WorldWideScience

Sample records for silica-coated fe3o4 nanoparticles

  1. Enzymes immobilization on Fe3O4-gold nanoparticles

    International Nuclear Information System (INIS)

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  2. Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization

    International Nuclear Information System (INIS)

    Fe3O4/polystyrene composite particles were prepared from oleic acid (OA) modified Fe3O4 nanoparticles via miniemulsion polymerization. It was concluded that the surface properties of OA modified magnetite nanoparticles have a great effect on preparation of the composite particles. When Fe3O4 nanoparticles coated by multilayer of OA was employed, there were large amounts of free polystyrene particles in the product. Fe3O4/polystyrene composite particles with defined structure and different magnetite content can be readily prepared from monolayer OA modified Fe3O4 nanoparticles. It was concluded that surface of the monolayer OA modified Fe3O4 nanoparticles is more hydrophobic than that of the multilayer coated ones, thus improving the dispersibility of the Fe3O4 nanoparticles in styrene monomer and allowing preparation of the Fe3O4/polystyrene composite particles with defined structure and controllable magnetite content.

  3. Synthesis of Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Onar, K.; Yakinci, M. E.

    2016-01-01

    Nano particles of Fe3O4 with the range of 6.9 and 14.2 nm. By using chemical coprecipitation method. Particle size effect according to magnetic properties were investigated together with the constant reaction and crystallization temperature. According to calculations peaks were indexed as cubic Fe3O4 for all samples. The hysteresis loops shows superparamagnetic nature. It was found that when Fe2+/Fe3+ ratio increase 50% the particle size increases approximately one fold. We also realized that chemical coprecipitation method is suitable for biomedical applications of Fe3O4nano particles.

  4. Fe3O4@ZIF-8: magnetically recoverable catalysts by loading Fe3O4 nanoparticles inside a zinc imidazolate framework.

    Science.gov (United States)

    Schejn, Aleksandra; Mazet, Thomas; Falk, Véronique; Balan, Lavinia; Aranda, Lionel; Medjahdi, Ghouti; Schneider, Raphaël

    2015-06-14

    A simple methodology for encapsulating ca. 10 nm-sized superparamagnetic Fe3O4 nanoparticles in zeolitic imidazolate frameworks (ZIF-8) crystals was developed. The corresponding Fe3O4@ZIF-8 heterostructured material exhibits bifunctional properties with both high magnetization (Fe3O4) and high thermal stability, large specific surface, and catalytic properties (ZIF-8). The Fe3O4@ZIF-8 catalyst exhibits fair separation ability and reusability, which can be repeatedly applied for Knoevenagel condensations and Huisgen cycloadditions for at least ten successive cycles. PMID:25955275

  5. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application

    International Nuclear Information System (INIS)

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe3O4) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe3O4 MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium

  6. Purification and magnetic interrogation of hybrid Au-Fe3O4 and FePt-Fe3O4 nanoparticles.

    Science.gov (United States)

    Beveridge, Jacob S; Buck, Matthew R; Bondi, James F; Misra, Rajiv; Schiffer, Peter; Schaak, Raymond E; Williams, Mary Elizabeth

    2011-10-10

    Purifying heterodimers: differential magnetic catch and release separation is used to purify two important hybrid nanocrystal systems, Au-Fe(3)O(4) and FePt-Fe(3)O(4). The purified samples have substantially different magnetic properties compared to the as-synthesized materials: the magnetization values are more accurate and magnetic polydispersity is identified in morphologically similar hybrid nanoparticles. PMID:21898742

  7. Synchrotron radiation photoelectron spectroscopy study of dextran-coated Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Dextran-coated Fe3O4 nanoparticles were prepared by untrasonification of Fe3O4 nanoparticles with dextran at 85 degree C in sodium citrate medium. The surface chemical component, structure and bond of uncoated and dextran-coated nanoparticles were measured by synchrotron radiation XPS(X-ray photoelectron spectroscopy). Qualitative and quantitative analysis of C1s and O1s of Fe3O4 and dextran-Fe3O4 showed that the Fe3O4 nanoparticles were successively coated by sodium citrate via Fe-O-C bond, and dextrans, which can be linked with their carboxylate moiety via hydrogen bond. Sodium citrate could enhance the disperse stability of reaction system and hydrophilicity of dextran-Fe3O4. (authors)

  8. Magnetic Nanoparticle Hyperthermia Using Pluronic-Coated Fe3O4 Nanoparticles: An In Vitro Study

    International Nuclear Information System (INIS)

    Magnetic nanoparticles are promising materials for hyperthermia treatment. The temperature rise under ac magnetic field, cytotoxicity, and in vitro hyperthermia effect of Fe3O4 nanoparticles coated with Pluronic f-127 were evaluated in this paper. The Pluronic-coated Fe3O4 nanoparticles exhibited no cytotoxic effect on HeLa cells. The optimal magnetic field of Pluronic-coated Fe3O4 nanoparticles was 16 kA/m (200 Oe) at the field strength of 210 khz. Appropriate temperature rise significantly reduced the viability of HeLa cells and induced apoptosis.

  9. Influence of carbon nanotubes support on the morphology of Fe3O4 nanoparticles

    Science.gov (United States)

    Zabihi, F.; Taleshi, F.; Salmani, A.; Pahlavan, A.; Dehghan-niarostami, N.; Vadadi, M. M.

    2015-03-01

    In this paper, the effects of carbon nanotubes as a support to the morphology and size of Fe3O4 magnetic nanoparticles have been investigated. The synthesis of Fe3O4/CNTs nanocomposite powder was performed by the direct precipitation method through ferric chloride (II) and (III) at room temperature. The prepared samples were analyzed by X-ray diffraction spectra, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The results demonstrated considerable changes in the Fe3O4 nanoparticle size, also the morphology of Fe3O4/CNTs nanocomposite powder from agglomerative into rode shape.

  10. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles

    Science.gov (United States)

    Fouad, Dina M.; El-Said, Waleed A.; Mohamed, Mona B.

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones.

  11. Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Magnetic nanoparticles are of great interest both for fundamental research and emerging applications. In the biomedical field, magnetite (Fe3O4) has shown promise as a hyperthermia-based tumor therapeutic. However, preparing suitable solubilized magnetite nanoparticles is challenging, primarily due to aggregation and poor biocompatibility. Thus methods for coating Fe3O4 NPs with biocompatible stabilizers are required. We report a new method for preparing Fe3O4 nanoparticles by co-precipitation within the pores of agar gel samples. Permeated agar gels were then dried and ground into a powder, yielding agar-conjugated Fe3O4 nanoparticles. Samples were characterized using XRD, FTIR, TGA, TEM and SQUID. This method for preparing agar-coated Fe3O4 nanoparticles is environmentally friendly, inexpensive and scalable.

  12. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy

    International Nuclear Information System (INIS)

    Photoluminescence (PL) of Fe3O4 nanoparticle was observed from the visible to near-infrared (NIR) range by laser irradiation at 407?nm. PL spectra of ?10?nm diameter Fe3O4 nanoparticles organized in different spatial configuration, showed characteristic emissions with a major peak near 560?nm, and two weak peaks near 690?nm and 840?nm. Different band gap energies were determined for these Fe3O4 nanoparticle samples corresponding to, respectively, the electron band structures of the octahedral site (2.2?eV) and the tetrahedral site (0.9?eV). Photothermal effect of Fe3O4 nanoparticles was found to be associated with the photoluminescence emissions in the NIR range. Also discussed is the mechanism responsible for the photothermal effect of Fe3O4 nanoparticles in medical therapy.

  13. 99mTc radiolabelling of Fe3O4-Au core-shell and Au-Fe3O4 dumbbell-like nanoparticles

    Science.gov (United States)

    Felber, M.; Alberto, R.

    2015-04-01

    The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety.The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety. Electronic supplementary information (ESI) available: Analyses of Fe3O4-Au core-shell nanoparticles; analyses of Au-Fe3O4 dumbbell-like nanoparticles; 99mTc labelling of Fe3O4-Au core-shell nanoparticles; 99mTc complexes; 99mTc labelling of Au-Fe3O4 dumbbell-like nanoparticles; syntheses coating ligands. See DOI: 10.1039/c5nr00269a

  14. Microwave dielectric and magnetic properties of superparamagnetic 8-nm Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    The superparamagnetic 8-nm Fe3O4 nanoparticles were successfully prepared by chemical oxidation process. For the complex permittivity, the dual dielectric relaxation processes have been proved by two overlapped Cole–Cole semicircles, and the natural resonance frequency is 3.03 GHz for the complex permeability. The maximum reflection loss value reaches ?55.5 dB at 6.11 GHz with 3.85 mm in the thickness of the absorbers for the superparamagnetic 8-nm Fe3O4 nanoparticles which is better than that of 150 nm and 30 nm Fe3O4 nanoparticles. It is believed that the superparamagnetic 8-nm Fe3O4 nanoparticles can be used as a kind of candidate for microwave absorber. - Highlights: ? Superparamagnetic 8-nm Fe3O4 nanoparticles synthesized by the simple chemical oxidation. ? The dual dielectric relaxation processes have been proved by the two overlapped Cole–Cole semicircles for the complex permittivity. ? The natural resonance frequency is 3.03 GHz which is larger than the one of 150 nm and 30 nm Fe3O4 nanoparticles. ? These possess better microwave absorption properties than 150 nm and 30 nm Fe3O4 nanoparticles.

  15. Hydrothermal synthesis of superparamagnetic Fe3O4 nanoparticles with ionic liquids as stabilizer

    International Nuclear Information System (INIS)

    Highlights: • Superparamagnetic Fe3O4 nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C16mim]Cl acts as stabilizer for the Fe3O4 nanoparticles. • Fe3O4 nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe3O4 nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate that the as-synthesized inverse spinel Fe3O4 nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C16mim]Cl acts as stabilizer for the Fe3O4 nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe3O4 nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K

  16. Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation

    OpenAIRE

    Ning-Ning Song; Hai-Tao Yang; Hao-Liang Liu; Xiao Ren; Hao-Feng Ding; Xiang-Qun Zhang; Zhao-Hua Cheng

    2013-01-01

    Magnetic nanoparticles have attracted much research interest in the past decades due to their potential applications in microwave devices. Here, we adopted a novel technique to tune cut-off frequency exceeding the natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. We observed that the cut-off frequency can be enhanced from 5.3?GHz for Fe3O4 to 6.9?GHz forFe3O4@SiO2 core-shell structure superparamagnetic nanoparticles, which are much higher ...

  17. Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites

    Science.gov (United States)

    Ding, Daowei; Yan, Xingru; Zhang, Xi; He, Qingliang; Qiu, Bin; Jiang, Dawei; Wei, Huige; Guo, Jiang; Umar, Ahmad; Sun, Luyi; Wang, Qiang; Khan, Mojammel A.; Young, David P.; Zhang, Xin; Weeks, Brandon; Ho, Thomas C.; Guo, Zhanhu; Wei, Suying

    2015-09-01

    Polyimide (PI) nanocomposite reinforced with Fe3O4 nanoparticles (NPs) at various NPs loadings levels of 5.0, 10.0, 15.0, and 20.0 wt% were prepared. The chemical interactions of the Fe3O4 NPs/PI nanocomposites were characterized using Fourier Transform Infrared (FT-IR) spectroscopy. X-ray Diffraction (XRD) results revealed that the addition of NPs had a significant effect on the crystallization of PI. Scanning electron microscope (SEM) and the atomic force microscope (AFM) were used to characterize the dispersion and surface morphology of the Fe3O4 NPs and the PI nanocomposites. The obtained optical band gap of the nanocomposites characterized using Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) was decreased with increasing the Fe3O4 loading. Differential scanning calorimetry (DSC) results showed a continuous increase of Tg with increasing the Fe3O4 NPs loading. Some differences were observed in the onset decomposition temperature between the pure PI and nanocomposites since the NPs and the PI matrix were physically entangled together to form the nanocomposites. The contact angle of pure PI was larger than that of Fe3O4/PI nanocomposites films, and increased with increasing the loading of Fe3O4. The degree of swelling was increased with increasing the Fe3O4 loading and the swelling time. The dielectric properties of the nanocomposite were strongly related to the Fe3O4 loading levels. The Fe3O4/PI magnetic property also had been improved with increasing the loading of the magnetic nanoparticles.

  18. A Facile Solvothermal Synthesis of Octahedral Fe3O4 Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Frances; DuChene, Joseph S.; Qiu, Jianqing; Graham, Jeremy O.; Engelhard, Mark H.; Cao, Guixin; Gai, Zheng; Wei, Wei

    2015-06-01

    Magnetic nanoparticles are of great technological interest because they promise numerous potential opportunities in biomedicine and data storage. Although intriguing, these applications require exquisite control over nanostructure morphology in order to appropriately harness their magnetic properties. Most synthesis strategies reported to date are unable to routinely produce anisotropic Fe3O4 nanostructures with appropriate sizes to enable integration into biological systems. Here, we report a simple solvothermal synthesis for obtaining octahedral Fe3O4 nanoparticles with suitable sizes for cellular internalization. Furthermore, these ferromagnetic Fe3O4 octahedrons exhibit substantial saturation magnetization with minimal remanence, suggesting their potential applicability for a host of biomedical applications.

  19. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe3O4@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe3O4@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe3O4@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  20. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Air-stable nanoparticles of Fe3O4/Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl4) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe3O4 nanoparticles with further drop-addition of sodium citrate. The Fe3O4/Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe3O4/Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g-1 and their average diameter is about 30 nm

  1. Temperature dependence of magnetic property and photocatalytic activity of Fe3O4/hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Fe3O4/hydroxyapatite (HAP) nanoparticles have been developed as a novel photocatalyst support, based on the embedment of magnetic Fe3O4 particles into HAP shell via homogeneous precipitation method. The resultant nanoparticles were characterized by transmission electron microscope (TEM) and X-ray diffraction (XRD). These particles were almost spherical in shape, rather monodisperse and have a unique size of about 25 nm in diameter. The effect of calcination temperature on magnetic property and photocatalytic activity of Fe3O4/HAP nanoparticles was investigated in detail. The obtained results showed that the Fe3O4/HAP nanoparticles calcined at 400 oC possessed good magnetism and photocatalytic activity in comparison with that calcined at other temperatures.

  2. High-temperature magnetic properties of noninteracting single-domain Fe3O4 nanoparticles

    OpenAIRE

    Wang, Jun; Beeli, Pieder; Meng, L. H.; Zhao, Guo-meng

    2010-01-01

    Magnetic measurements have been performed on 40-nm sphere-like Fe3O4 nanoparticles using a Quantum Design vibrating sample magnetometer. Coating Fe3O4 nanoparticles with SiO2 effectively eliminates magnetic interparticle interactions so that the coercive field HC in the hightemperature range between 300 K and the Curie temperature (855 K) can be well fitted by an expression for noninteracting randomly oriented single-domain particles. From the fitting parameters, the effecti...

  3. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    K C Barick; D Bahadur

    2006-11-01

    The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.

  4. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    Science.gov (United States)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional nanoparticles showed no significant cytotoxicity to the CHO cells up to 48 h even at concentrations of 1 mg ml-1 making them suitable for biomedical applications such as local heat generators (hyperthermia) for cancer treatment and drug delivery vehicles.

  5. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2010-10-01

    Full Text Available Jun Wang1, Yue Chen1, Baoan Chen1, Jiahua Ding1, Guohua Xia1, Chong Gao1, Jian Cheng1, Nan Jin1, Ying Zhou1, Xiaomao Li1, Meng Tang2, Xue Mei Wang21Department of Hematology, Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 1Department of Physics, University of Saarland, D-266041 Saarbruechen, Germany; 2National Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaBackground: This study explored the pharmacokinetic parameters and tissue distribution of magnetic iron oxide nanoparticles (Fe3O4 MNPs in imprinting control region (ICR mice.Methods: The Fe3O4 MNPs were synthesized by chemical coprecipitation, and their morphology and appearance were observed by transmission electron microscopy. ICR mice were divided into a control group and a Fe3O4 MNP-treated group. Probable target organs in ICR mice were observed, and the pharmacokinetic parameters and biodistribution of Fe3O4 MNPs in tissues were identified using atomic absorption spectrophotometry.Results: Fe3O4 MNPs were spherical with a well distributed particle diameter, and were distributed widely in various target organs and tissues including the heart, liver, spleen, lungs, kidneys, brain, stomach, small intestine, and bone marrow. The majority of Fe3O4 MNPs were distributed to the liver and the spleen. Fe3O4 MNP levels in brain tissue were higher in the Fe3O4 MNP-treated group than in the control group, indicating that Fe3O4 MNPs can penetrate the blood–brain barrier.Conclusion: These results suggest that the distribution of Fe3O4 MNPs was mostly in the liver and spleen, so the curative effect of these compounds could be more pronounced for liver tumors. Furthermore, Fe3O4 MNPs might be used as drug carriers to overcome physiologic barriers.Keywords: magnetic nanoparticles, Fe3O4, tissue distribution, mice

  6. Electro-precipitation of Fe3O4 nanoparticles in ethanol

    International Nuclear Information System (INIS)

    The preparation of superparamagnetic magnetite (Fe3O4) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Moessbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe3O4)

  7. Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ? Fe3+ as the only Fe source for preparing Fe3O4 nanoparticles through in situ cover and sonication method. ? Surface modification enables the reduction of the grain size of Fe3O4. ? Increasing temperature reduces grain size of Fe3O4 until it exceeds 80 deg. C. ? Increasing pH values reduces grain size of Fe3O4 until it exceeds 11. ? Saturation magnetizations depend on the grain size of Fe3O4 nanoparticles. - Abstract: Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g-1 to 52-58 emu g-1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 deg. C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.

  8. Numerical characterization of magnetically aligned multiwalled carbon nanotube-Fe3O4 nanoparticle complex.

    Science.gov (United States)

    Jia, Xiaolong; Li, Wusheng; Xu, Xianjuan; Li, Wenbin; Cai, Qing; Yang, Xiaoping

    2015-02-11

    Alignment states of one-dimensional multiwalled carbon nanotubes containing various contents of zero-dimensional ferriferrous oxide nanoparticles (MWCNT-Fe3O4) were numerically characterized. MWCNT-Fe3O4 complexes were successfully prepared via in situ surface-initiated atom transfer radical polymerization, followed by a coprecipitation process. The complexes showed strong magnetism, which endowed them with the ability to be aligned under the action of an external magnetic field. The intensity of the magnetic field, loading content of Fe3O4 nanoparticles, and viscosity of dispersing medium, however, all had substantial effects on the alignment degree. To evaluate the alignment effectively and quantitatively, an orientation tensor description based on marking the direction of a single MWCNT in a selected region of optical images was employed. The results showed that MWCNT-Fe3O4 complex containing 26 wt % of Fe3O4 nanoparticles achieved a desirable alignment in deionized water under a magnetic field intensity of 0.10 T. Accordingly, epoxy composites reinforced with such aligned MWCNT-Fe3O4 complexes displayed 12.3 and 10.9% enhancement in tensile strength and modulus, as well as 8.9 and 6.1% enhancement in flexural strength and modulus, respectively. PMID:25597815

  9. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques.

    Science.gov (United States)

    Tian, Fei; Chen, Guangcun; Yi, Peiwei; Zhang, Jichao; Li, Aiguo; Zhang, Jing; Zheng, Lirong; Deng, Zongwu; Shi, Qin; Peng, Rui; Wang, Qiangbin

    2014-08-01

    Superparamagnetic iron oxide nanoparticles (SPIOs) have been widely used as the magnetic resonance imaging (MRI) contrast agent in biomedical studies and clinical applications, with special interest recently in in vivo stem cell tracking. However, a full understanding of the fate of SPIOs in cells has not been achieved yet, which is particularly important for stem cells since any change of the microenvironment may disturb their propagation and differentiation behaviors. Herein, synchrotron radiation-based X-ray fluorescence (XRF) in combination with X-ray absorption spectroscopy (XAS) were used to in situ reveal the fate of Fe3O4 and Fe3O4@SiO2 NPs in human mesenchymal stem cells (hMSCs), in which the dynamic changes of their distribution and chemical speciation were precisely determined. The XAS analysis evidences that Fe3O4 NPs cultured with hMSCs are quite stable and almost keep their initial chemical form up to 14 days, which is contradictory to the previous report that Fe3O4 NPs were unstable in cell labeling assessed by using a simplified lysosomal model system. Coating with a SiO2 shell, Fe3O4@SiO2 NPs present higher stability in hMSCs without detectable changes of their chemical form. In addition, XRF analysis demonstrates that Fe3O4@SiO2 NPs can label hMSCs in a high efficiency manner and are solely distributed in cytoplasm during cell proliferation, making it an ideal probe for in vivo stem cell tracking. These findings with the help of synchrotron radiation-based XAS and XRF improve our understanding of the fate of SPIOs administered to hMSCs and will help the future design of SPIOs for safe and efficient stem cells tracking. PMID:24814428

  10. Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles

    Science.gov (United States)

    Akbari, Hossein; Zeynali, Hossein; Bakhshayeshi, Ali

    2016-02-01

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe3O4 was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe3O4 core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner-Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe3O4 core/shell nanoparticles. There is a difference between the results from Stoner-Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe3O4 core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions.

  11. Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core-shell nanoparticles

    Science.gov (United States)

    Stefan, M.; Leostean, C.; Pana, O.; Soran, M.-L.; Suciu, R. C.; Gautron, E.; Chauvet, O.

