase in lactate production during aging. Sculptra® (poly-L-lactic acid: PLLA, a biodegradable synthetic polymer, is used for subcutaneous volume restoration. Thus we decided to investigate different fibroblast functions when placed in contact with PLLA. Objectives: The potential of PLLA to compensate for the reduction of metabolic activity, to restore the migration capacity of WF and to inhibit the lactate production, was investigated and compared to NF. Methods: Two different skin samples were used from each of the three women’s facelift (one inside a face wrinkle and one from normal aged skin. Collagen I, lactate productions and proliferation capacities were investigated on monolayer cultures. Migration properties were evaluated using three-dimensional collagen lattices. Results: PLLA increased collagen I synthesis, restored migration capacities and tended to decrease lactate production in WF, whereas PPLA stimulated proliferation in NF and tended to improve the migration of NF. Conclusion: These results suggested that PLLA from Sculptra® acted as a stimulus for collagen production in WF and that it is suitable for correcting skin depressions, such as wrinkles.

Hélène Tauzin

2012-03-01

342

Skin Cancer Non-Melanoma  

Medline Plus

Full Text Available ... carcinoma . Carcinoma is cancer that begins in the cells that cover or line an organ. More than 90% of all skin cancers are basal cell carcinoma. It is a slow-growing cancer that ...

343

Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.  

Science.gov (United States)

Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism. PMID:18258208

Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

2008-04-01

344

Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A  

International Nuclear Information System (INIS)

LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes

345

Skin cancer  

International Nuclear Information System (INIS)

This chapter reviews the development of skin cancer associated with radiation, focusing on the knowledge of A-bomb radiation-induced skin cancer. Since the discovery of X radiation in 1895, acute and chronic radiation dermatitis has been the first matter of concern. Then, in 1902, skin cancer found among radiological personnel has posed a social problem. In earlier study determining the relationship between skin cancer and A-bomb radiation, there is no increase in the incidence of either skin cancer or precancerous condition during the first 20 years after A-bombing. More recent studies have showed that there is a significant correlation between the incidence of skin cancer and distance from the hypocenter; and the incidence of skin cancer is found to be remarkably increased since 1975 in the group exposed at ?2,000 m. Excess relative risk is 2.2 at one Gy dose. The incidence of skin cancer is also found to be extremely increased with aging. Relative risk is high in younger A-bomb survivors at the time of exposure. Histologically, basal cell carcinoma is more senstitive to ionizing radiation than squamous cell carcinoma. (N.K.)

346

Gene targeting in adult rhesus macaque fibroblasts  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

Wolf Don P

2008-03-01

347

Effects of lunar and mars dust on HaCaT keratinocytes and CHO-K1 fibroblasts  

Science.gov (United States)

Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respira-tory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of lunar dust on human health is required to best support future missions to moon. In this study, we used different methods to assess the specific effects of lunar dust onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and since a well orchestrated program ensures proper repair in cases of wounding. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology, metabolic state, survival and proliferation of the cells were determined. Cytotoxi-city and proliferation were measured using the MTT assay, metabolic activity was analyzed by vital staining of mitochondria, and phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells. It was found that the effects of the two types of soils on the different features of both cell lines varied to considerable extent, and that lunar and mars dust were specific in their effects. The obtained results will facilitate detailed inves-tigations of dust exposure during wound healing and will ease risk assessment studies for e.g. lunar lander approaches. The investigations will help to assess the risks and to determine safety measures to be taken during extraterrestrial expeditions in order to minimize risks to human health associated with exposure of human skin to dust contaminants.

