WorldWideScience

Sample records for situ stabilization technique

  1. In situ containment and stabilization of buried waste

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  2. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    McManus, R.W. [SOUND Environmental Services, Inc., Dallas, TX (United States); Grajczak, P. [ARCO, Los Angeles, CA (United States); Wilcoxson, J.C. [ARCO, Plano, TX (United States); Webster, S.D. [Environmental Protection Agency, Dallas, TX (United States)

    1997-12-31

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR{trademark}), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment.

  3. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    Yuan, Sheng Sam

    2010-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry currently under development at the ALS.

  4. In situ solution mining technique

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  5. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. PMID:20430516

  6. Laboratory-performance criteria for in situ waste-stabilization materials

    The Department of Energy (DOE) Landfill Stabilization Focus Area is investigating a variety of in situ placement methods, grout materials, and characterization techniques for the stabilization of buried low-level transuranic-contaminated waste at Department of Energy sites. In situ stabilization involves underground injection or placement of substances to isolate, treat, or contain buried contaminants. Performance criteria were developed to evaluate various candidate stabilization materials for both long-term stabilization and interim stabilization or retrieval. The criteria are go/no-go, ready, and preliminary. The criterion go/no-go eliminates technologies that are not applicable for in situ treatment of buried waste. The criterion ready indicates that the technology is sufficiently developed and proven to be field demonstrated full-scale. The criterion preliminary indicates the prospective technologies to be potentially applicable to in situ buried waste stabilization, but further development is needed before the technology is ready for field-scale demonstration

  7. In situ vitrification: application analysis for stabilization of transuranic waste

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10-5 parts per year. 32 figures, 30 tables

  8. In situ containment and stabilization of buried waste. Annual report FY 1992

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  9. Remediation of SRS Basins by In Situ Stabilization/Solidification

    In the late summer of 1998, the Savannah River Site began remediation of two radiologically contaminated basins using in situ stabilization. These two high-risk, unlined basins contain radiological contaminants, which potentially pose significant risks to human health and the environment. The selected remedy involves in situ stabilization/solidification of the contaminated wastes (basin and pipeline soils, pipelines, vegetation, and other debris) followed by installation of a low permeability soil cover

  10. Optical metrology techniques for dimensional stability measurements

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  11. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting

  12. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  13. Review of subsidence and stabilization techniques

    In Britain the damage caused by underground coal mining operations approximates to about 100 million pounds Sterling per annum, most of the damage resulting from longwall mining operations. Causes of subsidence can be attributed to the following factors: (1) roof failure (2) pillar failure (3) floor movements. Currently, in Britain, the mining industry is undergoing a state of decline for economic reasons. Consequently, the number of old coal sites available for development schemes has increased. Therefore, the problems associated with subsidence can be segregated into two parts. The first being the mitigation of the effects of subsidence on structures on actively mined areas. The second being the stabilization and rehabilitation of ground over and around old mine sites for new development schemes. In the former case the stabilization techniques employed may be local or global, depending on the problems encountered in any particular area. In the latter case, generally, grouting techniques are employed. This paper aims to review the causes of subsidence and the techniques used to minimize its effect on structures. Also, more economic alternative methods of ground stabilization techniques are described and proposed, to be used in this area of ground engineering

  14. In-situ stabilization of mixed waste contaminated soil

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235U, and 99Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m3/d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10-8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  15. Temperature-dependent properties of silver-poly(methylmethacrylate) nanocomposites synthesized by in-situ technique

    Singho, Noorsaiyyidah Darman; Johan, Mohd Rafie; Lah, Nurul Akmal Che

    2014-01-01

    Ag/PMMA nanocomposites were successfully synthesized by in-situ technique. Transmission electron microscopy (TEM) images show that the particles are spherical in shape and their sizes are dependent on temperature. The smallest particle achieved high stability as indicated from Zeta sizer analysis. The red shift of surface plasmon resonance (SPR) indicated the increases of particle sizes. X-ray diffraction (XRD) patterns exhibit a two-phase (crystalline and amorphous) structure of Ag/PMMA nano...

  16. In-situ containment and stabilization of buried waste

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect

  17. Transient Stability Assessment using Decision Trees and Fuzzy Logic Techniques

    A. Y. Abdelaziz; M. A. El-Dessouki

    2013-01-01

    Many techniques are used for Transient Stability assessment (TSA) of synchronous generators encompassing traditional time domain state numerical integration, Lyapunov based methods, probabilistic approaches and Artificial Intelligence (AI) techniques like pattern recognition and artificial neural networks.This paper examines another two proposed artificial intelligence techniques to tackle the transient stability problem. The first technique is based on the Inductive Inference Reasoning (IIR)...

  18. In situ active experiment techniques to study the ionosphere

    In situ active experiment techniques can be used to study the natural ionosphere, to simulate natural or artificial ionospheric disturbances, and to provide a test bed for radiowave propagation studies. The opportunity for remote optical diagnostics and a relatively short ionization time in full sunlight make barium the most popular ion-producing in situ experiment material. Active observation experiments for tracing plasma irregularities are discussed, taking into account the Periquito Dos experiment and the Chemically Active Material Ejected from Orbit (CAMEO) experiment. The Periquito Dos experiment utilized barium ions to trace out the 'throat' convection pattern in the low-altitude dayside magnetospheric cusp region. The CAMEO experiment involved thermite barium releases from a satellite at 965-km altitude over the polar cap. The simulation of ionospheric disturbances is also considered along with a topside auroral ionosphere modification experiment

  19. Application of in situ stress estimation methods in wellbore stability analysis under isotropic and anisotropic conditions

    Gholami, Raoof; Rasouli, Vamegh; Aadnoy, Bernt; Mohammadi, Ramin

    2015-08-01

    Estimation of in situ stresses is a key step in many petroleum engineering applications, ranging from wellbore stability to sanding analysis and hydraulic fracturing design. Direct techniques conventionally used to determine in situ stresses are indeed very time consuming and expensive. These measurements would also be restricted as to the depth of acquisition, and generalization of the results to entire rock masses may not yield representative results. In this paper, applications of three indirect methods-Zoback’s polygon, shear moduli, and poroelastic-are studied to assess their applicability in providing reliable stress estimation under isotropic and anisotropic conditions. Determination of elastic, strength, and in situ stress parameters according to the assumption of each method for one of the vertical wells drilled in south Iran indicated that the shear moduli method is an appropriate approach for prediction of maximum horizontal stress within an interval where sufficient field data including leak-off tests are acquired. However, the poroelastic method seems to be a better method in prediction of in situ stresses under anisotropic conditions. This might be due to the presence of excessive shale formations in subsurface layers, causing structural or intrinsic anisotropy-based methods such as poroelastic equations to deliver more accurate results. However, making general conclusions based on studying a single vertical wellbore may not be sufficient, and therefore further studies are required.

  20. Insights into hydrophobic molecule release from polyelectrolyte multilayer films using in situ and ex situ techniques.

    Shin, Yongjin; Cheung, Weng Hou; Ho, Tracey T M; Bremmell, Kristen E; Beattie, David A

    2014-10-28

    We report on the loading and release of curcumin (a hydrophobic polyphenol with anti-inflammatory and anti-bacterial properties) from polyelectrolyte multilayers composed of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS). We have used the in situ techniques of attenuated total reflectance (ATR) FTIR spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) to study the formation of the PEM and the incorporation of curcumin, providing direct evidence of the incorporation, in terms of molecular vibrations and gravimetric detection. The release of curcumin was followed using ex situ measurements of UV-visible spectroscopy of PEM films on quartz plates, in addition to in situ ATR FTIR measurements. Release was studied as a function of salt concentration of the release solution (0.001 M NaCl; 1 M NaCl). UV-visible spectroscopy indicated that salt concentration of the release solution had a major impact on release rates, with higher salt giving faster/more extensive release. However, prolonged timescale immersion and monitoring with UV-visible spectroscopy indicated that sample dehydration/rehydration cycling (required to measure UV absorbance) was responsible for the release of curcumin, rather than immersion time. In situ measurements of release kinetics with ATR FTIR confirmed that release does not occur spontaneously while the multilayer remains hydrated. PMID:25226281

  1. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. PMID:26496130

  2. [Unilateral triangular lumbopelvic stabilization: indications and techniques].

    Hoffmann, M F; Dudda, M; Schildhauer, T A

    2013-11-01

    Operative fixation has become treatment of choice for unstable sacral fractures. Osteosynthesis for these fractures results in loss of reduction in up to 15%. Vertical sacral fractures involving the S1 facet joint (Isler 2 and 3) may lead to multidirectional instability. Multidirectional instability of the posterior pelvic ring and lumbopelvic junction may be stabilized and forces balanced by a so-called lumbopelvic triangular fixation. Lumbopelvic triangular fixation combines vertical fixation between the lumbar vertebral pedicle and the ilium, with horizontal fixation, as an iliosacral screw or a transiliacal plate osteosynthesis. The iliac screw is directed from the posterior superior iliac spine (PSIS) to the anterior inferior iliac spine (AIIS). Thereby, lumbopelvic fixation decreases the load to the sacrum and SI joint and transfers axial loads from the lumbar spine directly onto the ilium. Triangular lumbopelvic fixation allows early full weight bearing and therefore reduces prolonged immobilization. The placement of iliac screws may be a complex surgical procedure. Thus, the technique requires thorough surgical preparation and operative logistics. Wound-related complications may occur. Preexisting Morell-Lavalée lesions increase the risk for infection. Prominent implants cause local irritation and pain. Hardware prominence and pain are markedly reduced with screw head recession into the PSIS. PMID:24233083

  3. Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions

    MacCuspie, R.I.; Allen, A.J.; Hackley, V.A. (NIST)

    2014-09-24

    The dispersion stabilization of silver nanoparticles (AgNPs) in synthetic lung fluid was studied to interrogate the effects on colloidal stability due to the principal constituents of the fluid. The colloidal stability of 20 nm citrate-AgNPs dispersed in the presence of each constituent of the synthetic lung fluid (individually, the complete fluid, and without additives) was observed during titration of increasing sodium chloride concentration. A variety of complementary in situ measurement techniques were utilized, including dynamic light scattering, ultraviolet-visible absorption spectroscopy, atomic force microscopy, and small-angle X-ray scattering, which provided a collective set of information that enabled far better understanding of the dispersion behavior in the fluid than any one technique alone. It was observed that AgNPs continued to adsorb bovine serum albumin (BSA) protein from the synthetic lung fluid solution as the sodium chloride concentration increased, until a maximum BSA coating was achieved prior to reaching the physiological sodium chloride concentration of 154 mmol L{sup -1}. BSA was determined to be the constituent of the synthetic lung fluid that is required to provide colloidal stability at high salt loadings, though the phospholipid constituent exerts a subtle effect. Additionally, as AgNPs are a distinctly different class of nanoparticles apart from the carbon nanotubes and titanium dioxide nanoparticles initially reported to be dispersible using this fluid, this work also demonstrates the broad applicability of synthetic lung fluid in providing stable dispersions for engineered nanoparticles for use in biological assays.

  4. Depth enhancement techniques for the in situ vitrification process

    In-situ vitrification (ISV) is a process by which electrical energy is supplied to a soil/waste matrix. The resulting Joule heat raises the temperature of the soil/waste matrix, producing a pool of molten soil. Since its inception, there have been many successful applications of the technology to both staged and actual waste sites. However, there has been some difficulty in extending the attainable treatment melt depth to levels greater than 5 m. Results obtained from application of two novel approaches for extending the ultimate treatment depth attainable with in-situ vitrification (ISV) are presented. In the first, the electrode design is modified to concentrate the Joule heat energy delivered to the soil/waste matrix in the lower region of the target melt zone. This electrode design has been dubbed the hot-tip electrode. Results obtained from both computational and experimental investigations of this design concept indicate that some benefit toward ISV depth enhancement was realized with these hot-tip electrodes. A second, alternative approach to extending process depth with ISV involves initiating the melt at depth and propagating it in either vertical direction (e.g., downward, upward, or both) to treat the target waste zone. A series of engineering-scale experiments have been conducted to assess the benefits of this approach. The results from these tests indicate that ISV may be effectively initiated and sustained using this subsurface start-up technique. A survey of these experiments and the associated results are presented herein, together with brief discussion of some considerations regarding setup and implementation of this subsurface start-up technique

  5. Well completion for in situ heating oil recovery technique

    Chacon, O. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). INTEVEP

    2009-07-01

    This paper discussed thermal well completion technologies for use in Venezuela's heavy and extra-heavy oil reservoirs. A review and comparison of thermal well completions was conducted and a specialized software program was used to select appropriate well completion technologies for an oilfield in Venezuela's Orinoco oil belt. The study focused on in situ combustion (ISC) methods that inject air into the reservoir while igniting the oil to generate a combustion front. The method was shown to increase oil mobility and facilitate its displacement towards production wells. Cemented and perforated liners were evaluated in this study along with methods for preparing injection wells. Methods of controlling sand production during ISC were also discussed and steam flooded and ISC well completion techniques were compared. The thermal loads for well completions undergoing ISC processes were analyzed. A tubing stress analysis was also presented. It was concluded that the simulations validated the proposed ISC well completion strategy. 6 refs., 4 tabs., 4 figs.

  6. Transient Stability Assessment using Decision Trees and Fuzzy Logic Techniques

    A. Y. Abdelaziz

    2013-09-01

    Full Text Available Many techniques are used for Transient Stability assessment (TSA of synchronous generators encompassing traditional time domain state numerical integration, Lyapunov based methods, probabilistic approaches and Artificial Intelligence (AI techniques like pattern recognition and artificial neural networks.This paper examines another two proposed artificial intelligence techniques to tackle the transient stability problem. The first technique is based on the Inductive Inference Reasoning (IIR approach which belongs to a particular family of machine learning from examples. The second presents a simple fuzzy logic classifier system for TSA. Not only steady state but transient attributes are used for transient stability estimation so as to reflect machine dynamics and network changes due to faults.The two techniques are tested on a standard test power system. The performance evaluation demonstrated satisfactory results in early detection of machine instability. The advantage of the two techniques is that they are straightforward and simple for on-line implementation.

  7. COMPARISON OF DIFFERENT TECHNIQUES FOR DESIGN OF POWER SYSTEM STABILIZER

    M. Ravindra Babu,; A. Ramulu; B. Durga Prasad,; Doradla. Prathap Hari Krishna,

    2011-01-01

    The major problem in power system operation is related to small signal instability caused by insufficient damping in the system. The most effective way of countering this instability is to use auxiliary controllers called power system stabilizers, to produce additional damping during low frequency oscillations in the system. Heffron-Phillip’s Model of a synchronous machine is commonly used in small signal stability analysis. Different techniques for designing of power system stabilizer is pro...

  8. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr{sup 4+} organic salts

    Strini, Alberto, E-mail: alberto.strini@itc.cnr.it [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy); Sanson, Alessandra; Mercadelli, Elisa [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Bendoni, Riccardo [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Dipartimento di Scienze e Tecnologie Chimiche e Centro NAST - Università di Roma Tor Vergata, via della Ricerca Scientifica, I-00133 Roma (Italy); Marelli, Marcello; Dal Santo, Vladimiro [CNR–Istituto di Scienze e Tecnologie Molecolari, via Golgi, 19, I-20133 Milano (Italy); Schiavi, Luca [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy)

    2015-08-30

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr{sup 4+} organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr{sup 4+} organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m{sup −3}) and low UV-A irradiance (180 μW cm{sup −2}). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  9. Power system stabilizers based on modern control techniques

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  10. In-situ stabilization of the Geiger (C and M Oil) Superfund Site

    The Geiger (C and M Oil) Superfund Site is the first US Army Corps of Engineers managed soil remediation project which utilized the in-situ stabilization/solidification technique to remediate the soil. This project involved the remediation of approximately 23,000 cubic yards of contaminated soil. Contaminants of concern included chromium, lead, PCB'S, toluene, benzene, and other organic compounds. Clean-up criteria for the stabilized material was equal to the National Primary Drinking Water Regulations, when tested using the TCLP leachate extraction method. Chromium, lead, and toluene were the main contaminants of concern, with TCLP clean-up goals of 150, 15 and 1,000 parts per billion (ppb), respectively. This National Priorities List (NPL) site is located near Charleston, SC and was an abandoned old waste oil facility that utilized unlined shallow trenches for the storage of waste oil. This paper summarizes the initial testing programs and the final production work at the site. Extensive testing was performed throughout all phases of the project. This testing was performed for the purpose of mix optimization, quality assurance, and verification testing. Specific parameters tested included: TCLP testing of organics, metals and PCBs, permeability testing, and unconfirmed compression strength

  11. Polycaprolactone-based in situ implant containing curcumin-PLGA nanoparticles prepared using the multivariate technique.

    Kasinathan, Narayanan; Amirthalingam, Muthukumar; Reddy, Neetinkumar D; Vanthi, Meenashi B; Volety, Subrahmanyam M; Rao, Josyula Venkata

    2016-09-01

    Studies on the effect of curcumin/PLGA ratio (CPR), stabilizer (PVA) concentration, homogenization speed, homogenization time, and sonication time on mean particle size (MPS) and percentage drug encapsulation (PDE) were performed using the multivariate technique. MPS and PDE were found to be more dependent on the interaction of sonication time with the other variables. Curcumin was released in a sustained manner from curcumin-PLGA nanoparticles (CPN). CPN improved the survival rate of Ehrlich ascites carcinoma (EAC)-bearing mice and controlled the EAC-induced change in hematological parameters. Histopathology of vital organs showed that the formulation was safe. Polycaprolactone was used in preparing an in situ implant containing CPN. PMID:26121330

  12. In-Situ Behavior of Geosynthetically Stabilized Flexible Pavement

    Appea, Alexander Kwasi

    1997-01-01

    The purpose of a geotextile separator beneath a granular base, or subbase in a flexible pavement system is to prevent the road aggregate and the underlying subgrade from intermixing. It has been hypothesized that in the absence of a geotextile, intermixing between base course aggregate and soft subgrade occurs. Nine heavily instrumented flexible pavement test sections were built in Bedford County Virginia to investigate the benefits of geosynthetic stabilization in flexible pavements. ...

  13. Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL

    Eggli, S; Kohlhof, H.; Zumstein, M.; Henle, P; Hartel, M; Evangelopoulos, D. S.; Bonel, H; Kohl, S.

    2015-01-01

    PURPOSE Replacement of the torn anterior cruciate ligament (ACL) with a transplant is today`s gold standard. A new technique for preserving and healing the torn ACL is presented. HYPOTHESIS a dynamic intraligamentary stabilization (DIS) that provides continuous postinjury stability of the knee and ACL in combination with biological improvement of the healing environment [leucocyte- and platelet-rich fibrin (L-PRF) and microfracturing] should enable biomechanically stable ACL self-...

  14. Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL

    Eggli, S; Kohlhof, H.; Zumstein, M.; Henle, P; Hartel, M; Evangelopoulos, D. S.; Bonel, H; Kohl, S.

    2014-01-01

    Purpose Replacement of the torn anterior cruciate ligament (ACL) with a transplant is today`s gold standard. A new technique for preserving and healing the torn ACL is presented. Hypothesis: a dynamic intraligamentary stabilization (DIS) that provides continuous postinjury stability of the knee and ACL in combination with biological improvement of the healing environment [leucocyte- and platelet-rich fibrin (L-PRF) and microfracturing] should enable biomechanically stable ACL self-healing. Me...

  15. Technique for plasma filament stabilization in a tokamak

    The invention is related to the field of automatic control of thermonuclear device processes and can be used in control systems of plasma filament stabilization by large radius in tokamak type thermolnuclear devices. The economic effect of the suggested technique is caused by improvement of stabilization of optimum (from the viewpoint of the decrease of plasma energy losses) plasma filament position in the tokamak-reactor which results in the decrease of power of additional plasma heating systems

  16. Investigating In Situ Properties of Recycled Asphalt Pavement with Foamed Asphalt as Base Stabilizer

    Antonis Kaltsounis; Vasilis Papavasiliou; Andreas Loizos; Christina Plati

    2010-01-01

    The objective of the present study was to conduct a comprehensive field experiment for the in situ assessment of in-depth recycled asphalt pavement using foamed asphalt as a stabilization treatment for base works. For this purpose Nondestructive Testing (NDT) data collected using the Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) along a foamed asphalt recycled pavement section was thoroughly analysed. Critical issues including the stabilized material curing and the con...

  17. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment.

    Pawar, Pravin; Kashyap, Heena; Malhotra, Sakshi; Sindhu, Rakesh

    2013-01-01

    The objective of the present study was to design ophthalmic delivery systems based on polymeric carriers that undergo sol-to-gel transition upon change in temperature or in the presence of cations so as to prolong the effect of HP- β -CD Voriconazole (VCZ) in situ gelling formulations. The in situ gelling formulations of Voriconazole were prepared by using pluronic F-127 (PF-127) or with combination of pluronic F-68 (PF-68) and sodium alginate by cold method technique. The prepared formulations were evaluated for their physical appearance, drug content, gelation temperature (T gel), in vitro permeation studies, rheological properties, mucoadhesion studies, antifungal studies, and stability studies. All batches of in situ formulations had satisfactory pH ranging from 6.8 to 7.4, drug content between 95% and 100%, showing uniform distribution of drug. As the concentration of each polymeric component was increased, that is, PF-68 and sodium alginate, there was a decrease in T gel with increase in viscosity and mucoadhesive strength. The in vitro drug release decreased with increase in polymeric concentrations. The stability data concluded that all formulations showed the low degradation and maximum shelf life of 2 years. The antifungal efficiency of the selected formulation against Candida albicans and Asperigillus fumigatus confirmed that designed formulation has prolonged effect and retained its properties against fungal infection. PMID:23762839

  18. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO₃ biomineral in crayfish gastroliths.