    2014-01-01

    In the present work we report new assets on the synthesis and characterization of magnetite based core-shell nanoparticles such as Fe3O4@ZnS and Fe3O4@Au@ZnS. The composites were prepared by seed mediated growth which consist in a sequential growth of a second or third component on a preformed magnetite seeds in the presence of sodium laurylsulphate additives with essential role in growth and aggregation of nanoparticles. Evolved gas analysis (EGA) coupled with FT-IR was used in order to evidence the stages of ZnS shell formation. XRD studies were used for the structural characterization while high resolution transmission electron microscopy gave information concerning morphology and size distributions of nanoparticles. Qualitative and quantitative compositional analysis of samples was made by X-ray photoelectron spectroscopy (XPS). All the samples showed magnetic response due to the superparamagnetic behavior of magnetite cores. Increased saturation magnetization was determined for Fe3O4@ZnS samples. A significant photoluminescence (PL) enhancement was also observed as a result of Fe3O4:Zn2+ molar ratio decrease. Additional PL increased response was realized by inserting a gold shell between the magnetite core and ZnS outer shell. Considerations regarding both PL and magnetization enhancements are also presented.

  12. Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles

    International Nuclear Information System (INIS)

    In the present work we report new assets on the synthesis and characterization of magnetite based core–shell nanoparticles such as Fe3O4@ZnS and Fe3O4@Au@ZnS. The composites were prepared by seed mediated growth which consist in a sequential growth of a second or third component on a preformed magnetite seeds in the presence of sodium laurylsulphate additives with essential role in growth and aggregation of nanoparticles. Evolved gas analysis (EGA) coupled with FT-IR was used in order to evidence the stages of ZnS shell formation. XRD studies were used for the structural characterization while high resolution transmission electron microscopy gave information concerning morphology and size distributions of nanoparticles. Qualitative and quantitative compositional analysis of samples was made by X-ray photoelectron spectroscopy (XPS). All the samples showed magnetic response due to the superparamagnetic behavior of magnetite cores. Increased saturation magnetization was determined for Fe3O4@ZnS samples. A significant photoluminescence (PL) enhancement was also observed as a result of Fe3O4:Zn2+ molar ratio decrease. Additional PL increased response was realized by inserting a gold shell between the magnetite core and ZnS outer shell. Considerations regarding both PL and magnetization enhancements are also presented.

  13. Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ► A bran-new method is firstly used to fabricate Fe3O4 nanoparticles. ► The detailed analysis of formation mechanism is discussed. ► The electromagnetic absorption properties are defined. ► The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe3O4 nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe3O4 nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2–18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe3O4 nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was −21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe3O4 nanoparticles

  14. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    International Nuclear Information System (INIS)

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe3O4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe3O4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe3O4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T2-weighted MRI images of PVPI-coated Fe3O4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe3O4 nanoparticles had great potential for application in MRI as a T2 contrast agent. - Highlights: • PVPI-coated Fe3O4 nanoparticles were prepared using inverse co-precipitation method. • Resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. • Prepared Fe3O4 nanoparticles exhibited superparamagnetic behavior. • T2-weighted MRI images of PVPI-coated Fe3O4 nanoparticles were obtained

  15. Preparation of Fe3O4 Nanoparticles and Removal of Methylene Blue through Adsorption

    Science.gov (United States)

    Trujillo Hernandez, J. S.; Aragón Muriel, A.; Tabares, J. A.; Pérez Alcázar, G. A.; Bolaños, A.

    2015-07-01

    In this work, we studied the catalytic activity, structural properties, and behavior of a Fe3O4 magnetic system. The Fe3O4 nanoparticles were prepared by the thermal decomposition method. X-ray diffraction confirmed the presence of a structural Fe3O4 phase, where acicular shape of the grains is shown. Transmission Mossbauer spectroscopy showed a wide distribution of particle sizes at room temperature, some of these present superparamagnetic behavior and are responsible of paramagnetic sites. The hysteresis loops obtained by the use of a vibrating sample magnetometer showed that these nanoparticles exhibit superparamagnetic behavior. However, the cycles present a significant contribution from a ferrimagnetic component at 2 K, which agrees with Mossbauer results. Through scanning electron microscopy, a tendency to the agglomeration of nanoparticles was observed. Nanoparticle activity in the degradation of methylene blue (MB) was studied through fluorescence spectroscopy, finding dye adsorption properties.

  16. Single source preparation of superparamagnetic Fe3O4 nanoparticles by simple cyclic microwave approach

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Superparamagnetic Fe3O4 nanoparticles were synthesized in high yield. • PEG-200 was applied as both solvent and reductive agent. • Single source synthesis of Fe3O4 was performed. • Nontoxic materials and surfactant were used in current investigation. • Reaction time and temperature significantly decreased in current experiment. - Abstract: Polyol mediated process was applied for the synthesis of Fe3O4 nanoparticles under microwave irradiation. By combination of polyol medium and microwave irradiation different advantages including low reaction time, low consumption of energy, and simplicity were achieved. Different parameters affecting on products including microwave irradiation power, reaction time, reactants concentration, and solvent were changed to reach the optimum condition for synthesis of Fe3O4 nanoparticles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR) spectra, and vibrating sample magnetometer (VSM). Facile preparation and separation are important features of this route. This work has provided a general, simple, and effective method to control the composition and morphology of Fe3O4 nanoparticles in nonaqueous solution, which will be important for inorganic synthesis methodology

  17. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe3O4 nanoparticles with composition (80 − x)TeO2·xFe3O4·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm−1 to 671 cm−1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO3 peak at 752 cm−1. A new peak around 461 cm−1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe3O4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe3O4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe3O4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe3O4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  18. Catalytic performance of Fe3O4 nanoparticles for cyclocondensation synthesis of thiacrown ethers

    Science.gov (United States)

    Lin, Shangxin; Chen, Yajie; Tan, Xiepeng; Song, Feng; Yue-Bun Pun, Edwin; He, Zhubing; Pu, Jixiong

    2015-01-01

    The catalytic function of nanoparticles is one the most successful applications of nanotechnologies so far. A novel and mild one-pot cyclocondensation reaction catalyzed by Fe3O4 nanoparticles is achieved for the first time in this work. By the function of those nanoparticles, the thiacrown ethers, including both 1,4-dithiane and 1,4,7-trithiacyclononane were obtained with considerable yield and turnover in a milder condition than that of the conventional routes. The excellent dehydrating ability and acid sensitivity of Fe3O4 nanoparticles were discovered in a series of experiments of esterification of DL-malic acid. The catalytic reaction mechanism of Fe3O4 nanoparticles was explored through the investigation of morphology evolution of those nanoparticles by transmission electron microscopy. Interestingly, the as-prepared big nanoparticles were decomposed into hollow or loose bounded aggregates of smaller nanoparticles after catalytic cycles. The result shown in this work claims promising utilization of Fe3O4 nanoparticles with big potential in catalytic synthesis.

  19. Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response

    International Nuclear Information System (INIS)

    Octahedral-shaped Fe3O4 nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe3O4 nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol.?% particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves

  20. Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response

    Science.gov (United States)

    Jung, H. S.; Choi, H. J.

    2015-05-01

    Octahedral-shaped Fe3O4 nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe3O4 nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.

  1. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    International Nuclear Information System (INIS)

    In this work we report the preparation of fucan-coated magnetite (Fe3O4) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe3O4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe3O4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe3O4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  2. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    International Nuclear Information System (INIS)

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe3O4 nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe3O4 nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe3O4@Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes

  3. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia

    International Nuclear Information System (INIS)

    The magnetite (Fe3O4) nanoparticles were prepared by coprecipitation of Fe3+ and Fe2+ with an aqueous NaOH solution. The Fe3O4/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe3O4 magnetic fluid. The inductive heat property of Fe3O4/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe3O4/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, Ms, and coercivity, Hc, are 50.05 emu g-1 and 137 Oe for Fe3O4 nanoparticles and 26.34 emu g-1 and 0 Oe for Fe3O4/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe3O4 nanoparticles or Fe3O4/PANI composite nanoparticles are 63.6 0C and 52.4 0C, respectively. The Fe3O4/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers

  4. Green synthesis and characterization of superparamagnetic Fe 3O 4 nanoparticles

    Science.gov (United States)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2010-07-01

    In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe 3O 4 nanoparticles using ?- D-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe 3O 4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe 3O 4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature ( Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe 3O 4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm -1 was indicative of Fe 3O 4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.

  5. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using ?-D-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm-1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.

  6. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.

  7. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Chen DZ

    2012-09-01

    Full Text Available Daozhen Chen,1,3,* Qiusha Tang,2,* Xiangdong Li,3,* Xiaojin Zhou,1 Jia Zang,1 Wen-qun Xue,1 Jing-ying Xiang,1 Cai-qin Guo11Central Laboratory, Wuxi Hospital for Matemaland Child Health Care Affiliated Medical School of Nanjing, Jiangsu Province; 2Department of Pathology and Pathophysiology, Medical College, Southeast University, Jiangsu Province; 3The People’s Hospital of Aheqi County, Xinjiang, China *These authors contributed equally to this workBackground: The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells.Methods: Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays.Results: Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929 cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50 was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermia

  8. Magneto capacitance in Fe3O4 and NiFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    We have synthesized NiFe2O4 (? ?6 nm) and Fe3O4 (??30 nm) magnetic nanoparticles by solvothermal synthesis; furthermore the Fe3O4 nanoparticles have been coated with a SiO2 shell of approximately 5 nm of thickness by the Stober method. In the study of the dielectric properties as a function of the frequency, temperature and applied magnetic field, we observe a magnetocapacitive behavior (MC) at room temperature and under a moderate magnetic field (H=0.5T), that is specially important in the case of the Fe3O4, nanoparticles (MC 6%). On the other hand, the NiFe2O4 and Fe3O4atSiO2 samples present smaller magnetocapacitive effects: MC? 2% y MC? 1%, respectively. These MC values, that are higher than those reported in the literature for other related magnetic nanoparticles, corroborate the theoretical model proposed by Catalan in which the combination of Maxwell-Wagner effects and magnetoresistance promote the appearance of stronger magnetocapacitive effects. (Author)

  9. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core–shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs. - Highlights: • Fe3O4 nanoparticles synthesized FeCl2 as the sole source by alkaline precipitation. • Hydrophilicity imparted to OA-Fe3O4 MNPs. • Improved heating induction ability. • Highly stabilized colloidal suspension. • Improved biocompatiblity

  10. Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ? Heptanoic acid@Fe3O4 nanocomposite has been prepared via simple polyol. ? Heptanoic acid used as both surfactant and solvents. ? Magneto polymer composite with adjustable Ea has a potential usage as functional composites. - Abstract: Magnetite (Fe3O4) nanoparticles were prepared via polyol method by using FeCl2 as only source of iron. As-prepared samples were characterized by powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analyzer (TGA) and vibrating sample magnetometer (VSM). Crystalline phase was identified as Fe3O4 and the crystallite sizes were calculated as 19.1 ± 1.1 and 22 ± 1.3 nm for uncalcinated and calcinated products from X-ray line profile fitting. The capping of heptanoic acid around Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygen's of the carboxylate and the nanoparticle surface and also by TG analysis. VSM measurements showed that both samples exhibited typical superparamagnetic behavior at room temperature with different Ms values. The ?? decreases with increasing frequency for both composites and permeability has almost same values for all temperatures at higher frequencies. As synthesized and calcinated samples conductivity increase linearly with the temperature

  11. Water-soluble rhamnose-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Lartigue, Lenaic; Oumzil, Khalid; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis; Barragan-Montero, Veronique; Sangregorio, Claudio; Caneschi, Andrea; Innocenti, Claudia; Kalaivani, T; Arosio, P; Lascialfari, A

    2009-07-16

    Water-soluble biocompatible rhamnose-coated Fe(3)O(4) nanoparticles of 4.0 nm are obtained by covalent anchorage of rhamnose on the nanoparticles surface via a phosphate linker. These nanoparticles present superparamagnetic behavior and nuclear relaxivities in the same order of magnitude as Endorem that make them potential magnetic resonance imaging (MRI) contrast agents of a second generation, where the saccharides represent also specific ligands able to target lectins on skin cells. PMID:19545163

  12. A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles

    Science.gov (United States)

    Yang, Jinghai; Zou, Ping; Yang, Lili; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Wang, Zhe; Chen, Gang; Wang, Bingji; Kong, Xiangwang

    2014-06-01

    The PEG-coated Fe3O4 (PEG-Fe3O4) nanoparticles had been fabricated through chemical coprecipitation method. We comprehensively investigated the influence of different reaction conditions, such as vapor pressures with opening or sealing the beaker, molecular weights and amounts of PEG, on the structural and paramagnetic properties of PEG-Fe3O4 nanoparticles. The well-dispersed magnetic PEG-Fe3O4 nanoparticles with better size distribution can be obtained with adding 4 g PEG1000 while sealing the beaker. The possible growth mechanism was also discussed in detail.

  13. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma.

    Science.gov (United States)

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-01-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more ?-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch. PMID:26902789

  14. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma

    Science.gov (United States)

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-01-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more ?-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch. PMID:26902789

  15. Interactions in ?-Fe2O3 and Fe3O4 nanoparticle systems

    International Nuclear Information System (INIS)

    We have investigated interaction effects in two different systems of iron oxide nanoparticles. Samples of ?-Fe2O3 and Fe3O4 nanoparticles were synthesized using a matrix-mediated precipitation reaction and a chemical co-precipitation technique respectively. The structural properties of these nanoparticles were studied using x-ray diffraction and transmission electron microscopy. We also used temperature dependent ac magnetic susceptibility measurements to carefully investigate the interactions among these nanoparticles. Our analysis showed that the characteristic interaction energy does not depend simply on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution

  16. Fe3O4-nanoparticles within porous silicon: Magnetic and cytotoxicity characterization

    Science.gov (United States)

    Granitzer, P.; Rumpf, K.; Tian, Y.; Akkaraju, G.; Coffer, J.; Poelt, P.; Reissner, M.

    2013-05-01

    The magnetic properties of porous silicon/Fe3O4 composites are investigated with respect to the adjustability of the blocking temperature along with an evaluation of any size-dependent changes in cytocompatibility. Fe3O4-nanoparticles have been infiltrated within mesoporous silicon, resulting in a system with tunable magnetic properties due to the matrix-morphology, the loading of the nanoparticles, and their size. In order to provide basic information regarding its suitability as a therapeutic platform, the cytotoxicity of these composites have been investigated by a trypan blue exclusion assay with respect to human embryonic kidney 293 cells, and the results compared with cell-only and known cytotoxic controls.

  17. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    Science.gov (United States)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  18. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings

    International Nuclear Information System (INIS)

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25?nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  19. Growth mechanism of ZnO nanorod/Fe3O4 nanoparticle composites and their photocatalytic properties

    Science.gov (United States)

    Wang, Wenda; Yu, Leiming; Yang, Hanjia; Hong, Kunquan; Qiao, Zhenfang; Wang, Hai

    2015-11-01

    ZnO nanorods/Fe3O4 nanocomposites as the recyclable photocatalyst were synthesized by a co-precipitation method, with microwave assistant by dropping alkaline solution with Fe3O4 nanoparticles into the aqueous of zinc salt. These Fe3O4 nanoparticles were the nucleated centers for the ZnO nanorods growth so that these nanorods ended with aggregated Fe3O4 nanoparticles. The growth processes and mechanism are explained as those insoluble zinc hydroxides prefer to nucleate on the surface of Fe3O4 nanoparticles (heterogeneous nucleation) rather than nucleated as isolated ZnO nanostructures (homogeneous nucleation). These nanocomposites have strong photocatalytic ability to reduce RhB and moderate magnetization, which make them being good recyclable photocatalysts.

  20. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    Science.gov (United States)

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-07-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48?emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19?mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40?mg/g) for an initial CV concentration of 400?mg/L, pH of 6.0, and temperature of 40?°C, and the adsorption capacity of re-collected MBC was 73.31?mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions.

  1. Microwave synthesis of magnetic Fe 3O 4 nanoparticles used as a precursor of nanocomposites and ferrofluids

    Science.gov (United States)

    Hong, R. Y.; Pan, T. T.; Li, H. Z.

    2006-08-01

    Methods to synthesize magnetic Fe 3O 4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe 3O 4 magnetic nanoparticles were prepared by the co-precipitation of Fe 3+ and Fe 2+, NH 3·H 2O was used as the precipitating agent to adjust the pH value, and the aging of Fe 3O 4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe 3O 4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe 3O 4 crystallites was found to be around 8-9 nm. Thereafter, the surface of Fe 3O 4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe 3O 4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe 3O 4 nanoparticles. The dispersion of Fe 3O 4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe 3O 4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe 3O 4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe 3O 4 nanoparticles. The Fe 3O 4 magnetic fluid was characterized using UV-vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10 -8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe 3O 4 nanoparticles in the fluid was 36.19 nm.

  2. Degenerate two-wave mixing via a dynamic grating in Fe3O4 nanoparticle suspensions

    International Nuclear Information System (INIS)

    Optical-gradient-force-induced spatially inhomogeneous disturbances of the dielectric permittivity of a suspension of spherical nanoparticles are analysed in the Maxwell Garnett approximation. Degenerate two-wave mixing in such media is shown to cause the formation of a spatial nanoparticle grating and the associated permittivity grating in the colloid. Relations are derived for the complex coupling constant of the waves. Codirectional and contradirectional two-wave mixing in suspensions of light-absorbing nanoparticles is considered. The two-beam coupling gain at 640 nm in various suspensions of Fe3O4 nanoparticles may reach ?10 cm-1. (nonlinear optical phenomena)

  3. Study on the Synthesis and Properties of Superparamagnetic Monodisperse Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    JIANG Wen,WEN Xian-Tao,WANG Wei,WU Yao,GU Zhong-Wei

    2009-07-01

    Full Text Available There are extensive applications for superparamagnetic Fe3O4 nanoparticles in the field of biomaterials. Superparamagnetic magnetite nanoparticles coated with oleic acid were prepared in the refluxing mixed system of water, ethanol alcohol and toluene at 74¡?The effect of the OH- concentration on the surface properties, size, dispersion and magnetic properties of magnetite nanoparticles was studied systematically. The properties of magnetite nanoparticles were tested by X-ray diffraction (XRD, fourier transform infrared (FTIR, dynamic light scattering (DLS, transmission electron microscopy (TEM and vibrating sample magnetometer (VSM. The results show that when the molar ratio of NaOH to Fe(¢

  4. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with ‘tetrapod’ morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m2 kg?1), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis. (paper)

  5. Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles

    CERN Document Server

    Lima, E; Arelaro, A D; Goya, G F

    2006-01-01

    We have studied the magnetic behavior of dextran-coated Fe3O4 nanoparticles with median particle size = 8 nm. The magnetic anisotropy Ea of the particles was calculated from magnetization and ac susceptibility data. The resulting values correspond to the magnetocrystalline contribution of the high-temperature cubic phase with easy magnetic direction [111], without any additional contributions from particle surface, shape or exchange origin. The resulting values are incompatible with the uniaxial anisotropy of the low-temperature crystal structure of Fe3O4, suggesting that the high-temperature cubic structure is preserved below the Verwey transition in nanometric particles. Accordingly, fully oriented particles showed a continuous decrease of the M(T) curves, without discontinuities at TV . The thermal dependence of the hyperfine field B_hyp(T) was fitted by a simple model of collective magnetic excitations to calculate the single-particle magnetic anisotropy energy Ea. The resulting values give further suppo...

  6. A facile strategy to synthesize monodisperse superparamagnetic OA-modified Fe3O4 nanoparticles with PEG assistant

    International Nuclear Information System (INIS)

    A facile strategy was reported to synthesize monodisperse super-paramagnetic oleic acid (OA) modified Fe3O4 nanoparticles, which the poly ethylene glycol (PEG) was used as the assistant. The influence of the molecular weight and concentration of PEG was investigated in the process of OA-modification. In addition, the mechanism of PEG action in the reaction system was discussed. The morphology and properties of the as-synthesized Fe3O4 magnetic nanoparticles were characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and superconducting quantum interference device (SQUID). The size (12 nm) of the as-prepared Fe3O4 nanoparticles is smaller than the superparamagnetic critical size (25 nm) of Fe3O4 nanoparticles, which endows the OA-modified Fe3O4 nanoparticles with superparamagnetic property. Furthermore, the dispersibility and stability of as-synthesized OA-modified Fe3O4 magnetic nanoparticles were very good. As the stabilizer and dispersant, PEG played a very important role and did not encapsulate the OA-modified Fe3O4 nanoparticles. The condition for OA-modified Fe3O4 nanoparticles preparation was optimized. - Highlights: • A facile strategy with PEG assistant was adopted to synthesize OA-modified Fe3O4. • As-prepared OA-modified Fe3O4 is super-paramagnetic, monodisperse and stable. • The surface-modified method has good merits of celerity, simplicity and green. • The molecular and concentration of PEG as the assistant were optimized

  7. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst

    International Nuclear Information System (INIS)

    A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity. - Graphical abstract: Covalently grafted polyethyleneimine on Fe3O4 magnetic nanoparticles as easily reusable catalyst for the synthesis of various 4H-pyrans. - Highlights: • Polyethyleneimine modified Fe3O4 via covalent bonding as a novel water tolerance catalyst. • The catalyst showed high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyrans in water. • Catalysts could be easily recovered and reused for several times without a significant loss in their catalytic activity

  8. The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs

    International Nuclear Information System (INIS)

    Water-soluble mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) of two sizes and superparamagnetic Fe3O4 nanoparticles have been synthesized and used to investigate the effect of the mechanism of Fe3O4 nanoparticles on the fluorescence intensity of QDs. In the presence of a low concentration of Fe3O4 nanoparticles, the CdTe QDs with smaller particle size exhibit fluorescence quenching while fluorescence enhancement of CdTe QDs with larger particle size was observed, and the fluorescence intensity changes with the excitation wavelength and the concentration of Fe3O4 nanoparticles. The mechanism study shows that there is a double-effect between the Fe3O4 and CdTe QDs: one is the fluorescence quenching effect due to Fe3O4 strong absorption of excitation and emission light, the other is the fluorescence enhancement effect resulting from a localized electromagnetic field caused by the absorption of exciting light. The fluorescence of CdTe QDs with lower concentration of Fe3O4 nanoparticles was determined via the synergy of the double-effect. To our best knowledge, this is the first systematic study on the interaction between Fe3O4 nanoparticles and CdTe QDs, which finds the fluorescence enhancement effect in the presence of low concentration of Fe3O4. - Highlights: ? Interaction of Fe3O4 nanoparticles of CdTe QDs. ? Fluorescence intensity of different size QDs shows quenching or enhancement. ? Double-effect mechanism of fluorescence enhancement and fluorescence quenching.