Brix, Klaudia; Slenzka, Klaus; Rehders, Maren; Sadhukhan, Annapurna; Mistry, Rima; Duenne, Matthias; Kempf, Juergen

348

Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts  

Science.gov (United States)

Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respiratory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of extraterrestrial lunar dusts on human health is required to best support future missions to moon, mars or other destinations. In this study, we used several methods to assess the specific effects of extraterrestrial dusts onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and because a well orchestrated program ensures proper wound healing. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology and viability of the cells were determined. Cytotoxicity was measured using the MTT assay and by monitoring culture impedance, while phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells which was also investigated by propidium iodide intake. It was found that the effects of the two types of dust simulants on the different features of both cell lines varied to a considerable extent. Moreover, proliferation of HaCaT keratinocytes, as analyzed by Ki67 labeling, was suppressed in sub-confluent cultures exposed to lunar dust simulant. Furthermore, experimental evidence is provided for a delay in regeneration of keratinocyte monolayers from scratch-wounding when exposed to lunar dust simulant. The obtained results will facilitate further investigations of dust exposure during wound healing and will ease risk assessment studies e.g., for lunar lander approaches. The investigations will help to determine safety measures to be taken during extraterrestrial expeditions in order to minimize risks to human health associated with exposure of human skin to dust contaminants.

Rehders, Maren; Grosshäuser, Bianka B.; Smarandache, Anita; Sadhukhan, Annapurna; Mirastschijski, Ursula; Kempf, Jürgen; Dünne, Matthias; Slenzka, Klaus; Brix, Klaudia

2011-04-01

349

Skin and Sports  

Science.gov (United States)

In this lesson, students learn about the importance of proper protection from common skin conditions when they engage in sports-related activities. This lesson draws attention to fact that the body's own first line of defense against infectious agents is to keep them from entering or settling in the body. The students break into groups to provide a list of risk factors for each sports-related activity. They come together and compare notes. This sparks the lesson and instruction on how one should protect the skin when participating in sports. Links to other resources for further inquiry are given.

American Association for the Advancement of Science (;)

2006-02-13

350

HSP27 as a biomarker for predicting skin irritation in human skin and reconstructed organotypic skin model.  

Science.gov (United States)

In vitro alternative tests aiming at replacing the traditional animal test for predicting the irritant potential of chemicals have been developed, but the assessing parameters or endpoints are still not sufficient. To discover novel endpoints for skin irritation responses, 2DE-based proteomics was used to analyze the protein expression in human skin exposed to sodium lauryl sulfate (SLS) following the test protocol of the European Centre for the Validation of Alternative Methods (ECVAM) in the present study. HSP27 was up-regulated most significantly among the eight identified proteins, consistent with our previous reports. Acid and basic chemicals were applied on human skin for further validation and results showed that the up-regulated expression of HSP27 was induced in 24h after the exposure. Skin-equivalent constructed with fibroblasts, basement membrane and keratinocytes was used to investigate the potential of HSP27 as a biomarker or additional endpoint for the hazard assessment of skin irritation. Our skin-equivalent (Reconstructed Organotypic Skin Model, ROSM) had excellent epidermal differentiation and was suitable for the skin irritation test. HSP27 also displayed an up-regulated expression in the ROSM in 24h after the irritants exposure for 15min. All these results suggest that HSP27 may represent a potential marker or additional endpoint for the hazard assessment of skin irritation caused by chemical products. PMID:24503015

Chen, Hongxia; Li, Shuhua; Meng, Tian; Zhang, Lei; Dai, Taoli; Xiang, Qi; Su, Zhijian; Zhang, Qihao; Huang, Yadong

2014-04-21

351

Persistent Down-Regulation of Fli1, a Suppressor of Collagen Transcription, in Fibrotic Scleroderma Skin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The molecular and cellular mechanisms that maintain proper collagen homeostasis in healthy human skin and are responsible for the dysregulated collagen synthesis in scleroderma remain primarily unknown. This study demonstrates that Fli1 is a physiological negative regulator of collagen gene expression in dermal fibroblasts in vitro and in human skin in vivo. This conclusion is supported by the analyses of mouse embryonic fibroblasts from Fli1?/?, Fli1+/?, and Fli1+/+ mice. In cultured h...

Kubo, Masahide; Czuwara-ladykowska, Joanna; Moussa, Omar; Markiewicz, Margaret; Smith, Edwin; Silver, Richard M.; Jablonska, Stefania; Blaszczyk, Maria; Watson, Dennis K.; Trojanowska, Maria

2003-01-01

352

Skin Cancer in Skin of Color  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Skin cancers in skin of color often present atypically or with advanced stage in comparison to Caucasian patients. Health care providers must maintain a high index of suspicion when examining skin lesions in skin of color.