    Akiva-Tal, Anat; Kababya, Shifi; Balazs, Yael S; Glazer, Lilah; Berman, Amir; Sagi, Amir; Schmidt, Asher

    2011-09-01

    Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs--gastroliths, readily providing the Ca(2+) needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO(3), chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith "soluble matrix." The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular CP distance), an interaction that must be mediated by Ca(2+). The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO(3). Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ. PMID:21873244

  19. Improved physical stability and injectability of non-aqueous in situ PLGA microparticle forming emulsions.

    Voigt, M; Koerber, M; Bodmeier, R

    2012-09-15

    The goal of this study was to obtain physically stable non-aqueous in situ forming microparticle (ISM) emulsions capable of forming biodegradable microparticles upon injection. ISM emulsions consist of a biocompatible organic PLGA solution dispersed in a continuous oil phase prepared in a two-syringe/connector system prior to administration. A variety of parenteral approved excipients were tested for a stability-enhancing effect and possible stabilization mechanisms evaluated. Glycerol monostearate (GMS) showed superior stabilizing potential prolonging the emulsion stability from a few minutes to more than 12h. Flow behavior analysis, differential scanning calorimetry, polarized light- and Cryo-electron microscopy revealed, that the stabilization was caused by an immediate, more than 5-fold viscosity increase in the continuous phase after emulsification and by a stabilized interface through a liquid crystalline GMS layer around the polymer solution droplets. Despite the viscosity increase the injectability of the stabilized ISM emulsion was improved by about 30% compared to the corresponding highly viscous PLGA solution (in situ implant) due to a pronounced shear thinning of the GMS containing oil phase. The injectability improvement allows a faster administration or enables the use of thinner needles and hence reduced patient discomfort. PMID:22677417

  20. Using optical flow techniques to electronically stabilize scene motion

    Sebok, Dale R.; Sebok, Thomas J.

    1993-10-01

    A major consideration in designing imaging systems that will be placed on moving platforms is the stability of the image. For example, the tracking or cuing of small objects requires a very steady image sequence. To provide the necessary stabilized platform typically requires the use of an inertial stabilized gimbaling system. Such gimbaling systems are both expensive and bulky. These factors are becoming increasingly important to the military community. The cost of a gimbal system can preclude its use on disposable ordinance systems and can be a significant portion of the cost of such systems. A low cost and low bulk alternative is needed. This paper describes a method for performing electronic stabilization using optical flow techniques. Electronic stabilization allows either the elimination of the inertial stabilized platform or the use of a low cost gimbal. The operating scenario available to electronic stabilization is examined and the resulting basic system requirements are derived. A model- based approach for deciding sensor motion is described. The utilization of the motion information for performing motion compensation is presented. Finally, preliminary results are given.

  1. In-situ containment and stabilization of buried waste: Annual report FY 1994

    The two landfills of specific interest are the Chemical Waste Landfill (CWL) and the Mixed Waste Landfill (MWL), both located at Sandia National Laboratory. The work is comprised of two subtasks: (1) In-Situ Barriers and (2) In-Situ Stabilization of Contaminated Soils. The main environmental concern at the CWL is a chromium plume resulting from disposal of chromic acid and chromic sulfuric acid into unlined pits. This program has investigated means of in-situ stabilization of chromium contaminated soils and placement of containment barriers around the CWL. The MWL contains a plume of tritiated water. In-situ immobilization of tritiated water with cementitious grouts was not considered to be a method with a high probability of success and was not pursued. This is discussed further in Section 5.0. Containment barriers for the tritium plume were investigated. FY 94 work focused on stabilization of chromium contaminated soil with blast furnace slag modified grouts to bypass the stage of pre-reduction of Cr(6), barriers for tritiated water containment at the MWL, continued study of barriers for the CWL, and jet grouting field trials for CWL barriers at an uncontaminated site at SNL. Cores from the FY 93 permeation grouting field trails were also tested in FY 94

  2. Ion exchange blinding-preventing technique of in-situ uranium leaching in Qianerkuai uranium deposit

    Qianerkuai uranium deposit contains high carbonates and rich clay. It is a low penetrability sandstone uranium ore which can be exploited by in-situ leaching technique. During the pilot production, the blinding phenomena occurred because of its low penetrability. According to the in-situ uranium leaching mechanism, the 001 x 7 cation exchange resin was selected to remove Ca2+ and Mg2+ from the injection liquid, which are the main cations to form the precipitation. The experiment results show that the removal effect of Ca2+ and Mg2+ is excellent. This technique can be applied in in-situ leaching of uranium. (authors)

  3. Occipitocervical contoured rod stabilization: Does it still have a role amidst the modern stabilization techniques?

    Kalra Samir; Jain Vijendra; Jaiswal Awadesh; Behari Sanjay

    2007-01-01

    Background: The occipitocervical contoured rod (CR) stabilization for use in craniovertebral junction (CVJ) pathologies is an effective and economical technique of posterior fusion (PF). Aims: The various indications for CR in CVJ pathologies are discussed. Settings and Design: Retrospective analysis. Materials and Methods: Fifty-four patients (mean age: 31.02 ± 13.44 years; male: female ratio=5.75:1) who underwent CR stabilization are included. The majority had congenital atlan...

  4. Application of in-situ XRF technique on some aeromagnetic anomalies point of Xitianshan

    In-situ X-ray fluorescence technique is a convenient, efficient and economic field survey technique. In the project the technique was applied to the determining concentrations of Fe, Cu, Zn, Pb, As, Mn, Ni, in rock outcrops and soil of the aeromagnetic anomalies areas and we analysed distributions of these elements for aeromagnetic anomalies evaluation to provide the basis. It comes to a conclusion that in-situ X-ray fluorescence technique provides a convenient and fast method for aeromagnetic anomalies confirmation. (authors)

  5. Single Molecule Techniques for Advanced in situ Hybridization

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E

    2003-02-03

    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  6. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation.

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; von der Kammer, Frank; Hofmann, Thilo

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a "green" agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. PMID:26596889

  7. Implanter Source Life and Stability Improvement Using In-Situ Chemical Cleaning

    Current 300 mm fabs rely heavily on automation to provide manufacturing efficiency. While implant processes and equipment follow this trend, tool availability and maintenance cycles are often driven by the ion source and adjacent areas which suffer from premature failures due to unwanted material deposits. While working in a high volume production environment, side by side comparative data has been collected on two tools running similar processes, with one tool having integrated in-situ cleaning cycles and the other with no in-situ cleaning. This paper will discuss significant improvements achieved in beam stability, glitch rate, ion source lifetime and maintenance cycles which were achieved on the tool with integrated in-situ cleaning. A program was established at Texas Instruments' DMOS6 wafer fab in early 2007 to explore and document process and equipment performance. Other critical areas, such as particle and metals contamination will be discussed with inferences as to potential yield improvements.

  8. Heterodyne stabilization as a possible laser frequency stabilization technique for LISA

    Eichholz, Johannes

    The Laser Interferometer Space Antenna is a joint NASA/ESA mission aimed at the detection of gravitational wave radiation in the frequency range from 30 uHz to 0.1 Hz. LISA uses a modified Michelson interferometer setup consisting of three identical spacecraft, arranged in an equilateral triangular constellation. It measures the differential length changes of the 5 · 109 m long interferometer arms between free-floating proof masses housed within each spacecraft. Laser pre-stabilization is required in conjunction with Time-Delay Interferometry data post-processing to monitor the armlength changes with picometer precision. A modulation/demodulation technique to stabilize the frequency of the lasers to an optical reference cavity has been proposed for a long time, but it requires several additional optical components and would need to be built as a separate system. Using a different sensing tech-nique, heterodyne interferometry, we propose a modified stabilization scheme, which similarly transfers the stability of an optical reference cavity to the laser frequency. It only uses com-ponents that are already available in the LISA assembly and can easily be integrated into the optical bench design. A similar stabilization scheme is going to be used in LISA Pathfinder. We will discuss this technique in detail and present initial experimental results, as well as predicted performances on the LISA bench.

  9. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  10. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

    Rudolf, Chris; Boesl, Benjamin; Agarwal, Arvind

    2016-01-01

    In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

  11. Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant.

    Zhu, Yue; Pei, Xiaomei; Jiang, Jianzhong; Cui, Zhenggang; Binks, Bernard P

    2015-12-01

    In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization-destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants. PMID:26542227

  12. Thermal stability of in situ synthesized (TiB + La2O3)/Ti composite

    Highlights: → The material is in situ synthesized (TiB + La2O3)/Ti composite. → The TRIPLEX heat treatment is adopted. → The thermal stability of titanium matrix composites is investigated. → The decrease of thermal stability is attributed to the precipitation of Ti3Al and silicides. → The reinforcements can improve thermal stability of titanium matrix composites. - Abstract: Thermal stability of in situ synthesized (TiB + La2O3)/Ti composite is investigated. The phase analysis is identified by X-ray diffraction. Microstructure of the melted and forged titanium matrix composites (TMCs) after heat treatment is characterized by means of optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The room temperature tensile properties after an additional thermal exposure at 873 K, 923 K or 973 K for 100 h are tested. After the thermal exposure, the strength of specimen increases and ductility decreases. This is attributed to precipitation of ordered α2 phase (Ti3Al) and S1 (silicide) in the titanium matrix composites after the thermal exposure.

  13. Stability of numerical integration techniques for transient rotor dynamics

    Kascak, A. F.

    1977-01-01

    A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.

  14. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  15. Development of an in situ calibration technique for combustible gas detectors

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  16. Use of agar agar stabilized milled zero-valent iron particles for in situ groundwater remediation

    Schmid, Doris; Velimirović, Milica; Wagner, Stephan; Micić Batka, Vesna; von der Kammer, Frank; Hofmann, Thilo

    2015-04-01

    A major obstacle for use of nanoscale zero-valent iron (nZVI) particles as a nontoxic material for effective in situ degradation of chlorinated aliphatic hydrocarbons (CAHs) is the high production cost. For that reason, submicro-scale milled zero-valent iron particles were recently developed (milled ZVI, UVR-FIA, Germany) by grinding macroscopic raw materials of elementary iron as a cheaper alternative to products produced by solid-state reduction. However, milled ZVI particles tend to aggregate and due to the rather large particle size (d50= 11.9 µm) also rapidly sediment. To prevent aggregation and consequently sedimentation of milled ZVI particles and therefore improve the mobility after in situ application, the use of a stabilizer is considered in literature as a most promising option. In this study, milled ZVI particles (1 g L-1 of particle concentration) were stabilized by environmentally friendly polymer agar agar (>0.5 g L-1), which had a positive impact on the milled ZVI stability. Sedimentation rate was significantly decreased by increasing the suspension viscosity. Column transport experiments were performed for bare and agar agar stabilized milled ZVI particles in commercially available fine grained quartz sand (DORSILIT® Nr.8, Gebrüder Dorfner GmbH Co, Germany) and different porous media collected from brownfields. The experiments were carried out under field relevant injection conditions of 100 m d-1. The maximal travel distance (LT) of less than 10 cm was determined for non-stabilized suspension in fine grained quartz sand, while agar agar (1 g L-1) stabilized milled ZVI suspension revealed LT of 12 m. Similar results were observed for porous media from brownfields showing that mobility of agar agar stabilized particle suspensions was significantly improved compared to bare particles. Based on the mobility data, agar agar stabilized milled zero-valent iron particles could be used for in situ application. Finally, lab-scale batch degradation

  17. In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte

    Agarkov, D A; Tsybrov, F M; Tartakovskii, I I; Kharton, V V; Bredikhin, S I

    2016-01-01

    A new experimental approach for in-situ Raman spectroscopy of the electrode | solid electrolyte interfaces in controlled atmospheres, based on the use of optically transparent single-crystal membranes of stabilized cubic zirconia, has been proposed and validated. This technique makes it possible to directly access the electrochemical reaction zone in SOFCs by passing the laser beam through single-crystal electrolyte onto the interface, in combination with simultaneous electrochemical measurements. The case study centered on the analysis of NiO reduction in standard cermet anodes under open-circuit conditions, demonstrated an excellent agreement between the observed kinetic parameters and literature data on nickel oxide. The porous cermet reduction kinetics at 400-600C in flowing H2-N2 gas mixture can be described by the classical Avrami model, suggesting that the reaction rate is determined by the metal nuclei growth limited by Ni diffusion. The advantages and limitations of the new experimental approach were...

  18. Localized in-situ polymerization on graphene surfaces for stabilized graphene dispersions

    Das, Sriya; Wajid, Ahmed S.; Shelburne, John L.; Liao, Yen-Chi; Green, Micah J.

    2010-01-01

    We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. To address this problem, a physisorbed polymer layer is used...

  19. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn;

    2013-01-01

    The sintering of asymmetric CGO bi-layers (thin dense membrane on a porous support; Ce0.9Gd0.1O1.95-delta = CGO) with Co3O4 as sintering additive has been optimized by combination of two in situ techniques. Optical dilatometry revealed that bi-layer shape and microstructure are dramatically chang...

  20. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  1. Application of optical techniques for in situ analysis of plasma facing carbon tiles

    Optical absorption/emission spectroscopy is considered to be used for in situ characterization of plasma facing carbon tiles and quantitative evaluation of tritium. In this paper we have applied ex situ laser Raman spectroscopy for carbon tiles used as first wall and divertor in JT-60 exposed to HH discharge plasma to verify the applicability of the technique. The analysis shows that the micro-structure of the carbon tile surfaces is modified in a similar way like damaging by energetic ion irradiation and that one can get information of how graphite structures are damaged by plasma exposure or what kind of structures the redeposited carbon obtains.

  2. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    Satyawali, Yamini

    2010-09-01

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200mgL-1), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET® assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co. © 2010 Elsevier B.V.

  3. Ultra-Small Fatty Acid-Stabilized Magnetite Nanocolloids Synthesized by In Situ Hydrolytic Precipitation

    Kheireddine El-Boubbou

    2015-01-01

    Full Text Available Simple, fast, large-scale, and cost-effective preparation of uniform controlled magnetic nanoparticles remains a major hurdle on the way towards magnetically targeted applications at realistic technical conditions. Herein, we present a unique one-pot approach that relies on simple basic hydrolytic in situ coprecipitation of inexpensive metal salts (Fe2+ and Fe3+ compartmentalized by stabilizing fatty acids and aided by the presence of alkylamines. The synthesis was performed at relatively low temperatures (~80°C without the use of high-boiling point solvents and elevated temperatures. This method allowed for the production of ultra-small, colloidal, and hydrophobically stabilized magnetite metal oxide nanoparticles readily dispersed in organic solvents. The results reveal that the obtained magnetite nanoparticles exhibit narrow size distributions, good monodispersities, high saturation magnetizations, and excellent colloidal stabilities. When the [fatty acid] : [Fe] ratio was varied, control over nanoparticle diameters within the range of 2–10 nm was achieved. The amount of fatty acid and alkylamine used during the reaction proved critical in governing morphology, dispersity, uniformity, and colloidal stability. Upon exchange with water-soluble polymers, the ultra-small sized particles become biologically relevant, with great promise for theranostic applications as imaging and magnetically targeted delivery vehicles.

  4. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Liu, Ken C [ORNL

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  5. Occipitocervical contoured rod stabilization: Does it still have a role amidst the modern stabilization techniques?

    Kalra Samir

    2007-01-01

    Full Text Available Background: The occipitocervical contoured rod (CR stabilization for use in craniovertebral junction (CVJ pathologies is an effective and economical technique of posterior fusion (PF. Aims: The various indications for CR in CVJ pathologies are discussed. Settings and Design: Retrospective analysis. Materials and Methods: Fifty-four patients (mean age: 31.02 ± 13.44 years; male: female ratio=5.75:1 who underwent CR stabilization are included. The majority had congenital atlantoaxial dislocation (AAD; n=50; two had CVJ tuberculosis; one each had rheumatoid arthritis and C2-3 listhesis, respectively. The indications for CR fusion in congenital AAD were associated Chiari 1 malformation (C1M (n=29; occipitalized C1 arch and/or malformed or deficient C1 or C2 posterior elements (n=9; hypermobile AAD (n=2; and, rotatory AAD (n=3. Contoured rod as a revision procedure was also performed in seven patients. Most patients were in poor grade (18 in Grade III [partial dependence for daily needs] and 15 in Grade IV [total dependence]; 15 patients were in Grade II [independent except for minor deficits] and six in Grade I [no weakness except hyperreflexia or neck pain]. Results: Twenty-four patients improved, 18 stabilized and six deteriorated at a mean follow-up (FU of 17.78 ± 19.75 (2-84 months. Six patients were lost to FU. In 37 patients with a FU of at least three months, stability and bony union could be assessed. Thirty-one of them achieved a bony fusion/ stable construct. Conclusions: Contoured rod is especially useful for PF in cases of congenital AAD with coexisting CIM, cervical scoliosis, sub-axial instability and/or asymmetrical facet joints. In acquired pathologies with three-column instability, inclusion of joints one level above the affected one by using CR, especially enhances stability.

  6. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    Baier, S.; Rochet, A.; Hofmann, G. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kraut, M. [Institute for Micro Process Engineering, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Grunwaldt, J.-D., E-mail: grunwaldt@kit.edu [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  7. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  8. Fragrance composition of Dendrophylax lindenii (Orchidaceae using a novel technique applied in situ

    James J. Sadler

    2012-02-01

    Full Text Available The ghost orchid, Dendrophylax lindenii (Lindley Bentham ex Rolfe (Orchidaceae, is one of North America’s rarest and well-known orchids. Native to Cuba and SW Florida where it frequents shaded swamps as an epiphyte, the species has experienced steady decline. Little information exists on D. lindenii’s biology in situ, raising conservation concerns. During the summer of 2009 at an undisclosed population in Collier County, FL, a substantial number (ca. 13 of plants initiated anthesis offering a unique opportunity to study this species in situ. We report a new technique aimed at capturing floral headspace of D. lindenii in situ, and identified volatile compounds using gas chromatography mass spectrometry (GC/MS. All components of the floral scent were identified as terpenoids with the exception of methyl salicylate. The most abundant compound was the sesquiterpene (E,E-α-farnesene (71% followed by (E-β-ocimene (9% and methyl salicylate (8%. Other compounds were: linalool (5%, sabinene (4%, (E-α-bergamotene (2%, α-pinene (1%, and 3-carene (1%. Interestingly, (E,E-α-farnesene has previously been associated with pestiferous insects (e.g., Hemiptera. The other compounds are common floral scent constituents in other angiosperms suggesting that our in situ technique was effective. Volatile capture was, therefore, possible without imposing physical harm (e.g., inflorescence detachment to this rare orchid.

  9. Thermodynamic stability of in situ W–ZrC and W–Zr(CN) composites

    Kim, Jae-Hee [Korea Aerospace Research Institute, Daejeon 305-806 (Korea, Republic of); Zhe, Gao [Saint-Gobain Research Shanghai Co., Ltd, Wenjing-road, Minhang-district, Shanghai 200245 (China); Lim, Jaehyuk [Samsung Electronics, Yongin 446-811 (Korea, Republic of); Park, Choongkwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-10-25

    Powders of W–ZrC and W–Zr(CN) were carbothermally synthesized in situ from milled mixtures of graphite, WO{sub 3} and ZrO{sub 2}. The thermal stability of Zr(CN) in a W matrix was simulated and compared with that of ZrC in W in terms of free energy change and carbide coarsening. Carbon and nitrogen had high mutual affinity in Zr(CN) of B1 crystal structure, which led their activity curves to exhibit strong negative deviation from ideal mixing behavior. Zr(CN) was more stable than ZrC up to 2075 K; however, a microstructural study showed that it became less stable than ZrC at around 1975 K. This result is attributed to the decreasing thermodynamic stability of ZrN with increasing temperature. Other transition metal carbonitrides containing group 4–6 elements are expected to show similar coarsening behaviors at high temperatures. - Highlights: • The Zr(CN) phase formed due to the high affinity between C and N in ZrC. • A complete reversal of the slope is found in the formation energy curves. • The growth of the carbonitride is due to the nitrogen, reducing the stability. • Solid solutions containing group 4 elements would show similar growth behavior.

  10. Rapid detection of chromosome 18 aneuploidies in amniocytes by using primed in situ labeling (PRINS) technique

    杨建滨; 郑树

    2002-01-01

    This paper presents a feasible method for rapid detection of the interphase nuclei of uncultured amniocytes for chromosomes 18 by using our modified primed in situ labeling (PRINS) technique. A total of 262 independent, uncultured amniotic fluid samples were analysed in a blind fashion before the karyotype was available. In addition, 62 samples were examined by fluorescence in situ hybridization (FISH) for comparison. In more than 95% of the samples PRINS reactions with primer 18cen were successfully induced. Two samples were properly identified and correctly scored as trisomic 18. PRINS reaction could be performed automatically in less than one hour with a programmable thermocycler. Our studies showed that the PRINS technique is simple, rapid and cost-effective. It is as sensitive and specific as FISH; can enhance the accuracy of standard cytogenetic analysis; and allows identification of chromosomes 18 aneuploidies in uncultured amniocytes in significantly less time.

  11. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    Spence, R. D. [Oak Ridge National Lab., TN (United States); Kauschinger, J. L. [Ground Environmental Services, Inc., Alpharetta, GA (United States)

    1997-05-01

    The Gunite{trademark} and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI{trademark}), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. T his is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation.

  12. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    The Gunite trademark and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI trademark), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. This is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation

  13. Stability of added and in situ-produced vitamin B12 in breadmaking.

    Edelmann, Minnamari; Chamlagain, Bhawani; Santin, Marco; Kariluoto, Susanna; Piironen, Vieno

    2016-08-01

    Vitamin B12 exists naturally in foods of animal origin and is synthesised only by certain bacteria. New food sources are needed to ensure vitamin B12 intake in risk groups. This study aimed to investigate the stability of added cyanocobalamin (CNCbl, chemically modified form) and hydroxocobalamin (OHCbl, natural form) and in situ-synthesised vitamin B12 in breadmaking. Samples were analysed both with a microbiological (MBA) and a liquid chromatographic (UHPLC) method to test applicability of these two methods. Proofing did not affect CNCbl and OHCbl levels. By contrast, 21% and 31% of OHCbl was lost in oven-baking steps in straight- and sponge-dough processes, respectively, whereas CNCbl remained almost stable. In sourdough baking, 23% of CNCbl and 44% of OHCbl were lost. In situ-produced vitamin B12 was almost as stable as added CNCbl and more stable than OHCbl. The UHPLC method showed its superiority to the MBA in determining the active vitamin B12. PMID:26988471

  14. Performance of the In Situ Microcosm Technique for Measuring the Degradation of Organic Chemicals in Aquifers

    Nielsen, Per H.; Christensen, Thomas Højlund; Albrechtsen, Hans-Jørgen

    1996-01-01

    An in situ microcosm (ISM) consists of a stainless steel cylinder isolating about 2 L of the aquifer and is equipped with valves allowing for loading and sampling from the ground surface. During the last five years, this technique has been used frequently to study the degradation of organic...... chemicals in polluted and pristine aquifers representing different redox environments. The ISM technique has great potential for providing field-relevant degradation potentials and rate constants, but care must be taken in using the equipment and interpreting the results. This paper provides details...