  9. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Science.gov (United States)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  10. Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications

    Scientific Electronic Library Online (English)

    Javier Bustamante, Mamani; Lionel Fernel, Gamarra; Giancarlo Espósito de Souza, Brito.

    2014-06-01

    Full Text Available Nowadays the use of magnetic nanoparticles (MNP) in medical applications has exceeded expectations. In molecular imaging, MNP based on iron oxide coated with appropriated materials have several applications in vitro and in vivo studies. For applications in nanobiotechnology these MNP must present so [...] me characteristics such as size smaller than 100 nanometers, high magnetization values, among others. Therefore the MNP have physical and chemical properties that are specific to certain studies which must be characterized for quality control of the nanostructured material. This study presents the synthesis and characterization of MNP of magnetite (Fe3O4) dispersible in water with perspectives in a wide range of biomedical applications. The characterization of the colloidal suspension based on MNP stated that the average diameter is (12.6±0.2) nm determined by Transmission Electron Microscopy where the MNP have the crystalline phase of magnetite (Fe3O4) that was identified by Diffraction X-ray and confirmed by Mössbauer Spectroscopy. The blocking temperature of (89±1) K, Fe3O4 MNP property, was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above blocking temperature. The magnetometry determined that the MNP showed superparamagnetic behavior confirmed by ferromagnetic resonance.

  11. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles.

    Science.gov (United States)

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-12-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization (M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design. PMID:26858161

  12. Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080)

    International Nuclear Information System (INIS)

    The potential applications of Fe3O4 magnetite nanoparticles (MNPs) in nanomedicine as drug delivery systems are well known. In this study we prepared umbelliprenin-coated Fe3O4 MNPs and evaluated the antiproliferative effect of combination in vitro. After synthesis of Fe3O4 MNPs, particles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction spectroscopy techniques. The natural candidate compound - umbelliprenin- was isolated and identified and umbelliprenin-coated Fe3O4 MNPs were prepared, using precipitation method. The surface chemistry of umbelliprenin-coated Fe3O4 MNPs as well as their thermal decomposition characteristics was examined using Fourier transform infrared spectroscopy and Thermogravimetric Analyzer equipment, respectively. HT-1080 cells were cultured until the logarithmic phase of growth, and MTT assay was successfully carried out to evaluate the possible cytotoxic effects of umbelliprenin-coated Fe3O4 MNPs in viable cells in vitro. The results demonstrated that umbelliprenin has moderate antiproliferative effects with IC50 value of 50 ?g/mL. However, the combination of umbelliprenin and Fe3O4 MNPs showed the IC50 value of 9 ?g/mL. In other words, cell proliferation decreased to the remarkably-low proportion of 45% after treating cells with umbelliprenin-coated Fe3O4 MNPs. This suggests that with the aid of nanoparticles as carriers, natural products may have even broader range of medical applications in future.

  13. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    Science.gov (United States)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (?OCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through ?OCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (?OCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through ?OCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  14. A selective nanocatalyst for an efficient Ugi reaction: Magnetically recoverable Cu(acac)2/NH2-T/SiO2@Fe3O4 nanoparticles

    Indian Academy of Sciences (India)

    Monireh Ghavami; Maryam Koohi; Mohammad Zaman Kassaee

    2013-11-01

    A novel, magnetically recoverable nanocatalyst is fabricated through simple immobilization of copper(II) acetylacetonate on the surface of amine-terminated silica-coated Fe3O4 nanoparticles: Cu(acac)2/NH2-T/SiO2@Fe3O4NPs. Unambiguous bonding of Cu to the terminal amine is indicated by Xray photoelectron spectroscopy (XPS). Further characterizations are carried out by different techniques. Selectivity of this catalyst is demonstrated through one-pot synthesis of fourteen α-aminoacyl amides using Ugi four-component reaction of cyclohexyl isocyanide, acetic acid, amines and various aldehydes. Interestingly, all aromatic aldehydes react with short reaction times and high yields, but heteroaromatic aldehydes do not yield any product. Catalyst efficiency remains unaltered through three consecutive experiments.

  15. Functionalized Fe3O4-Au superparamagnetic nanoparticles: in vitro bioactivity

    International Nuclear Information System (INIS)

    The interaction of nanoparticles with cells has been a focus of interest during the past decade. We report the fabrication and characterization of hydrosoluble Fe3O4-Au nanoparticles functionalized with biocompatible and fluorescent molecules and their interaction with cell cultures by visualizing them with confocal microscopy. Gold covered iron oxide nanoparticles were synthesized by reducing metal salts in the presence of oleylamine and oleic acid. The functionalization of these particles with an amphiphilic polymer provides a water soluble corona as well as the possibility to incorporate different molecules relevant for bio-applications such as poly(ethylene glycol), glucose or a cadaverine derived dye. The particle size, and the presence of polymer layers and conjugated molecules were characterized and confirmed by transmission electron microscopy, thermogravimetric measurements and infrared spectroscopy. A complete magnetic study was performed, showing that gold provides an optimum coating, which enhances the superparamagnetic behaviour observed above 10–15 K in this kind of nanoparticle. The interaction with cells and the cytotoxicity of the Fe3O4-Au preparations were determined upon incubation with the HeLa cell line. These nanoparticles showed no cytotoxicity when evaluated by the MTT assay and it was demonstrated that nanoparticles clearly interacted with the cells, showing a higher level of accumulation in the cells for glucose conjugated nanoparticles. (paper)

  16. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2012-11-01

    Full Text Available Dena Dorniani,1 Mohd Zobir Bin Hussein,1,2 Aminu Umar Kura,3 Sharida Fakurazi,3 Abdul Halim Shaari,4 Zalinah Ahmad51Chemistry Department, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Vaccines and Immunotherapeutics Laboratory, 4Physics Department, Faculty of Science, 5Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, MalaysiaBackground and methods: Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.Results: X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG nanocarriers.Conclusion: The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3 line, and anticancer activity was higher in HT29 than MCF7 cell lines.Keywords: magnetic nanoparticles, chitosan, superparamagnetic, controlled-release, gallic acid, drug delivery

  17. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Directory of Open Access Journals (Sweden)

    Chittor Raghuraman

    2010-12-01

    Full Text Available Abstract Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses for human life. Iron (Fe based material especially FePt is used in the isolation of ultralow concentrations (2 cfu/ml of bacteria in less time and it has been demonstrated that van-FePt may be used as an alternative fast detection technique with respect to conventional polymerase chain reaction (PCR method. However, still further improved demonstrations are necessary with interest to biocompatibility and green chemistry. Herein, we report the synthesis of Fe3O4 nanoparticles by template medication and its application for the detection/isolation of S. aureus bacteria. Results The reduction of anhydrous Iron chloride (FeCl3 in presence of sodium borohydride and water soluble polyelectrolyte (polydiallyldimethyl ammonium chloride, PDADMAC produces black precipitates. The X-ray diffraction (XRD, XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM showed isolated staphylococcous aureus (S. aureus bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION. Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units/ml within ~3 minutes.

  18. Synthesis and Properties of Fe3O4 Nanoparticles by Co-precipitation Method to Removal Procion Dye

    Directory of Open Access Journals (Sweden)

    Poedji Loekitowati Hariani

    2013-06-01

    Full Text Available Fe3O4 (magnetite nanoparticles were synthesized by chemical co-precipitation method. The structure, morphology and magnetic properties of as-prepared were characterized by X Ray Diffraction (XRD, Scanning Electron Microscope-Energy Dispersive X Ray Spectrometry (SEM-EDS, Transmission Electron Microscope (TEM and Vibrating Sample Magnetometer (VSM. The result of XRD characterization was indicated Fe3O4 as the product. SEM and TEM image of the Fe3O4 showed nanoparticles Fe3O4 have the mean diameter 5-20 nm. The EDS spectra showed strong peaks of Fe and O. Magnetic characteristic of Fe3O4 nanoparticles was indicated super paramagnetic properties. The saturation magnetic was 89.46 emu g-1. Therefore, the nanoparticles Fe3O4 is suitable to remove dye in the water by a simple magnetic separation process. The optimum adsorption occurred at initial concentration of procion dye 100 mg L-1, pH solution 6, dosage of Fe3O4 0.8 g L-1 and contact time 30 minutes under room temperature with color removal 24.40 % and adsorption capacity was 30.503 mg g-1.

  19. Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    We have investigated the adsorption of herring sperm DNA on Fe3O4 magnetic nanoparticles (NPs) before and after modification with the ionic liquid 1-hexyl-3-methylimidazolium bromide. Experiments were performed in a batch mode, and the effects of DNA concentration, pH of the sample solution, ionic strength, temperature, and contact time between reagents were optimized. An evaluation of the adsorption isotherm revealed that the Langmuir model better fits the equilibrium data than the Freundlich model. The maximum adsorption capacities of the unmodified and modified NPs, respectively, were found to be 11.8 and 19.8 mg DNA per gram of adsorbent. The adsorption of DNA onto the modified NPs was endothermic, while it was exothermic in the case of the unmodified NPs. The DNA can be desorbed from the modified surfaces of the NPs by using EDTA as the eluent. The NPs were able to adsorb about 90?±?1.5 % of DNA after being recycled for three times. The method is simple, fast, robust, and does not require organic solvents or sophisticated equipment. (author)

  20. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3.6H2O and FeSO4.7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4.H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT-IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively

  1. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (< 50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ? 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visualisation of their single domain (SD) nature, as well as inter-particle interactions, with the latter attributed to explain the pseudo-SD/multi-domain behaviour demonstrated by bulk magnetic measurements

  2. Heat dissipation and magnetic properties of surface-coated Fe3O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    In this study, the influence of surface coating on the magnetic and heat dissipation properties of Fe3O4 nanoparticles was investigated. Fe3O4 nanoparticles that ranged in size between (particle sizes of 20 and 30 nm) were coated with polyethylenimine (PEI), oleic acid, and Pluronic F-127. Surface coatings that were composed of thick layers of oleic acid and Pluronic F-127 reduced dipole interactions between the particles, and resulted in reduced coercivity and decreased Néel relaxation times. The ac magnetization measurements revealed that the heat dissipation of the PEI-coated Fe3O4 nanoparticles was induced by hysteresis loss and Brownian relaxation loss and that of the oleic-acid-coated Fe3O4 nanoparticles was mainly induced by hysteresis loss and Néel relaxation loss.

  3. Heat dissipation and magnetic properties of surface-coated Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Tomitaka, Asahi; Ueda, Koji; Yamada, Tsutomu; Takemura, Yasushi

    2012-10-01

    In this study, the influence of surface coating on the magnetic and heat dissipation properties of Fe3O4 nanoparticles was investigated. Fe3O4 nanoparticles that ranged in size between (particle sizes of 20 and 30 nm) were coated with polyethylenimine (PEI), oleic acid, and Pluronic F-127. Surface coatings that were composed of thick layers of oleic acid and Pluronic F-127 reduced dipole interactions between the particles, and resulted in reduced coercivity and decreased Néel relaxation times. The ac magnetization measurements revealed that the heat dissipation of the PEI-coated Fe3O4 nanoparticles was induced by hysteresis loss and Brownian relaxation loss and that of the oleic-acid-coated Fe3O4 nanoparticles was mainly induced by hysteresis loss and Néel relaxation loss.

  4. Characterization of the magnetic Fe3O4 nanoparticles prepared by gamma irradiation

    International Nuclear Information System (INIS)

    In this study, gamma irradiation treatment has been applied for preparation of the magnetic nanoparticles from iron(III) chloride (FeCl3). Structure of the resulting black powders were characterized with X-ray diffraction (XRD). The results revealed that the products prepared by gamma irradiation were mainly magnetite (Fe3O4) instead of maghemite (Fe2O3). The basic characteristics of the magnetite nanoparticles such as their particle size and magnetic properties were investigated using scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The nanoparticles showed superparamagnetism with the saturated magnetization of about 48.6 emu/g. Influences of radiation conditions on radiation preparation of magnetite nanoparticles and their properties were also discussed. Reaction yield increased, while average diameter of the obtained nanoparticles reduced from 46 to 17 nm depended on the absorbed dose. (author)

  5. Ethylene glycol methacrylate phosphate coated Fe3O4 nanoparticles for selective separation of plutonium

    International Nuclear Information System (INIS)

    Recovery of lanthanides and actinides from high level nuclear waste is an area of world-wide concern. Recently, interest has been focused on magnetic fluidized bed separation technology and the development of magnetically assisted chemical separation (MACS) systems for nuclear waste remediation. The magnetic-sorbent have larger surface area, can be quickly recovered from the medium using external magnetic field, and secondary waste is not generated. However, sorption selectivity and efficiency of these materials towards targeted radionuclides have still scope for improvement. Ethylene glycol methacrylate phosphate takes up actinides. Yudhisthira Sahoo and co-workers demonstrates that alkyl phosphonates and phosphates bind efficiently to iron oxide particle surfaces and can serve, in general, as potential alternatives to fatty acids as coating agents for oxide nanoparticles. In the present work, 0.1 g of Fe3O4 nanoparticles (20-30 nm) were dispersed in 10 mL 0.1 M Ethylene glycol methacrylate phosphate (EGMP) solution in methanol at room temperature under shaking condition for 24 h. Organic layer is then removed and the particles were washed 3 times with 1 mL methanol. It was the dried in air at room temperature overnight. Weighed amount of EGMP coated Fe3O4 nanoparticles were equilibrated with 241Am, 233U or 239Pu activity spiked in feed having acid concentration varying from 0.01-3.0 M HNO3

  6. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Science.gov (United States)

    2010-01-01

    Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses) for human life. Iron (Fe) based material especially FePt is used in the isolation of ultralow concentrations (PDADMAC) produces black precipitates. The X-ray diffraction (XRD), XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM) showed isolated staphylococcous aureus (S. aureus) bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION). Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units)/ml within ~3 minutes. PMID:21159158

  7. Interface composition between Fe3O4 nanoparticles and GaAs for spintronic applications

    International Nuclear Information System (INIS)

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe3O4) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of ?-Fe2O3 directly underneath the Fe3O4 nanoparticles, followed by a solid solution of Ga2O3 and FeO and mostly Ga2O3 when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed

  8. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    Science.gov (United States)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  9. Efficient purification of lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles.

    Science.gov (United States)

    Zhu, Xinjun; Zhang, Lianying; Fu, Aiyun; Yuan, Hao

    2016-02-01

    2-Mercapto-5-benzimidazolesulfonic acid (MBISA) modified Fe3O4/Au nanoparticles were synthesized in aqueous solution and characterized by photo correlation spectroscopy (PCS) and vibrating sample magnetometer (VSM). The so-obtained Fe3O4/Au-MBISA nanoparticles were capable of specific adsorbing lysozyme. The maximum amount of lysozyme adsorbed on 1.0mg Fe3O4/Au-MBISA nanoparticles was 346?g. The lysozyme desorption behavior was studied and the lysozyme recovery from Fe3O4/Au-MBISA nanoparticles approached 100% under optimal conditions, and the reusability studies showed that the nanoparticles could maintain about 91% of the initial lysozyme adsorption capacity after 7 repeated adsorption-elution cycles. The Fe3O4/Au-MBISA nanoparticles were used in the purification of lysozyme from chicken egg white, which was verified by a single SDS-PAGE band. Therefore, the obtained Fe3O4/Au-MBISA nanoparticles exhibited excellent performance in the direct purification of lysozyme from egg white. PMID:26652366

  10. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    OpenAIRE

    Zhao, Baobao; Nan, Zhaodong

    2011-01-01

    Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sediment...

  12. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    Directory of Open Access Journals (Sweden)

    Mukherjee Joyeeta

    2012-11-01

    Full Text Available Abstract Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter led to the formation of enzyme coated clusters of nanoparticles (ECCNs. These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering. Transmission electron microscopy (TEM, showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3 showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD(with a spinning cell accessory showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% ?-helix, 37% ?-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. Conclusion A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis.

  13. Fabrication of docetaxel surfaced Fe3O4 magnetite nanoparticles and their cytotoxicity on 4?T1 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yazdi MH

    2012-08-01

    Full Text Available Abstract Background In the recent years, there is an increasing attention to the using of Fe3O4 magnetite nanoparticles (MNPs as drug delivery systems. Application of this nanoparticles could profit advantages of nanomedicine to enhance biological activity of pharmaceutical ingredients. Methods Fe3O4 MNPs were synthesised by a chemical method and characterized by transmission electron microscopy and energy-dispersive spectroscopy techniques. In the next step, docetaxel-coated Fe3O4 MNPs were prepared, using percipitation method. The surface chemistry of docetaxel-coated Fe3O4 MNPs as well as their thermal decomposition characteristics were examined using fourier transform infrared spectroscopy and thermogravimetric analyzer equipment, respectively. The cytotoxicity assay was conducted on 4?T1 breast cancer carsinoma by MTT assay to evaluate the possible in vitro antiproliferative effects of docetaxel-coated Fe3O4 MNPs. Results During precipitation process, docetaxel molecules were precipitated on the surface of Fe3O4 MNPs by the ratio of 3:100 w/w which indicates that each milligram of coated Fe3O4 MNPs averagely contained 30??g pure docetaxel compound. Docetaxel showed aniproliferative effects against mentioned cell line. The higestest concentartion of docetaxel (80??g/ml caused about 80% cell death. However, the results demostarted that much lower amounts of docetaxel will be needed in combination of Fe3O4 MNPs to produce the potent antiproliferative effect compared to docetaxel alone. Dose response cytotoxicity assay of docetaxel-coated Fe3O4 MNPs against 4?T1 breast cancer cells showed that lower amount of docetaxel (0.6??g/ml can exhibit higher cytotoxic effect against this cancer cell line (90% cell death.

  14. Fabrication of Docetaxel Surfaced Fe3O4 Magnetite Nanoparticles and their Cytotoxicity on 4 T1 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    MH Yazdi

    2012-08-01

    Full Text Available Background:In the recent years, there is an increasing attention to the using of Fe3O4 magnetite nanoparticles (MNPs as drug delivery systems. Application of this nanoparticles could profit advantages of nanomedicine to enhance biological activity of pharmaceutical ingredients. Methods:Fe3O4 MNPs were synthesised by a chemical method and characterized by transmission electron microscopy and energy-dispersive spectroscopy techniques. In the next step, docetaxel-coated Fe3O4 MNPs were prepared, using percipitation method. The surface chemistry of docetaxel-coated Fe3O4 MNPs as well as their thermal decomposition characteristics were examined using fourier transform infrared spectroscopy and thermogravimetric analyzer equipment, respectively. The cytotoxicity assay was conducted on 4 T1 breast cancer carsinoma by MTT assay to evaluate the possible in vitro antiproliferative effects of docetaxel-coated Fe3O4 MNPs. Results:During precipitation process, docetaxel molecules were precipitated on the surface of Fe3O4 MNPs by the ratio of 3:100 w/w which indicates that each milligram of coated Fe3O4 MNPs averagely contained 30 mug pure docetaxel compound. Docetaxel showed aniproliferative effects against mentioned cell line. The higestest concentartion of docetaxel (80 mug/ml caused about 80% cell death. However, the results demostarted that much lower amounts of docetaxel will be needed in combination of Fe3O4 MNPs to produce the potent antiproliferative effect compared to docetaxel alone. Dose response cytotoxicity assay of docetaxel-coated Fe3O4 MNPs against 4 T1 breast cancer cells showed that lower amount of docetaxel (0.6 mug/ml can exhibit higher cytotoxic effect against this cancer cell line (90% cell death.