Bradford, Porcia T.

2009-01-01

353

Skin Cancer  

Science.gov (United States)

... Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2009_pops09/ , based on November 2010 SEER ... 90. 13 Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin ...

354

Hyperelastic skin  

Science.gov (United States)

Hyperelastic skin is most often seen in the Ehlers-Danlos syndrome. People with this disorder have very elastic ... any member of your family been diagnosed with Ehlers-Danlos syndrome? What other symptoms are present?

355

Sun & Skin  

Science.gov (United States)

In this lesson from Science NetLinks, students discuss what they already know about the impact sun exposure has on their skin and what they typically do to protect themselves, if anything. Using a number of online resources, they then learn how to care for their skin, about the damaging effects of sunburns and tanning, and how sunscreens provide protection from the sun's harmful UV rays.

Science Netlinks;

2005-03-10

356

Effects of the basic fibroblast growth factor and its anti-factor in the healing and collagen maturation of infected skin wound / Efeitos do fator de crescimento de fibroblastos básico e do seu anti-fator na cicatrização e maturação do colágeno de feridas infectadas de pele  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese OBJETIVO: Avaliar os efeitos do fator de crescimento de fibroblastos básico (FCFâ) e do anti-FCFâ na cicatrização e maturação do colágeno em feridas infectadas na pele de ratos. MÉTODOS: Um estudo experimental foi realizado em 60 ratos Wistar, divididos em dois grupos (A e B). Cada grupo foi dividid [...] os em 03 subgrupos A1,B1; A2,B2 e A3,B3. Após anestesia com pentobarbital sódico intraperitoneal, foram feitas duas feridas abertas de 1cm² na pele no dorso distando 4cm uma da outra. Essas feridas foram denominadas feridas F1 (para análise inflamatória) e F2 (para estudo do colágeno). No grupo A(n=30), as feridas foram contaminadas com solução multibateriana e no grupo B (n=30) as feridas não foram contaminadas. As feridas receberam tratamento tópico com aplicação única. Nos subgrupos A1 e B1 foram tratadas com solução salina tópica, as dos subgrupos A2 e B2 foram tratadas com o FCFâ e nos subgrupos A3 e B3 foram tratadas com FCFâ e com o anti-FCFâ. Os dados formam analisados pelos testes ANOVA de Tukey, considerando p Abstract in english PURPOSE: The infection is one of the main factors that affect the physiological evolution of the surgical wounds. The aim of this work is to evaluate the effects of fibroblast growth factor (FGFâ) and anti-FGFâ in the healing, synthesis and maturation of collagen when topically used on infected skin [...] wounds of rats. METHODS: An experimental study was perfomed in 60 male Wistar rats. All animals were divided in two groups (A and B). Each group was divided in three subgroups A1, B1; A2, B2 and A3, B3. After anesthesia with pentobarbital, two open squared wounds (1cm²), 4cm distant to each other, were done in the dorsal skin of all the rats. In group A (n=30) the wounds were contaminated with multibacterial standard solution, and in group B(n=30) the wounds were maintained sterile. These wounds were named F1 (for inflammation analysis) and F2 (for collagen study). The open wounds of A1 and B1 rats were topically treated with saline solution, A2 and B2 were treated with FGFâ and subgroups A3 and B3 were treated with FGFâ and anti-FGFâ. The rats were observed until complete epitelization of F2 wounds for determination of healing time and the expression of types I and III collagen, using Picro Sirius Red staining. Inflammatory reaction in F1 wounds was studied using hematoxilineosin staining. The three variable was measured by the Image Pro-Plus Média Cybernetics software. The statistical analysis was performed by ANOVA and Tukey test, considering p

Antonio Medeiros, Dantas Filho; José Lamartine de Andrade, Aguiar; Luís Reginaldo de Menezes, Rocha; Ítalo Medeiros, Azevedo; Esdras, Ramalho; Aldo Cunha, Medeiros.