  15. Shape-and size-controlled Ag nanoparticles stabilized by in situ generated secondary amines

    Ramírez-Meneses, E., E-mail: esther.ramirez@ibero.mx [Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Distrito Federal C.P. 01219 (Mexico); Montiel-Palma, V. [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, Morelos C.P. 62209 (Mexico); Domínguez-Crespo, M.A.; Izaguirre-López, M.G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-IPN, Unidad Altamira. Km 14.5 Carretera Tampico-Puerto Industrial, 89600 Altamira, Tamaulipas (Mexico); Palacios-Gonzalez, E. [Laboratorio de Microscopia de Ultra alta Resolución, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas No. 152, C.P. 07730 México D.F. (Mexico); Dorantes-Rosales, H. [Departamento de Metalurgia, E.S.I.Q.I.E.-I.P.N., Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación. Gustavo A. Madero, C.P. 07738 México D.F. (Mexico)

    2015-09-15

    Highlights: • Ag nanoparticles were generated from Ag amido complexes AgN{sup i}Pr{sub 2} and AgN(SiMe{sub 3}){sub 2}. • Ag nanoparticles were stabilized by in situ generated HN{sup i}Pr{sub 2} or HN(SiMe{sub 3}){sub 2}. • 1 or 5 equiv. of ethylenediamine as additional capping agent decreases the average size of the particles. • Ethylenediamine favor the formation of spherical particles. - Abstract: Silver amides such as AgN{sup i}Pr{sub 2} and AgN(SiMe{sub 3}){sub 2} have been employed successfully as precursors for the yield synthesis of silver nanoparticles under mild conditions of dihydrogen gas reduction (2 atm) in organic media. Transmission electron microscopy (TEM) showed the formation of silver nanoparticles with FCC structure, variously sized from 26 to 35 nm for AgN{sup i}Pr{sub 2} and from 14 to 86 nm for AgN(SiMe{sub 3}){sub 2}, the synthesis could take place in absence of added stabilizers due to the in situ formation of secondary amines from the reaction of dihydrogen gas with the amide ligands of the silver precursor. Indeed, the presence of HNR{sub 2} (R = iPr{sub 2}, N(SiMe{sub 3}){sub 2}) on the surface of the nanoparticle was confirmed by spectroscopic means. Finally, the addition of ethylenediamine as additional capping agent allowed not only the control of the structural characteristics of the resulting Ag nanoparticles (well-dispersed with spherical shape), but that regarding the nanoparticle size as it inhibited overgrowth, limiting it to ca. 25 nm.

  16. Shape-and size-controlled Ag nanoparticles stabilized by in situ generated secondary amines

    Highlights: • Ag nanoparticles were generated from Ag amido complexes AgNiPr2 and AgN(SiMe3)2. • Ag nanoparticles were stabilized by in situ generated HNiPr2 or HN(SiMe3)2. • 1 or 5 equiv. of ethylenediamine as additional capping agent decreases the average size of the particles. • Ethylenediamine favor the formation of spherical particles. - Abstract: Silver amides such as AgNiPr2 and AgN(SiMe3)2 have been employed successfully as precursors for the yield synthesis of silver nanoparticles under mild conditions of dihydrogen gas reduction (2 atm) in organic media. Transmission electron microscopy (TEM) showed the formation of silver nanoparticles with FCC structure, variously sized from 26 to 35 nm for AgNiPr2 and from 14 to 86 nm for AgN(SiMe3)2, the synthesis could take place in absence of added stabilizers due to the in situ formation of secondary amines from the reaction of dihydrogen gas with the amide ligands of the silver precursor. Indeed, the presence of HNR2 (R = iPr2, N(SiMe3)2) on the surface of the nanoparticle was confirmed by spectroscopic means. Finally, the addition of ethylenediamine as additional capping agent allowed not only the control of the structural characteristics of the resulting Ag nanoparticles (well-dispersed with spherical shape), but that regarding the nanoparticle size as it inhibited overgrowth, limiting it to ca. 25 nm

  17. Dynamic Probing of Nanoparticle Stability In Vivo: A Liposomal Model Assessed Using In Situ Microdialysis and Optical Imaging

    Chien-Chung Jeng

    2011-01-01

    Full Text Available Nanoparticle-mediated drug delivery and controlled release has been a vigorous research area in contemporary nanomedicine. The in vivo stability of nanoparticle delivered on site is a prerequisite for the design of drug-controlled release by any means. In this study, the first methodology comprised of microdialysis and optical imaging to assess the liposome stability in vivo is reported. Macroscopically, we demonstrated the DPPG liposomes with negative surface charge fast accumulated in the rat liver upon their i.v. administration using optical imaging. Microscopically, the concurrent analysis of fluorescent molecules leaching from the liposomes, in situ sampled using microdialysis probe, provides the dynamic information of stability of DPPG liposomes locus in quo. The current combination of in situ microdialysis and optical imaging possesses a great potential for use as a platform technology to evaluate the nanoparticle stability and the bioavailability of drug payload released on targeted site in vivo.

  18. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies

    Lonardelli, I., E-mail: il244@cam.ac.uk [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); University of Trento, Materials Engineering and Industrial Technologies, via Mesiano 77, 38123 Trento (Italy); Bortolotti, M. [Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento (Italy); Beek, W. van [Swiss-Norwegian Beamlines, ESRF, BP 220, 38043 Grenoble Cedex (France); Girardini, L.; Zadra, M. [K4-Sint, via Dante 300, 38057 Pergine Valsugana (Italy); Bhadeshia, H.K.D.H. [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2012-10-15

    It has been possible to produce incredibly fine plates of bainitic ferrite separated by a percolating network of retained austenite in a medium carbon steel produced by mechanical alloying followed by spark plasma sintering and isothermal heat treatment. This is because the sintering process limits the growth of the austenite grains to such an extent that the martensite-start temperature is suppressed in spite of the medium carbon concentration. Furthermore, the fine austenite grain size accelerates the bainite transformation, which can therefore be suppressed to low temperatures to obtain a nanostructure. Microscopy and in situ synchrotron X-ray diffraction were used to investigate the morphology and the thermal stability of the retained austenite during continuous heating. These latter experiments revealed a gradient of carbon concentration in the retained austenite and a reduced thermal stability in high carbon film-austenite. It was also possible to correlate the evolution of defect density and carbon depletion in both retained austenite and bainitic ferrite during tempering.

  19. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies

    It has been possible to produce incredibly fine plates of bainitic ferrite separated by a percolating network of retained austenite in a medium carbon steel produced by mechanical alloying followed by spark plasma sintering and isothermal heat treatment. This is because the sintering process limits the growth of the austenite grains to such an extent that the martensite-start temperature is suppressed in spite of the medium carbon concentration. Furthermore, the fine austenite grain size accelerates the bainite transformation, which can therefore be suppressed to low temperatures to obtain a nanostructure. Microscopy and in situ synchrotron X-ray diffraction were used to investigate the morphology and the thermal stability of the retained austenite during continuous heating. These latter experiments revealed a gradient of carbon concentration in the retained austenite and a reduced thermal stability in high carbon film-austenite. It was also possible to correlate the evolution of defect density and carbon depletion in both retained austenite and bainitic ferrite during tempering.

  20. Radiation stability of ceramic waste forms determined by in situ electron microscopy and He ion irradiation

    White, T.J. [Univ. of South Australia, Ingle Farm (Australia); Mitamura, H.; Hojou, K.; Furuno, S. [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1994-12-31

    The radiation stability of polyphase titanate ceramic waste forms was studied using analytical transmission electron microscopy, in combination with in situ irradiation by 30 keV He{sup +} ions, followed by staged annealing. Two experiments were conducted. In the first, a reconnaissance investigation was made of the stabilities of the synthetic minerals hollandite, zirconolite, and perovskite when subjected to a total dose of 1.8 x 10{sup 17} He{sup +} cm{sup {minus}2}. It was found that all phases amorphized at approximately the same rate, but perovskite recovered its structure more rapidly and at lower temperatures than the other phases. In particular, annealing for 10 minutes at 1000{degrees}C was sufficient for perovskite to completely regain its crystallinity, while zirconolite and hollandite were only partially restored by these conditions. In the second experiment, the response of a thin hollandite crystal to irradiation was examined by selected area electron diffraction. At a dose of 1.5 x 10{sup 15} He{sup +} cm{sup {minus}2} its incommensurate superstructure was disrupted, but even at a dose of 3 x 10{sup 16} He cm{sup {minus}2} the hollandite subcell was largely intact. For this dose, total recovery was achieved by annealing for 1 minute at 1000{degrees}C.

  1. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  2. Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization

    Ding Wei

    2010-11-01

    Full Text Available Abstract Background Protein biomarkers will play a pivotal role in the future of personalized medicine for both diagnosis and treatment decision-making. While the results of several pre-clinical and small-scale clinical studies have demonstrated the value of protein biomarkers, there have been significant challenges to translating these findings into routine clinical care. Challenges to the use of protein biomarkers include inter-sample variability introduced by differences in post-collection handling and ex vivo degradation of proteins and protein modifications. Results In this report, we re-create laboratory and clinical scenarios for sample collection and test the utility of a new tissue stabilization technique in preserving proteins and protein modifications. In the laboratory setting, tissue stabilization with the Denator Stabilizor T1 resulted in a significantly higher yield of phospho-protein when compared to standard snap freeze preservation. Furthermore, in a clinical scenario, tissue stabilization at collection resulted in a higher yield of total phospho-protein, total phospho-tyrosine, pErkT202/Y204 and pAktS473 when compared to standard methods. Tissue stabilization did not have a significant effect on other post-translational modifications such as acetylation and glycosylation, which are more stable ex-vivo. Tissue stabilization did decrease total RNA quantity and quality. Conclusion Stabilization at the time of collection offers the potential to better preserve tissue protein and protein modification levels, as well as reduce the variability related to tissue processing delays that are often associated with clinical samples.

  3. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique

    Muhammad, Shoaib; Lee, Sangwoo; Kim, Hyunchul; Yoon, Jeongbae; Jang, Donghyuk; Yoon, Jaegu; Park, Jin-Hwan; Yoon, Won-Sub

    2015-07-01

    Thermal stability is one of the critical requirements for commercial operation of high energy lithium-ion batteries. In this study, we use in situ X-ray diffraction technique to elucidate the thermal degradation mechanism of 0.5Li2MnO3-0.5LiNi0.33Co0.33Mn0.33O2 lithium rich cathode material in the absence and presence of electrolyte to simulate the real life battery conditions and compare its thermal behavior with the commercial LiNi0.33Co0.33Mn0.33O2 cathode material. We show that the thermal induced phase transformations in delithiated lithium rich cathode material are much more intense compared to similar single phase layered cathode material in the presence of electrolyte. The structural changes in both cathode materials with the temperature rise follow different trends in the absence and presence of electrolyte between 25 and 600 °C. Phase transitions are comparatively simple in the absence of electrolyte, the fully charged lithium rich cathode material demonstrates better thermal stability by maintaining its phase till 379 °C, and afterwards spinel structure is formed. In the presence of electrolyte, however, the spinel structure appears at 207 °C, subsequently it transforms to rock salt type cubic phase at 425 °C with additional metallic, metal fluoride, and metal carbonate phases.

  4. A novel in-situ sampling and VFA sensor technique for anaerobic systems

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    A key information for understanding and controlling the anaerobic biogas process is the concentration of Volatile Fatty Acids (VFA). However, access to this information has so far been limited to off-line measurements by manual time and labour consuming methods. We have developed a new technique...... that has made it possible to monitor VFA on-line in one of the most difficult media: animal slurry or manure. A novel in-situ filtration technique has made it possible to perform microfiltration inside the reactor system. This filter enables sampling from closed reactor systems without large scale...... pumping and filtering. Using this filtration technique together with commercially available membrane filters we have constructed a VFA sensor system that can perform automatic analysis on animal slurry at a frequency as high as every 15 minutes. The VFA sensor has been tested for a period of more than 60...

  5. In situ synthesis of DNA micro-arrays using typography technique

    2007-01-01

    A novel typography technique was developed to in situ synthesize oligonucleotide arrays on glass slide,which has the celerity,high spatial resolution,lower cost,reliable operation,and high synthetic efficiency.The principle and process of the typography technique for fabricating gene-chips have been described in detail.A suit of poly(terafluoroethylene)devices for synthesizing oligonucleotide arrays were designed and prepared,and the fiber tubes with a number of nano-or micron-channels were em- ployed.The oligonucleotide arrays of 16 and 160 features with four different probes were synthesized using the typography technique.The four specific oligonucleotide probes including the matched and the mismatched by the fluorescent target sequence gave obviously different hybridization fluorescent signals.It was indicated that the gene-chip fabricated by the typography method could be used to rapidly screen single-nucleotide polymorphisms(SNP)and to detect mutations.

  6. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers

    Shi, Yunfeng; Ma, Zhimin; Cui, Ningning; Liu, Yanli; Hou, Xiaoyu; Du, Weimin; Liu, Lin; Gangsheng, Tong

    2014-01-01

    A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opport...

  7. Lab scale testing of novel natural analog in situ stabilization agents

    Shaw, P. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States)

    1997-12-31

    This report summarizes the laboratory-scale test results on several novel in situ treatment and stabilization agents for buried hazardous and radioactive waste. Paraffin, hematite and phosphate materials were examined when combined with soil and other wastes representative of what might be present at buried waste DOE sites. Hematite was made from the reaction of agricultural iron and lime slurries to form gypsum and iron oxide/hydroxide. Common household paraffin was melted, both with and without a zeolitic additive, waste added and then cooled. Magnesium phosphate was made from the reaction of magnesium oxide and phosphoric acid or potassium biphosphate to form, magnesium phosphate. All were tested with soil and some with additional waste sumulants such as ash, machine oil and nitrate salts. The following laboratory-generated data indicate that all waste encapsulation materials tested are appropriate materials, for field in situ testing. Compressive strengths of treated Idaho National Engineering and Environment Laboratory (INEEL) soil and the waste encapsulation material were sufficient to prevent collapse of the void space in waste, i.e., greater than the NRC 60 psi minimum. The mineralogy and microstructure of hematite was amorphous but should progress to an interlocking crystalline solid. Phosphate was crystalline with characteristics of higher temperature ceramics. Paraffin is non crystalline but encapsulates even very fine grained INEEL soils. Each agent appears to be chemically and physically inert to possible waste materials such as, nitrates and machine cutting oil. Two of the agents hematite and phosphate react favorably with ash increasing the metals retention at higher waste loadings than Portland cement. Hematite, phosphate and zeolite decrease leaching of most hazardous metals from waste when compared to untreated waste and soil. Solution pH, time for reaction initiation, and viscosity values are conducive to jet-grouting application.

  8. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  9. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. PMID:27190167

  10. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish.

    Akins, John L; Morris, James A; Green, Stephanie J

    2014-10-01

    Information on fish movement and growth is primarily obtained through the marking and tracking of individuals with external tags, which are usually affixed to anesthetized individuals at the surface. However, the quantity and quality of data obtained by this method is often limited by small sample sizes owing to the time associated with the tagging process, high rates of tagging-related mortality, and displacement of tagged individuals from the initial capture location. To address these issues, we describe a technique for applying external streamer and dart tags in situ, which uses SCUBA divers to capture and tag individual fish on the sea floor without the use of anesthetic. We demonstrate this method for Indo-Pacific lionfish (Pterois volitans/P. miles), species which are particularly vulnerable to barotrauma when transported to and handled at the surface. To test our method, we tagged 161 individuals inhabiting 26 coral reef locations in the Bahamas over a period of 3 years. Our method resulted in no instances of barotrauma, reduced handling and recovery time, and minimal post-tagging release displacement compared with conventional ex situ tag application. Opportunistic resighting and recapture of tagged individuals reveals that lionfish exhibit highly variable site fidelity, movement patterns, and growth rates on invaded coral reef habitats. In total, 24% of lionfish were resighted between 29 and 188 days after tagging. Of these, 90% were located at the site of capture, while the remaining individuals were resighted between 200 m and 1.1 km from initial site of capture over 29 days later. In situ growth rates ranged between 0.1 and 0.6 mm/day. While individuals tagged with streamer tags posted slower growth rates with increasing size, as expected, there was no relationship between growth rate and fish size for individuals marked with dart tags, potentially because of large effects of tag presence on the activities of small bodied lionfish (i.e., <150

  11. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    Loomis, G.G.; Farnsworth, R.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  12. In-situ neutron diffraction study for ice XV – a revisit to its stability region

    Ice crystals show the unusual structural variety – there are at least 17 forms of polymorphs (Ih, Ic, II-XVI). Most of them, apart from ice X, is found less than 300 K and 3 GPa. The appearance of many phases in a narrow pressure-temperature (p-T) region and sluggish reaction under low-T prevent us to understand its thermodynamical stability relations of respective phases. Here we report our recent results for ice XV, the ordered form of ice VI, investigated at the PLANET beamline in J-PARC by using the p-T variable MITO system. The high intensity with moderate resolution d/d ~ 0.6 %) of the PLANET beamline allows us to obtain cell parameters in minutes, revealing the reaction kinetics for order-disorder transition between ice VI and ice XV. Our in-situ observations at ambient to high-p and low-T revealed that ice XV is formed at ambient pressure and 128 K, whereas it diminishes at 0.4 GPa and the same temperature. These findings clearly show the necessity of slight modification for the currently accepted phase diagram of ice.

  13. In-situ mapping of contaminants with nuclear borehole logging techniques

    In the DOE Environmental Restoration (ER) Program, techniques which reduce site characterization and long-term monitoring costs and maximize the information obtained from each borehole are needed because drilling boreholes in contaminated areas and analyzing samples are costly procedures. The authors will describe the experience at the Nevada Test Site, where the authors have found that nuclear borehole logging combined with a limited sampling program can yield greatly enhanced data confidence at reduced cost compared with sampling alone. Such a win-win result can be obtained for some contaminants in ER by applying nuclear borehole logging techniques which have the ability to map contaminants in-situ and are nuclide specific. Such measurements give a continuous record along the borehole, typically analyze 103 to 104 times more material than sample analyses, and can be made repeatedly over any period of time to track changes in contaminant concentrations

  14. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  15. In-situ stress measurement in a jointed basalt: the suitability of five overcoring techniques

    Overcoring tests were conducted at the Near-Surface Test Facility (NSTF) to assess the suitability of five techniques (US Bureau of Mines borehole deformation gauge (BDG), Commonwealth Scientific and Industrial Research Organization (CSIRO) hollow inclusion stress cell, epoxy inclusion, Lulea triaxial gauge (LuH gauge), and Council for Scientific and Industrial Research (CSIR) doorstopper) for in situ stress determination in a closely jointed basalt. This effort is in support of the Basalt Waste Isolation project, which is studying the feasibility of locating a nuclear waste repository in the basalts of the Hanford Site in southeastern Washington. This paper preents the results from the overcoring study that formed the basis for selection of two techniques to be used during the further exploration of the basalt formations at depth

  16. A novel in-situ sampling and VFA sensor technique for anaerobic systems

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    that has made it possible to monitor VFA on-line in one of the most difficult media: animal slurry or manure. A novel in-situ filtration technique has made it possible to perform microfiltration inside the reactor system. This filter enables sampling from closed reactor systems without large scale...... pumping and filtering. Using this filtration technique together with commercially available membrane filters we have constructed a VFA sensor system that can perform automatic analysis on animal slurry at a frequency as high as every 15 minutes. The VFA sensor has been tested for a period of more than 60...... days with more than 1000 samples on both a fullscale biogas plant and lab-scale reactors. The measuring range covers specific measurements of acetate, propionate, iso-/n-butyrate and iso-/n-valerate from 0.1 to 50 mM (6–3,000 mg)....

  17. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  18. New application technology for 'in situ' pipeline protection using pigging techniques

    Pretorius, Louis Charles [Corrocoat SA (PTY) Ltd., Durban (South Africa)

    2005-07-01

    Pigging of long pipelines is a technique for in situ (field) coating, creating seamless internal structural linings. Originally developed for cleaning pipes, the system was adapted to apply internal anti-corrosion protection to pipes using a thin epoxy layer, which had some problems in weld coverage, stress cracking, poor cold weather curing and the inability to fill pitting corrosion metal loss. New coating materials, revised application methods and modified pigging equipment have made it possible to apply in situ liquid film coatings up to 1 mm thick, as an internal corrosion barrier to pipes, in a single application (similar to continuous screeding) resulting in a bonded 'GRP pipe within a steel pipe'. The method can be used for new projects on fully welded pipe lines avoiding coating problems associated with flange joints and/or couplings, or for refurbishment of old pipelines, varying from 150-900 mm diameter, up to 12 km long. Pipes can be buried, submerged, continuously welded or flanged. Many different pipes, such as oil platform to shore based pipelines, can all be treated using this method. Thick film polymer pigging techniques create new possibilities for Engineers to extend the life of pipeline systems, with significant cost savings compared to replacement pipe. (author)

  19. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Lovley, Derek R

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  20. Transient stability emergency control combining open-loop and closed-loop technique

    Ruiz-Vega, Daniel; Glavic, Mevludin; Ernst, Damien

    2003-01-01

    An on-line transient stability emergency control approach is proposed, which couples an open-loop and a closed-loop emergency control technique. The open-loop technique uses on-line transient stability assessment in order to adapt the settings of automatic system protection schemes to the current operating conditions. On the other hand, the closed-loop technique uses measurements in order to design and trigger countermeasures, after the contingency has actually happened, then to continue moni...