  15. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles supported on graphene (Fe3O4/graphene) and Printex carbon (Fe3O4/Printex) are reported as promising catalysts for oxygen reduction reaction (ORR) to H2O2 in alkaline medium. The catalysts were synthesized by a simple precipitation method using NaBH4 as reducing agent to favor the formation of the magnetite phase. The structure and morphology of the catalysts was evaluated by x-ray diffraction, transmission electron microscopy and small angle electron diffraction. The electrocatalytic activity towards ORR was investigated by means of cyclic and linear voltammetries in 1 mol L−1 KOH. The linear polarization curves highlighted the synergetic effect between the oxide and the carbon supports. Analysis of the polarization curves showed that electro-catalytic activity of the materials towards oxygen reduction expressed by the current density at −0.3 V vs SCE increases from Printex (0.29 mA cm−2) < Fe3O4/Printex (0.38 mA cm−2) < graphene (0.85 mA cm−2) < Fe3O4/graphene (1.12 mA cm−2). The number of exchanged electrons was close to 2.7 for both catalysts, and the % H2O2 electro-generated above 60% in the −0.2 to −0.7 V (vs SCE) potential range. Furthermore, both Fe3O4/graphene and Fe3O4/Printex catalysts show excellent durability

  16. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Directory of Open Access Journals (Sweden)

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  17. One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles

    International Nuclear Information System (INIS)

    A one-step strategy for the facile synthesis of polyethyleneimine-functionalized Fe3O4 (Fe3O4-PEI) composite is presented in this study. We also investigated the effects of reaction time and NaAc on the composite sizes. The composite with good dispersion, wonderful crystallization, and excellent magnetism was obtained through one-pot solvothermal reaction. In the sequential presence of PEI and colloidal gold (Au) solution, plentiful Au nanoparticles with a diameter of 5 nm were assembled on the surface of Fe3O4–PEI to get Fe3O4–PEI–Au1–PEI–Au2 (Fe3O4/Au) composite. In-depth characterization of the composite formation process was performed using transmission electron microscopy, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and UV–Visible spectroscopy. The Fe3O4/Au composite was obtained with an average diameter of 150 nm, and the absorption peak was red-shifted to 580 nm. The synthesized Fe3O4/Au composite, the saturation magnetization of which was 40.4 emu/g, presented good magnetic property. Moreover, the composite could easily combine with up to 890 ?g antibodies per mg, and the antibodies still kept good immunocompetence after immobilization. These advantages suggest its great potential for applications in vitro, such as separation and immunoassay.

  18. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    Science.gov (United States)

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-08-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage.

  19. Line Narrowing in Mössbauer Spectra of Superparamagnetic Fe3O4 Nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticles of magnetic crystals below a critical size are single domain and exhibit superparamagnetism. If there are N atoms or molecules with magnetic moment ? in each particle, the magnetic moment of the particle is N?. At high temperatures the thermal fluctuations of the magnetic moments give an ensemble average moment of zero and the Mössbauer spectrum is a single line. As the temperature, T, is lowered the fluctuations slow down and the sample acquires a magnetization and the Mossbauer line broadens and eventually shows magnetic hyperfine splitting. We have observed 57Fe line broadening in nanoparticles of ferrimagnetic Fe3O4 with diameters of 5.3 and 10.6 nm. The results have been analyzed using the motional narrowing equation familiar in nuclear magnetic resonance to determine the superparamagnetic fluctuation time and magnetic anisotropy

  20. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids

    Science.gov (United States)

    Altan, Cem L.; Bucak, Seyda

    2011-07-01

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

  1. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids

    International Nuclear Information System (INIS)

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

  2. UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity.

    Science.gov (United States)

    Echeverria, Coro; Mijangos, Carmen

    2011-07-01

    The incorporation of metal oxide nanoparticles into microgels forming hybrid systems gives additional functionalities to the system and widens the field of potential application in biomedicine, biotechnology, and other fields. In particular, there have been very few investigations regarding UCST-like hybrid microgels. In connection with this, we report the preparation of UCST-like hybrid microgels of magnetite nanoparticles (Fe(3)O(4)) encapsulated in poly(acrylamide-acrylic acid) microgel matrix via an inverse emulsion polymerization method. The key factor in the preparation of hybrid microgels is the need to divide in two the aqueous phase of the emulsion and feed them separately in order to avoid the aggregation of magnetic nanoparticles prior to polymerization reaction. The morphology, size, and spherical shape of hybrid microgels are determined by scanning electron microscopy. The encapsulation of magnetite nanoparticles within the polymer matrix is confirmed by transmission electron microscopy. Dynamic light scattering is employed to study both the swelling UCST-like behavior and the surface charge of the hybrid microgels. Swelling measurements confirm that the incorporation of magnetite does not affect the thermosensitivity of the system. In order to highlight the rheological behavior that can affect the final potential applications of these hybrid systems, a deep study of the viscoelastic properties is carried out by means of an oscillatory rheometer. The dependence of G' and G'' of the microgel dispersions with the frequency suggests a gel-like behavior and hence the occurrence of structural organization. In order to understand this structure formation and the influence of the magnetite in the interaction between hybrid microgels, scaling theory was applied. In terms of rheology, the addition of magnetite leads to a change in the interaction between hybrid microgels giving rise to an increase in the elasticity of the system. PMID:21630668

  3. Graphene oxide-Fe3O4 nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    International Nuclear Information System (INIS)

    The potential of graphene oxide–Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01?g, 0.1?g, and 0.2?g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells

  4. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  5. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst

    Science.gov (United States)

    Khoobi, Mehdi; Delshad, Tayebeh Modiri; Vosooghi, Mohsen; Alipour, Masoumeh; Hamadi, Hosein; Alipour, Eskandar; Hamedani, Majid Pirali; Sadat ebrahimi, Seyed Esmaeil; Safaei, Zahra; Foroumadi, Alireza; Shafiee, Abbas

    2015-02-01

    A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity.

  6. Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles

    Science.gov (United States)

    Wang, Jian; Yang, Jinghai; Li, Xiuyan; Wang, Dandan; Wei, Bing; Song, Hang; Li, Xuefei; Fu, Siwei

    2016-01-01

    Fe3O4@ZnO binary nanoparticles were synthesized by a simple two-step chemical method and characterized using various analytical instruments. TEM result proved the binary nanoparticles have core/shell structures and average particle size is 60 nm. Photocatalytic investigation of Fe3O4@ZnO core/shell nanoparticles was carried out using rhodamine B (RhB) solution under UV light. Fe3O4@ZnO core/shell nanoparticles showed enhanced photocatalytic performance in comparison with the as prepared ZnO nanoparticles. The enhanced photocatalytic activity for Fe3O4@ZnO might be resulting from the higher concentration of surface oxygen vacancies and the suppressing effect of the Fe3+ ions on the recombination of photoinduced electron-hole pairs. Magnetization saturation value (5.96 emu/g) of Fe3O4@ZnO core/shell nanoparticles is high enough to be magnetically removed by applying a magnetic field. The core/shell photocatalyst can be easily separated by using a commercial magnet and almost no decrease in photocatalytic efficiency was observed even after recycling six times.

  7. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.

    Science.gov (United States)

    Wang, Chengquan; Qian, Jing; Wang, Kun; Yang, Xingwang; Liu, Qian; Hao, Nan; Wang, Chengke; Dong, Xiaoya; Huang, Xingyi

    2016-03-15

    Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety. PMID:26583358

  8. Uniform PEGylated PLGA Microcapsules with Embedded Fe3O4 Nanoparticles for US/MR Dual-Modality Imaging.

    Science.gov (United States)

    Xu, Sijia; Yang, Fei; Zhou, Xiao; Zhuang, Yaping; Liu, Baoxia; Mu, Yang; Wang, Xing; Shen, Hong; Zhi, Guang; Wu, Decheng

    2015-09-16

    Well-designed agents for enhanced multimodal imaging have attracted great interests in recent years. In this work, we adopted a premix membrane emulsification (PME) method to prepare uniform PEGylated poly(lactic-co-glycolic acid) (PLGA) microcapsules (MCs) with superparamagnetic Fe3O4 nanoparticles (NPs) embedded in the shell (Fe3O4@PEG-PLGA MCs) for ultrasound (US)/magnetic resonance (MR) bimodal imaging. Compared to Fe3O4@PLGA MCs without PEGylation, Fe3O4@PEG-PLGA MCs could more stably and homogeneously disperse in physiological solutions. In vitro and in vivo trials demonstrated that Fe3O4@PEG-PLGA MCs (?3.7 ?m) with very narrow size distribution (PDI=0.03) could function as efficient dual-modality contrast agents to simultaneously enhance US and MR imaging performance greatly. In vitro cell toxicity and careful histological examinations illustrated no appreciable cytotoxicity and embolism of Fe3O4@PEG-PLGA MCs to mice even at high dose. The uniform composite MCs developed here can act as clinical bimodal contrast agents to improve hybrid US/MR imaging contrast, which is promising for accurate diagnosis and real-time monitoring of difficult and complicated diseases. PMID:26327472

  9. Simple Surfactant Concentration-Dependent Shape Control of Polyhedral Fe3 O4 Nanoparticles and Their Magnetic Properties.

    Science.gov (United States)

    Ge, Wanyin; Sato, Ryota; Wu, Hsin-Lun; Teranishi, Toshiharu

    2015-10-26

    The shape and size of monodisperse Fe3 O4 nanoparticles (NPs) are controlled using a chemical solution synthesis in the presence of the surfactant cetylpyridinium chloride (CPC). Cubic Fe3 O4 NPs surrounded by six {100} planes are obtained in the absence of CPC. Increasing the CPC content during synthesis causes the shape of the resulting Fe3 O4 NPs to change from cubic to truncated cubic, cuboctahedral, truncated octahedral, and finally octahedral. During this evolution, the predominantly exposed planes of the Fe3 O4 NPs vary from {100} to {111}. The shape control results from the synergistic effect of the pyridinium cations, chloride anions, and long-chain alkyl groups of CPC, which is confirmed by comparison with NPs synthesized in the presence of various related cationic surfactants. The size of the cubic Fe3 O4 NPs can be tuned from 50 to 200?nm, by changing the concentration of oleic acid in the reaction solution. The Fe3 O4 NPs exhibit shape-dependent saturation magnetization, remanent magnetization, and coercivity. PMID:26303185

  10. Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles

    Science.gov (United States)

    Khurshid, Hafsa; Li, Wanfeng; Chandra, Sayan; Phan, Manh-Huong; Hadjipanayis, George C.; Mukherjee, Pritish; Srikanth, Hariharan

    2013-08-01

    We report a novel synthesis approach for the growth of core/shell FeO/Fe3O4 nanoparticles with controlled shape and size. FeO particles were partially oxidized to form core/shell FeO/Fe3O4 structures, as evidenced from transmission electron microscopy, X-ray diffraction, and magnetometry analysis. We find that the molar ratios and concentrations of surfactants are the key parameters in controlling the particle size. The particles can grow in either isotropic or anisotropic shapes, depending upon a chemical reaction scheme that is controlled kinetically or thermodynamically. The competitive growth rates of {111} and {100} facets can be used to tune the final shape of nanoparticles to spherical, cubic, octahedral, octopod, and cuboctahedral geometries. FeO particles can also be oxidized chemically or thermally to form Fe3O4 nanoparticles. By following the same synthesis technique, it is possible to synthesize rods and triangles of Fe3O4 by introducing twinnings and defects into the crystal structure of the seed. The thermally activated first-order Verwey transition at ~120 K has been observed in all the synthesized FeO/Fe3O4 nanoparticles, indicating its independence from the particle shape. These core/shell nanoparticles exhibit a strong shift in field-cooled hysteresis loops accompanied by an increase in coercivity (the so-called exchange bias effect), but the low field-switching behavior appears to vary with the particle shape.

  11. The synthesis and application of Au/Fe3O4 nanoparticles as catalysts in PEM fuel cell

    Science.gov (United States)

    Yuan, Muzhaozi

    As an alternative energy source, PEM fuel cell has low operating temperatures, low carbon dioxide emission and high power densities. However the high price of platinum electrodes restrains it from being widely used in industry. The sintering of platinum nanoparticles is another serious problem which acts as a barrier of PEM fuel cell popularization. Current research regarding PEM fuel cell is mainly focused on the design of catalyst used to improve the power output while reduce the cost. Our research brings out a new strategy to design a new type of catalyst of this kind by introducing the metal oxide into the gold nanostructure. In this thesis, the gold nanoparticles, Fe 3O4 nanoparticles as well as the nanoparticles (Au/ Fe 3O4) with Fe3O4 as core and gold as shell were synthesized at first. Then Langmuir-Blodgett (LB) trough technique was used to coat different nanoparticles onto the Nafion membranes. Membranes with coating and without coating were tested in PEM fuel cell device. The voltage and current were recorded to calculate the power output enhanced by each type of corresponding nanoparticles. It is shown in the test that the Au/ Fe3O4 catalyst boosted the performance of PEM fuel cell by increasing the power output to 117% of the control sample. The costs to the same level of power output when using different nanoparticles were analyzed and compared as well. The results show the Au/ Fe3O 4 nanoparticles have the best performance-cost ratio compared with pure gold nanoparticles and Fe3O4 nanoparticles.

  12. Preparation of acid–base bifunctional core–shell structured Fe3O4@SiO2 nanoparticles and their cooperative catalytic activity

    International Nuclear Information System (INIS)

    An acid–base bifunctionalized magnetic nanoparticles catalyst Fe3O4@SiO2-A/B was successfully synthesized by immobilization of both organic base and acid groups together over silica-coated magnetite nanoparticles. The catalyst has been characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS) measurements. The bifunctionalized magnetic nanoparticles act as an easily recovered, highly efficient catalyst for the Henry reaction of 4-nitrobenzaldehyde with nitromethane at mild reaction conditions, even exceeding any monofunctionalized catalyst or physical mixture of two monofunctionalized nanoparticles in the catalytic behavior. In addition, a probable mechanism has been proposed to explain the cooperative interactions from the presence of the immobilized base and acid groups in close proximity. Importantly, the catalyst can be simply recoverable from the reaction mixture by magnetic decantation and recycled without significant degradation in reactivity.

  13. Functionalized Fe3O4@silica core-shell nanoparticles as microalgae harvester and catalyst for biodiesel production.

    Science.gov (United States)

    Chiang, Ya-Dong; Dutta, Saikat; Chen, Ching-Tien; Huang, Yu-Tzu; Lin, Kuen-Song; Wu, Jeffrey C S; Suzuki, Norihiro; Yamauchi, Yusuke; Wu, Kevin C-W

    2015-03-01

    Core-shell Fe3O4@silica magnetic nanoparticles functionalized with a strong base, triazabicyclodecene (TBD), were successfully synthesized for harvesting microalgae and for one-pot microalgae-to-fatty acid methyl ester (FAME, or so-called biodiesel) conversion. Three types of algae oil sources (i.e., dried algae, algae oil, and algae concentrate) were used and the reaction conditions were optimized to achieve the maximum biodiesel yield. The results obtained in this study show that our TBD-functionalized Fe3O4@silica nanoparticles could effectively convert algae oil to biodiesel with a maximum yield of 97.1?%. Additionally, TBD-Fe3O4@silica nanoparticles act as an efficient algae harvester because of their adsorption and magnetic properties. The method presented in this study demonstrates the wide scope for the use of covalently functionalized core-shell nanoparticles for the production of liquid transportation fuels from algal biomass. PMID:25477296

  14. Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance

    International Nuclear Information System (INIS)

    Magnetic particles based on Fe3O4 were prepared by means of the microwave solvothermal method under different reaction conditions with the intention of their utilization as a mediator in magnetic hyperthermia and material for reducing blood flow in the tumor area. The synthesized particles were characterized in terms of their structure, size, shape, and magnetic properties with an emphasis on the correlation between particle morphology and magnetic properties. Most importantly, their heat development when exposed to an alternating magnetic field was determined, as well as the rheological behavior of their suspensions under static magnetic field. Reasonable heat development and substantial flow resistance under the effect of magnetic field indicate their potential for applications such as hyperthermia mediators or substances for temporary embolization. - Highlights: ? Fe3O4 nanoparticles were obtained by microwave-assisted synthesis ? Nucleation agents affect morphological and magnetic properties of nanoparticles. ? Aqueous ammonia nucleated Fe3O4 nanoparticles show high heating ability in AC magnetic field due to Neel relaxation. ? Suspension of Fe3O4 in silicone oil demonstrates flow resistance under DC magnetic field caused by chain formation. ? Fe3O4 nanoparticles has potential as a hyperthermia mediator and substance for temporary embolization.

  15. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Science.gov (United States)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-?-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.

  16. Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature

    International Nuclear Information System (INIS)

    A modified ferrite co-precipitation synthesis was used to obtain core–shell Fe3O4/salicylic acid magnetic nanoparticles (Sa-MNP) with well-dispersed aqueous solution properties. The newly developed iron oxide nanoparticles properties were investigated with X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and laser light scattering for their characteristic establishment. The resulting Sa-MNPs have spherical morphology, homogenous size distribution around 60 nm (35 nm FWHM), and a 67 mV Zeta potential value (15.5 mV STDV). In vivo biocompatibility and intravascular behavior of the 60 nm diameter size range synthesized nanoparticles were evaluated on chick chorioallantoic membrane model. The results show a reversible and good controlled intravascular accumulation under static magnetic field, a low risk of embolisation with nanoparticle aggregates detached from venous intravascular nanoblocked areas, a persistent blocking of the arterioles and dependent capillaries network, a good circulating life time and biocompatibility. The beneficial effects of salicylic acid (SA) and in vivo demonstrated capacity of Sa-MNPs to cutoff regional vascular supply under static magnetic field control suggest a possible biomedical application of these MNPs in targeted cancer therapy through magnetic controlled blood flow nanoblocking mechanism

  17. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection

    International Nuclear Information System (INIS)

    The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4-Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.

  18. Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    International Nuclear Information System (INIS)

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe3O4 nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8?±?3.1?nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6?±?1.2?nm, and a reduced saturation magnetization (?65?emu/g) compared to the bulk value of Fe3O4 (?95?emu/g). This is due to the presence of a finite surface layer (?1?nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe3O4 core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28?±?2?kJ/m3) of Fe3O4 nanoparticles.

  19. Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    Science.gov (United States)

    Nemala, H.; Thakur, J. S.; Naik, V. M.; Vaishnava, P. P.; Lawes, G.; Naik, R.

    2014-07-01

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe3O4 nanoparticles, subjected to external magnetic fields of various frequencies (188-375 kHz) and amplitudes (140-235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (˜65 emu/g) compared to the bulk value of Fe3O4 (˜95 emu/g). This is due to the presence of a finite surface layer (˜1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe3O4 core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m3) of Fe3O4 nanoparticles.

  20. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal

    International Nuclear Information System (INIS)

    Magnetic iron oxide nanoparticles (MION-Tea) successfully synthesized using tea waste template. MION-Tea exhibit super magnetic properties under external magnetic field with saturation magnetization value of 6.9 emu/g at room temperature. SEM of MION-Tea shows cuboid/pyramid shaped crystals structure of Fe3O4 (magnetite). TEM of MION-Tea shows the particle size in the range of 5–25 nm. XRD pattern of MION-Tea is identical to magnetite. Magnetic nanoparticles are tested for removal of As(III) and As(V) from aqueous solution. The adsorption data obeyed the Langmuir equation with high adsorption capacity of 188.69 mg/g for arsenic (III), and 153.8 mg/g for arsenic (V). The mean sorption energy (E) calculated from D–R model, indicated physico-chemical sorption process. A pseudo-second-order kinetic model fitted best for As(III) adsorption on MION-Tea and the derived activation energy was 64.27 kJ/mol. Thermodynamics revealed the endothermic nature of adsorption. The effects of solution pH, interfering anions and initial As(III) concentration have been investigated. MION-Tea was very low cost (Rs. 136 per kg). MION-Tea can be reused up to 5 adsorption cycles and regenerated using NaOH. Cost of As(III) removal from water of was estimated to be Rs. 14 for 100 L. Comparison with reported adsorbents proved MION-Tea a potential adsorbent for As(III) and As(V) adsorption. - Highlights: • Used tea has been used to prepare magnetic nanoparticles. • Nanoparticles have particle size of 2-25nm and cuboid/pyramid structure. • Magnetic nanoparticles show high adsorption capacity for arsenic

  1. Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol-gel silica network

    International Nuclear Information System (INIS)

    Composite Fe3O4-SiO2 materials were prepared by the sol-gel method with tetraethoxysilane and aqueous-based Fe3O4 ferrofluids as precursors. The monoliths obtained were crack free and showed both optical and magnetic properties. The structural properties were determined by infrared spectroscopy, x-ray diffractometry and transmission electron microscopy. Fe3O4 particles of 20 nm size lie within the pores of the matrix without any strong Si-O-Fe bonding. The well established silica network provides effective confinement to these nanoparticles. The composites were transparent in the 600-800 nm regime and the field dependent magnetization curves suggest that the composite exhibits superparamagnetic characteristics

  2. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    Science.gov (United States)

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-06-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16??M, a sensitivity of 5.658?mA/cm2/M, and a linear detection range up to 26?mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents.

  3. Passively Q-switched EDFL using Fe3O4-nanoparticle saturable absorber

    CERN Document Server

    Bai, Xuekun; Xu, Luxi; Huang, Sujuan; Wang, Tingyun; Pu, Shengli; Zeng, Xianglong

    2015-01-01

    We experimentally demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) operation by using a saturable absorber based on Fe3O4 nanoparticles (FONP) in magnetic fluid (MF). As a kind of transition metal oxide, the FONP has a large nonlinear optical response with a fast response time for saturable absorber. By depositing MF at the end of optical fiber ferrule, we fabricated a FONP-based saturable absorber, which enables a strong light-matter interaction owing to the confined transmitted optical field within the single mode fiber. Because of large third-order optical nonlinearities of FONP-based saturable absorber, large modulation depth of 8.2% and non saturable absorption of 56.6% are demonstrated. As a result, stable passively Q-switched EDFL pulses with maximum output pulse energy of 23.76 nJ, repetition rate of 33.3 kHz, and pulse width of 3.2 {\\mu}s are achieved when the input pump power is 110 mW at the wavelength of 980 nm. The laser features a low threshold pump power of ~15 mW.