  1. Synthesis of magnesia stabilized zirconia by co-precipitation technique

    The demand for new structural elements possessing a combination of properties such as good strength retention at high temperatures and high resistance to corrosion that find application in nuclear, aerospace, fuel cells etc., have led to the development of new materials as well as improvement in existing materials. Among the important development in the later direction is the synthesis of Stabilized Zirconia. This paper deals with the synthesis of oxide powders of magnesia stabilized zirconia used for high temperature applications mentioned above. Salts of zirconium oxy chloride and magnesium chloride were used as the precursors. The process involved controlled reaction of an aqueous solution of ammonium hydroxide into a solution containing zirconium oxy chloride and magnesium chloride. The resulting solution was filtered, dried and calcined. XRD, SEM/EDAX analyses were done and the results are reported. Variation of conductivity with temperature has also been studied. (author)

  2. New development of hydraulic fracturing technique for in-situ stress measurement at great depth of mines

    2008-01-01

    In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province,China.To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine,a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus.Successful in-situ stress measurement at 37 points within 7 boreholes,which were mostly over 1000 m deep,was completed.Through the measurement,detailed in

  3. Study on modeling of vehicle dynamic stability and control technique

    GAO Yun-ting; LI Pan-feng

    2012-01-01

    In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investigated.After the analysis of tire moving characteristics and the vehicle stress analysis,the tire model based on the extension pacejka magic formula which combined longitudinal motion and lateral motion was developed and a nonlinear vehicle dynamical stability model with seven freedoms was made.A new model reference adaptive control project which made the slip angle and yaw rate of vehicle body as the output and feedback variable in adjusting the torque of vehicle body to control the vehicle stability was designed.A simulation model was also built in Matlab/Simulink to evaluate this control project.It was made up of many mathematical subsystem models mainly including the tire model module,the yaw moment calculation module,the center of mass parameter calculation module,tire parameter calculation module of multiple and so forth.The severe lane change simulation result shows that this vehicle model and the model reference adaptive control method have an excellent performance.

  4. Calibration of an in-situ BEGe detector using semi-empirical and Monte Carlo techniques.

    Agrafiotis, K; Karfopoulos, K L; Anagnostakis, M J

    2011-08-01

    In the case of a nuclear or radiological accident a rapid estimation of the qualitative and quantitative characteristics of the potential radioactive pollution is needed. For aerial releases the radioactive pollutants are finally deposited on the ground forming a surface source. In this case, in-situ γ-ray spectrometry is a powerful tool for the determination of ground pollution. In this work, the procedure followed at the Nuclear Engineering Department of the National Technical University of Athens (NED-NTUA) for the calibration of an in-situ Broad Energy Germanium (BEGe) detector, for the determination of gamma-emitting radionuclides deposited on the ground surface, is presented. BEGe detectors due to their technical characteristics are suitable for the analysis of photons in a wide energy region. Two different techniques were applied for the full-energy peak efficiency calibration of the BEGe detector in the energy region 60-1600 keV: Full-energy peak efficiencies determined using the two methods agree within statistical uncertainties. PMID:21193317

  5. In situ Elemental Analysis of Ancient Objects Using Prompt Gamma-Ray Measurement Techniques

    Full text: In this research, measurement of prompt gamma-rays from neutron capture and inelastic scattering of neutrons was experimentally investigated to be used for in situ qualitative analysis of elements in ancient objects. A 1.85 GBq Am241/Be neutron source, a portable high purity germanium detector with a relative efficiency of 30 % and an Inspector 2000 spectrum analyzer connected to a portable microcomputer. In laboratory, 12 test specimens were analyzed including metals, chemicals, mortar, as well as Buddha images and a bronze bell. In the field, a Buddha image at Wat Naphramain in Ayuthaya Province was analyzed. The results indicated that the technique was capable of analysing some elements such as B, Al, Si, Cl, Ca, Cu, Fe and Pb but was not sensitive to some elements like Sn and Au

  6. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  7. Use of noninvasive geophysical techniques for the In Situ Vitrification Program

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focuses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results.

  8. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    Literature on examples of phytoremediation techniques used in the in-situ remediation of soils contaminated by petroleum hydrocarbons is reviewed. The review includes discussion of the key mechanisms involved in each case, benefits, limitations and costs compared to alternative approaches, including natural attenuation, engineering and bioremediation. Review of the literature led to the conclusion that phytoremediation is an effective method for degrading and containing petroleum hydrocarbons in soil, and confirmed the ability of plants to transfer volatile petroleum hydrocarbons, such as napthalene, from the soil to the atmosphere via transpiration. The primary loss mechanism for the degradation of petroleum hydrocarbons appears to be microorganisms in the rhizosphere of plants. The available information also suggests that plants may degrade petroleum hydrocarbons directly, although the indirect role played by plants is far more common. These roles include supplying root exudates for microbial use, releasing root-associated enzymes that degrade contaminants in the soil, and altering soil to promote phytoremediation. BTEX compounds are most easily amenable to phytoremediation; large and lipophilic compounds such as four or five-ring polyaromatic hydrocarbons are more difficult to remediate. The limited information available suggests that phytoremediation is slightly less expensive than bioremediation, and several order of magnitude less than engineering techniques. In general, phytoremediation is faster than natural attenuation, but typically slower than engineering and bioremediation. On the other hand, it is less disruptive to the site than ex-situ engineering and bioremediation that involve excavation efforts. Phytoremediation is most effective with shallow contamination. Preliminary screenings indicate that there are several plant species, native and introduced, that may be used with some success for phytoremediation in the Prairie and Boreal Plains ecozones

  9. Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application

    Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.

    2014-12-01

    Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data

  10. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  11. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    Book, Todd A.; Sangid, Michael D.

    2016-03-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  12. Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique

    The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches

  13. Comparative review of techniques used for in situ remediation of contaminated soils; Revision comparativa de tecnicas empleadas para la descontaminacion in situ de suelos contaminados

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-07-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  14. Hp-β-CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro, Stability, and Antifungal Activities Assessment

    Pravin Pawar; Heena Kashyap; Sakshi Malhotra; Rakesh Sindhu

    2013-01-01

    The objective of the present study was to design ophthalmic delivery systems based on polymeric carriers that undergo sol-to-gel transition upon change in temperature or in the presence of cations so as to prolong the effect of HP- β -CD Voriconazole (VCZ) in situ gelling formulations. The in situ gelling formulations of Voriconazole were prepared by using pluronic F-127 (PF-127) or with combination of pluronic F-68 (PF-68) and sodium alginate by cold method technique. The prepared formulatio...

  15. Spectral Techniques for Solving PDE Stability Model of Vortex Rope

    Bistrian, Diana Alina

    2012-01-01

    In this paper spectral methods are applied to investigate the hydrodynamic instability of swirling flow with application to Francis hydraulic turbine. Spectral methods imply representing the problem solution as truncated series of smooth global functions. An L2 - projection and the collocation methods are developed assessing both analytically methodology and computational techniques using symbolic and numerical conversions. Remarks concerning the efficiency and the accuracy of each method in ...

  16. New graphical techniques for studying acoustic ray stability

    Bódai, T.; Fenwick, A. J.; Wiercigroch, M.

    2009-07-01

    Alternatives to the standard Poincaré section are proposed to cater for some conditions arising in the study of chaotic ray propagation where the usual method of dimension reduction by the Poincaré section is inadequate because the driving is not periodic. There are three alternatives proposed which all use the same surface of intersection, but which differ in their use of the values of the dependent variables at the intersections of the rays with the surface. The new reduction techniques are used to examine ray behaviour in a harmonically perturbed Munk profile which supports ray chaos. It is found that all three techniques provide a graphical means of distinguishing between regular and irregular motions, and that the space of the mapping associated with one of them is partitioned into nonintersecting regular and chaotic regions as with the Poincaré section. A further model with quasiperiodic time dependence of the Hamiltonian is examined, and it turns out that the quasiperiodic nature of the motion is revealed as Lissajous curves by one technique.

  17. Virtual Reality Analysis in Tennis Serve Technique Stability for Junior Masters

    Du Chuan Jia; Zhou Ji He; Wang Shuai

    2016-01-01

    This study consists of virtual reality analysis of tennis serve technique was constructed based on two male professional players from 2016 Chengdu ITF Junior Masters: Casper RUUD and Miomir Kecmanovic. The purpose of the study is to find an effective way of building stability of serves for junior players. This study will provide some considerable data for coaches and players in improving the stability and quality of the serve technique. Results of the study show 5 main points of view: (1) RUU...

  18. Formation and Stability of Phenylphosphonic Acid Monolayers on ZnO: Comparison of In Situ and Ex Situ SAM Preparation.

    Ostapenko, Alexandra; Klöffel, Tobias; Meyer, Bernd; Witte, Gregor

    2016-05-24

    Self-assembled monolayers (SAMs) enable an electronic interface tailoring of conductive metal oxides and offer an alternative to common transparent electrodes in optoelectronic devices. Here, the influence of surface orientation and pretreatment on the formation and stability of SAMs has been studied for the case of phenylphosphonic acid (PPA) on ZnO single crystals. Using thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), near-edge X-ray adsorption fine structure spectroscopy (NEXAFS) and density-functional theory (DFT) calculations, the thermal stability and orientational ordering of PPA-SAMs on the polar and mixed-terminated ZnO surfaces were analyzed. On all surfaces, PPA-SAMs remain stable up to 550 K, while at higher temperatures a C-P bond cleavage and dissociative desorption takes place yielding two distinct desorption peaks. Based on DFT calculations, these desorption channels are attributed to protonated and deprotonated chemisorbed PPA molecules, which can be related to tri- and bidentate species, hence allowing to determine their relative abundance from the intensity ratio. Beside immersion, an alternative monolayer preparation based on vacuum deposition in combination with controlled desorption of excess multilayers is demonstrated. This enables a SAM preparation on bare ZnO surfaces without any precoating due to exposure to ambient air, which is further compared with SAM formation on intentionally hydroxylated substrates. Corresponding TDS data indicate that initial hydroxylation favors the formation of tridentate and deprotonated bidentate, while the OMBD preparation on bare surfaces yields a larger fraction of protonated bidentate species. The orientation of PPA molecules adopted in the SAMs was determined from the dichroism of K-edge NEXAFS measurements and reveals an almost upright orientation for the deprotonated species, while a slight tilting is obtained for monolayer films with a large fraction of protonated

  19. Measurement of in-situ stress in salt and rock using NQR techniques

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified

  20. Measurement of in-situ stress in salt and rock using NQR techniques

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-12-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

  1. In-situ evaluation of compressed brick veneer using the flatjack technique

    Bell, G.R.; Gabby, B.A.

    1999-07-01

    The flatjack is a relatively nondestructive tool that allows engineers engaged in the repair and retrofit of masonry buildings (both historic and non-historic) to directly determine the in-situ state of compressive stress in masonry walls. The flatjack technique recently was used on a large modern apartment complex to quantify the compression in a brick veneer that was distressed and had questionable wind-load resistance. The compression in the veneer was due to a combination of concrete frame shrinkage and brick growth in a wall system that lacked horizontal control joints under the steel shelf angles. Although the compression caused spalling in the veneer, it also contributed beneficially to the walls' wind resistance. The amount of compression in the veneer was determined in several location throughout the height of one elevation of the building using flatjacks. The authors found that the compression in the veneer was greater than the flexural tension produced by design wind loads (including a reasonable factor of safety), but below the compressive strength of the brick masonry. This finding allowed a repair solution that was modest relative to strengthening the wall for inadequate wind resistance. Prior to employing the flatjack in the field, the authors conducted in-house research to check the accuracy and reliability of method, and develop their technique. The authors found that by altering gauge points from those locations prescribed by current ASTM standards to those recommended in recent research, greater accuracy could be obtained.

  2. Pilot demonstration for containment using in situ soil mixing techniques at a chemical disposal superfund site

    Zarlinski, S.J.; Kingham, N.W.; Semenak, R. [Kiber Environmental Services, Inc., Atlanta, GA (United States)

    1997-12-31

    Kiber Environmental Services, Inc. (Kiber), under contract to McLaren-Hart Corporation and the site PRP group, performed technical oversight and on-site sampling and analyses at the confidential site located in Texas. The site consists of 15,000 cubic meters (20,000 cubic yards) of contaminated materials that were to be solidified on-site. The contaminants included heavy metals, PAHs, oil and grease, and volatile organics. Groundwater is less than 1 meter from the surface. Kiber was retained after several unsuccessful efforts to find on-site containment methods that effectively solidified the waste pits while achieving the performance goals. The PRP group then contracted with Kiber to perform the treatability and pilot oversight studies. The full-scale pilot demonstration was performed by Geo-Con. Pilot-scale treatment was performed to evaluate the effectiveness of in situ solidification treatment at achieving the site specific performance criteria, including an unconfined compressive strength of greater than 170 kPa (25 psi) and a permeability of less than 1x10{sup -6} cm/sec. Technical oversight and on-site sampling and analysis were provided to evaluate pilot-scale application of the selected technology and verify treatment effectiveness. The project was divided into several subtasks. First, laboratory treatability testing was conducted to verify that performance specifications were achievable using the proposed reagent formulations. Next, a pilot demonstration was performed by Geo-Con using a Manotowoc 4000 crane equipped with a 1.5-meter diameter auger to evaluate shallow soil mixing. The final task included a comparative study between the performance of test specimens collected using wet sampling techniques versus in situ post-treatment coring.

  3. Pilot demonstration for containment using in situ soil mixing techniques at a chemical disposal superfund site

    Kiber Environmental Services, Inc. (Kiber), under contract to McLaren-Hart Corporation and the site PRP group, performed technical oversight and on-site sampling and analyses at the confidential site located in Texas. The site consists of 15,000 cubic meters (20,000 cubic yards) of contaminated materials that were to be solidified on-site. The contaminants included heavy metals, PAHs, oil and grease, and volatile organics. Groundwater is less than 1 meter from the surface. Kiber was retained after several unsuccessful efforts to find on-site containment methods that effectively solidified the waste pits while achieving the performance goals. The PRP group then contracted with Kiber to perform the treatability and pilot oversight studies. The full-scale pilot demonstration was performed by Geo-Con. Pilot-scale treatment was performed to evaluate the effectiveness of in situ solidification treatment at achieving the site specific performance criteria, including an unconfined compressive strength of greater than 170 kPa (25 psi) and a permeability of less than 1x10-6 cm/sec. Technical oversight and on-site sampling and analysis were provided to evaluate pilot-scale application of the selected technology and verify treatment effectiveness. The project was divided into several subtasks. First, laboratory treatability testing was conducted to verify that performance specifications were achievable using the proposed reagent formulations. Next, a pilot demonstration was performed by Geo-Con using a Manotowoc 4000 crane equipped with a 1.5-meter diameter auger to evaluate shallow soil mixing. The final task included a comparative study between the performance of test specimens collected using wet sampling techniques versus in situ post-treatment coring

  4. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  5. The improvement of phycocyanin stability extracted from Spirulina sp using extrusion encapsulation technique

    Suzery, Meiny; Hadiyanto, Sutanto, Heri; Soetrisnanto, Danny; Majid, Dian; Setyawan, Deny; Azizah, Nur

    2015-12-01

    The stability of phycocyanin extracted from microalgae Spirulina has been evaluated and it showed that the stability of this antioxidant was affected by temperature and pH changes. The encapsulation technique was of the alternatives to overcome this stability changes. The objective of this paper was to investigate the effects of coating materials (alginate and chitosan) during encapsulation by using extrusion technique. The experiments were conducted with variation of alginate as coating materials. The size of each microcapsules was evaluated by using SEM/XRD for its size and homogeneity.

  6. Spectral Techniques for Solving PDE Stability Model of Vortex Rope

    Bistrian, Diana Alina

    2012-01-01

    In this paper spectral methods are applied to investigate the hydrodynamic instability of swirling flow with application to Francis hydraulic turbine. Spectral methods imply representing the problem solution as truncated series of smooth global functions. An L2 - projection and the collocation methods are developed assessing both analytically methodology and computational techniques using symbolic and numerical conversions. Remarks concerning the efficiency and the accuracy of each method in this case are presented. The model of the trailing vortex is used to validate the numerical algorithms with existing results in the literature. All the results are compared to existing ones and they prove to agree quite well. The advantages of using this methods in flow control problems are pointed out.

  7. Towards a more realistic picture of in situ biocide actions: Combining physiological and microscopy techniques

    Speranza, M., E-mail: speranzamariela@gmail.com [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Wierzchos, J.; De Los Rios, A.; Perez-Ortega, S. [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Souza-Egipsy, V. [Instituto de Ciencias Agrarias, ICA-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Ascaso, C., E-mail: ascaso@mncn.csic.es [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain)

    2012-11-15

    In this study, we combined chlorophyll a fluorescence (ChlaF) measurements, using pulse-amplitude-modulate (PAM) equipment, with scanning electron microscopy in backscattered electron mode (SEM-BSE) and transmission electron microscopy (TEM) images to evaluate the actions of Koretrel at lower concentrations on Verrucaria nigrescens colonising a dolostone. ChlaF measurements are good indicators of the damaging effects of biocides. However, these indicators only provide an incomplete view of the mechanism of biocides used to control biodeterioration agents. The death of the V. nigrescens photobiont at two biocide concentrations was revealed by PAM, SEM-BSE and TEM. Once Koretrel was applied, the Fv/Fm ratios markedly fell in the first few hours after the 1.5% treatment, and ratios for the 3% dilution remained close to zero throughout the study. The algal zone shows the plasmolysed appearance of the photobiont cells, and important aspects related to the action of the biocide on free and lichenised fungi were also detected using SEM-BSE. Many of the mycobiont cells had only their cell walls preserved; although, some fungal hyphae in lichen thalli and some microorganisms in endolithic clusters maintained lipid storage in their cytoplasm. These results indicated that the combination of physiological and microscopy techniques improves the assessment of biocide action in situ and this will help to optimize protocols in order to reduce the emission of these compounds to the environment. -- Highlights: Black-Right-Pointing-Pointer We combined ChlaF measurements with EM images to analyses the biocides action on stone biodeterioration agents. Black-Right-Pointing-Pointer At lower biocide concentrations damage to photobiont and mycobiont cells integrity, ultrastructure and vitality were observed. Black-Right-Pointing-Pointer The limited action of biocides on fungi and algae were detected using SEM-BSE. Black-Right-Pointing-Pointer The combination of physiological and microscopy

  8. In situ AFM studies of the stability of MgO(1 0 0) in aqueous electrolytes

    Highlights: • Stability and dissolution of MgO(1 0 0) surfaces in alkaline solutions of NaCl and NaClO4. • Stability determined by the hydrogen network between the water and the oxide surface. • Formation of a hydroxide gel-like layer in absence of chloride. • Report of square pits oriented in the 〈1 1 0〉 directions during immersion in NaCl. • Substitution of hydroxides by chlorides at the electrolyte/MgO interface. - Abstract: The stability and dissolution of MgO(1 0 0) single crystal surfaces in alkaline solutions of NaClO4 and NaCl were investigated by means of in situ atomic force microscopy (AFM) and ex situ angle resolved X-ray photoelectron spectroscopy (AR-XPS). MgO surfaces showed higher resistance to dissolution in NaClO4 electrolyte due to the formation of a gel-like hydroxide layer. The emergence of rectangular/square formed pits oriented in the 〈1 1 0〉 directions during immersion in NaCl electrolytes at alkaline pH was observed. The results are discussed on the basis of a substitution of hydroxides by chlorides at the electrolyte/MgO interface

  9. Detection by the fluorescence in situ hybridization technique of MYC translocations in paraffin-embedded lymphoma biopsy samples

    Haralambieva, E; Banham, AH; Bastard, C; Delsol, G; Gaulard, P; Ott, G; Pileri, S; Fletcher, JA; Mason, DY

    2003-01-01

    The detection of chromosomal translocations by fluorescence in situ hybridization (FISH) is widely performed, but very few studies have attempted to apply this technique to paraffin-embedded routine biopsy samples. We report the analysis of paraffin sections from 36 B-cell lymphoma biopsies for MYC

  10. New temporary internal introducer shunt for brain perfusion during total endovascular arch replacement with in situ fenestration technique.

    Sonesson, Björn; Resch, Tim; Dias, Nuno; Malina, Martin

    2012-10-01

    Complete endovascular arch replacement by in situ fenestration technique requires maintenance of cerebral perfusion during the fenestration procedure by an extracorporeal femoral-carotid bypass. The bypass has the disadvantages of being invasive, requiring a pump, and shunting blood extracorporeally. This report describes bench testing and an in vivo experimental animal setup with an endovascular, temporary introducer shunt. This technique represents an adjunctive step toward a complete endovascular repair for the aortic arch. PMID:22857810

  11. An optimization technique of robust load frequency stabilizer for superconducting magnetic energy storage

    As an interconnected power system is subjected to rapid load disturbances with changing frequencies in the vicinity of the inter-area oscillation mode, a system frequency may be heavily disturbed and oscillate. Under the circumstances, the stabilizing effect of the conventional load frequency control (LFC), i.e. a governor, cannot be expected. To compensate for such load disturbances and stabilize frequency oscillations, the active power controlled by superconducting magnetic energy storage (SMES) can be applied. In this paper, a new optimization technique of a robust load frequency stabilizer equipped with SMES is presented. To enhance the robustness of the load frequency stabilizer against system uncertainties such as various load changes, system parameters variations etc., the multiplicative uncertainty is included in the system modeling. As a result, the robust stability of the stabilized system can be easily guaranteed in terms of the multiplicative stability margin (MSM). The configuration of the load frequency stabilizer is practically based on a second order lead/lag compensator with a single feedback input. The control parameters are automatically optimized by a tabu search algorithm, so that the desired damping ratio of the target inter-area mode and the best MSM are achieved. The simulation study exhibits the high robustness of the load frequency stabilizer against uncertainties. Moreover, a SMES unit requires small power capacity for frequency stabilization

  12. Following the Transient Reactions in Lithium-Sulfur Batteries Using In an In Situ Nuclear Magnetic Resonance Technique

    Xiao, Jie; Hu, Jian Z.; Chen, Honghao; Vijayakumar, M.; Zheng, Jianming; Pan, Huilin; Walter, Eric D.; Hu, Mary Y.; Deng, Xuchu; Feng, Ju; Liaw, Bor Yann; Gu, Meng; Deng, Zhiqun; Lu, Dongping; Xu, Suochang; Wang, Chong M.; Liu, Jun

    2015-05-13

    Li-S batteries hold great potential for next-generation, large-format power source applications; yet, the fundamental understanding of the electrochemical reaction pathways remains lacking to enable their functionality as promised. Here, in situ NMR technique employing a specially designed cylindrical micro battery was used to monitor the chemical environments around Li+ ions during repetitive charge-discharge process and track the transient electrochemical and chemical reactions occurring in the whole Li-S system. The in situ NMR provides real time, quantitative information related to the temporal concentration variations of the polysulfides with various chain lengths, providing important clues for the reaction pathways during both discharge and charge processes. The in-situ technique also reveals that redox reactions may involve transient species that are difficult to detect in ex-situ NMR study. Intermediate species such as charged free radicals may play an important role in the formation of the polysulfide products. Additionally, in situ NMR measurement simultaneously reveals vital information on the 7Li chemical environments in the electrochemical and parasitic reactions on the lithium anode that promotes the understanding of the failure mechanism in the Li-S system. These new insights could help design effective strategies to accelerate the development of Li-S battery technology.