  4. Synthesis of M–Nd doped Fe3O4 nanoparticles (M = Co, Ce, Cr, Ni with tunable magnetic properties

    Directory of Open Access Journals (Sweden)

    P. Alimard

    2013-04-01

    Full Text Available Magnetic nanoparticles were prepared by the aqueous co-precipitation method. The magnetic nanoparticles obtained were characterized systematically through the use of an X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, scanning electron microscope (SEM, transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FT-IR and a vibrating sampling magnetometer (VSM. The results revealed that the magnetic nanoparticles were spherical shaped with inverse spinel structure. The size of Fe3O4 and Nd-Co doped Fe3O4 magnetic nanoparticles were approximately 15 nm. Magnetic measurement revealed that the nanoparticles were super paramagnetic at room temperature. It was found that the magnetic response of the Fe3O4 increased when it was doped with Nd3+ and Co2+. However, the magnetic response of the Fe3O4 decreased when it was doped with Nd3+ or Ce3+ or Cr3+or Ni2+.DOI: http://dx.doi.org/10.4314/bcse.v27i1.5

  5. Design, characterization and magnetic properties of Fe3O4-nanoparticle arrays coated with PEGylated-dendrimers

    International Nuclear Information System (INIS)

    Graphical abstract: The preparation of magnetite Fe3O4 MNPs using the chemical co-precipitation method in presence of biocompatible PAMAM-based dendrimers with end-grafted ethylene glycol ethers is discussed. The magnetic peculiarities of the Fe3O4 MNPs were analyzed by SQUID VSM. Highlights: ? (Poly)ethylene glycol terminated (amidoamine)-based dendrimers are applied. ? Act as stabilizers in Fe3O4 MNPs formation. ? Influence on particle size and morphology is presented. ? Magnetic peculiarities are discussed. - Abstract: Stable magnetic magnetite nanoparticles (Fe3O4 NPs) were synthesized using the chemical co-precipitation method of ferrous (Fe2+)/ferric (Fe3+) mixed aqueous salt solutions in presence of well-defined biocompatible low generation (poly)amidoamine (PAMAM)-based dendrimers with end-grafted n ethylene glycol ether (n = 1, 2, 9) moieties, accessible by means of straightforward consecutive divergent synthesis methodologies including addition and amidation cycles. Addition of NH4OH to the respective dendritic nanoreagent containing iron salt solution produced dendritic stabilized uniform shaped magnetite nanoparticles. The structural and magnetic properties of Fe3O4 NPs were analyzed by FT-IR spectroscopy, thermogravimetry (TG), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) vibrating sample magnetometry (VSM). The coherence of affecting the average magnetite particle diameter in range of 5.6 (±1.4)–10.1 (±1.9) nm by the dendritic scaffold, the number and length of the attached ethylene glycol ether termini, as well as the adjusted stabilizer-to-Fe3O4 ratio is discussed along with their magnetic peculiarities.

  6. Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2009-11-01

    Full Text Available Baoan Chen1,*, Yiqiong Liang1,*, Weiwei Wu1, Jian Cheng1, Guohua Xia1, Feng Gao1, Jiahua Ding1, Chong Gao1, Zeye Shao1, Guohong Li1, Wenji Chen1, Wenlin Xu2, Xinchen Sun3, Lijie Liu4, Xiaomao Li5, Xuemei Wang61Department of Hematology; 3Department of Oncology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, Germany; 6State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, Peoples Republic of China; *These authors have contributed equally to this workAbstract: Gambogic acid (GA has a significant anticancer effect on a wide variety of solid tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential benefit of combination therapy with GA and magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4. The proliferation of K562 cells and their cytotoxicity were evaluated by MTT assay. Cell apoptosis was observed and analyzed by microscope and flow cytometry, respectively. Furthermore, realtime polymerase chain reaction and Western blotting analyses were performed to examine gene transcription and protein expression, respectively. The results showed that MNPs-Fe3O4 dramatically enhanced GA-induced cytotoxicity and apoptosis in K562 cells. The typical morphological features of apoptosis treated with GA and MNPs-Fe3O4 were observed under an optical microscope and a fluorescence microscope, respectively. The transcription of caspase-3 and bax gene in the group treated with GA and MNPs-Fe3O4 was higher than that in the GA-alone group or MNPs-Fe3O4-alone group, but the transcription of bcl-2, nuclear factor-?B, and survivin degraded as did the expression of corresponding proteins in K562 cells. Our data suggests a potential clinical application of a combination of GA and MNPs-Fe3O4 in leukemia therapy.Keywords: gambogic acid, magnetic nanoparticles of Fe3O4, traditional Chinese medicine, K562 leukemia cells, apoptosis

  7. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation

    Indian Academy of Sciences (India)

    Javad Safari; Zohre Zarnegar

    2013-07-01

    Trisubstituted imidazoles have been synthesized in high yield in the presence of sulphamic acidfunctionalized magnetic Fe3O4 nanoparticles (SA-MNPs) as a novel solid acid catalyst under solvent-free classical heating conditions or using microwave irradiation. The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.

  8. Magnetic properties of Cr doped Fe3O4 porous nanoparticles prepared through a co-precipitation method using surfactant

    International Nuclear Information System (INIS)

    Magnetic Cr3+xFe3+2 ? xFe2+O4 (0 ? x  ?  0.1) porous nanoparticles were prepared by the aqueous co-precipitation method. The resulting magnetic nanoparticles were characterized by using an x-ray diffraction (XRD), field enhanced scanning electron microscope (FESEM), transmission electron microscope (TEM), and vibrating sampling magnetometer (VSM). The nitrogen gas adsorption/desorption isotherm showed a microporous structure of the obtained magnetic materials. A rod and round shape of Fe3O4 was observed as using polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) surfactant, respectively. The Fe3O4 nanoparticles exhibited superparamagnetic properties with easy separation and re-dispersion in solution by using an external magnet. More remarkably, the saturation magnetization (Ms) was enhanced up to 1.2 times for doping Cr3+ into the Fe3O4 lattice. The effect of surfactants and Cr3+ doping concentrations on size and the magnetic properties of Fe3O4 nanoparticles are studied. (paper)

  9. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications

    International Nuclear Information System (INIS)

    A straightforward technique for functionalization of multiwalled carbon nanotubes (MWCNTs) with magnetite (Fe3O4) nanoparticles was developed. Iron oxide nanoparticles were deposited on MWCNT surfaces by a deposition–precipitation method using Fe3+/Fe2+ salts precursors in basic solution. The characterizations by HRTEM, XRD, SEM/EDX, AAS and TPR analyses confirmed the successful formation of magnetic iron oxide nanoparticles on the MWCNT surface. Fe3O4/MWCNT hybrid composites were analysed in vitro by incubation with mesenchymal stem cells for 1, 3 and 7 days, either in the presence or absence of a static magnetic field. Analysis of cell proliferation was performed by the MTT assay, quantification of cellular stress was performed by the Lactate Dehydrogenase assay and analysis of cell morphology was performed by actin immunofluorescence and scanning electron microscopy. Results demonstrate that the introduction of magnetite into the MWCNT structure increases biocompatibility of oxidized MWCNTs. In addition, the presence of a static magnetic field further increases Fe3O4/MWCNT influence on cell behaviour. These results demonstrate this novel Fe3O4/MWCNT hybrid composite has good potential for tissue engineering applications. (paper)

  10. Novel magnetic Fe3O4-C nanoparticles as adsorbents for removal of organic dyes from aqueous solution

    International Nuclear Information System (INIS)

    Highlights: → In this work, novel magnetic Fe3O4-C nanoparticles have been synthesized and employed as high efficient adsorbent for removal cationic dyes from polluted water. → While up to now, little study is done on adsorption of dyes by the Fe3O4-C nanoparticles. → Hence, here we provide a simply and environment friendly method for removal of cationic dyes or other pollutants from water. - Abstract: The magnetic Fe3O4/C core-shell nanoparticles have been synthesized by a simple strategy and used as adsorbents for removal of organic dyes from aqueous solution. The resulting products are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectra (FTIR). Adsorption performances of the nanomaterial adsorbents are tested with removal of methylene blue (MB) and cresol red (CR) from aqueous solution. The effects of solution pH value, adsorption time and capacity of the nanocomposites have been fully investigated. The results reveal that the nanospheres can be easily manipulated by an external magnetic field with high separation efficiency. In addition, the process is clean and safe for purifying water pollution. The prepared Fe3O4/C complex nanomaterials could thus be used as promising adsorbents for the remove organic dyes, especially, cationic dye, from polluted water.

  11. Multifunctional Fe3O4@C@Ag hybrid nanoparticles: Aqueous solution preparation, characterization and photocatalytic activity

    International Nuclear Information System (INIS)

    Highlights: ? Ag-loaded Fe3O4@C magnetic-optical bifunctional materials have been investigated. ? The magnetism was studied at the room temperature. ? The photocatalytic activity was evaluated under visible light irradiation. ? Ag-loaded Fe3O4@C nanocomposites show superior magnetism and photocatalytic activity. ? A simple synthetic process was discussed. - Abstract: The paper describes a kind of multifunctional Fe3O4@C@Ag hybrid nanoparticles, which can be successfully synthesized using a simple route based on directly adsorption and spontaneous reduction of silver ions onto the surface shell of carbon-coated magnetic nanoparticles. The as-prepared samples have been characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectrum, vibrating sample magnetometer (VSM) and UV–vis spectrum (UV–vis). The Ag nanocrystals loaded on the surface shell of carbon-coated magnetic nanoparticles are nearly spherical with an average diameter of 10 nm. And the carbonaceous polysaccharides shell obtained using an glucose hydrothermal reaction act as a role of a bridge between magnetic Fe3O4 core and noble metallic Ag nanocrystals. The as-prepared samples can be used as an effective catalyst for the photodegradation of organic dyes (neutral red) under the exposure of visible light. Results show that the as-prepared samples have a degradation rate of 93.7% for dyes within 30 min, which indicates their high-efficiency and rapid photocatalytic activity

  12. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications

    Science.gov (United States)

    Anbarasu, M.; Anandan, M.; Chinnasamy, E.; Gopinath, V.; Balamurugan, K.

    2015-01-01

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications.

  13. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging

    Science.gov (United States)

    Song, Xiaoli; Luo, Xiadan; Zhang, Qingqing; Zhu, Aiping; Ji, Lijun; Yan, Caifeng

    2015-08-01

    Biofunctionalized chitosan@Fe3O4 nanoparticles are synthesized by combining Fe3O4 and CS chemically modified with PEG and lactobionic acid in one step. The biofunctionalized nanoparticles are characterized by TEM, X-ray, DLS, zeta-potential and magnetic measurements. The in vitro and in vivo behaviors of the biofunctionalized nanoparticles, especially, the cytotoxicity, the protein resistance, metabolism and iron toxicity are assessed. The functional groups, PEG enable the nanoparticles more biocompatible and the lactobionic acid groups enable liver targeting. The potential applications of the nanoparticles in liver magnetic resonance imaging are confirmed. The results demonstrated that the nanoparticles are suspension stability, non-cytotoxicity, non-tissue toxicity and sensitive in liver magnetic resonance imaging, representing potential tools for applications in the biomedical field.

  14. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

    OpenAIRE

    Rosfarizan Mohamad; Mansor Bin Ahmad; Mahnaz Mahdavi; Farideh Namvar

    2013-01-01

    The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferri...

  15. Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability.

    Science.gov (United States)

    Akin, Deniz; Yakar, Arzu; Gündüz, Ufuk

    2015-05-01

    The aim of this study was to synthesize magnetic Fe3O4 chitosan nanoparticles (m-Fe3O4-CNs) by ionic gelation method and use them as adsorbent for the removal of Bromothymol Blue (BB) from aqueous solutions. Also, the effect of various parameters on the preparation of m-Fe3O4-CNs was investigated in this study. The nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy and vibrating sample magnetometry (VSM). Adsorption of BB on m-Fe3O4-CNs was studied in a batch reactor at different experimental conditions such as adsorbent dosage, pH, contact time, initial BB concentration and temperature. Kinetic behaviors, equilibrium isotherms and thermodynamics of the adsorption process were investigated in detail. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model well fitted the adsorption experimental results. The thermodynamic parameters showed that the adsorption was a spontaneous, favorable and exothermic process in nature. PMID:26460462

  16. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  17. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles were synthesized solvothermally using oleylamine and oleic acid as surfactants, and the surface composition was determined by X-ray photoelectron spectroscopy (XPS) as a function of temperature, from the as-synthesized nanoparticles to those annealed under vacuum at 883K. XPS of the as-synthesized nanoparticles was consistent with a surface composition of stoichiometric Fe3O4 capped with a mixture of monodentate carboxylate and chemisorbed amine, although the surface was enriched in carboxylate over that present in the synthesis reaction concentration. The method of synthesis and capping surfactants effectively protect the nanoparticle surface from detectable hydroxylation. The capped nanoparticle is stable for 24 h at 373K, and the capping agents persist to 523K, at which point the oleylamine decomposes to desorb nitrogen and deposit aliphatic carbon from the capping tail. The carboxylate decomposes over a wider range and at 883K some carboxylate remains on the surface. The iron oxide nanoparticle undergoes substantial reduction as the aliphatic capping tail decomposes. While the as-introduced nanoparticle is essentially Fe3O4, reduction to FeO, Fe and Fe3C occurs sequentially as the nanoparticle is heated to higher temperatures.

  18. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, M E [University of Cincinnati; Patel, Ronak [University of Cincinnati; Sookoor, Jason [University of Cincinnati; Bud' ko, Sergey L [Ames Laboratory; Ewing, Rodney C [Stanford University; Zhang, Jiaming [Stanford University; Xu, Hong [Shanghai Jiao Tong University; Wang, Yilong [Tongji University School of Medicine; Pauletti, Giovanni M [University of Cincinnati; Mast, David B [University of Cincinnati; Shi, Donglu [University of Cincinnati

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.

  19. Photoelectron diffraction of Rh nanoparticles growth on Fe3O4/Pd(111) ultra thin film

    International Nuclear Information System (INIS)

    Full text: Heterogeneous catalysis is a highly complex process. Usually, a catalyst is formed by transition metal nanoparticles (for example, Pd, Pt, Rh, Ni, Au) supported by an oxide such as alumina, silica, titania among others [1-4]. The performance of the catalyst in terms of macroscopic chemical parameters such as the temperature for reaction activation, selectivity and efficiency can be strongly influenced by different characteristics of the catalyst at the atomic level, for instance, its electronic and atomic structure, particle size and shape, crystallographic structure [5-6] and support material effects[1]. Metal-oxide-based catalysts are used for many important synthesis reactions in the chemical industry, such as selective oxidation, dehydrogenation, isomerization and other chemical processes [7]. Rhodium nanoparticles have been used, for example, in the studies of propionaldehyde decomposition under ultra-high vacuum (UHV) conditions. The aim of this work is to prepare rhodium nanoparticles on magnetite (Fe3O4) (111) growth on Pd(111). The rhodium clusters and iron oxide ultra-thin films (thickness <10ML) were prepared in UHV conditions by Molecular Beam Epitaxy (MBE) and keeping the substrate at 450 deg C. The system was characterized by X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED) and photoelectron diffraction (PED) performed at the SGM beam line at the Brazilian Synchrotron Light Source (LNLS). Our results shows the formation of small Rh an island with the same atomic structure of fcc Rh at bulk, and thickness lower then 5MLs. The islands cover approximately 15% of the iron surface. These findings were determined mainly with the PED experiments supported by a comprehensive simulation approach based on multiple scattering calculations. References: [1] J. Libuda, H.-J. Freund, Surf. Sci. Rep. 57, 157 (2005). [2] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998). [3] N. Nilius, A. Corper, G. Bozdech, N. Ernst , H.-J. Freund, Prog. Surf. Sci. 67, 99 (2001). [4] C. T. Campbell, Surf. Sci. Rep. 27, 1 (1997). [5] M. Frank, S. Andersson, J. Libuda, S. Stempel, A. Sandell, B. Brena, A. Giertz, P. A. Bruhwiler, M. Baumer, N. Martensson, H.-J. Freund, Chem. Phys. Lett. 279 92 (1997). [6] S. Andersson, M. Frank, A. Sandell, A. Giertz, B. Brena, P. A. Bruhwiler, N. Martensson, J. Libuda, M. Baumer, H.-J. Freund, J. Chem. Phys. 108 2967 (1998). [7] G. Ertl, H. Knozinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997. (author)

  20. Preparation and characterization of poly(glycidyl methacrylate)-grafted magnetic nanoparticles: Effects of the precursor concentration on polyol synthesis of Fe3O4 and [PMDETA]0/[CuBr2]0 ratios on SI-AGET ATRP

    Science.gov (United States)

    Jiang, Liping; Zhou, Xuyang; Wei, Guyun; Lu, Xiaoduo; Wei, Weiping; Qiu, Jianhua

    2015-12-01

    Polymer brushes based on poly(glycidyl methacrylate) (PGMA) have been successfully grafted from the surface of silica coated iron oxide (Fe3O4@SiO2) nanoparticles via surface-initiated activators generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The size of the nanoparticles could be adjusted from 7.3 to 9.6 nm by varying the precursor concentration of iron(III) acetylacetonate. The Fe3O4 nanoparticles possessed a highly crystalline structure, and the saturation magnetization of the as-prepared magnetite was strongly related to the particle size. Furthermore, the grafted PGMA content on the magnetic nanoparticles could be controlled by varying the ligand to transition metal ratio in a N,N,N?,N?,N?-pentamethyldiethylenetriamine (PMDETA)/CuBr2 catalyst system. The maximum grafted content was 23.1% at a ratio of [PMDETA]0/[CuBr2]0 = 2:1.

  1. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    OpenAIRE

    Jung Kyoo Lee; Jinku Kim; Taegyune Yoon; Jaegyeong Kim

    2013-01-01

    Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g?1), high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS) were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assemb...

  2. The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2009-04-01

    Full Text Available Zhi Jiang1,6, Bao-An Chen1,6, Guo-Hua Xia1, Qiang Wu2, Yu Zhang1, Tie-Yan Hong1, Wei Zhang1, Jian Cheng1, Feng Gao1, Li-Jie Liu3, Xiao-Mao Li4, Xue-Mei Wang51Department of Hematology, the Affiliated Zhongda Hospital of Southeast University, Nanjing, China; 2The Jiangsu Province Cancer Hospital, Nanjing, China; 3Institutions of Physiology, Southeast University, Nanjing, China; 4Department of Physics, University of Saarland, Saarbruechen, Germany; 5National Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, China; 6These authors have contributed equally to this workAbstract: To explore whether the magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 loaded with cisplatin can reverse the diaminedichloro platinum (DDP resistance to multidrug resistance of ovarian carcinoma cells and to investigate its mechanisms. The SKOV3/DDP cells were divided into DDP treatment (DDP group, MNPs-Fe3O4 treatment (MNPs-Fe3O4 group, DDP + MNPs-Fe3O4 treatment (DDP + MNPs-Fe3O4 group, and control group. After incubation with those conjugates for 48 h, the cytotoxic effects were measured by MTT assay. Apoptosis and the intracellular DDP concentration were investigated by flow cytometry and inductively coupled plasma atomic emission spectroscopy, respectively. The expression of apoptosis associated gene Bcl-2 mRNA was detected by reverse transcription polymerase chain reaction and the expressions of MDR1, lung resistance-related protein (LRP, and P-glycoprotein (P-gp genes were studied by Western blot. Our results indicated that the 50% inhibition concentration (IC50 of the MNPs-Fe3O4 loaded with DDP was 17.4 µmol/ l, while the IC50 was 39.31 µmol/l in DDP groups (p < 0.05; Apoptosis rates of SKOV3/DDP cells increased more than those of DDP groups. Accumulation of intracellular cisplatin in DDP + MNPs-Fe3O4 groups was higher than those in DDP groups (p < 0.05. Moreover, the expression of Bcl-2 mRNA and the protein expressions of MDR1, LRP, and P-gp were decreased when compared with those of DDP groups, respectively. Our results suggest that MNPs-Fe3O4 can reverse the DDP resistance to the ovarian carcinoma cell. The effects may be associated with over-expression of MDR1, LRP, P-gp, and Bcl-2, which can increase the intracellular platinum accumulation and induce the cell apoptosis.Keywords: magnetic nanoparticles of Fe3O4 , multidrug resistance reversal, SKOV3/DDP, MDR1, LRP, P-gp, Bcl-2

  3. Effect of Fe3O4 nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    Directory of Open Access Journals (Sweden)

    Wenxia Sima

    2015-12-01

    Full Text Available Addition of nanoparticles of the ferromagnetic material Fe3O4 can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe3O4 nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge.

  4. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract

    Science.gov (United States)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prasad, C. H.; Venkateswarlu, P.; Jyothi, N. V. V.

    2014-09-01

    A novel and bio-inspired Fe3O4 spherical magnetic nanoparticles (SMNPs) were synthesized using Syzygium cumini (S. cumini) seed extract, which is a non-toxic ecofriendly fruit waste material. S. cumini seed extract acts as a green solvent, reducing and capping agent in which sodium acetate acts as electrostatic stabilizing agent. The green synthesized nanoparticles were characterized with the help of various techniques such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Energy-dispersive spectroscopy (EDS), Vibrating sample magnetometer (VSM), FTIR spectroscopy and nitrogen adsorption and desorption analysis techniques. The XRD study divulged that the synthesized SMNPs have inverse spinel cubic structure. The hysteresis loop of Fe3O4 nanoparticles shows an excellent ferromagnetic behavior with saturation magnetization value of 13.6 emu/g.

  5. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract

    International Nuclear Information System (INIS)

    A novel and bio-inspired Fe3O4 spherical magnetic nanoparticles (SMNPs) were synthesized using Syzygium cumini (S. cumini) seed extract, which is a non-toxic ecofriendly fruit waste material. S. cumini seed extract acts as a green solvent, reducing and capping agent in which sodium acetate acts as electrostatic stabilizing agent. The green synthesized nanoparticles were characterized with the help of various techniques such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Energy-dispersive spectroscopy (EDS), Vibrating sample magnetometer (VSM), FTIR spectroscopy and nitrogen adsorption and desorption analysis techniques. The XRD study divulged that the synthesized SMNPs have inverse spinel cubic structure. The hysteresis loop of Fe3O4 nanoparticles shows an excellent ferromagnetic behavior with saturation magnetization value of 13.6 emu/g

  6. Continuous and Delayed Photohemolysis Sensitized With Methylene Blue and Iron Oxide Nanoparticles (Fe3O4)

    Science.gov (United States)

    AL-Akhras, M.-Ali; Aljarrah, Khaled; Albiss, Borhan; Alhaji Bala, Abba

    2015-10-01

    This research present the sensitization of methylene blue (MB), as a potential photodynamic therapy photo sensitizer which showed phototoxicity for many tumor cells in vitro incorporated with iron oxide nanoparticles (Fe3O4, IO-NP), which offer magnificent interaction both inside and outside the surface of biomolecules together with red blood cells (RBC's) with significant change in hemolysis process. The study investigated the sensitization of continuous photohemolysis (CPH) for MB and MB with IO-NP, delayed photohemolysis (DPH) at different irradiation temperature (Tirr). The photohemolysis rate for CPH at room temperature has a power dependence of 0.39 ± 0.05 with relative of steepness of 1.25 ± 0.02 and for different concentration of MB and power dependent of 0.15 ± 0.03 with relative steepness of 1.34 ± 0.01 for different MB and IO-NP. Logistic and Gompertz functions were applied as appropriate mathematical models to fit the collected experimental data for CPH and DPH respectively, and to calculate fractional photohemolysis rate with minimum errors. The Logistic function parameter; α, the hemolysis rate, increases with increasing concentrations of MB and decreases with increasing IO-NP concentrations in the presence of 6 μg/ml of MB. The parameter β the time required to reduce the maximum number of RBCs to one half of its value, decreases with increasing MB concentration and increases with increasing IO-NP concentrations in the presence of 6 pg/ml of MB. In DPH at different Tirr, the Gompertz parameter; a, fractional hemolysis ratio, is independent of temperature in both case MB and MB plus IO-NP, while the parameter; b, rate of fractional hemolysis change, increases with increasing Tirr, in both case MB and MB plus IO-NP. The apparent activation energy of colloid-osmotic hemolysis is 9.47±0.01 Kcal/mol with relative steepness of 1.31 ± 0.05 for different MB and 6.06±0.03 Kcal/mol with relative steepness of 1.41 ± 0.09 for MB with iron oxide. Our results suggest that Logistic equation is the best fit for the CPH and Gompertz function for the DPH. Both models predict also that the relative steepness is independent of the light dose, sensitizer and IO-NP concentrations.

  7. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Magnetic Fe3O4/C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe3O4 and coated organic carbon has been demonstrated in Fe3O4/C. • The straight influences of synthesis conditions of Fe3O4/C on MSPE were investigated. • The extraction characteristics of Fe3O4/C nanoparticles were further elucidated. - Abstract: Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction

  8. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution

    International Nuclear Information System (INIS)

    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe3O4-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe3O4) were prepared by chemical precipitation of a Fe2+ and Fe3+ salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe3O4 were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90 x 10-2 min-1 at 100 mg L-1 and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L-1. It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Qo, was found to be (38.3) mg g-1. The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.

  9. Extraction of organophosphorus pesticides by carbon-coated Fe3 O4 nanoparticles through response surface experimental design.

    Science.gov (United States)

    Maddah, Bozorgmehr; Alidadi, Sattar; Hasanzadeh, Mahdi

    2016-01-01

    In this paper, carbon-coated Fe3 O4 nanoparticles were successfully synthesized and used as a magnetic solid-phase extraction absorbent for the preconcentration and extraction of organophosphorus pesticides in environmental water samples. The carbon-coated Fe3 O4 nanoparticles were characterized by transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The determination of organophosphorus pesticides in water samples with carbon-coated Fe3 O4 nanoparticles was investigated by high-performance liquid chromatography with a diode array detector. Furthermore, the response surface model based on the central composite design was applied to quantitatively investigate the effect of some important variables influencing the extraction efficiency, such as pH, treatment time, amount of nanoparticle sorbents, and amount of salt and to find the optimized conditions providing the highest extraction efficiency. Under optimized conditions, the calibration curve was linear in the range of 0.5-15.0 ng/mL with a regression coefficient of 0.9948, 0.9958, and 0.9931 for fenitrothion, diazinon, and ethion, respectively. The obtained results showed that this analytical method would be useful for the analysis of fenitrothion, diazinon, and ethion in tap water with high precision and accuracy. PMID:26519201

  10. Fe3O4@SiO2 core-shell nanoparticles: Synthesis, characterization and application in environmental remediation

    Science.gov (United States)

    Majeed, J.; Ramkumar, Jayshree; Chandramouleeswaran, S.; Tyagi, A. K.

    2014-04-01

    In this study, Fe3O4@SiO2 core-shell structure was synthesized by a one pot co-precipitation method, and its applicability as Low-Cost Abundantly available adsorbent for removal of heavy metal ions from simulated industrial waste water was examined. The detailed characterization of morphology showed that the Fe3O4 nanoparticle was coated with amorphous silica of a shell thickness of 2-3 nm. The core-shell magnetic nanoparticles (MNPs) showed a great removal capability of four different heavy metal ions (Zn (II), Co (II), Ni (II), and Cu (II). These MNPs showed high magnetic saturation values, which ensure the convenience of recovering sorbent for reusability with the assistance of external magnetic field. Specifically, this present study shows the use of MNPs as an effective recyclable adsorbent for environmental remediation.

  11. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    Ma P

    2012-09-01

    Full Text Available Ping Ma,1,2,* Qing Luo,2,* Jiaoe Chen,1 Yaping Gan,1 Juan Du,2 Shumao Ding,2 Zhuge Xi,3 Xu Yang2 1College of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, People's Republic of China; 2Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, People's Republic of China; 3Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Because of its unique magnetic properties, the iron oxide (Fe3O4 nanoparticle has been widely exploited and its application in various fields has promised immense benefits. However, doubts exist over the use of Fe3O4-nanoparticles in human beings. Thus, the aim of the current study was to find out the potential safety range of medical use. Twenty-five Kunming mice were exposed to Fe3O4-nanoparticles via intraperitoneal injection daily for 1 week at doses of 0, 5, 10, 20, and 40 mg/kg. Hepatic and renal tissues were sliced for physiological observation. Injuries were observed in the high-dose groups (20 and 40 mg/kg compared with the control group (0 mg/kg. Biomarkers of reactive oxygen species, glutathione, malondialdehyde, DNA-protein crosslinks, and 8-hydroxy-2'-deoxyguanosine in the hepatic and renal tissues were detected. Injury to tissues and oxidative damage to cells at the molecular level was found. The safest dose recommended from the results of this study is 5 mg/kg, as we believe this to be an upper limit balancing the benefits and risks for sub-long-term exposure.Keywords: Fe3O4-nanoparticles, reactive oxygen species, glutathione, malondialdehyde, DNA-protein crosslinks, 8-hydroxy-2'-deoxyguanosine

  12. Enhanced superconducting properties in epitaxial FeSe thin films with self-assembled Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Epitaxial tetragonal FeSe thin films were deposited by pulsed laser deposition. Deposition temperature and annealing process are critical for achieving the optimum superconducting properties of the films. The optimum deposition temperatures are ?500 deg. C and 550 deg/ C for samples on STO and MgO substrates, respectively. The self-assembled Fe3O4 nanoparticles were found to have a direct correlation with the optimum superconducting properties of the films. In this paper we report epitaxial tetragonal iron selenide thin films grown on single crystal SrTiO3 (STO) (0 0 1) and MgO (0 0 1) substrates by a pulsed laser deposition (PLD) technique. Deposition temperature and annealing process are found to be critical for achieving the tetragonal phase and the optimum superconducting properties of the films. The critical transition temperature of the thin films ranges from 2 K to 11.5 K depending on the deposition temperature and annealing condition. The samples with higher critical transition temperatures show better film crystallinity along with self-assembled Fe3O4 nanoparticles (?15 nm in average particle size) in the films according to both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Besides the better crystallinity achieved in the films, the formation of Fe3O4 nanoparticles could assist the formation of the tetragonal FeSe phase and thus lead to the enhanced superconducting properties.

  13. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    Science.gov (United States)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02680f

  14. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    Science.gov (United States)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-12-01

    Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.

  15. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    International Nuclear Information System (INIS)

    Highlights: • Fe3O4 nanoparticles prepared from waste liquor were functionalized with EDA. • EDA-Fe3O4 nanoparticles had high adsorption capacity and selectivity for Cr(VI). • The adsorption kinetics, thermodynamics and isotherm were studied. • Electrostatic attraction and complexation were postulated as adsorption mechanisms. • EDA-Fe3O4 nanoparticles retained high capacity after several adsorption processes. - Abstract: In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20–50 nm and a BET surface area of 28 m2 g?1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl?or Cr(VI)/SO42? double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption–desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI)

  16. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes

    International Nuclear Information System (INIS)

    In this study, a novel CS/Fe3O4 nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe3O4 nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  17. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    Science.gov (United States)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  18. FMR study of carbon nanotubes filled with Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ordered arrays of carbon nanotubes were produced using a non-catalytic chemical vapour deposition. The multiwall nanotubes with an inner diameter of 120 nm were grown inside porous alumina templates and then filled with a magnetic colloid of 7.5 nm Fe3O4 particles. X-ray diffraction, electron microscopy and ferromagnetic resonance (FMR) were used to characterize structural and magnetic properties of the grown samples. To estimate the filling factor from the angular dependence of the FMR resonance field, we have derived an effective demagnetization factor for our system using the formalism proposed by Skomsky and Dubowik. Angular dependence of the FMR line width allows one to conclude about the non-uniform filling, while temperature dependent measurements reflect typical features of a superparamagnetic resonance. - Highlights: • Synthesis of CNTs inside of alumina membrane and filling it with Fe3O4 particles. • X-ray diffraction and electron microscopy study of the samples. • Magnetic properties of the samples studied by FMR. • Filling factor has been determined from the angular dependences of FMR. • Resulted magnetic CNTs are attractive for production of magnetic nanofluids

  19. Preparation and characterization of 18-crown-ether-6/LA/Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Fe3O4 Magnetic nanoparticles (MNPs) have the advantages of large specific surface area, high adsorption capacity, and conveniently magnetic separation. Crown ether display good selectivity of coordination with uranyl ion, thorium ion and so on. To combine the feature and advantage, this study prepared for 18-Crown-ether-6/LA/Fe3O4 magnetic particles which with high adsorption and selectivity properties and easy to separate from wastewater with magnet. The structure was characterized with IR, SEM, VSM, DGA and so on. The results reveal that: 18-Crown-ether-6/LA/ Fe3O4 magnetic particles was size of (12-23) nm, saturation magnetization was 56.338 emu/g with superparamagnetism and strong antioxidant properties. A test for the adsorption of the magnetic particles with uranyl ion and thorium ion has been carried out. The results indicated that the magnetic particles had good adsorption capacity, quick efficient and conveniently magnetic separation. It can be used repeatedly, with a good reproducibility. (authors)

  20. Thermal annealing synthesis of Fe4N/Fe nanocomposites from iron oxide (Fe3O4) nanoparticles

    International Nuclear Information System (INIS)

    A facile sono-thermal approach using inexpensive and non-toxic chemicals was applied for the large-scale synthesis of iron nitride/iron (Fe4N/Fe) nanocomposite. The as-synthesized iron oxide (Fe3O4) nanoparticles by sonochemical method were treated in a thermal annealing chamber in presence of hydrogen (H2) and ammonia (NH3) gases to obtain Fe4N/Fe nanocomposite. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analyses revealed that the Fe4N/Fe nanocomposite had been successfully synthesized using this simple method. Transmission electron microscopy (TEM) data demonstrated that the sizes of the as-synthesized Fe4N/Fe nanocomposite were larger compared to the sizes for the initial Fe3O4 NPs. The magnetization curve obtained using vibrating sample magnetometer (VSM) measurements showed that the magnetization had been significantly increased in the synthesized Fe4N/Fe nanocomposite compared to that in the freshly-prepared Fe3O4 magnetic NPs.

  1. The Effect of Emulation Formulation to Encapsulation of Fe3O4 Magnetic nanoparticle with Poly (Lactic Acid)

    International Nuclear Information System (INIS)

    The research to study the effect of emulsion formulation to encapsulation Fe3O4 magnetic nanoparticle with Poly(Lactic Acid) (PLA) has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 mL, 8 mL, 10 mL, 12 mL and 14 mL, whereas water phase volume is constant (55 mL). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of Fe3O4 with PLA. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of Fe3O4 + PLA nanosphere is 2.556 emu/g and encapsulation percentage is 24.94 %. (author)

  2. Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries

    International Nuclear Information System (INIS)

    We report a scalable strategy to synthesize Fe3O4/graphene nanocomposites as a high-performance anode material for lithium ion batteries. In this study, ferric citrate is used as precursor to prepare Fe3O4 nanoparticles without introducing additional reducing agent; furthermore and show that such Fe3O4 nanoparticles can be anchored on graphene sheets which attributed to multifunctional group effect of citrate. Electrochemical characterization of the Fe3O4/graphene nanocomposites exhibit large reversible capacity (∼1347 mA h g−1 at a current density of 0.2 C up to 100 cycles, and subsequent capacity of ∼619 mA h g−1 at a current density of 2 C up to 200 cycles), as well as high coulombic efficiency (∼97%), excellent rate capability, and good cyclic stability. High resolution transmission electron microscopy confirms that Fe3O4 nanoparticles, with a size of ∼4–16 nm are densely anchored on thin graphene sheets, resulting in large synergetic effects between Fe3O4 nanoparticles and graphene sheets with high electrochemical performance. - Graphical abstract: The reduction of Fe3+ to Fe2+ and the deposition of Fe3O4 on graphene sheets occur simultaneously using citrate function as reductant and anchor agent in this reaction process. Highlights: ► Fe3O4/graphene composites are synthesized directly from graphene and C6H5FeO7. ► The citrate function as reductant and anchor agent in this reaction process. ► The resulting Fe3O4 particles (∼4–16 nm) are densely anchored on graphene sheets. ► The prepared Fe3O4/graphene composites exhibit excellent electrochemical performance

  3. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes.

    Science.gov (United States)

    Lubambo, A F; Ono, L; Drago, V; Mattoso, N; Varalda, J; Sierakowski, M-R; Sakakibara, C N; Freitas, R A; Saul, C K

    2015-12-10

    Polyvinyl Alcohol (PVA)/guar gum (GG) membranes with different loads of paramagnetic iron oxide Fe3O4 nanoparticles were successfully electrospun using both non-alkaline and alkaline stock solutions. The nanoparticle homogeneity distribution was clearly enhanced in fibers obtained from alkaline stock solutions. This is mainly due to the interaction between GG and the metallic ion, which also leads to further dispersion of remained uncoated nanoparticles in the mixture. It was also noticed that GG favors nanoparticle stability in the mixture and contributes to nanoparticle encapsulation. X-ray results showed that all membranes were semi-crystalline. FTIR-ATR spectra showed that FeO absorption band intensity improved with increasing nanoparticle load, reaching saturation at 3.5mg/ml Fe3O4 concentration under alkaline conditions. VSM analyses showed that the nanoparticles are paramagnetic and were successfully incorporated by the fibers. In vitro biocompatibility tests using L929 cells indicates adequate levels of cytotoxicity and cell adhesion/proliferation assays for both membranes obtained from non-alkaline and alkaline stock solutions. Therefore, they have potential for biomedical applications as biodegradable wound dressing. PMID:26428185

  4. Preparation and characterization of core-shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material

    International Nuclear Information System (INIS)

    Core-shell structure carbon coating Fe3O4 nanoparticles are prepared by a two-step method. The crystalline structure and the electrochemical performance of the prepared samples are investigated. The results indicate that a uniform and continuous carbon layer is formed on the surface of Fe3O4 nanoparticles. The core-shell structure Fe3O4/C nanoparticles show a high initial discharge capacity of 1546 mAh g-1 and a specific stable discharge capacity of about 800 mAh g-1 at 0.5 C with no noticeable capacity fading up to 100 cycles.

  5. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Monodisperse magnetizable silica composite particles were prepared from heteroaggregates of carboxylic polystyrene latex and Fe3O4 nanoparticles. It was found that the heteroaggregation of the carboxylic latex and Fe3O4 nanoparticles is dependent on the pH of the solution. At low pH value (pH 2-4), the aggregation proceeds effectively due to opposite charges on the surfaces of the latex and the magnetic nanoparticles. At high pH value (pH>8), no aggregation was observed due to the negative charge on both the surface of the latex and the magnetic nanoparticles. The heteroaggregate of the latex and magnetic nanoparticles was found to be stable in a wide range of pH values, due to the existence of coordination interactions at the interface of the latex and magnetic nanoparticles. After silica layer coating on the heteroaggregate by the Stoeber process and removal of the latex by calcination, hollow monodisperse magnetizable silica composite particles are obtained

  6. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4 Nanoparticles Using Seaweed (Sargassum muticum Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Rosfarizan Mohamad

    2013-05-01

    Full Text Available The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (BS, Sargassum muticum water extract containing sulphated polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. The structural and properties of the Fe3O4-NPs were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM, energy dispersive X-ray fluorescence spectrometry (EDXRF, vibrating sample magnetometry (VSM and transmission electron microscopy. The average particle diameter as determined by TEM was found to be 18 ± 4 nm. X-ray diffraction showed that the nanoparticles are crystalline in nature, with a cubic shape. The nanoparticles synthesized through this biosynthesis method can potentially useful in various applications.

  7. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles.

    Science.gov (United States)

    Li, Yue; Wang, Xiang-Yu; Zhang, Rui-Zhuo; Zhang, Xiao-Yun; Liu, Wei; Xu, Xi-Ming; Zhang, Ye-Wang

    2014-04-01

    Supermagnetic Fe3O4@SiO2 nanoparticles were molecular-imprinted prepared with cellulase as the template. The molecular imprinted nanoparticles were used as support to immobilization of cellulase. The transmission electron microscopy confirmed the core-shell structure and revealed that the size of the nanoparticles was around 10 nm. It was observed that cellulase was immobilized on the nanoparticles successfully from the Fourier transform infrared spectra. The adsorption of cellulase on the nanoparticles was specific and rapid. A high immobilization efficiency of 95% was achieved after the optimization. At 70 degrees C, the half-life of the immobilized cellulase was 3.3-fold of the free enzyme. Compared with the free enzyme, the immobilized cellulase has the same optimal pH, higher optimal temperature, better thermal stability and higher catalytic efficiency. The results strongly suggest that the immobilized cellulase on molecular imprinted Fe3O4@SiO2 has the potential applications in the production of bioethanol, paper and pulp industry, and pharmaceutical industry. PMID:24734713

  8. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    Science.gov (United States)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2015-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  9. One step grafting of iron phthalocyanine containing flexible chains on Fe3O4 nanoparticles towards high performance polymer magnetic composites

    Science.gov (United States)

    Pu, Zejun; Zhou, Xuefei; Yang, Xulin; Jia, Kun; Liu, Xiaobo

    2015-07-01

    To develop high-performance inorganic particles/polymer composites, the interfacial interaction and dispersion of inorganic particles are the two essential issues to be considered. Herein, we report an effective approach to graft iron phthalocyanine containing flexible chains (NP-ph) on Fe3O4 nanoparticles (NP-ph@Fe3O4). The hybrids were monodispersed solid nanoparticles with the average diameter of about 250 nm. About 16.8% of the phthalocyanine oligomer was incorporated into the resulting NP-ph@Fe3O4 nanoparticles. The NP-ph@Fe3O4 nanoparticles were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PAEN) composites. The scanning electron microscopy (SEM) investigation showed that the NP-ph@Fe3O4 nanoparticles present better dispersion and interfacial compatibility with PAEN matrix than that of raw Fe3O4, which was further confirmed by rheological study. Consequently, the improved thermal stability and enhanced mechanical properties were obtained from composites using NP-ph@Fe3O4. Vibrating sample magnetometer (VSM) results showed that the prepared PAEN composites exhibited higher saturation magnetization and soft magnetic properties. Meanwhile, the saturation magnetization (Ms) of the PAEN/NP-ph@Fe3O4 composite films increased with the increase of the hybrid nanoparticles loading. Thus, the PAEN/NP-ph@Fe3O4 composite would find potential applications in organic magnetic films fields due to their high thermal stability, excellent flexibility and tunable magnetic properties

  10. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    Science.gov (United States)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  11. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

    OpenAIRE

    Tingting Gu; Jianli Wang; Hongqi Xia; Si Wang; Xiaoting Yu

    2014-01-01

    A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP) on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM) was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS) show that...