  13. Fermentation Characteristics, In Situ Rumen Degradation and Aerobic Stability of Whole Crop Barley Ensiled with Urea or Aqueous Ammonia

    Vatandoost, Moosa; Mesgaran, Mohsen Danesh; Vakili, AliReza

    2011-01-01

    Various chemical compounds might be added to forage to maintain or improve the quality value of a crop ensiled. The aim of the present experiment was to evaluate the fermentation characteristics, in situ rumen degradation and Aerobic Stability of whole crop barley ensiled with Urea or aqueous Ammonia. In the first experiment, Whole crop barley was harvested (35% DM), chopped, and then ensiled using laboratory silos (n= 4) as untreated (UT) or treated with urea (10, 20, 30 and 40 g kg-1 DM; U1...

  14. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    The effectiveness of phytoremediation as a tool for cleaning up hydrocarbon contaminated soil and groundwater was evaluated by reviewing relative literature. Phytoremediation is an emerging technology which consists of the use of plants for in situ treatment of contaminated soils. Grasses, herbs, shrubs and deciduous trees were the main types of plants considered in this study. A database is presently under construction to act as an inventory of plant species that tolerate or phytoremediate petroleum hydrocarbons. This paper focused on the main mechanisms and special considerations involved in the phytoremediation alkanes, aromatics, polycyclic aromatic hydrocarbons, and creosote. While phytoremediation does not require intensive engineering techniques, it does involve human intervention to establish appropriate plants and microorganisms to enhance natural degradation processes. Plants such as canola, oats barley have been shown to tolerate and accumulate metals such as selenium, copper, cadmium and zinc. Hybrid poplar trees reduce the concentration of nitrate in surficial groundwater and degrade the herbicide atrazine. Forage grasses inoculated with bacteria can degrade chlorinated benzoic acids. Various grasses and leguminous plants can increase the removal of petroleum hydrocarbons from contaminated soils. 66 refs., 3 tabs., 2 figs

  15. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  16. Prompt gamma-ray activation technique for in-situ analysis of mercury pollution in water

    Industrial and mining pollutants discharged into water are in general distributed homogeneously and we investigated a prompt neutron activation technique for the in-situ analysis, to start with of Hg content in water. The laboratory test employed a 252 Cf neutron source (of ∼ 3 x 106 n/s fluence) submerged in a test tank of water of ∼ 500 litres, and to monitor the gamma-ray emission a 4 x 4 NaI (Tl) detector system was employed. In 3000 is time interval trials, for a 46 ppm contamination level of Hg, we observed an excess of counts of ∼ 9.2 σ significance in the energy range of 4000-6500 keV, which can be attributed to the presence of mercury. This test system for a 10 hour monitoring can provide a minimum detectable sensitivity at 4.78 ppm. In the future experiments, we propose to replace the NaI(Tl) detector by a HPGe detector to facilitate simultaneous analyses of pollutants such as cadmium, chlorine, chromium etc for detection at few tenths to tens of ppm levels or better. (author). 5 refs., 2 figs., 2 tabs

  17. Determination of uranium distribution coefficient at Thabana storage facility using in-situ techniques

    Full text of publication follows: Distribution coefficients (Kd) to a large extent determine the suitability of a site to host a radioactive waste repository. Determining Kd values is not a simple exercise mainly because of its dependence on a number of factors. By applying the in-situ technique, which is discussed in this paper, the Kd value of uranium at the storage site was determined. This approach avoids the crushing or disturbing in any way the soil or rock samples, minimising the uncertainties in the final outcome. The intervention exercise at Thabana Storage Facility provided an opportunity of determining the distribution coefficient of uranium under site-specific conditions. In an attempt to salvage a contaminated condenser and recover the enriched uranium in it, Trench 7 was excavated. The trench had been filled with radioactive waste as contaminated equipment or loose material; or packaged in metal drums and capped for approximately 5 years. According to nuclear regulations it constituted a nuclear incident and intervention was immediately instituted. The soil samples gouged out at various depths from the floor of the trench were analysed for uranium and other radionuclides. Soil samples were collected from 30 cm, 60 cm, 80 cm, 105 cm, 135 cm and 160 cm intervals below the trench floor. The paper presents an analytical model for uranium migration at Thabana Storage Facility that takes into account the site-specific features and processes, and its applicability is validated with field results. By fixing some parameters in the model, the distribution coefficient of uranium at the site is determined minimising the huge uncertainties often associated with the conventional techniques. The analysis results of both 238U and 235U are used for this purpose. The parametric sensitivity analysis of the mathematical model provided the uncertainty envelope of the distribution coefficient at the site. The computational results are compared to literature and laboratory

  18. Automated quantitative analysis of in-situ NaI measured spectra in the marine environment using a wavelet-based smoothing technique

    An algorithm for automated analysis of in-situ NaI γ-ray spectra in the marine environment is presented. A standard wavelet denoising technique is implemented for obtaining a smoothed spectrum, while the stability of the energy spectrum is achieved by taking advantage of the permanent presence of two energy lines in the marine environment. The automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. The results of the algorithm performance, presented for two different cases, show that analysis of short-term spectra with poor statistical information is considerably improved and that incorporation of further advancements could allow the use of the algorithm in early-warning marine radioactivity systems. - Highlights: → Algorithm for automated analysis of in-situ NaI γ-ray marine spectra. → Wavelet denoising technique provides smoothed spectra even at parts of the energy spectrum that exhibits strong statistical fluctuations. → Automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. → Analysis of short-term spectra with poor statistical information is considerably improved.

  19. Analysis on Supporting Stability for Track Subgrade Dynamic Response In-situ Test Device Based on NSGA-II

    Feilong Zheng

    2013-07-01

    Full Text Available The dynamic response test to the subgrade plays a very important role in railway construction and a new in-situ test system is proposed. This paper presents the application of non-dominated sorting genetic algorithm-II (NSGA-II to analyze the stability of the supporting equipment for track subgrade dynamic response in-situ test device. Its stability is related with the extension length of the hydraulic cylinders and the backward condition of the supporting equipment - the hydraulic excavator. The problem is formulated as a multi-objective optimization problem with the objective of maximizing  the supporting force for the test device. An 85 tons excavator is picked as the case to study. The first optimal results show the excavator may not support the test system successfully. After redesigning the boom and adding its weight and length as new parameters, the second optimize results indicate the test device can work normally.

  20. Evaluation of some by-Products using In situ and In vitro Gas Production Techniques

    Besharati Maghsoud

    2008-01-01

    Full Text Available Food by-products in Iran are produced in high levels. In this study, in situ and in vitro gas production techniques were used to describe nutritive value of apple pomace, tomato pomace and noodle waste. For this purpose two ruminal fistulated sheep were used. Nylon bags which were approximately (6×12 cm containing 5 g samples (2 mm screen were incubated in duplicate in the rumen of fistulated sheep for 0,2,4,6,8,12,16,24,36 and 48 h. The gas production was recorded after 2, 4, 6, 8, 12, 16, 24, 36 and 48 h of incubation and the equation of P = A (1-e-ct was used to describe the kinetics of gas production. The data was analyzed using completely randomized design. DM and CP disappearance were significantly different among feedstuffs (p<0.05. After 48 h of incubation DM disappearance in noodle waste was highest and in tomato pomace was lowest. Regarding to the results, at the most incubation times tomato pomace had lower CP disappearance among feedstuffs (p<0.05. Potential gas production (A and rates of gas production (c differed among feedstuffs. Apple pomace showed higher potential gas production (A (305.1 mL g1 DM and tomato pomace had higher rate of gas production (c (0.09 h1 than the other feedstuffs. According to gas production volume, the value for the ME, OMD and SCFA ranged from in 8.87 noodle waste to 9.76 in apple pomace, 56.1 in tomato pomace to 64.3 in apple pomace and 0.919 in noodle waste to 1.168 in apple pomace, respectively. Partitioning factor in noodle waste was highest and in tomato pomace was lowest. In the present study, feeds composition significantly affected the degradation parameters.

  1. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples

    Svendsen, Claus Bo; Boye, Mette; Struve, Carsten;

    2009-01-01

    A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross-reactions with bact......A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross...

  2. Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique

    Highlights: • Sol–gel reaction by NR latex was the absence of use of organic solvent and base catalyst. • Well dispersed in situ formed silica particles in the rubber matrix were obtained. • In situ silica was better to improve mechanical properties of rubber vulcanizates. -- Abstract: The filling of styrene graft natural rubber (ST-GNR) with in situ formed silica was performed using the sol–gel reaction via the latex solution method. The mechanical properties of ST-GNR/NR vulcanizate were improved when using the in situ formed silica to levels higher than those obtained with the commercial ex situ formed silica filled ST-GNR/NR vulcanizates at a comparable silica content of 12 parts by weight per hundred parts of rubber. Transmission electron microscopy analysis revealed that the in situ silica particles were small (∼40 nm diameter) and well dispersed, while the commercial silica particles were larger (∼60 nm diameter) and markedly agglomerated in the rubbery matrix. The mechanical properties of the composites prepared via both the solid rubber and latex solution methods were comparable

  3. Rapid detection of chromosome 18 aneuploidies in amniocytes by using primed in situ labeling (PRINS) technique

    杨建滨; 郑树

    2002-01-01

    This paper presents a feasible method for rapid detection of the interphase nuclei of uncultured amniocytes for chromosomes 18 by using our modified in situ labeling (PRINS) technique.A total of 262 independent,uncultured amniotic fluid samples were analysed in a blind fashion before the karyotype was available.In addition,62 samples were examined by fluorescence in situ hybridization (FISH) for comparison.In more than 95% of the samples PRINS reactions with primer 18cen were successfully induced.Two samples were properly identified and correctly scored as trisomic 18.PRINS reaction could be performed automatically in less than one hour with a propgrammable thernocycler.Our studies showed that the PRINS technique is simple.rapid and cost-effective.It is as sensitive and specific as FISH;can enhance the eccuracy of standard cytogenetic analysis;and allows identification of chromosomes 18 aneuploidies in uncultrued amniocytes in significantly less time.

  4. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  5. Thermal stability of wurtzite Zr1−xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing

    We study the thermal stability of wurtzite (w) structure ZrAlN coatings by a combination of in situ high-energy x-ray scattering techniques during annealing and electron microscopy. Wurtzite structure Zr1−xAlxN coatings with Al-contents from x = 0.46 to x = 0.71 were grown by cathodic arc evaporation. The stability of the w-ZrAlN phase depends on chemical composition where the higher Al-content coatings are more stable. The wurtzite ZrAlN phase was found to phase separate through spinodal decomposition, resulting in nanoscale compositional modulations, i.e., alternating Al-rich ZrAlN layers and Zr-rich ZrAlN layers, forming within the hexagonal lattice. The period of the compositional modulations varies between 1.7 and 2.5 nm and depends on the chemical composition of the coating where smaller periods form in the more unstable, high Zr-content coatings. In addition, Zr leaves the w-ZrAlN lattice to form cubic ZrN precipitates in the column boundaries

  6. An electronic brachytherapy technique for treating squamous cell carcinoma in situ of the digit: a case report

    Arterbery, V Elayne; Watson, Alice C.

    2013-01-01

    Background Squamous cell carcinoma in situ of the digit presents a complex management problem, which is usually treated with surgery or radiation or topical agents. The outcome of the surgical treatment can be an undesirable cosmetic result and loss of function. We report a unique Electronic Brachytherapy technique to treat the digit, which uses a 50 Kv miniaturized X-ray source with specialized applicators. Case presentation A 62-year-old African-American male was presented with a 12-month h...

  7. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications

  8. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Joshi, Gopal; Motiwala, Paresh D.; Randale, G. D.; Singh, Pitamber; Agarwal, Vivek; Kumar, Girish

    2015-09-01

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  9. Polluted soils with heavy metals. Stabilization by magnesium oxide. Ex-situ and in-situ testings; Suelos contaminados con metales pesados. Estabilizacion con oxido de magnesio. Ensayos ex situ-in situ

    Cenoz, S.; Hernandez, J.; Gangutia, N.

    2004-07-01

    This work describes the use of Low-Grade MgO as a stabiliser agent for polluted soil reclaim. Low-Grade MgO may be an economically feasible alternative in the stabilisation of heavy metals from heavily contaminated soils. The effectiveness of Low-Grade MgO has been studied in three ex-situ stabilisation of heavily polluted soils contaminated by the flue-dust of pyrite roasting. LG-MgO provides an alkali reservoir guaranteeing long-term stabilisation without varying the pH conditions. The success of the ex-situ stabilisation was corroborated with the analysis of heavy metals in the leachates collected from the landfill o ver a long period of time. The study also includes the results obtained in an in-situ pilot scale stabilisation of contaminated soil. (Author) 17 refs.

  10. Development of the DGT technique for in-situ Pu speciation measurements

    Cusnir, R.; Bochud, F.; Froidevaux, P. [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pre 1, CH-1007 Lausanne (Switzerland); Steinmann, P. [Federal Office of Public Health, Swarzenburgstrasse 165, CH-3003 Bern (Switzerland)

    2014-07-01

    Toxic effects of artificial radionuclides are strongly dependent on the surrounding chemical environment which determines the bioavailability of contaminant species. Speciation of plutonium in the environment is of particular interest since it is a long-life actinide contributing to the dose exposure via ingestion with water and food in case of radioactive discharge. Furthermore, natural colloids present in waters, as main carriers of dissolved trace metals, can transport plutonium over significant distances from contaminated sites. The diffusive gradients in thin films (DGT) technique is an efficient instrument for passive sampling of trace metals. It allows for in-situ monitoring of mean concentrations of bioavailable contaminant species (1). A DGT sampler consists of two gel layers: a polyacrylamide hydrogel diffusion layer allowing to diffuse labile metal species to the second, binding layer, impregnated with ion-exchange resin. Resin elution and further analysis allow determining the amount of the bioavailable fraction of trace metals in the bulk solution, which can be calculated from the relationship: C{sub bulk}= (M x Δg)/(D x t x A) where M is the measured metal species inventory in the resin, Δg the thickness of the diffusion layer, D the diffusion coefficient of the species in the gel, t the time of deployment, A the diffusion area. To our knowledge, the DGT has not yet been applied for Pu speciation measurements and the D value is unknown. Here we propose the use of DGT to monitor the dissolved phase and labile complexes of plutonium in the aquatic environment. We have first measured the diffusion coefficient of plutonium in the hydrogel. Experiments were carried out in a diffusion cell (2) and with commercially available DGT samplers exposed in standardized solutions containing {sup 239}Pu at pico-molar concentrations. Both approaches give comparable D values in the range of 2.30 x 10{sup -6} - 2.45 x 10{sup -6} cm{sup 2} s{sup -1}. We then studied

  11. Stabilization and in situ management of radioactive contaminated sediments of Port Hope harbor

    This paper presents the findings of laboratory and field studies undertaken to assess the feasibility of in situ management of contaminated sediments in Port Hope harbor. The contaminated sediments stem from historic releases from an adjacent radium and uranium refinery, and uranium, arsenic, and radium are the most abundant contaminants. With improved emission controls, currently accumulating sediments have much lower levels of contamination, and the harbor waters currently meet water quality limits for the contaminants of concern. Within a few years, however, the continuing sedimentation will render the harbor unusable. Field tests have confirmed the dredging will result in incomplete removal of the contaminated sediments and that sediment suspension and the release of pores waters during dredging will produce harbor water contaminant concentrations that would require the treatment of large volumes of water. In addition, no remedial work can start until a site for the dredged material can be found. The local community inquired whether in situ burial of the sediments and abandonment of the harbor would provide safe disposal

  12. Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation.

    Malumbres, A; Martínez, G; Hueso, J L; Gracia, J; Mallada, R; Ibarra, A; Santamaría, J

    2015-05-14

    Stable, alkyl-terminated, light-emitting silicon nanoparticles have been synthesized in a continuous process by laser pyrolysis of a liquid trialkyl-silane precursor selected as a safer alternative to gas silane (SiH4). Stabilization was achieved by in situ reaction using a liquid collection system instead of the usual solid state filtration. The alkene contained in the collection liquid (1-dodecene) reacted with the newly formed silicon nanoparticles in an unusual room-temperature hydrosilylation process. It was achieved by the presence of fluoride species, also produced during laser pyrolysis from the decomposition of sulfur hexafluoride (SF6) selected as a laser sensitizer. This process directly rendered alkyl-passivated silicon nanoparticles with consistent morphology and size (<3 nm), avoiding the use of costly post-synthetic treatments. PMID:25898392

  13. In-situ measurements of the radiation stability of amino acids at 15-140 K

    Gerakines, P A; Moore, M H; Bell, J -L

    2015-01-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with 0.8-MeV protons, and amino-acid decay was followed at each temperature with and without H$_2$O present. Observed radiation products included CO$_2$ and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH$_2$-CH$_2$(R)-COOH at 15 K to the zwitterion structure $^+$NH$_3$-CH$_2$(R)-COO$^-$ at 140 K for each amino acid studied.

  14. In-Situ Measurements of the Radiation Stability of Amino Acids at 15-140 K

    Gerakines, Perry A.; Hudson, Reggie L.; Moore, Marla H.; Bell, Jan-Luca

    2012-01-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with D.8-MeV protons, and amino-acid decay was followed at each temperature with and without H2O present. Observed radiation products included CO2 and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH2-CH2(R)-COOH at 15 K to the zwitterion structure +NH3-CH2(R)-COO- at 140 K for each amino acid studied.

  15. Engineering feasibility analysis for in-situ stabilization of Burrell Township site residues. [UMTRA

    1982-11-01

    The Burrell Township site, located in western Pennsylvania, received approximately 11,600 tons of radioactively-contaminated material in late 1956 and early 1957 from the Vitro Manufacturing Company's operations in Canonsburg, Pennsylvania. WESTON was requested to conduct an engineering study to determine the feasibility of stabilizing the site in accordance with the US Environmental Protection Agency's (EPA) interim and proposed standards (45 FR 27366--27368, April 22, 1980, and 46 FR 2556--2563, January 9, 1981). The scope of this study is limited to those alternatives that can be implemented on the site and will not require removal and offsite disposal of radioactively-contaminated material. Four alternatives for control of the radioactive material at the Burrell site were considered and evaluated, as follows: 1. Site stabilization and closure. 2. Site control and containment. 3. Waste excavation and encapsulation. 4. Waste excavation, incineration, and encapsulation. 2 refs., 32 figs., 12 tabs.

  16. Engineering feasibility analysis for in-situ stabilization of Burrell Township site residues

    The Burrell Township site, located in western Pennsylvania, received approximately 11,600 tons of radioactively-contaminated material in late 1956 and early 1957 from the Vitro Manufacturing Company's operations in Canonsburg, Pennsylvania. WESTON was requested to conduct an engineering study to determine the feasibility of stabilizing the site in accordance with the US Environmental Protection Agency's (EPA) interim and proposed standards (45 FR 27366--27368, April 22, 1980, and 46 FR 2556--2563, January 9, 1981). The scope of this study is limited to those alternatives that can be implemented on the site and will not require removal and offsite disposal of radioactively-contaminated material. Four alternatives for control of the radioactive material at the Burrell site were considered and evaluated, as follows: 1. Site stabilization and closure. 2. Site control and containment. 3. Waste excavation and encapsulation. 4. Waste excavation, incineration, and encapsulation. 2 refs., 32 figs., 12 tabs

  17. A new computational technique for the stability analysis of slender rods

    Sinha, S. C.; Liu, Tai-Sheng; Senthilnathan, N. R.

    1992-07-01

    A new computational technique for the stability analysis of slender rods with variable cross-sections under general loading conditions is presented. In this approach, the dependent variable and the variable coefficients appearing in the governing equations are expanded in a finite series of Chebyshev polynomials. The main feature of this technique is that the original boundary value problem associated with the differential equation is reduced to an algebraic eigenvalue problem. The proposed technique is applied to study the static buckling of Euler column and the flutter behavior of a cantilevel column subjected to uniformly distributed tangential loading. The numerical results from the suggested technique are found to be extremely accurate when compared to other techniques available in literature. It is shown that this approach can also be employed in a symbolic form. The merits of the present method in comparison to the standard solution procedures like finite difference and Galerkin methods are discussed.

  18. An in-situ monitoring technique for optimizing antireflection coatings using a monolithic integrated photodetector

    Saini, Vikram; Yvind, Kresten; Larsson, David

    2006-01-01

    A very low reflectivity of the order of 10-4 is demonstrated for dual-layer anti-reflection coatings on normal facet semiconductor lasers, by integrated in situ monitoring. The method has been tested on three and eight quantum-well InGaAsP ridge lasers that consist of a gain section and an...

  19. Slipped upper femoral epiphysis: Outcome after in situ fixation and capital realignment technique

    Sanjay Arora

    2013-01-01

    Results: Clinical outcome as assessed by Merle d′ Aubigne score was excellent in 6, good in 10, fair in 6 and poor in 1. Half of the in situ fixation patients underwent osteoplasty procedure for femoroacetabular impingement and 5 more were symptomatic. The head neck offset and α angle after in situ pinning were -1.12 ± 3 mm and 66.05 ± 9.7°, respectively and this improved to 8.7 mm and 49°, respectively, after osteoplasty. One child in the pinning group had chondrolysis. Eight patients with severe slip underwent capital realignment. Mean followup was 20.15 months. The anterior head neck offset and α angle were corrected to 6.8 ± 1.72 mm and 44.6 ± 7.0° mm, respectively. Two children with unstable slip in the capital realignment group had avascular necrosis which was diagnosed at presentation by bone scan. Conclusion: High BMI, vitamin D deficiency and endocrine disorders are associated with SUFE in India and should be evaluated as some of these are amenable to prevention and treatment. Most patients treated with in situ pinning developed femoroacetabular impingement. The early results after capital realignment procedure are encouraging and help to avoid a second procedure which is needed in a majority of patients who underwent in situ pinning.

  20. IMPROVED FLOTATION TECHNIQUE FOR MICROSCOPY OF 'IN SITU' SOIL AND SEDIMENT MICROORGANISMS

    An improved flotation method for microscopical examination of in situ soil and sediment microorganisms was developed. Microbial cells were released into gel-like flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% soluti...

  1. Real-time stability in power systems techniques for early detection of the risk of blackout

    Savulescu, Savu

    2014-01-01

    This pioneering volume has been updated and enriched to reflect the state-of-the-art in blackout prediction and prevention. It documents and explains background and algorithmic aspects of the most successful steady-state, transient and voltage stability solutions available today in real-time. It also describes new, cutting-edge stability applications of synchrophasor technology, and captures industry acceptance of metrics and visualization tools that quantify and monitor the distance to instability. Expert contributors review a broad spectrum of additionally available techniques, such as traje

  2. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Khalvati, Mohammad Reza

    2016-01-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TS 0 n is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN ’ s Linac4 DTL Tank 2 and Tank 3 have been stabilized succ...

  3. DETECTION OF BORRELIA BURGDOFERI DNA IN GRANULOMATOUS TISSUES FROM PATIENTSWITH SARCOIDOSIS USING POLYMERASE CHAIN REACTION IN SITU TECHNIQUE

    徐作军; 马东来; 罗慰慈; 朱元珏

    1996-01-01

    To investigate the correlation between sarcoidosis and Borrelia burgdorferi (Bb) infection,flagella DNA of Bb were detected in 23 granulomatous tissue specimens from patients with confirmed sarcoidosis usingpolymerase chain reaction in situ technique (in situ PCR) and the antibodies to Bb were examined in 55 serum samples obtained from the patients by indirect immunoflurescence assays. Our data presented that =(1) None of granulomatous tissues was found to have Bb DNA in 23 tissue samples. (2) Thirty of 55(54.6%) patients with sarcoidosis were found antibodies to Bh positive,in contrast,six of 60 (10%) norreal subjects had antibodies against Bb,the positive rate was remarkably higher in patient group than thatin healthy group (P(0. 005). The results suggest that Bb might not be the causative agent of sarcoidosis,the elevated titres of serum antibodies against Bb in patients with sarcoidosis is a nonspecific response.

  4. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    Turick, C. E.; Knox, A. S.; Dixon, K. L.; Roseberry, R. J.; Kritzas, Y. G

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outside the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified

  5. Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for In Situ Cleaning and Electro-Oxidation Processes.

    Duan, Wenyan; Ronen, Avner; Walker, Sharon; Jassby, David

    2016-08-31

    Electrically conducting membranes (ECMs) have been reported to be efficient in fouling prevention and destruction of aqueous chemical compounds. In the current study, highly conductive and anodically stable composite polyaniline-carbon nanotube (PANI-CNT) ultrafiltration (UF) ECMs were fabricated through a process of electropolymerization of aniline on a CNT substrate under acidic conditions. The resulting PANI-CNT UF ECMs were characterized by scanning electron microscopy, atomic force microscopy, a four-point conductivity probe, cyclic voltammetry, and contact angle goniometry. The utilization of the PANI-CNT material led to significant advantages, including: (1) increased electrical conductivity by nearly an order of magnitude; (2) increased surface hydrophilicity while not impacting membrane selectivity or permeability; and (3) greatly improved stability under anodic conditions. The membrane's anodic stability was evaluated in a pH-controlled aqueous environment under a wide range of anodic potentials using a three-electrode cell. Results indicate a significantly reduced degradation rate in comparison to a CNT-poly(vinyl alcohol) ECM under high anodic potentials. Fouling experiments conducted with bovine serum albumin demonstrated the capacity of the PANI-CNT ECMs for in situ oxidative cleaning, with membrane flux restored to its initial value under an applied potential of 3 V. Additionally, a model organic compound (methylene blue) was electrochemically transformed at high efficiency (90%) in a single pass through the anodically charged ECM. PMID:27525344

  6. An assessment of techniques for evaluating the physical stability of parenteral emulsions.

    Zhang, Xiaoguang; Kirsch, Lee E

    2003-01-01

    The physical stability of the parenteral emulsions is a key product quality issue. The purpose of this study is to develop, prepare and characterize model phospholipid emulsions and to critically evaluate various physical stability-indicating methods. Oil-in-water (O/W) emulsions were prepared using 20% (w/w) medium chain triglycerides (MCT) or soybean oil in 2.21% (w/w) aqueous glycerin solutions emulsified with 0.1 to 1.8 % (w/w) lecithin. The reproducibility of emulsion preparation was determined by measuring the volume-based mean droplet diameter using photon correlation spectroscopy (PCS) and zeta potential using electrophoretic light scattering. Evaluation of stability-indicating methods was conducted by comparing the mean droplet growth rate of a thermally-stressed emulsion using PCS, a light obscuration particle counter (HIAC, equipped with a laser diode sensor) and a droplet image analyzer interfaced with transmission electron microscopy (TEM) using osmium tetraoxide fixation. Emulsions with identical compositions and preparation properties had reproducible mean droplet diameter and initial zeta potential values with RSD HIAC, and TEM). The droplet growth rates estimated using PCS and TEM were nearly identical. PCS is a sufficiently accurate technique for measuring emulsion stability and is less time-consuming than TEM. The HIAC technique only measured the size of droplets with diameters larger than about 1 micron, which was considerably greater than the mean droplet diameter as determined by PCS and microscopic image analysis (TEM). Moreover, the growth rate obtained using HIAC was much greater than the rates estimated by PCS and TEM; therefore the HIAC technique was not an accurate measure of the physical stability of the thermally stressed emulsions. PMID:14558703

  7. Ensemble averaged surface normal impedance of material using an in-situ technique: preliminary study using boundary element method.

    Otsuru, Toru; Tomiku, Reiji; Din, Nazli Bin Che; Okamoto, Noriko; Murakami, Masahiko

    2009-06-01

    An in-situ measurement technique of a material surface normal impedance is proposed. It includes a concept of "ensemble averaged" surface normal impedance that extends the usage of obtained values to various applications such as architectural acoustics and computational simulations, especially those based on the wave theory. The measurement technique itself is a refinement of a method using a two-microphone technique and environmental anonymous noise, or diffused ambient noise, as proposed by Takahashi et al. [Appl. Acoust. 66, 845-865 (2005)]. Measured impedance can be regarded as time-space averaged normal impedance at the material surface. As a preliminary study using numerical simulations based on the boundary element method, normal incidence and random incidence measurements are compared numerically: results clarify that ensemble averaging is an effective mode of measuring sound absorption characteristics of materials with practical sizes in the lower frequency range of 100-1000 Hz, as confirmed by practical measurements. PMID:19507960

  8. Computer-based design technique of controllers for the plasma vertical stabilization

    A procedure for designing the parameters of a feedback controller for the plasma vertical stabilization is described. The procedure is based on a reduced order model for the plasma dynamics and a computer aided parameter optimization technique, which allows to reach a compromise between power requirements and good performance of the control system. An analysis model for a control scheme including a chopper-type amplifier is then described. (author)

  9. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

    2012-01-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D)systems.Firstly,the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Talagi-Sugeno (TS) fuzzy model,which is convenient for implementing the stability analysis.Secondly,a new kind of fuzzy Lyapunov function,which is a homogeneous polynomially parameter dependent on fuzzy membership functions,is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system.In the process of stability analysis,the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques.Moreover,the obtained result is formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  10. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments.

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques-computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging (ABI), and -phase contrast imaging (PCI)-for visualization and characterization of low-density biomaterial scaffolds and tissues in situ for non-invasive soft tissue engineering assessments. Intact pig joints implanted with polycaprolactone scaffolds were used as the model to assess and compare the imaging techniques in terms of different qualitative and quantitative criteria. For long-term in vivo live animal imaging, different strategies for reducing the imaging radiation dose and scan time-reduced number of CT projections, region of interest, and low resolution imaging-were examined with the presented phase-based imaging techniques. The results demonstrated promising capabilities of the phase-based techniques for visualization of biomaterial scaffolds and soft tissues in situ. The low-dose imaging strategies were illustrated effective for reducing the radiation dose to levels appropriate for live animal imaging. The comparison among the imaging techniques suggested that CT-DEI has the highest efficiency in retaining image contrast at considerably low radiation doses. PMID:26761779

  11. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  12. In Situ Microbial Community Control of the Stability of Bio-reduced Uranium

    Baldwin, Brett, R.; Peacock, Aaron, D.; Resch, Charles, T.; Arntzen, Evan; Smithgall, Amanda, N.; Pfiffner, Susan; Gan, M.; McKinley, James, P.; Long, Philip, E.; White, David, C.

    2008-03-28

    In aerobic aquifers typical of many Department of Energy (DOE) legacy waste sites, uranium is present in the oxidized U(VI) form which is more soluble and thus more mobile. Field experiments at the Old Rifle UMTRA site have demonstrated that biostimulation by electron donor addition (acetate) promotes biological U(VI) reduction (2). However, U(VI) reduction is reversible and oxidative dissolution of precipitated U(IV) after the cessation of electron donor addition remains a critical issue for the application of biostimulation as a treatment technology. Despite the potential for oxidative dissolution, field experiments at the Old Rifle site have shown that rapid reoxidation of bio-reduced uranium does not occur and U(VI) concentrations can remain at approximately 20% of background levels for more than one year. The extent of post-amendment U(VI) removal and the maintenance of bioreduced uranium may result from many factors including U(VI) sorption to iron-containing mineral phases, generation of H2S or FeS0.9, or the preferential sorption of U(VI) by microbial cells or biopolymers, but the processes controlling the reduction and in situ reoxidation rates are not known. To investigate the role of microbial community composition in the maintenance of bioreduced uranium, in-well sediment incubators (ISIs) were developed allowing field deployment of amended and native sediments during on-going experiments at the site. Field deployment of the ISIs allows expedient interrogation of microbial community response to field environmental perturbations and varying geochemical conditions.

  13. A comprehensive approach for the assessment of in-situ pavement density using GPR technique

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2013-04-01

    Proper construction of the asphalt pavement is a prerequisite to developing a long lasting roadway that does not require extensive future maintenance. This goal is achieved by verifying that design specifications are met through the use of quality assurance (QA) practices. The in-situ density is regarded as one of the most important controls used to ensure that a pavement being placed is of high quality because it is a good indicator of future performance. In-situ density is frequently assessed utilizing one or more of the following three methods: cores, nuclear density gauge measurements or non-nuclear density gauge measurements. Each of the above mentioned methods, however, have their distinct disadvantages. Cores, for example, are generally considered to be the most accurate means of measuring in-situ density, however, they are a time consuming and destructive test that introduces a defect into asphalt pavements. Because of the destructive nature associated with coring, contractors and agencies have alternatively used non-destructive nuclear and non-nuclear density gauges for quality control purposes. These instruments allow for a more rapid assessment of the in-situ density, allowing measurements to be taken even during the pavement's construction. The disadvantage of these gauges are that they provide density readings only at discrete locations of the asphalt pavement mat, while no consensus exists among pavement researchers on the proper correlation between the gauges and core density. In recent years, numerous alternative methods have been introduced for the assessment of in-situ density, both during asphalt pavement construction and afterwards. These methods include, amongst others, intelligent compaction, thermal imaging and ground penetrating radar (GPR). Among these methods, GPR has been defined as both a technically feasible and promising method for the nondestructive, rapid, and continuous evaluation of in-situ asphalt pavement density based on

  14. In situ applications of X ray fluorescence techniques. Final report of a coordinated research project 2000-2003

    In 2000 the IAEA initiated a Coordinated Research Project (CRP) on In Situ Applications of XRF Techniques as one of the elements of the project on Nuclear Instruments for Specific Applications, the major objective of which is to assist Member States in the development of nuclear instruments and software for special applications such as the characterization of materials. An overall objective of the CRP was to assist laboratories in Member States in such areas as environmental pollution monitoring, mineral exploration, the preservation of cultural heritage, the control of industrial processes and the optimization of analytical methodologies for these applications using field-portable X ray fluorescence (FPXRF). Although a significant amount of work has been undertaken in the development of FPXRF techniques, there is little consensus on the best approach for any particular application. The most important aspect before FPXRF techniques can be applied successfully is, therefore, the development of a clear FPXRF methodology. Because of the wide range of problems to which FPXRF can be applied, these procedures must be comprehensive and cover many applications involving the analysis of samples such as rocks, soils, air particulates or liquid samples. The specific research objectives of the CRP included the development and optimization of sampling methodologies for in situ XRF measurements, the improvement in the analytical performance of FPXRF based on the study of mineralogical effects, surface irregularity effects, heterogeneity and the influence of moisture content, the development and validation of quantitative and/or semi-quantitative procedures to be applied for in situ XRF analysis and development of complete operating procedures for selected in situ applications, including relevant quality assurance. The CRP covered a period of four years (2000?2003). Twelve laboratories from both developed and developing Member States and the IAEA?s Laboratories participated

  15. Laboratory study of formation stabilization in uranium in-situ leaching and ground water restoration

    Laboratory high pressure column tests have shown that the presence of 1-20 ppm of aluminum ion effectively prevents permeability loss during uranium leaching with leachates containing sodium carbonate. If added after permeability loss has occurred, aluminum ion can restore the permeability to nearly its original value. No deleterious effect was observed on uranium leaching performance and the technique should be quite compatible with all field conditions

  16. Design of top covers supporting aerobic in situ stabilization of old landfills – An experimental simulation in lysimeters

    Highlights: ► Tested engineered covers as surrogate to gas extraction during and after in situ aeration. ► Examined how covers influence gas emissions, water balance and leachate generation. ► Investigated effect of top covers on air-distribution in waste mass during aeration. ► We suggest criteria and cover design to meet the demands during and after aeration. ► Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within

  17. Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters

    Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability

  18. Efficacy of dynamic muscular stabilization techniques (DMST) over conventional techniques in rehabilitation of chronic low back pain.

    Kumar, Suraj; Sharma, Vijai P; Negi, Mahendra P S

    2009-12-01

    Low back pain (LBP) is a common health problems. Although it is multifactorial, its treatment varies considerably, including medication, physical therapy modalities, and exercise therapy, and each have several interventions. Despite their effectiveness, their head-to-head comparisons are limited. This study was aimed at 1 such comparison. A total of 30 hockey players, 18 to 28 years of age, with subacute or chronic LBP were randomly assigned equally in 2 groups. One group was treated with conventional treatment--a combination of 2 electrotherapies (ultrasound and short-wave diathermy) and 1 exercise therapy (lumbar strengthening exercises)--and the other group was treated with dynamic muscular stabilization techniques (DMST), an active approach of stabilizing training. The results showed that both the treatments are effective in the management of LBP, but DMST was found to be more effective than conventional treatment. The walking, stand ups, climbing, and pain improved 4.7, 2.0, 1.4, and 2.1 times, respectively, more with DMST than with conventional treatment. With time (days), walking, stand ups, climbing, and pain improved (correlation) significantly (p coefficients) were also significantly (p coefficient approximately 1). No major adverse effects were recorded in any of the patients in either group. This study concluded that for early recovery, DMST is more suitable than conventional treatment. PMID:19858754

  19. Investigations of the structural stability of metal hydride composites by in-situ neutron imaging

    Herbrig, Kai; Pohlmann, Carsten; Gondek, Łukasz; Figiel, Henryk; Kardjilov, Nikolay; Hilger, André; Manke, Ingo; Banhart, John; Kieback, Bernd; Röntzsch, Lars

    2015-10-01

    Metal hydride composites (MHC) with expanded natural graphite (ENG) exhibiting enhanced thermal conductivity and reduced porosity compared to metal hydride powders can enable a reversible, compact and safe way for hydrogen storage. In this study, neutron imaging during cyclic hydrogenation was utilized to investigate the structural stability and the spatial-temporal hydrogen concentration of application-oriented MHC with 40 mm in diameter compared to a loose metal hydride powder. In particular, swelling and shrinking effects of a radially confined MHC which could freely expand upwards were studied. It was found that the loose powder bed was easily torn apart during dehydrogenation, which leads to increased thermal resistance within the hydride bed. In contrast, the thermal resistance between MHC and container wall was minimized since the initial gap closes during initial hydrogenation and does not reopen thereafter. Further cyclic hydrogenation caused MHC volume changes, i.e. an almost reversible swelling/shrinking (so-called "MHC breathing"). Moreover, neutron imaging allowed for the observation of reaction fronts within the MHC and the powder bed that are governed by the heat transfer.

  20. A simple technique for removing the Nuss bar with one stabilizer: the lateral approach.

    Varela, Patricio; Romanini, Moria Victoria; Asquasciati, Caterina; Torre, Michele

    2010-02-01

    The removal of the substernal bar after the Nuss operation is not always an easy and fast maneuver. Only a few different technical solutions have been described. In the original Nuss technique, the patient was lying on dorsal decubitus and rotated on the side during the procedure. The Noguchi technique avoids the rotation of the patient, but requires two incisions and straightening of the bar before pulling it out the thorax. Recently, another technique was proposed, avoiding the need of straightening the bar, but it is feasible only if two operative beds in a large operative room are available. We propose another approach for the removal of the bar: The patient is lying on the lateral decubitus, only one incision is performed, and the bar is pulled out along the thoracic wall. Twenty-one bars were removed by using the present approach without any complications. The advantages of our approach on the previous techniques are the single incision, no need of rotating the patient, straightening the bar, or having two operative beds. Our approach is not feasible when metallic stabilizers have been used on both sides, but in our experience, this was not necessary in order to stabilize the bar. PMID:19432531

  1. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column

  2. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  3. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  4. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor

    WANG Hanjie; Penning de Vries FRITS; JIN Yongcan

    2009-01-01

    The principle and technique were reported here to produce lignin-based sand stabilizing material (LSSM) using extracted lignin from black liquor of straw paper mills. Field tests by using LSSM to stabilize and green sand dunes started in 2002. The field experiment was carried out in August 2005 when the newly formed plant community was 3 years old. The results from the comprehensive field experiment demonstrated that unlike polyvinyl acetate or foamed asphalt commonly used for dune stabilization, LSSM was plant-friendly material and could be used in combination with seeding and planting of desert species. By the help of LSSM, the desert species (i.e., Agriophyllum squarrosum (L.) Moq. and Artemisia desertorum Spreng. etc.) could be used to form community in 2-3 yeas and to stabilize sand dune effectively. The newly formed community was sustainable under an extremely dry climate conditions. The organic matter and total nitrogen in the soil increased significantly as the community were formed, while the change in P and K contents of the soil was negligible.

  5. Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability.

    Schoenhammer, K; Petersen, H; Guethlein, F; Goepferich, A

    2009-04-17

    Injectable in situ forming depots (ISFD) that contain a peptide or a protein within a polymeric solution comprise an attractive, but challenging application system. Beyond chemical compatibility, local tolerability and acute toxicity, an important factor for an ISFD is its storage stability as a liquid. In this study, poly(D,L-lactide-co-glycolide) (PLGA) degradation in the presence of poly(ethyleneglycol) (PEG) as biocompatible solvent was investigated as a function of storage temperature and water content. The PLGA molecular weight (Mw) was determined by gel permeation chromatography (GPC), and monitored by NMR during degradation. Rapid PLGA degradation of 75% at 25 degrees C storage temperature was shown to be the result of a transesterification using conventional PEG as solvent. A significant improvement with only 3% Mw loss was obtained by capping the PEG hydroxy- with an alkyl- endgroup to have poly(ethyleneglycol) dialkylether (PEG-DAE). The formation of PEG-PLGA block co-polymers was confirmed by NMR, only for PEG300. Reaction rate constants were used to compare PLGA degradation dissolved in conventional and alkylated PEGs. The degradation kinetics in PEG-DAE were almost completely insensitive to 1% additional water in the solution. The transesterification of the hydroxy endgroups of PEG with PLGA was the major degradation mechanism, even under hydrous conditions. The use of PEG-DAE for injectable polymeric solutions, showed PLGA stability under the chosen conditions for at least 2 months. Based on the results obtained here, PEG-DAE appears to be a promising excipient for PLGA-based, parenteral ISFD. PMID:19135512

  6. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  7. In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application

    Huang, Xiujuan; Xiao, Yan; Zhang, Wei; Lang, Meidong

    2012-01-01

    Silver nanoparticles (Ag NPs) were prepared via in situ reduction of silver nitrate (AgNO3) using polymeric micelles as nanoreactors without any additional reductant. The micelles were constructed from the amphiphilic star-shaped copolymer composed of poly(ɛ-caprolactone) (PCL) segment, 2-(dimethylamino)ethyl methacrylate (DMAEMA or DMA) units and oligo(ethylene glycol)monomethyl ether methacrylate (OEGMA or OEG) units. The Ag NPs stabilized by those star-shaped copolymers were characterized using UV-vis spectrum, DLS, TEM and FTIR. It confirmed that PDMAEMA exhibited the reducing property unless pH was above 7. The Ag NPs were sphere-like with a diameter of 10-20 nm, which was independent of the architecture of the copolymer and AgNO3 concentration. Furthermore, the catalytic activity of these Ag NPs was investigated by monitoring the reduction of p-nitrophenol (4-NP) by NaBH4. The result showed that the Ag NPs formed by coordination reduction can be effectively applied in catalytic reaction.

  8. Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation

    Malumbres, A.; Martínez, G.; Hueso, J. L.; Gracia, J.; Mallada, R.; Ibarra, A.; Santamaría, J.