  12. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.

    2012-10-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  13. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Wan, Yizao; Yang, Zhiwei; Xiong, Guangyao; Guo, Ruisong; Liu, Ze; Luo, Honglin

    2015-10-01

    There is growing interest in flexible, cost-effective, and binder-free energy storage devices to meet the special needs of modern electronic systems. Herein we report a general, scalable, eco-friendly, and cost-effective approach for the fabrication of nano-Fe3O4-anchored three-dimensional (3D) carbon nanofiber (CNFs) aerogels (Fe3O4@BC-CNFs). The preparation processes include the anchoring of Fe2O3 nanoparticles on bacterial cellulose (BC) nanofibers with intrinsic 3D network structure and subsequent carbonization at different temperatures. The aerogel carbonized at 600 °C (Fe3O4@BC-CNFs-600) is highly flexible and was directly used as working electrodes in lithium-ion batteries without metal current collectors, conducting additives, or binders. The Fe3O4@BC-CNFs-600 demonstrates greatly improved electrochemical performance in comparison to the bare Fe3O4 nanoparticles. In addition to its excellent flexibility, a stable capacity of 755 mAh g-1 for up to 80 cycles is also higher than most of carbon-Fe3O4 hybrids. The high reversible capacity and excellent rate capability are attributed to its 3D porous network structure with well-dispersed Fe3O4 nanoparticles on the surfaces of CNFs.

  14. Ternary hybrid nanoparticle isomers: directing the nucleation of Ag on Pt-Fe(3)O(4) using a solid-state protecting group.

    Science.gov (United States)

    Hodges, James M; Biacchi, Adam J; Schaak, Raymond E

    2014-01-28

    Colloidal hybrid nanoparticles are an important class of materials that incorporate multiple nanoparticles into a single system through solid-state interfaces, which can result in multifunctionality and the emergence of synergistic properties not found in the individual components. These hybrid structures are typically produced using seeded-growth methods, where preformed nanoparticles serve as seeds onto which additional domains are added through subsequent reactions. For hybrid nanoparticles that contain more than two domains, multiple configurations with distinct connectivities and functionalities are possible, and these can be considered as nanoparticle analogues of molecular isomers. However, accessing one isomer relative to others in the same hybrid nanoparticle system is challenging, particularly when the formation of a target isomer is disfavored relative to more stable or synthetically accessible configurations. Here, we show that an iron oxide shell installed onto the Pt domain of Pt-Fe3O4 hybrid nanoparticles serves as a solid-state protecting group that can direct the nucleation of a third domain to an otherwise disfavored site. Under traditional conditions, Ag nucleates exclusively onto the Pt domain of Pt-Fe3O4 heterodimers, resulting in the formation of the Ag-Pt-Fe3O4 heterotrimer isomer. When the Pt surface is covered with an iron oxide protecting group, the nucleation of Ag is redirected onto the Fe3O4 domain, producing the distinct and otherwise inaccessible Pt-Fe3O4-Ag isomer. Similar results are obtained for the Au-Pt-Fe3O4 system, where formation of the favored Au-Pt-Fe3O4 configuration is blocked by the iron oxide protecting group. The thickness of the iron oxide shell that protects the Pt domain can be systematically tuned by adjusting the ratio of oleic acid to iron pentacarbonyl during the synthesis of the Pt-Fe3O4 heterodimers, and this insight is important for controllably implementing the protecting group chemistry. PMID:24328300

  15. On the passivation mechanism of Fe3O4 nanoparticles during Cr(VI) removal from water: A XAFS study

    Science.gov (United States)

    Pinakidou, F.; Katsikini, M.; Simeonidis, K.; Kaprara, E.; Paloura, E. C.; Mitrakas, M.

    2016-01-01

    X-Ray Absorption Spectroscopies (XAFS) are employed in order to gather a thorough insight on the uptake mechanism of Cr(VI) by Fe3O4 nanoparticles under water treatment conditions. The XANES measurements identify that the reducing potential of Fe3O4 activates the precipitation of Cr(VI) in the form of insoluble and non-toxic Cr(III). However, electron donation from Fe(II) is responsible for its gradual consumption, resulting in the presence of a surface maghemite layer and the formation of structural vacancies. EXAFS analysis reveal that adsorption of Cr(III)-oxyanions occurs on sorption sites provided by the vacancies in the maghemite layer, where Cr(III) is involved in a bidentate binuclear (2E) geometry with Fe-octahedra while it also forms monodentate (1V) complexes with the Fe(III)O4 tetrahedra. The surface maghemitization along with the reduced Cr(III) adsorption into the vacancies, tracks the degree of Cr-reduction, since this surface structural modifications hinder Cr(VI) access to the Fe(II) ions of the magnetite nanoparticles. Thus, high surface coverage leads to the passivation of the reduction ability since physisorbed Cr(VI) is also detected through the formation of outer sphere complexes.

  16. Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection

    International Nuclear Information System (INIS)

    Microwave-induced thermoacoustic tomography can provide a novel imaging modality for clinical detection. Significant progress has been made in the past several years in microwave-induced thermoacoustic tomography. In this paper, we investigate the feasibility of using dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. Dextran-coated Fe3O4 magnetic nanoparticles administered intravenously are phagocytosed by resident Kupffer cells in normal reticuloendothelial system (RES) within the liver, but are not retained in tumor tissue. Consequently, there are significant differences in thermoacoustic signal intensity between normal RES and tumors, which result in increased lesion conspicuity and detectability. This provides the improvement of lesion-to-liver contrast for thermoacoustic tomography. A fast thermoacoustic computed tomography system with a multielement linear transducer array was used to image cancerous liver tissue with circular scanning. The results show that the system can provide molecular imaging with functionalized contrast agents for high-contrast detecting hepatocellular carcinoma and has the potential to become a novel approach for clinical diagnosis in the future.

  17. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  18. One-step synthesis Fe3N surface-modified Fe3O4 nanoparticles with excellent lithium storage ability

    International Nuclear Information System (INIS)

    The Fe3N modified Fe3O4 nanoparticles with an excellent performance in lithium-ion batteries were prepared via a one-step and an efficient method. The layer of Fe3N could significantly decrease the variation of volume and enhance the conductivity of Fe3O4 simultaneously during the reaction of lithium ions in the charge-discharge process. There are two main advantages of this material: (1) their size distribution, ranging from 100 to 500 nm and (2) the fact that these particles are connected with each other by the Fe3N layer. These two features allow such material to exhibit a high reversible capacity of 739 and 620 mA h g?1 after each 60 cycles at the current density of 50 and 200 mA g?1, respectively. More importantly, since its introduction, this new concept of coating metal oxides with a layer of metal nitride to form core-shell structured metal oxide@metal nitride can be widely applied in the fields of catalysis, electrochemistry, energy, environmental and materials science with improved performance.

  19. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    Science.gov (United States)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-04-01

    A novel approach for the synthesis of Ag-loaded Fe3O4@C nanospheres (Ag-Fe3O4@C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH4. The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs.

  20. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    International Nuclear Information System (INIS)

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property

  1. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Science.gov (United States)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  2. The effect of initial alignment on the optical properties of Fe3O4 nanoparticles doped in nematic liquid crystals

    International Nuclear Information System (INIS)

    Recently the nonlinear effects of the different materials doped liquid crystals are more interesting. In all previous works, nonlinearity of samples with the homeotropic alignment is investigated because of the larger component of the refractive index in this direction. Here, there are spherical Fe3O4 nanoparticles that have both parallel and perpendicular components. We were looking for the effect of initial alignment on the nonlinearity of pure and doped nematic liquid crystals (NLCs). The experimental results emphasize, even the same compositional percentage of nanoparticles prepared by two different alignment configurations are showing different results when dispersed in the same NLCs. Comparing nonlinear studies, the magnitude of nonlinear refraction index, n2 and nonlinear absorption coefficient, ? increase 102 and 101 times, respectively, in homeotropic alignment samples and the sign of these parameters is changed rather than homogeneous ones

  3. Preparation of Fe3O4-Embedded Poly(styrene/Poly(thiophene Core/Shell Nanoparticles and Their Hydrogel Patterns for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Yong Seok Kim

    2014-01-01

    Full Text Available This research describes the preparation and sensor applications of multifunctional monodisperse, Fe3O4 nanoparticles-embedded poly(styrene/poly(thiophene (Fe3O4-PSt/PTh, core/shell nanoparticles. Monodisperse Fe3O4-PSt/PTh nanoparticles were prepared by free-radical combination (mini-emulsion/emulsion polymerization for Fe3O4-PSt core and oxidative seeded emulsion polymerization for PTh shell in the presence of FeCl3/H2O2 as a redox catalyst, respectively. For applicability of Fe3O4-PSt/PTh as sensors, Fe3O4-PSt/PTh-immobilized poly(ethylene glycol (PEG-based hydrogels were fabricated by photolithography. The hydrogel patterns showed a good sensing performance under different H2O2 concentrations. They also showed a quenching sensitivity of 1 µg/mL for the Pd2+ metal ion within 1 min. The hydrogel micropatterns not only provide a fast water uptake property but also suggest the feasibility of both H2O2 and Pd2+ detection.

  4. Remoción de pesticidas órgano-fosforados en aguas con nanopartículas magnéticas de Fe3O4 soportadas en sílice / Removal of organophosphorus pesticides in water with supported silica Fe3O4 magnetic nanoparticles

    Scientific Electronic Library Online (English)

    Yosmery, Vitta Brito; Alberto, Fernández Cuervo; Yolanda, Moliner-Martínez; Pilar, Campíns Falco.

    2014-09-01

    Full Text Available En este trabajo se evaluó la eficiencia de Nanopartículas, (Nps), magnéticas de Fe3O4 incorporadas en una matriz de sílice mediante el método sol-gel, como adsorbente de los pesticidas organofosforados: Chlorfenvifos (Chlorf) y Chlorpyrifos (Chlorp) en aguas de efluentes residuales. Las Nps de Fe3O4 [...] -SiO2 presentaron un tamaño promedio de 5 nm. Los límites de detección fueron de 1 ?g L-1 y 2 ?g L-1 para el Chlorf y el Chlorp respectivamente, obteniendo una precisión intradiaria del 2 % e inter-diaria del 3%. La isoterma de adsorción según Langmuir, reportó que el Chlorp fue la especie más adsorbida por el nano-adsorbente con una capacidad máxima de adsorción, Smáx de 0,70 ± 0,35 ?g g-1, mientras que el Chlorf reportó un Smáx de 0,40 ± 0,12 ?g g-1. El procedimiento fue ensayado en aguas residuales, alcanzando una remoción entre el 60 - 85% en los analitos. El mecanismo de adsorción de los pesticidas, se atribuye a la interacción entre estos compuestos apolares y las cadenas alifáticas de las micelas del Bromuro de hexadeciltrimetilamonio, CTAB, del adsorbente, dado que los porcentajes de los analitos en el líquido fueron inferiores al 10%. Abstract in english This paper evaluates the efficiency of Fe3O4 magnetic nanoparticles embedded in silica matrix, by a sol-gel method, as adsorbent of two organophosphate pesticides, Chlorfenvifos (Chlorf) and Chlorpyrifos (Chlorp), in sewage. The Fe3O4- SiO2 Nps have an average size of 5 nm. The detection limits were [...] 1 ? g L-1 for the Chlorf and 2 ? g L-1 for the Chlorp, obtaining an intra-day precision of 2% and inter-day 3%. According to the Langmuir adsorption isotherm, the Chlorp was identified as the more adsorbed species with Smax = de 0.70 ± 0.15 ?g g-1, while Smax = 0.40 ± 0.12 ?g g-1 for Chlorf. The procedure was tested on sewage, reaching analyte’s removal between 60 - 85%. The adsorption mechanism of pesticides is attributed to the hydrophobic interaction between these compounds and aliphatic chains of CTAB micelles, since the percentage of compounds in the liquid was less than 10%.

  5. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    OpenAIRE

    Allia, Paolo Maria Eugenio Icilio; Sangermano, Marco

    2014-01-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnet...

  6. The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids

    Science.gov (United States)

    Brojabasi, Surajit; Muthukumaran, T.; Laskar, J. M.; Philip, John

    2015-02-01

    We investigate the effect of hydrodynamic particle size on the magnetic field induced light transmission and transmitted speckle pattern in water based ferrofluids containing functionalized Fe3O4 nanoparticles of size ranging from 15 to 46 nm. Three water-based magnetic nanofluids, containing Fe3O4 nanoparticles functionalized with poly-acrylic acid (PAA), tetra-methyl ammonium hydroxide (TMAOH) and phosphate, are used in the present study. In all three cases, the transmitted light intensity starts decreasing above a certain magnetic field (called first critical field) and becomes a minimum at another field (second critical field). These two critical fields signify the onset of linear aggregation process and zippering transitions between fully grown chains, respectively. Both these critical fields shift towards a lower magnetic field with increasing hydrodynamic diameter, due to stronger magnetic dipolar interactions. The first and the second critical fields showed a power law dependence on the hydrodynamic diameters. The dipolar resonances occurring at certain values of the scatterer size, leads to the field induced extinction of light. Both the onset of chaining and zippering transitions were clearly evident in the time dependent transmitted light intensity. Above the first critical field, the lobe part of the transmitted intensity and the lobe speckle contrast values increase with increasing external magnetic field due to reduced Brownian motion of the field induced aggregates. The speckle contrast was highest for nanoparticle with the largest hydrodynamic diameter, due to reduced Brownian motion. These results provide better insight into field dependent light control in magnetic colloids, which may find interesting applications in magneto-optical devices.

  7. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Li K

    2013-05-01

    Full Text Available Ke Li,1 Baoan Chen,1,2 Lin Xu,3 Jifeng Feng,3 Guohua Xia,1,2 Jian Cheng,1,2 Jun Wang,1,2 Feng Gao,1,2 Xuemei Wang,41Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School, Southeast University, Nanjing, 2Faculty of Oncology, Medical School, Southeast University, Nanjing, 3Department of Thoracic Surgery, Jiangsu Province Cancer Hospital, Jiangsu Province, 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of ChinaAbstract: The purpose of this study was to explore whether magnetic Fe3O4 nanoparticles (Fe3O4-MNP loaded with cisplatin (Fe3O4-MNP-DDP can reverse DDP resistance in lung cancer cells and to investigate mechanisms of multidrug resistance in vitro and in vivo. MTT assay showed that DDP inhibited both A549 cells and DDP-resistant A549 cells in a time-dependent and dose-dependent manner, and that this inhibition was enhanced by Fe3O4-MNP. An increased rate of apoptosis was detected in the Fe3O4-MNP-DDP group compared with a control group and the Fe3O4-MNP group by flow cytometry, and typical morphologic features of apoptosis were confirmed by confocal microscopy. Accumulation of intracellular DDP in the Fe3O4-MNP-DDP group was greater than that in the DDP group by inductively coupled plasma mass spectrometry. Further, lower levels of multidrug resistance-associated protein-1, lung resistance-related protein, Akt, and Bad, and higher levels of caspase-3 genes and proteins, were demonstrated by reverse transcriptase polymerase chain reaction and Western blotting in the presence of Fe3O4-MNP-DDP. We also demonstrated that Fe3O4-MNP enhanced the effect of DDP on tumor growth in BALB/c nude mice bearing DDP-resistant human A549 xenografts by decreasing localization of lung resistance-related protein and Ki-67 immunoreactivity in cells. There were no apparent signs of toxicity in the animals. Overall, these findings suggest potential clinical application of Fe3O4-MNP-DDP to increase cytotoxicity in lung tumor xenografts.Keywords: Fe3O4, nanoparticles, multidrug resistance, reversal, DDP-resistant A549 cells, cisplatin

  8. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide.

    Science.gov (United States)

    Figueredo, Federico; Garcia, Paulo T; Cortón, Eduardo; Coltro, Wendell K T

    2016-01-13

    Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (?PADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with ?PADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 ?M, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis. PMID:26693736

  9. Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase

    International Nuclear Information System (INIS)

    A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y = -0.5-1.82x, the correlation coefficient is 0.998 (n = 3), and the detection limit is 0.01 mM (S/N = 3). The sensor exhibits favorable selectivity and excellent stability. (author)

  10. Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Iron oxide (Fe3O4) nanoparticles coated with biocompatible chitosan were synthesized for use as an MRI (magnetic resonance imaging) contrast agent. The coating was performed simultaneously with the synthesis of the ferrite nanoparticles. A dynamic light-scattering spectrometer (DLS) and a transmission electron microscope (TEM) were used to measure the average diameter of the coated nanoparticles, which was 67.0 nm. Fourier transform infrared (FT-IR) measurements showed strong bonding of the chitosan molecules to the surfaces of the ferrite nanoparticles. The spin-lattice (T1) and the spin-spin (T2) relaxation times of the nuclear spins (hydrogen protons) in aqueous solutions of various concentrations of coated ferrite nanoparticles were determined using a nuclear magnetic resonance (NMR) spectrometer. Using these data, we found that the T1 and the T2 relaxivities of the nuclear spins in aqueous solutions of ferrite nanoparticles were 0.00291 and 0.0691 ppm-1sec-1, respectively. In particular, the value of the T2 relaxivity was much larger than that of the commercial contrast agent GD-DTPA (gadolinium diethylenetriamine penta-acetic acid). A 31.7% intensity loss in the T2 image of a rabbit liver was observed after injecting the aqueous solution of coated nanoparticles into the rabbit, which shows that our coated ferrite nanoparticles can be used as a T2 MRI contrast agent.

  11. Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties

    Science.gov (United States)

    Amir, Md.; Ünal, B.; Shirsath, Sagar E.; Geleri, M.; Sertkol, M.; Baykal, A.

    2015-09-01

    In this study, MnxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoparticles were synthesized by polyol route and the effect of Mn3+ substitution on structural and dielectric properties of Fe3O4 was studied. X-ray powder diffraction (XRD) patterns confirmed the single spinel ferrite phase formation (Rietveld analysis). Crystallite size of the synthesized materials lie in the range of 12-25 nm as calculated X-ray diffraction patterns using Scherrer's formula. The microstructural features were examined by SEM images. Cation distribution calculations confirmed Fe3+ ions have both tetrahedral and ochedral site preferences whereas Mn3+ ions mostly occupies tetrahedral A-site. The ac electrical and dielectric properties of Mn3+ ion substituted Fe3O4 nanoparticle show that there were significant changes in both conductivity and complex permittivity as well as dielectric loss tangent as Mn3+ ion concentration is varied from zero to unity. It is clearly seen that conductivity increases with increase in temperature which may be due to increase in hopping capability of charge carriers at higher temperatures. Detailed evaluation of analysis reveals that at higher frequencies there is less effect of temperature on conductivity which can be interpreted on the basis of interfacial, dipolar, ionic and electronic polarization as detailed above section in explanation of variation of dielectric loss. The dielectric permittivity shows dielectric behavior can be clarified on the basis of Koop's interpretations in accordance with two layer Maxwell-Wagner model by accounting for surface charges. The electrical and dielectric properties, i.e. ac/dc conductivity, real/complex dielectric permittivity, and dielectric loss (tan ?) decrease with Mn3+ ion doping in some aspects.

  12. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    Directory of Open Access Journals (Sweden)

    Akbarzadeh A

    2012-02-01

    Full Text Available Abolfazl Akbarzadeh1, Haleh Mikaeili2, Nosratollah Zarghami3, Rahmati Mohammad3, Amin Barkhordari3, Soodabeh Davaran21Drug Applied Research Center, 2Tuberculosis and Lung Disease Research Center of Tabriz, 3Department of Clinical Biochemistry and Laboratory Medicine, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IranBackground: Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid poly (ethylene glycol (PLGA-PEG nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet.Methods: A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG2000, PEG3000, and PEG4000 as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry.Results: The doxorubicin encapsulation amount was reduced for PLGA:PEG2000 and PLGA:PEG3000 triblock copolymers, but increased to a great extent for PLGA:PEG4000 triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible.Conclusion: There is potential for use of these nanoparticles for biomedical application. Future work includes in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.Keywords: superparamagnetic iron oxide nanoparticles, triblock copolymer, doxorubicin encapsulation, water uptake, drug encapsulation efficiency

  13. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    Science.gov (United States)

    Fang, X. B.; Fang, Z. Q.; Tsang, P. K. E.; Cheng, W.; Yan, X. M.; Zheng, L. C.

    2014-09-01

    In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20-50 nm and a BET surface area of 28 m2 g-1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl-or Cr(VI)/SO42- double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption-desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI).