    2015-04-01

    Stable, alkyl-terminated, light-emitting silicon nanoparticles have been synthesized in a continuous process by laser pyrolysis of a liquid trialkyl-silane precursor selected as a safer alternative to gas silane (SiH4). Stabilization was achieved by in situ reaction using a liquid collection system instead of the usual solid state filtration. The alkene contained in the collection liquid (1-dodecene) reacted with the newly formed silicon nanoparticles in an unusual room-temperature hydrosilylation process. It was achieved by the presence of fluoride species, also produced during laser pyrolysis from the decomposition of sulfur hexafluoride (SF6) selected as a laser sensitizer. This process directly rendered alkyl-passivated silicon nanoparticles with consistent morphology and size (SF6) selected as a laser sensitizer. This process directly rendered alkyl-passivated silicon nanoparticles with consistent morphology and size (<3 nm), avoiding the use of costly post-synthetic treatments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01031d

  9. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  10. Stabilizations of Two-Dimensional Trapped and Untrapped Matter Waves via a Feshbach Resonance Technique

    LUO Xiao-Bing; HAI Wen-Hua

    2005-01-01

    @@ We have studied the dynamics of two-dimensional (2D) trapped and untrapped Bose-Einstein condensates (BECs) with a rapid periodic modulation of the scattering length via a Feshbach resonance technique, a → ao + a1 sin(Ωt) with an attractive (negative) mean value and the large constants ao, a1 and Ω.Applying a variation approximation (VA), the critical threshold for the collapse of the 2D trapped vortex BEC is predicted and the collapse is prevented by causing the scattering length oscillating rapidly.On the other hand, with analytical calculation, we prove that the stabilization of a bright soliton in a 2D untrapped BEC is impossible for enough large interaction intensity and the upper limit of the intensity for the soliton stabilization is derived.

  11. Ultrasonic techniques for the in situ characterisation of 'legacy' Waste sludges and dispersions - 59111

    Research being undertaken at the University of Leeds, as part of the DIAMOND university consortium, is exploring the effectiveness of various ultrasonic technologies as in situ probes to characterize and monitor nuclear waste slurries, such as the 'Legacy' Magnesium hydroxide sludges found in Sellafield, U.K. Through use of a commercial Acoustic Backscatter Sensor (ABS) with 1 - 5 MHz transducers, various properties of free-settling oxide simulant sludges were determined. Work was focused upon characterizing essentially 'static' sludges (to give prospective use as tools for the wastes in current deposits); although, the sensors also have potential as dispersion monitors during any future processing and storage of the Legacy wastes, as well as many other storage, clarifier or thickener systems across a wide range of industrial processing operations. ABS data of mixed glass powder dispersions was analysed and compared to scattering theory, to understand the correlations between acoustic attenuation and particulate concentration. The ABS was also calibrated to measure changes in average particulate concentration within a settling suspension over time, and showed the depth-wise segregation of the dispersion through the settling column at different particular time intervals. It was found that observed hindered settling also led to an increase in particulate concentration over the sludge zone and significant segregation occurred at moderate time intervals, due to the broad size distribution of the aggregates measured. It is hoped in future that these sensors may be able to be fitted to robotic handlers that have been installed onsite (and previously used for sampling), allowing fully automatic in situ sludge analysis. (authors)

  12. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.

    Hrad, Marlies; Huber-Humer, Marion; Wimmer, Bernhard; Reichenauer, Thomas G

    2012-12-01

    Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH(4) loadings up to 300 lCH(4)/m(2)d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH(4)/m(2)d) were significantly higher than fluxes from the other lysimeters (0-19 g CH(4)/m(2)d) during in situ aeration. Regarding water balance, lysimeters covered with

  13. The study of the stability of passive films using potentiostatic-galvanostatic transient technique

    An on-line measurement system for the potentiostatic-galvanostatic (P-G) transient response of passive metals was established. A mathematical model for the P-G response curves in the case of the pitting was set up. Using the Monte Carlo method the electrochemical parameters which characterized the stability of the passive films were calculated from the sampling data of the response curves. The results for some steels in sodium chloride solution measured by this technique are presented and the features of the breakdown of passive films for different steels are discussed. (author)

  14. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves

  15. A novel technique of in situ phase-shift interferometry applied for faint dissolution of bulky montmorillonite in alkaline solution

    The effect of alkaline pH on the dissolution rate of bulky aggregated montmorillonite samples at 23°C was investigated for the first time by using an enhanced phase-shift interferometry technique combined with an internal refraction interferometry method developed for this study. This technique was applied to provide a molecular resolution during the optical observation of the dissolution phenomena in real time and in situ while remaining noninvasive. A theoretical normal resolution limit of this technique was 0.78 nm in water for opaque material, but was limited to 6.6 nm for montmorillonite due to the transparency of the montmorillonite crystal. Normal dissolution velocities as low as 1 × 10-4 to 1 × 10-3 nm/s were obtained directly by using the measured temporal change in height of montmorillonite samples set in a reaction cell. The molar dissolution fluxes of montmorillonite obtained in this study gave considerably faster dissolution rates in comparison to those obtained in previous investigations by solution analysis methods. The pH dependence of montmorillonite dissolution rate determined in this study was qualitatively in good agreement with those reported in the previous investigations. The dissolution rates to be used in safety assessments of geological repositories for radioactive wastes should be obtained for bulky samples. This goal has been difficult to achieve using conventional powder experiment technique and solution analysis method, but has been shown to be feasible using the enhanced phase-shift interferometry. (author)

  16. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements

    C. Zellweger

    2012-10-01

    Full Text Available Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO for carbon monoxide (CO in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011 with the best currently available technique (Vacuum UV Fluorescence and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.

  17. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements

    C. Zellweger

    2012-07-01

    Full Text Available Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. However, the current data quality objectives of the World Meteorological Organization (WMO for carbon monoxide (CO in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came on the market with promising properties for trace gas analytics. The current study compares three instruments that are recently commercially available (since 2011 with the up to now best available technique (vacuum UV fluorescence and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques provide a considerably better performance compared to previous techniques, although some issues such as temperature influence and cross sensitivities need further attention.

  18. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-10-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011) with the best currently available technique (Vacuum UV Fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.

  19. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-07-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. However, the current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came on the market with promising properties for trace gas analytics. The current study compares three instruments that are recently commercially available (since 2011) with the up to now best available technique (vacuum UV fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques provide a considerably better performance compared to previous techniques, although some issues such as temperature influence and cross sensitivities need further attention.

  20. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    Wagner, D.; Börgardts, M.; Grünzweig, C.; Lehmann, E.; Müller, T. J. J.; Egelhaaf, S. U.; Hermes, H. E.

    2015-09-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

  1. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied

  2. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques.

    Wagner, D; Börgardts, M; Grünzweig, C; Lehmann, E; Müller, T J J; Egelhaaf, S U; Hermes, H E

    2015-09-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied. PMID:26429447

  3. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    Wagner, D.; Egelhaaf, S. U.; Hermes, H. E. [Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf (Germany); Börgardts, M.; Müller, T. J. J. [Institute for Organic and Macromolecular Chemistry, Heinrich Heine University, 40225 Düsseldorf (Germany); Grünzweig, C.; Lehmann, E. [Neutron Imaging and Activation Group, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-09-15

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

  4. Synthèse bibliographique sur la mobilité des éléments traces dans les sols et l'utilisation de la stabilisation physico-chimique comme technique de gestion in situ des sites contaminés

    Liénard, A.

    2014-01-01

    Full Text Available Review of the mobility of trace elements in soils and of the use of physico-chemical stabilization as an in situ management strategy for contaminated sites. Industrial activities have greatly impacted the quality of the biophysical environment in some areas. This review focuses on the consequences of soil contamination by metallic trace elements: what factors determine the mobility of contaminants in soils and what remediation practices based upon physico-chemical stabilization can be used in response? Physico-chemical stabilization is an in situ remediation technique, which aims at limiting the dispersion of metals in the environment through the use of soil conditioners and amendments in contaminated sites. In this article, we firstly review the concepts involved in the mobility of trace elements and their indicators. We then provide an overview of the current information regarding the different kinds of amendments that may be applied to stabilize contaminants in soils and the processes involved.

  5. CT imaging techniques for two-phase and three-phase in-situ saturation measurements

    Sharma, B.C.; Brigham, W.E.; Castanier, L.M.

    1997-06-01

    The aim of this research is to use the SUPRI 3D steam injection laboratory model to establish a reliable method for 3-phase in-situ saturation measurements, and thereafter investigate the mechanism of steamflood at residual oil saturation. Demiral et al. designed and constructed a three dimensional laboratory model that can be used to measure temperature, pressure and heat loss data. The model is also designed so that its construction materials are not a limiting factor for CT scanning. We have used this model for our study. In this study, we saturated the model with mineral oil, and carried out waterflood until residual oil saturation. Steamflood was then carried out. A leak appeared at the bottom of the model. Despite this problem, the saturation results, obtained by using 2-phase and 3-phase saturation equations and obtained from the Cat scanner, were compared with the saturations obtained from material balance. The errors thus obtained were compared with those obtained by an error analysis carried out on the saturation equations. This report gives details of the experimental procedures, the data acquisition and data processing computer programs, and the analysis of a steamflood experiment carried out at residual oil saturation.

  6. A new tracer technique for in situ experimental study of bioturbation processes

    An experimental method has been developed to study material and radioactivity fluxes at the sediment-water interface and in the sedimentary column. This method has been applied in the Gulf of Fos, an area that is affected by deposits from the river Rhone, and where biodeposition products, resulting from the presence of intensive mussel cultures, can induce a concentration of trace elements at the sediment-water interface. Sediment surface materials were labelled with a mixture of radionuclides (Cerium-144, Cobalt-60 and Cesium-137), in experimental cores filled either with sediment containing in situ fauna or with defaunated sediment. The coupling of this mixture with inert colored sediment particles enabled us to measure radionuclide flux in both solute fraction and solid fraction. At the sediment-water interface, the tracer balance indicates that migrations into deeper sediment are estimated to be until 25 times greater in presence of macrofauna, depending on the tracer examined. Bioturbation may equally enhance exportation to the water column, to a factor ranging from 1.5 to 2.0. During a period of 14 days, in presence of macrofauna, we observed a migration of radionuclides to a maximum depth of 11 cm. A similar distribution pattern of luminophores at the same sediment depths indicates the preponderance of particle reworking in migration. (Author)

  7. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  8. Analysis of the Effect of in situ Product Removal on the Stability and Performance of a Continuous Bioreactor with Cell Separator for Ethanol Production

    Ghosh, Kaushik; K. B. Ramachandran

    2007-01-01

    In this study, the behaviour of a continuous membrane bioreactor with in situ removal of product ethanol by pervaporation and cell recycle has been investigated. The kinetic model used is an unstructured growth model taking into account product as well as substrate inhibition and the product formation rate is represented by the Leudeking-Piret model. The effect of pervaporation on the performance of the system with cell separator is evaluated in terms of ethanol productivity and its stabil...

  9. Stabilized methods and post-processing techniques for Darcy flow and related problems

    In this paper we present a review of stabilized methods and post-processing techniques for Darcy flow problems, with particular emphasis in the miscible displacement model. The system of partial differential equations governing the miscible displacement consists of an elliptic system coming from the conservation of mass and Darcy's law and a nonlinear transport equation expressing the conservation of the injected fluid (concentration). The main difficulties are related to the evaluation of the primary unknowns of the elliptic equation (pressure) and their spatial derivatives by Darcy's law (velocity) and the coupling with the convection dominated transport equation. Finite element solutions for this problem have been obtained using mixed methods for the pressure/gradient problem combined with the modified method of characteristics. However, this approach involves different interpolation schemes for pressure, velocity and concentration. In order to overcome the difficulties associated with the previous schemes, we have been working in the development of finite element formulations where all variables are interpolated by equal-order functions. To recover accurate velocity approximations we have developed new global and local post-processing techniques. These post-processing techniques consist in solving the elliptic problem for pressure and then computing velocity considering residual forms of Darcy's law with the known pressure, the mass balance equation and the irrotationality condition. These post-processing techniques are then combined with semidiscrete or space-time SUPG or GLS formulations with shock capturing. We also address in this paper issues related to the improvement of computational efficiency of our methods. Among then we will show reduced integration techniques with hourglass control for the elliptic, post-processing and transport equations, its association to superconvergent techniques for gradient recovery, adaptive time stepping strategies based on

  10. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  11. Effect of particle size on microstructure and strength of porous spinel ceramics prepared by pore-forming in situ technique

    Wen Yan; Nan Li; Yuanyuan Li; Guangping Liu; Bingqiang Han; Juliang Xu

    2011-08-01

    The porous spinel ceramics were prepared from magnesite and bauxite by the pore-forming in situ technique. The characterization of porous spinel ceramics was determined by X-ray diffractometer (XRD), scanning electron microscopy(SEM), mercury porosimetry measurement etc and the effects of particle size on microstructure and strength were investigated. It was found that particle size affects strongly on the microstructure and strength. With decreasing particle size, the pore size distribution occurs from multi-peak mode to bi-peak mode, and lastly to mono-peak mode; the porosity decreases but strength increases. The most apposite mode is the specimens from the grinded powder with a particle size of 6.53 m, which has a high apparent porosity (40%), a high compressive strength (75.6MPa), a small average pore size (2.53 m) and a homogeneous pore size distribution.

  12. Application of fluorescence in situ hybridization technique in the diagnosis of acute promyelocytic leukemia with abnormal immunophenotype

    To evaluate the utilization of fluorescence in situ hybridization (FISH) technique in the diagnosis of acute promyelocytic leukemia(APL) with abnormal immunophenotype, flow cytometry was used to detect the immunophenotype of mononuclear cells in APL patients and PML/RARα fusion gene was detected by FISH. The mononuclear cells of several APL patients showed abnormal immunophenotype: CD13+ , CD33+ , CD34-, HLA-DR+ and PML/RARα fusion gene was also detected, which was different from the regular result of APL: HLA- DR-, PML/RARα+. Therefore, the detection of immunophenotype in APL patients should not be regarded as the sole accurate target for diagnosing leukemia. FISH ,associated with traditional FAB classification, is a simple, rapid, accurate and direct method. It can be used to help confirm the diagnosis, to guide the formulation of a reasonable chemotherapy scheme and to supervise the efficacy of the treatment in patients with leukemia. (authors)

  13. Use of noninvasive geophysical techniques for the In Situ Vitrification Program. Volume 1, Literature review: Revision 1

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focuses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results.

  14. Nuclear borehole logging techniques developed by CSIRO - Exploration and Mining for in situ evaluation of coal and mineral deposits

    CSIRO - Exploration and Mining Division has developed a spectrometric nuclear techniques for in situ evaluation of coal and mineral deposits. Whilst the use of this technology is seen mainly in coal mining, it is becoming increasingly apparent in metalliferous mining. The logging tools developed by CSIRO are using the gamma-gamma, prompt neutron activation and spectrometric natural gamma techniques. The technology is used both in exploration and mine production for quality control. Nuclear borehole logging is complementary to the laboratory analysis of core samples retrieved from boreholes. Although it can not provide the same detailed information as the analysis of the core, the volume of rock sampled by nuclear borehole logging is much larger than the core samples and the results are provided almost instantaneously. Nuclear logging is particularly useful for mineral deposits where the core can not be fully recovered or in situations when not all the information provided by the analysis of the core is needed. Important savings can be made if the information required is acquired by logging open holes instead of drilling more expensive cored holes. The paper reviews various techniques developed by CSIRO - Exploration and Mining for both the coal and metalliferous mining industry. Emphasis is given to current research for developing logging tools equipped with ultra - low intensity gamma-ray sources (below 3.7 MBq activity). The tools are developed for both borehole logging and face analysis

  15. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references

  16. Wheat improvement for drought resistance and yield stability using mutation techniques

    The main problem of plant breeding is development of varieties with optimal combination of high drought resistance, productivity and yield stability in varying unfavorable conditions. It is especially important for Kazakhstan, the main agricultural areas of which are located in the arid zones characterized by moisture supply deficiency. Mutation techniques have proven to be valuable technique in enhancing crop genetic diversity for selecting new variants with traits of economic importance. Therefore we used M2 population of spring bread wheat var. Kazakhstastanskaya 126 treated by nicotinic acid extracted from tobacco leaves 0,01% and 0,1%, respectively. Based on germplasm of M2 there was developed genotype Grekum 476 having changes in leaf shape such as rolling of flag leaf. This trait protects plant from intensive insolation and overheating, prevent losses of water and provide long-term function of leaves and therefore it was used for wheat improvement of commercial cultivars. The objective of this study is the analysis of genotype x environment interaction (GEI) and evaluation of the donors of drought resistance and stability among the winter wheat genotypes. Experimental material has been grown in 2004-2006 at thee contrasting ecological zones including irrigated and non-irrigated conditions. To analyze GEI the method Tai (1971) was used. Drought susceptibility index was used for drought resistance assessment (Fisher and Maurer, 1978). The objects of study were wheat genotypes with inserted leaf rolling trait (Grekum 476, Hostianum 88, Albidum 109, Miras), and varieties developed in Kazakhstan and the Ukraine, that differ in the level of productivity and drought resistance. It was found that rolling leaf trait in the main source Grekum 476 is controlled by two dominant Rl-genes. The genotypes with Rl-genes able to conserve high leaf water potential as the tendency for greater leaf hydration seems to be a consequence of osmotic adjustment connected to drought

  17. Comparison of continuous in-situ CO2 observations at Jungfraujoch using two different measurement techniques

    M. F. Schibig

    2014-07-01

    Full Text Available Since 2004, atmospheric carbon dioxide (CO2 is measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP using a nondispersive infrared gas analyzer (NDIR in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring down spectroscopy (CRDS as part of the Swiss National Air Pollution Monitoring Network have been added by the Swiss Federal Laboratories for Materials Science and Technology (Empa. To ensure a smooth transition – a prerequisite when merging two datasets e.g. for trend determinations – the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows identifying potential offsets between the two datasets and getting information about the compatibility of the two systems on different time scales. A good agreement of the seasonality as well as for the short-term variations was observed and to a lesser extent for trend calculations mainly due to the short common period. However, the comparison revealed some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It was possible to adapt an improved calibration strategy based on standard gas determinations, which lead to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS − NDIR of the two systems is −0.03 ppm ± 0.25 ppm. Although the difference of the two datasets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO, the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing

  18. Técnicas in situ de baixo custo em eletroquímica: a microbalança a cristal de quartzo Low cost in situ techniques in electrochemistry: the quartz crystal microbalance

    Hamilton Varela; Marcos Malta; Roberto M. Torresi

    2000-01-01

    Among in situ techniques, the electrochemical quartz crystal microbalance (EQCM) is a powerful tool for the study of electrochemical reactions that produce mass changes in the electrode/solution interface. This review present some systems in which the EQCM combined with classical electrochemical techniques, gives relevant information for understanding the charge transport process at a molecular level. The aim of this review is to do a brief description of experimental arrangements, with empha...

  19. Technique for measuring 14 CO 2 uptake by soil microorganisms in situ.

    Smith, D W; Fliermans, C B; Brock, T D

    1972-03-01

    Uptake of (14)CO(2) in soils due to algae or sulfur-oxidizing bacteria was examined by incubation of soil samples with gaseous (14)CO(2) and subsequent chemical oxidation of biologically fixed radioactive isotope to (14)CO(2) for detection with a liquid scintillation counting system. The (14)CO(2) was added to the soil in the gas phase so that no alteration of the moisture or ionic strength of the soil occurred. Wet oxidation of radioactive organic matter was carried out in sealed ampoules, and the (14)CO(2) produced was transferred to a phenethylamine-liquid scintillation counting system with a simply constructed apparatus. The technique is inexpensive and efficient and does not require elaborate traps since several possible interfering factors were found to have no harmful effects. Experiments in coal mine regions and in geothermal habitats have demonstrated the ecological applicability of this technique for measurement of CO(2) fixation by sulfur-oxidizing bacteria and soil algae. PMID:4553805

  20. Characteristics of Four Plant Species Used for Soil Bioengineering Techniques in River Bank Stabilization

    Liu, Y.; Gao, J. R.; Lou, H. P.; Zhang, J. R.; Rauch, H. P.

    2010-05-01

    Use the potential values of soil bioengineering techniques are important for the wide attention river ecological restoration works in Beijing. At first, demand for basic knowledge of the technical and biological properties of plants is essential for development of such techniques. Species for each chosen plant material type should be selected with an emphasis on the following: suitability for anticipated environment conditions, reasonable availability in desired quantity and probability of successful establishment. Account on these criteria, four species which used as live staking and rooted cutting techniques were selected, namely, Salix X aureo-pendula, Salix cheilophila, Vitex negundo var. heterophylla and Amorpha fruticosa L.. And monitoring work was performed on three construction sites of Beijing. Various survival rates and morphological parameters data were collected. Concerning plants hydraulic and hydrological behavior, bending tests were used to analysis the flexibility of each plant species. The results from rate and morphological parameters monitoring show that: Salix cheilophila performed the best. Other three plants behaved satisfactorily in shoots or roots development respectively. In the bending test mornitoring, Salix cheilophila branch had the least broken number. Then were Salix X aureo-pendula and Amorpha fruticosa L.. Vitex negundo var. branch had the highest broken number, but it tolerated the highest amount of stress. All plant species should be considered in the future scientific research and construction works in Beijing. Keywords: River bank stabilization, live staking, rooted cutting

  1. A novel rocket-based in-situ collection technique for mesospheric and stratospheric aerosol particles

    W. Reid

    2012-11-01

    Full Text Available A technique for collecting aerosol particles between altitudes of 85 and 17 km is described. Collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Each collection sample is exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy gives size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization ensure that each probe can be located and recovered for post-flight analysis.

  2. Probabilistic risk assessment techniques help in identifying optimal equipment design for in-situ vitrification

    The analysis discussed in this paper was performed as part of the buried waste remediation efforts at the Idaho National Engineering Laboratory (INEL). The specific type of remediation discussed herein involves a thermal treatment process for converting contaminated soil and waste into a stable, chemically-inert form. Models of the proposed process were developed using probabilistic risk assessment (PRA) fault tree and event tree modeling techniques. The models were used to determine the appropriateness of the conceptual design by identifying potential hazards of system operations. Additional models were developed to represent the reliability aspects of the system components. By performing various sensitivities with the models, optimal design modifications are being identified to substantiate an integrated, cost-effective design representing minimal risk to the environment and/or public with maximum component reliability. 4 figs

  3. In situ studies of pesticides photodegradation on soils using PD-TOFMS technique

    Thomas, J. P.; Bejjani, A.; Nsouli, B.; Gardon, A.; Chovelon, J. M.

    2009-01-01

    As we have demonstrated that plasma desorption time-of-flight mass spectrometry (PD-TOFMS) is well adapted to the direct characterization of pesticides adsorbed on agricultural soils the technique has been applied for the first time to the study of their evolution under sunlight-like irradiation. Two pesticides have been selected: norflurazon which is the most documentated (both from the literature and from our previous experiments) and oxyfluorfen in order to assess the capability of the technique. The photodegradation process has been investigated both for a deposit onto a metallic substrate and for a soil impregnated with the product. For norflurazon degradation parameters have been extracted from the yield variation of ions representative of the molecule and breakdown products and particularly the time required for 50% dissipation of their initial concentration (DT50 values). The comparison between deposits and soils indicates clearly that the degradation is slower in the latter case with an increase of about 3.5 for the DT50 of the molecule, and about 2 for its breakdown products. These values are in agreement with the decays of other ions. As expected, the degradation is faster when the UV of the sunlight is unfiltered, more significantly for the breakdown products. This is also observed for the oxyfluorfen deposited onto aluminium although at a lower level (twice less). The trends are only qualitative for the impregnated soil but definitely there. A discussion is presented for the interpretation of the photodegradation process in both cases together with suggestions of improvement in the data acquisition.

  4. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    Brémand F.

    2010-06-01

    Full Text Available This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  5. Demonstration of the stabilization technique for nonplanar optical resonant cavities utilizing polarization

    Akagi, T.; Araki, S.; Funahashi, Y.; Honda, Y.; Okugi, T.; Omori, T.; Shimizu, H.; Terunuma, N.; Urakawa, J. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Miyoshi, S.; Takahashi, T., E-mail: tohru-takahashi@hiroshima-u.ac.jp; Tanaka, R.; Uesugi, Y.; Yoshitama, H. [AdSM Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima 739-8530 (Japan); Sakaue, K.; Washio, M. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555 (Japan)

    2015-04-15

    Based on our previously developed scheme to stabilize nonplanar optical resonant cavities utilizing polarization caused by a geometric phase in electromagnetic waves traveling along a twisted path, we report an application of the technique for a cavity installed in the Accelerator Test Facility, a 1.3-GeV electron beam accelerator at KEK, in which photons are generated by laser-Compton scattering. We successfully achieved a power enhancement of 1200 with 1.4% fluctuation, which means that the optical path length of the cavity has been controlled with a precision of 14 pm under an accelerator environment. In addition, polarization switching utilizing a geometric phase of the nonplanar cavity was demonstrated.

  6. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    S C Sharma; N M Gokhale; Rajiv Dayal; Ramji Lal

    2002-02-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and microhardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce–ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness, 9.2 MPa √m.

  7. On the Decay Ratio Determination in BWR Stability Analysis by Auto-Correlation Function Techniques

    A novel auto-correlation function (ACF) method has been investigated for determining the oscillation frequency and the decay ratio in BWR stability analyses. The neutron signals are band-pass filtered to separate the oscillation peak in the power spectral density (PSD) from background. Two linear second-order oscillation models are considered. These models, corrected for signal filtering and including a background term under the peak in the PSD, are then least-squares fitted to the ACF of the previously filtered neutron signal, in order to determine the oscillation frequency and the decay ratio. Our method uses fast Fourier transform techniques with signal segmentation for filtering and ACF estimation. Gliding 'short-term' ACF estimates on a record allow the evaluation of uncertainties. Numerical results are given which have been obtained from neutron data of the recent Forsmark I and Forsmark II NEA benchmark project. Our results are compared with those obtained by other participants in the benchmark project. The present PSI report is an extended version of the publication K. Behringer, D. Hennig 'A novel auto-correlation function method for the determination of the decay ratio in BWR stability studies' (Behringer, Hennig, 2002)

  8. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  9. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 μm) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as

  10. Stabilization of the sacroiliac joint with the SI-bone surgical technique.

    Geisler, Fred

    2013-07-01

    Although the motion of the sacroiliac joints (SIJ) is minimal, pain can originate from the SIJ on mechanical loading and affect walking, sitting and sleep patterns. The SIJ refers to the pair of joints inferior to the L5-S1 joint, and functions as the inferior adjacent level after a L5-S1 fusion. SIJ pain has a clinical overlay of symptoms often similar to low back pain (LBP) generated by the lumbar spine. The differential diagnosis in any patient with LBP should include the triad of low back, SIJ, and hip. SIJ pain is also a known cause of residual LBP after successful lumbar fusion. Relief of the patient's pain with a diagnostic SIJ block verifies the SIJ as the site of the pain generator. The SI-bone technique of stabilization of the SIJ is a true minimally invasive surgical technique performed through an initial small skin incision and then over pins, with the aid of fluoroscopy in three orthogonal axes with one axis parallel to the posterior sacral cortical line at the S1 to S2 region. The fluoroscopy procedure includes the following steps: 1) pre-op plan of the desired 3 implant trajectories to account for the anatomic variations; 2) placement of 3 Steinman pins at these trajectories across the SIJ starting in a small skin incision; 3) drill, broach and then implant placement as a cannulated system. All these steps are performed with the assistance of fluoroscopy in all three imaging planes - lateral, inlet and outlet views. The SI-Bone implants are triangular shaped titanium and have a rough surface for immediate stability. This rough surface is believed to aid in the osteo-fixation of the implants to the ilium and sacrum, as well as to long term fusion of the SIJ after its prolonged immobilization. The video can be found here: http://youtu.be/2YtFddohZRk. PMID:23829857

  11. In-situ verification of CANDU spent fuel by the Cherenkov technique

    Multilayered and densely stacked irradiated CANDU fuel bundles in storage ponds make direct viewing of bundles in order to observe Cherenkov glow practically impossible. Ability to defect the source of Cherenkov glow by visual observation invariably suffers from subjective judgment. In the case of CANDU-type storage geometry, the difficulty in drawing conclusions is even greater for a number of reasons including the near neighbour effect. In this paper, the first results of Cherenkov photographic procedure without the isolation of individual trays are presented in which a new model of the Hungarian underwater telescope in combination with a lightmeter for Cherenkov intensity measurements has been used. It is demonstrated by this technique that photographs of bundles with cooling time of up to 2 a provide a satisfactory record for conclusive attribute verification result for irradiated fuel bundles stacked in multilayers. A distinct glow, with a brightness of higher intensity between the rod of a bundle compared to the surroundings of the bundle, is clearly shown by the pictures. Based on the results of the glow intensity measurements, the use of this photographic method for fuel bundles with longer cooling time of up to 15 a or more would require considerably longer exposure times or more sensitive film. Possible impact on IAEA safeguards of CANDU spent fuel bays by a system, which offers simultaneous item counting and NDA attribute test capabilities in a relatively low intrusive manner, is discussed. The limitations are also considered. (author)

  12. In-situ monitoring of nickel electrodeposit structure using electrochemical noise technique

    2006-01-01

    The nickel electroplating process was investigated by means of electrochemical noise(EN), cyclic voltammetry in conjunction with the scanning electron microscopy(SEM) technique. The results show that, in the experimental conditions and with the increase of current density, the growth mechanism of nickel crystallites changes from 2-D to 3-D with the potential turning point of about - 1.15 V,and the potential for the onset of diffusion control of the ensemble nickel electroplating process was about -1.4 V. In the case of activation-control, the two-dimensional (2-D) nucleation / growth process of nickel often results in the electrocrystallization EN features of only slowly small positive potential drift and the corresponding compact layer-by-layer deposit structure, and the maximum relative energy of the RP-EDP (re-plotted relative energy distribution plot), which is obtained from wavelet analysis, defined in the region with smaller scales. While under the diffusion-control, the three-dimensional (3-D) nucleation / growth process of nickel, often results in the electrocrystallization EN features of both the fast positive potential drift and subsequent remarkable negative potential drift and the corresponding dentritic/large conglomerate structure of nickel deposit, and the maximum relative energy of the RP-EDP defined in the region with larger scales. The electroplating time affects the nickel deposit structure mainly through its influence on the growth rate of crystallites and the Ni2+ ions diffusion process around each crystallite.

  13. Normal and Friction Stabilization Techniques for Interactive Rigid Body Constraint-based Contact Force Computations

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2010-01-01

    We present a novel, yet simple, method for stabilization of normal forces. A normal stabilization term, carefully designed from hypotheses about interactive usability, is added to the contact force problem. Further, we propose friction stabilization as a completely new stabilization paradigm in i...

  14. In-situ calibration of criticality monitor in radioactive laboratories by shooting device technique

    Criticality safety is of utmost importance, where isotopes of fissile radioactive material (Pu, U, etc) handled in large quantities in different fuel fabrication facilities. In general, apart from mass control, geometry control in handling radioactive materials, administrative control is a necessity for smooth operation of the facilities. The point of concern in radioactive laboratories is 'criticality' situation. The criticality situation is associated with the burst of neutron and gamma radiation, The detector used to assess such an incident is either calibrated using neutron detection or gamma detection technique simulating the burst of neutron or gamma ray. These detectors should be calibrated and kept up to date to avoid such an incident. A burst of 1015 fission will deliver a prompt gamma dose of 2.5 mSv at a distance of 30 feet (9.144 m). Assuming, the dose delivered in 100 msec, the dose rate will be 102Sv/h, which shall involve in a change of six to seven decade from background in 100 msec. Thus, there are two methods for which a criticality monitor has to be calibrated: i) Steady state 1.3R/h ii) Integrated dose of 2.6 mrem in 200 msec. A source shooting device was designed which uses a cobalt (60Co) one Curie (Ci) source for calibration as per integrated dose limit, The total time of flight shall be ∼ 400 msec for the source with an adjustable average velocity of 8 to 10 m/sec. The velocity is achieved using pneumatic pressure, filled inside a container. The velocity can be varied depending upon the air pressure inside the cylinder. The system is designed with an impact absorber at the end, to reduce the force during impact which prevents it from bulging under successive flights. A reverse air purging system is designed to get cushioning effect to the source at the end of flight to avoid the flaring of the source. The device is tested using dummy source containers for structural integrity and leak tightness. The main feature of this system is its

  15. Water driven stabilization of ZnS nanoparticles prepared by exploding wire technique

    ZnS nanoparticles, prepared employing exploding wire technique (EWT), demonstrate water-induced stabilization with time. The structural evolution of ZnS nanoparticles and their interaction with the surrounding aqueous media is systematically studied at the three distinct stages of time. The structural properties of nanoparticles were examined by an assortment of characterization techniques. However, in this article we focus on x-ray diffraction (XRD) and x-ray photoelectron spectroscopic (XPS) investigation of nanoparticles. The XRD results indicate transformation of hexagonal phase of prepared ZnS nanocrystals. The lattice constants and strain in ZnS nanoparticles are estimated at each stage of transition. Alteration in crystal structure of ZnS nanoparticles, transforming in presence of water, is an outcome of gradual variation in lattice constants and strain. Variation in stoichiometry of ZnS nanoparticles, at respective stages of transformation, is found through XPS analysis. Furthermore, in order to determine the alterations in the oxidation state and energies of the nanoparticle constituents, line shape analysis of Zn 2p3/2 peaks at three stages, is also performed. Thus, XPS analysis, accompanied with the XRD interpretations, vividly deciphers the structural evolution of ZnS nanoparticles in aqueous environment. (papers)

  16. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    Rola Muhammed Shadid

    2014-01-01

    Full Text Available Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability.

  17. STABILITY OF PATTERNS OF BEHAVIOR IN THE BUTTERFLY TECHNIQUE OF THE ELITE SWIMMERS

    Hugo Louro

    2010-09-01

    Full Text Available The purpose of this study was to find patterns in the butterfly swimming technique, with an adaptation of the Behavioral Observation System Tech. This, as an instrument for ad-hoc qualitative analysis, enables the study of the stability of the technical implementation. When used in the training of swimmers, analysis can reduce the variability of behavioral tuning swimming technique. Through the analysis of temporal patterns (T-pattern and a sequence of five cycles running at hand maximum speed, the behavior of four technical Portuguese elite swimmers, with a record of 259 alphanumeric codes and a total of 160 configurations, were studied. The structure of the original instrument, based on a mixed system of categories and formats Field, can record technical features, observed during the execution of hand cycles. The validity was ensured through the index of intra-observer reliability (95% and inter-observer accuracy (96%. To detect patterns in each swimmer, the Theme 5.0 software was used, which allowed to identify the stable structures of technical performance within a critical interval of time (p <0.05 - t-patterns. The patterns were different, adjusting to the characteristics of technical implementation of the swimmers. It was found that the swimmer can create settings with different levels of structure complexity, depending on the implementation of changes within the hand cycle. Variations of codes in each configuration obtained using the SOCTM, allowed determining the differences between swimmers. However, the records showed a clear behavioral similarity when comparing the result with a general pattern of the butterfly technique. The potential quality of this instrument seems to be important due to the patterns obtained from a temporal sequence

  18. Visualisation of EDZ fractures by using the in-situ resin impregnation technique: what have we learned?

    Document available in extended abstract form only. For the visualisation and characterisation of the Excavation Damaged Zone (EDZ) in argillaceous rocks, a technique was developed 14 years ago for getting undisturbed rock samples by a special sampling process. This technique consists of injecting fluorescence-doped epoxy resin into a borehole, which flows into the fractures. The injection borehole is packed off by a mechanical packer. After polymerisation of the resin, the injection borehole is over-cored or surrounded by large diameter sampling boreholes, and the impregnated fractures on the Drill-cores are analysed under UV light. Together with neighbouring boreholes, the EDZ fracture network behind the tunnel wall can then be derived by interpolation of fractures between the individual boreholes. This in situ resin impregnation technique has been applied successfully for many studies conducted at Mont Terri (FM-B, FP, EZ-G experiments) and at Bure (SUG, FOR experiments) rock laboratories. In the frame of the EZ-A experiment performed at Mont Terri, a similar imaging method has been applied for identifying the water-conducting features inside the EDZ fracture network, which were saturated after the performance of cross-hole hydraulic tests using water as the injection fluid. The water was first spiked by a fluorescein tracer in order to identify the water conducting features in Drill-cores that correspond to EDZ fractures, mainly reactivated tectonic faults. Thanks to this method, self-sealing features of reactivated faults could be evidenced. Data collected by these methods enabled to better constrain the geometry and kinematics of the EDZ fracture network (fracture orientations, frequencies and extent), to provide data on the fracture opening and to identify the potential flow paths along the EDZ. Thin sections analysed under UV light give valuable information on the degree of connectivity of the impregnated fracture network. Micro-fractures with openings down

  19. A modified rinsing method for the determination of the S, W-S and D + U fraction of protein and starch in feedstuff within the in situ technique

    Jonge, de L.H.; Laar, van H.; Hendriks, W.H.; Dijkstra, J.

    2013-01-01

    A modified rinsing method for the in situ technique was developed to separate, isolate and characterise the soluble (S), the insoluble washout (W–S) and the non-washout fractions (D1U) within one procedure. For non-incubated bags ( t50 h), this method was compared with the conventional, Combined Fra

  20. Trace Metals in Groundwater and the Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid West DOE

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption)

  1. Utilization of fluorescence in situ hybridization (FISH) technique for detection of radiation-induced translocations in atomic bomb survivors

    This paper summarizes recent progress in a collaborative study by Radiation Effects Research Foundation, Hiroshima, Lawrence Livermore National Laboratory and university of California, San Francisco, to investigate the utility of fluorescence in situ hybridization (FISH) with whole-chromosome probes (chromosomes 1, 2 and 4) for measurement of the frequencies of chromosomal translocations that have persisted for decades in the peripheral blood lymphocytes of A-bomb survivors. The frequencies of radiation-induced translocations measured between FISH and G-band/conventional stains for 33 Hiroshima a-bomb survivors (7 distally and 26 proximally exposed survivors with estimated DS86 bone marrow dose ranging from 0-3.0 Sv). Findings showed that, except for a few discrepant cases, translocation frequencies from the same survivors agree reasonably well between FISH and G-banding, provides the assumption that the number of breaks involved in the radiation-induced translocations increases linearly with chromosomal dna content. Present findings have validated that the FISH technique is a useful biological assay system for rapid and accurate detection of persistent translocations for quantification of previous exposures to ionizing radiation. (author). 9 refs

  2. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Abhisakh Sarma

    2014-09-01

    Full Text Available In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 107. This value remain almost constant over a frequency range from 1Hz to 106 Hz even at 80 K temperature.

  3. Technical Note: A novel rocket-based in situ collection technique for mesospheric and stratospheric aerosol particles

    W. Reid

    2013-03-01

    Full Text Available A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.

  4. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    Koutsokeras, L. E. [Departement Physique et Mecanique des Materiaux, Institut Pprime, CNRS-Universite de Poitiers-ENSMA, UPR 3346, SP2MI, Teleport 2, Bd M et P Curie, F 86962 Chasseneuil-Futuroscope (France); Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Abadias, G. [Departement Physique et Mecanique des Materiaux, Institut Pprime, CNRS-Universite de Poitiers-ENSMA, UPR 3346, SP2MI, Teleport 2, Bd M et P Curie, F 86962 Chasseneuil-Futuroscope (France)

    2012-05-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  5. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  6. Complementary analysis techniques applied on optimizing suspensions of yttria stabilized zirconia

    Della Negra, Michela; Foghmoes, Søren Preben Vagn; Klemensø, Trine

    2016-01-01

    Three different polymers with different functional groups and similar molecular weight were tested as dispersing agents for suspensions of yttria stabilized zirconia in ethanol: polyvinyl pyrrolidone, polyethylene imine, polyvinyl butyral/acetal. The stability of the system was assessed considering...

  7. Desorption mass spectrometry: Revisiting the in-situ calibration technique for mixed group-V alloy MBE growth of ~3.3 μm diode lasers

    Kaspi, Ron; Lu, Chunte; Yang, Chi; Newell, Timothy C.; Luong, Sanh

    2015-09-01

    We apply the desorption mass spectrometry (DMS) technique and analyze the desorbed Sb species in-situ during MBE growth of mixed As/Sb heterostructures. We demonstrate how DMS is useful in pre-growth calibration of the V/III ratio, the group-III ratio, as well as the Sb-content in quaternary or quinary mixed As/Sb alloys. We also apply DMS to the digital alloy growth method. For demonstration purposes, we start with an un-calibrated MBE system, use the DMS technique to calibrate all of the previously undetermined MBE parameters and grow a ~3.3 μm diode laser heterostructure in only one attempt. The results demonstrate that the DMS technique will allow the MBE to quickly converge toward a set of acceptable growth parameters without the need for ex-situ calibration of alloy composition.

  8. Applying the digital-image-correlation technique to measure the deformation of an old building’s column retrofitted with steel plate in an in situ pushover test

    Shih-Heng Tung; Ming-Hsiang Shih; Wen-Pei Sung

    2014-06-01

    An in situ pushover test is carried out on an old building of Guan-Miao elementary school in south Taiwan. Columns of this building are seismically retrofitted with steel plate. The DIC (digital-image-correlation) technique is used to measure the deformation of the retrofitted column. The result shows that the DIC technique can be successfully applied to measure the relative displacement of the column. Additionally, thismethod leads to the measurement of relative displacements formany points on the column simultaneously. Hence, the column deformation curve, rotation and curvature can be determined using interpolation method. The resulting curvaturediagram reveals that the phenomenon of plastic hinge occurs at about 2% storey drift ratio, and that the DIC technique can be applied to measure column deformation in a full scale in situ test.

  9. Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis

    Santamaría-Arrieta, Gorka; Brizuela-Velasco, Aritza; Fernández-González, Felipe J.; Chávarri-Prado, David; Chento-Valiente, Yelko; Solaberrieta, Eneko; Diéguez-Pereira, Markel; Yurrebaso-Asúa, Jaime

    2016-01-01

    Background This study evaluated the influence of implant site preparation depth on primary stability measured by insertion torque and resonance frequency analysis (RFA). Material and Methods Thirty-two implant sites were prepared in eight veal rib blocks. Sixteen sites were prepared using the conventional drilling sequence recommended by the manufacturer to a working depth of 10mm. The remaining 16 sites were prepared using an oversize drilling technique (overpreparation) to a working depth of 12mm. Bone density was determined using cone beam computerized tomography (CBCT). The implants were placed and primary stability was measured by two methods: insertion torque (Ncm), and RFA (implant stability quotient [ISQ]). Results The highest torque values were achieved by the conventional drilling technique (10mm). The ANOVA test confirmed that there was a significant correlation between torque and drilling depth (p0.05) at either measurement direction (cortical and medullar). No statistical relation between torque and ISQ values was identified, or between bone density and primary stability (p >0.05). Conclusions Vertical overpreparation of the implant bed will obtain lower insertion torque values, but does not produce statistically significant differences in ISQ values. Key words:Implant stability quotient, overdrilling, primary stability, resonance frequency analysis, torque.

  10. Laser frequency stabilization and large detuning by Doppler-free dichroic lock technique: Application to atom cooling

    V B Tiwari; S R Mishra; H S Rawat; S Singh; S P Ram; S C Mehendale

    2005-09-01

    We present results of a study of frequency stabilization of a diode laser ( = 780 nm) using the Doppler-free dichroic lock (DFDL) technique and its use for laser cooling of atoms. Quantitative measurements of frequency stability were performed and the Allan variance was found to be 6.9 × 10−11 for an averaging time of 10 s. The frequency-stabilized diode laser was used to obtain the trapping beams for a magneto-optic trap (MOT) for Rb atoms. Using the DFDL technique, the laser frequency could be locked over a wide range and this enabled measurement of detuning dependence of the number and temperature of cold atoms using a relatively simple experimental set-up.