  14. Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran- anti-?-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector

    Directory of Open Access Journals (Sweden)

    Cai Jingting

    2011-02-01

    Full Text Available Cai Jingting1,2, Liu Huining1, Zhang Yi11Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China; 2Department of Gynecological Oncology, Hunan Tumor Hospital, Changsha, Hunan, People’s Republic of ChinaObjective: To evaluate the feasibility of using magnetic iron oxide (Fe3O4-dextran-anti-?-human chorionic gonadotropin (HCG nanoparticles as a gene vector for cellular transfections.Study design: Fe3O4-dextran-anti-?-HCG nanoparticles were synthesized by chemical coprecipitation. The configuration, diameter, and iron content of the nanoparticles were detected by transmission electron microscopy (TEM, light scatter, and atomic absorption spectrophotometry. A3-(4,5-dimethylthiahiazo(-z-y1-3,5-di-phenytetrazoliumromide assay was used to evaluate the cytotoxicity of Fe3O4-dextran-anti-?-HCG nanoparticles. Enzyme-linked immunosorbent assay and indirect immunofluorescence were used to evaluate immunoreactivity. The efficiency of absorbing DNA and resisting deoxyribonuclease I (DNase I digestion when bound to Fe3O4-dextran-anti-?-HCG nanoparticles was examined by agarose gel electrophoresis. The ability of Fe3O4-dextran-anti-?-HCG nanoparticles to absorb heparanase antisense oligodeoxynucleotides (AS-ODN nanoparticles in different cell lines was evaluated by flow cytometry. The tissue distribution of heparanase AS-ODN magnetic nanoparticles in choriocarcinoma tumors transplanted in nude mice was detected by atomic absorption spectrophotometry.Results: TEM demonstrated that the shape of nanoparticles is irregular. Light scatter revealed nanoparticles with a mean diameter of 75.5 nm and an iron content of 37.5 µg/mL. No cytotoxicity was observed when the concentration of Fe3O4-dextran-anti-?-HCG nanoparticles was <37.5 µg/mL. Fe3O4-dextran nanoparticles have a satisfactory potential to combine with ?-HCG antibody. Agarose gel electrophoresis analysis of binding experiments showed that after treatment with sodium periodate, Fe3O4-dextran-anti-?-HCG nanoparticles have a satisfactory potential to absorb DNA, and the protection experiment showed that nanoparticles can effectively protect DNA from DNase I digestion. Aldehyde Fe3O4-dextran-anti-?-HCG nanoparticles can transfect reporter genes, and the transfection efficiency of these nanoparticles is greater than that of liposomes (P <0.05. Fe3O4-dextran-anti-?-HCG nanoparticles can concentrate in choriocarcinoma cells and in transplanted choriocarcinoma tumors.Conclusions: The results confirm that Fe3O4-dextran-anti-?-HCG nanoparticles have potential as a secure, effective, and choriocarcinoma-specific targeting gene vector.Keywords: magnetic nanoparticles, Fe3O4-dextran-anti-?-HCG, choriocarcinoma, targeting vector, gene vector

  15. Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy.

    OpenAIRE

    Knappett, BR; Abdulkin, P; Ringe, E; Jefferson, DA; Lozano-Perez, S.; Rojas, TC; Fernández, A.; Wheatley, AE

    2013-01-01

    Cobalt nanoparticles were synthesised via the thermal decomposition of Co2(CO)8 and were coated in iron oxide using Fe(CO)5. While previous work focused on the subsequent thermal alloying of these nanoparticles, this study fully elucidates their composition and core@shell structure. State-of-the-art electron microscopy and statistical data processing enabled chemical mapping of individual particles through the acquisition of energy-filtered transmission electron microscopy (EFTEM) images and ...

  16. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10?9 mol·cm?2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s?1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 ?A·mM?1 cm?2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe3O4-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ? Synthesis of monodispersed Fe3O4 nanoparticles. ? Fabrication of core/shell Fe3O4-silica-Au nanoparticles. ? Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  17. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions

    International Nuclear Information System (INIS)

    Graphical abstract: Using Fe2+ as precursors, air as oxidant and cysteine as protectant, this novel cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) was facilely one-pot synthesized at room temperature by oxidation–precipitation method with the assistance of sonication. Then the Cys-Fe3O4 MNPs were demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for as high as 95% Hg(II) removal efficiency. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water. - Highlights: • A simplified one-step synthesis method of superparamagnetic Cys-Fe3O4 MNPs was developed. • It was synthesized at room temperature by oxidation-precipitation method with the assistance of sonication. • It was demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for Hg(II) removal. - Abstract: Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation–precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min−1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water

  18. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Polyvinylpyrrolidone (PVP)-coated sub-5 nm monosize Fe3O4 nanoparticles were synthesized by reduction of Fe(III) acetylacetonate in the presence of PVP polymer as surfactant in one-pot polyol process. Their microstructure and magnetic properties were characterized by XRD, TEM/HRTEM and VSM. It is found that the nanoparticles have high crystallinity with distinct lattices and the magnetic measurements reveal their well-defined superparamagnetic behavior at room temperature. Such Fe3O4 nanoparticles with tailorable size and tunable magnetic properties are promising for biomedical applications

  19. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The magnetite (Fe3O4 nanoparticles (MNPs coated with poly(N-vinyl pyrrolidone (PVP via covalent bonds were prepared as T2 contrast agent for magnetic resonance imaging (MRI. The surface of MNPs was first coated with 3-(trimethoxysilyl propyl methacrylate (silan A by a silanization reaction to introduce reactive vinyl groups onto the surface, then poly(N-vinyl pyrrolidone was grafted onto the surface of modified-MNPs via surface-initiated radical polymerization. The obtained nanoparticles were characterized by FT-IR (Fourier transform infrared spectroscopy, XRD (X-ray diffraction, TEM (transmission electron microscopy, VSM (vibrating sample magnetometer, and TGA (thermogravimetric analysis. The MNPs had an average size of 14 nm and exhibited superparamagnetism and high saturation magnetization at room temperature. T2-weighted MRI images of PVP-grafted MNPs showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water. The r1 and r2 values per millimole Fe, and r2/r1 value of the PVP-grafted MNPs were calculated to be 2.6 , 72.1, and 28.1(mmol/l–1•s–1, respectively. These results indicate that the PVP-grafted MNPs have great potential for application in MRI as a T2 contrast agent.

  20. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo

    International Nuclear Information System (INIS)

    The folic acid (FA)-conjugated Fe3O4 magnetic nanoparticles (MNPs) were synthesized by co-precipitation of Fe3+ and Fe2+ solution followed by surface modification with carboxymethyl dextran (CMD) to form carboxymethyl group terminated MNPs, then FA was conjugated with the carboxyl group functionalized MNPs. The morphology and properties of obtained nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–visible spectra (UV–vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The FA-conjugated MNPs exhibited relatively high saturation magnetization and fast magneto-temperature response which could be applied to hyperthermia therapy. To determine the accurate targeting effect of FA, we chose FA-conjugated MNPs as MRI contrast enhancement agent for detection of KB cells with folate receptor over-expression in vitro and in vivo. The results show that these magnetic nanoparticles appear to be the promising materials for local hyperthermia and MRI.

  1. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole

    International Nuclear Information System (INIS)

    Humic acid coated Fe3O4 magnetic nanoparticles (Fe3O4/HA) were prepared for the removal of sulfathiazole from aqueous media. Fe3O4/HA exhibited high activity to produce hydroxyl (·OH) radicals through catalytic decomposition of H2O2. The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe3O4/HA dosage and H2O2 concentration. When 3 g L-1 of Fe3O4/HA and 0.39 M of H2O2 were introduced to the aqueous solution, most sulfathiazole was degraded within 1 h, and >90% of total organic carbon (TOC) were removed in the reaction period (6 h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO42-, CO2, and N2). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min-1, respectively. However, when 3 g L-1 of bare Fe3O4 were used as catalyst, only 54% of TOC was eliminated, and SO42- was not detected within 6 h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min-1, respectively. The high catalytic ability of Fe3O4/HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of ·OH radicals.

  2. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    Science.gov (United States)

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-01

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. PMID:26232577

  3. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    Science.gov (United States)

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24nt, which are much longer than the length of sticky ends of auxiliary hairpins (6nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples. PMID:26469729

  4. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The APAP degradation exhibited a pseudo-first-order kinetics pattern well. • The Fe3O4 was stable without significant leaching of iron to water during reaction. • XPS and EPR results show that Fe2+-Fe3+ cycle was answerable for radical generation. • The removal of APAP is a result of oxidation due to both OH• and SO4?• . - Abstract: Magnetic nano-scaled particles Fe3O4 were studied for the activation of peroxymonosulfate (PMS) to generate active radicals for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for removal of APAP, and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95). Within 120 min, approximately 75% of 10 ppm APAP was accomplished by 0.2 mM PMS in the presence of 0.8 g/L Fe3O4 MNPs with little Fe3+ leaching (<4 ?g/L). Higher Fe3O4 MNP dose, lower initial APAP concentration, neutral pH, and higher reaction temperature favored the APAP degradation. The production of sulfate radicals and hydroxyl radicals was validated through two ways: (1) indirectly from the scavenging tests with scavenging agents, tert-butyl alcohol (TBA) and ethanol (EtOH); (2) directly from the electron paramagnetic resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 MNP activation of PMS are proposed based on the results of radical identification tests and XPS analysis. It appeared that Fe2+-Fe3+ on the catalyst surface was responsible for the radical generation. The results demonstrated that Fe3O4 MNPs activated PMS is a promising technology for water pollution caused by contaminants such as pharmaceuticals

  5. Fabrication of magnetic porous hollow silica drug carriers using CaCO3/Fe3O4 composite nanoparticles and cationic surfactant double templates

    Science.gov (United States)

    Ma, H.; Zhou, J.; Caruntu, D.; Yu, M. H.; Chen, J. F.; O'Connor, C. J.; Zhou, W. L.

    2008-04-01

    Magnetic porous hollow silica nanosphere is a new class of structured nanomaterials for drug delivery. In this paper, we report a synthesis of magnetic porous hollow silica nanospheres (MPHSNs) using CaCO3/Fe3O4 composite nanoparticles and cationic surfactant double templates. Fe3O4 nanoparticles were first mixed into CaCO3 using rotating packed bed forming CaCO3/Fe3O4 composite nanoparticles. Tetraethoxysilane was then added as precursor to form silica layer on the surface of CaCO3/Fe3O4 composite nanoparticles, while hexadecyltrimethylammonium bromide was used as a second template to direct the formation of porous silica shells. After the calcination of the surfactants and etching away CaCO3, MPHSNs were formed with the magnetite nanoparticles remaining in the cores. Transmission electron microscopy was applied for the nanostructure determination. The pore size can be measured by micromeritics analyzer. Magnetic properties of MPHSNs were measured by a superconducting quantum interface device. Zero-field-cooled and field-cooled magnetization data in the temperature range of 5-300K show that the MPHSNs are superparamagnetism above the blocking temperature and ferromagnetism below the blocking temperature after the calcination. The MPHSNs can be used as potential nanocarriers for targeted delivery and controlled releasing.

  6. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    International Nuclear Information System (INIS)

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2+ and PO43-. The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 A, c = 9.534 A) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  7. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

    Directory of Open Access Journals (Sweden)

    Tingting Gu

    2014-02-01

    Full Text Available A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS show that Fe3O4 and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET and bioelectrocatalysis of HRP in the DNA/chitosan/Fe3O4 film were investigated by cyclic voltammetry (CV and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s?1. The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe(III and HRP(Fe(II. The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The resulting DNA/chitosan/Fe3O4/HRP/glassy carbon electrode (GCE shows a high sensitivity (20.8 A·cm?2·M?1 toward H2O2. A linear response to H2O2 measurement was obtained over the range from 2 µM to 100 µM (R2 = 0.99 and an amperometric detection limit of 1 µM (S/N = 3. The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.

  8. Aggregates of perylene bisimide stabilized superparamagnetic Fe3O4 nanoparticles: an efficient catalyst for the preparation of propargylamines and quinolines via C-H activation.

    Science.gov (United States)

    Kaur, Sandeep; Kumar, Manoj; Bhalla, Vandana

    2015-11-01

    Aggregates of the perylene bisimide derivative act as reactors and stabilizers for the preparation of superparamagnetic Fe3O4 nanoparticles (NPs) which exhibit excellent catalytic efficiency in (i) A(3)-coupling and aldehyde free coupling reactions for the preparation of propargylamines and (ii) tandem intramolecular cyclization reaction for the synthesis of quinolines via C-H activation. PMID:26399895

  9. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    Science.gov (United States)

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused. PMID:26149480

  10. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2009-03-01

    Full Text Available Baoan Chen1,* Jian Cheng1,* Yanan Wu1, Feng Gao1, Wenlin Xu2, et al 1Department of Hematology;2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, PR China *These authors have contributed equally to this workAbstract: In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4 combined with daunorubicin (DNR in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.Keywords: 5-bromotetrandrine, magnetic nanoparticle of Fe3O4, multidrug-resistance, xenograft model

  11. Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Highlights: •Fe3O4@TiO2 nanoparticles loaded on graphene sheets are synthesized for the first time. •This ternary structure can induce photo-degradation of methyl orange. •The interfacial structure between TiO2 and Fe3O4 is stable at 450 °C. •Fe3O4@TiO2/graphene as ternary photocatalyst can be retrieved by magnetic field. -- Abstract: A ternary nanocomposite of Fe3O4@TiO2/reduced graphene oxide (FTR) was prepared successfully by a facile route in this work. Fe3O4@TiO2 core/shell nanospheres were loaded on the surface of reduced graphene oxide (RGO), making the ternary nanocomposite possessed enhanced charge separation efficiency in combined with the supporting media of RGO. The morphology of the ternary nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation efficiency on methyl orange of the FTR nanocomposite was investigated. The photocatalytic degradation efficiency of ternary composite was about three times than that of pure TiO2. The result show that the photocatalytic efficiency of 25 mg FTR can reach 83.8% in 50 min, In addition to the high efficiency of the degradation property, the ternary composite can be easily recycled by normal magnet due to the magnetite core. It is suggested that the FTR ternary composite of Fe3O4@TiO2/reduced graphene oxide can be an efficient multifunctional photocatalyst for the degradation of hazardous compounds in waste water

  12. Fluorescence-based immunoassay for human chorionic gonadotropin based on polyfluorene-coated silica nanoparticles and polyaniline-coated Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF.SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to ?-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4.PANI) served as a solid support for the primary monoclonal antibody to ?-hCG antigen. The PF.SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL?1 concentration range, with a detection limit of 3 pg·mL?1. (author)

  13. Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values.

    Science.gov (United States)

    Wang, Wei; Mao, Qiong; He, Huanhuan; Zhou, Minghua

    2013-01-01

    In order to promote the practical application of the heterogeneous Fenton process in wastewater treatment, Fe3O4 nanoparticles were prepared and used to degrade organic pollutants efficiently over a wide pH range, using phenol as a model. During fabrication, the effects of Fe(2+)/Fe(3+) ratio and thermal treatment temperature were investigated and optimized. Using a transmission electron microscope and X-ray diffraction, the nanoparticles were found in the form of Fe3O4 with an average size of 15 nm. The effects of Fe3O4 nanoparticle concentration H2O2 concentration, and pH on the removal efficiency and chemical oxygen demand (COD) abatement efficiency of phenol were investigated. Under optimized conditions, the nano-Fe3O4 heterogeneous Fenton system could achieve phenol and COD removal efficiencies of 100 and 70% respectively. This nanocatalyst was observed to have a high efficiency at a wider pH range (2-9), and a possible mechanisms for this effect was proposed. PMID:24334884

  14. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.

  15. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery

    Directory of Open Access Journals (Sweden)

    Jia Y

    2012-03-01

    Full Text Available Yanhui Jia1, Mei Yuan1, Huidong Yuan1, Xinglu Huang2, Xiang Sui1, Xuemei Cui1, Fangqiong Tang2, Jiang Peng1, Jiying Chen1, Shibi Lu1, Wenjing Xu1, Li Zhang1, Quanyi Guo11Institute of Orthopedics, General Hospital of the Chinese People's Liberation Army, Beijing, People's Republic of China; 2Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: In this study, the authors constructed a novel PLGA [poly(D,L-lactic-co-glycolic acid]-based polymeric nanocarrier co-encapsulated with doxorubicin (DOX and magnetic Fe3O4 nanoparticles (MNPs using a single emulsion evaporation method. The DOX-MNPs showed high entrapment efficiency, and they supported a sustained and steady release of DOX. Moreover, the drug release was pH sensitive, with a faster release rate in an acidic environment than in a neutral environment. In vitro, the DOX-MNPs were easily internalized into murine Lewis lung carcinoma cells and they induced apoptosis. In vivo, the DOX-MNPs showed higher antitumor activity than free DOX solution. Furthermore, the antitumor activity of the DOX-MNPs was higher with than without an external magnetic field; they were also associated with smaller tumor volume and a lower metastases incidence rate. This work may provide a new modality for developing an effective drug delivery system.Keywords: antitumor activity, external magnetic field, intratumoral injection, apoptosis, Lewis lung carcinoma

  16. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2008-06-01

    Full Text Available Baoan Chen1,5, Qian Sun1,5, Xuemei Wang2, Feng Gao1, Yongyuan Dai1, Yan Yin1, Jiahua Ding1, Chong Gao1, Jian Cheng1, Jingyuan Li2, Xinchen Sun1, Ningna Chen1, Wenlin Xu3, Huiling Shen3, Delong Liu41Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China; 2State Key Lab of Bioelectronics(Chien-Shiung Wu Laboratory, Southeast University, Nanjing 210096, China; 3Department of Hematology, The First People’s Hospital of Zhenjiang, Zhenjiang, China; 4Westchester Medical Center, New York Medical College, NY, USA; 5These authors have contributed equally to this work.Abstract: Drug resistance is a primary hindrance for efficiency of chemotherapy. To investigate whether Fe3O4-magnetic nanoparticles (Fe3O4-MNPs loaded with adriamycin (ADM and tetrandrine (Tet would play a synergetic reverse role in multidrug resistant cell, we prepared the drug-loaded nanoparticles by mechanical absorption polymerization to act with K562 and one of its resistant cell line K562/A02. The survival of cells which were cultured with these conjugates for 48 h was observed by MTT assay. Using cells under the same condition described before, we took use of fluorescence microscope to measure fluorescence intensity of intracellular ADM at an excitation wavelength of 488 nm. P-glycoprotein (P-gp was analyzed with flow cytometer. The expression of mdr1 mRNA was measured by RT-PCR. The results showed that the growth inhibition efficacy of both the two cells increased with augmenting concentrations of Fe3O4-MNPs which were loaded with drugs. No linear correlation was found between fluorescence intensity of intracellular adriamycin and augmenting concentration of Fe3O4-MNPs. Tet could downregulate the level of mdr-1 gene and decrease the expression of P-gp. Furthermore, Tet polymerized with Fe3O4-MNPs reinforced this downregulation, causing a 100-fold more decrease in mdr1 mRNA level, but did not reduce total P-gp content. Our results suggest that Fe3O4-MNPs loaded with ADM or Tet can enhance the effective accumulation of the drugs in K562/A02. We propose that Fe3O4-MNPs loaded with ADM and Tet probably have synergetic effect on reversal in multidrug resistance.Keywords: magnetic nanoparticles, tetrandrine, adriamycin, multidrug resistance reversal, leukemia K562/A02

  17. Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated superparamagnetic nanoparticles

    Scientific Electronic Library Online (English)

    Abdelnasser S.S., Ibrahim; Ali A, Al-Salamah; Ahmed Mohamed, El-Toni; Mohamed A, El-Tayeb; Yahya B, Elbadawi.

    2013-11-15

    Full Text Available Background: Cyclodextrin glycosyltransferase (CGTase) from Amphibacillus sp. NPST-10 was successfully covalently immobilized on aminopropyl-functionalized silica coated superparamagnetic nanoparticles; and the properties of immobilized enzyme were investigated. The synthesis process included prepari [...] ng of core magnetic magnetite (Fe3O4) nanoparticles using solvothermal synthesis; followed by coating of Fe3O4 nanoparticles with dense amino-functionalized silica (NH2-SiO2) layer using in situ functionalization method. The structure of synthesized Fe3O4@NH2-SiO2 nanoparticles was characterized using TEM, XRD, and FT-IR analysis. Fe3O4@NH2-SiO2 nanoparticles were further activated by gluteraaldehyde as bifunctional cross linker, and the activated nanoparticles were used for CGTase immobilization by covalent attachment. Results: Magnetite nanoparticles was successfully synthesized and coated with and amino functionalized silica layer (Fe3O4/NH2-SiO2), with particle size of 50-70 nm. The silica coated magnetite nanoparticles showed with saturation magnetization of 65 emug-1, and can be quickly recovered from the bulk solution using an external magnet within 10 sec. The activated support was effective for CGTase immobilization, which was confirmed by comparison of FT-IR spectra of free and immobilized enzyme. The applied approach for support preparation, activation, and optimization of immobilization conditions, led to high yields of CGTase immobilization (92.3%), activity recovery (73%), and loading efficiency (95.2%); which is one of the highest so far reported for CGTase. Immobilized enzyme showed shift in the optimal temperature from 50 to 55ºC, and significant enhancement in the thermal stability compared with free enzyme. The optimum pH for enzyme activity was pH 8 and pH 7.5 for free and immobilized CGTase, respectively, with slight improvement of pH stability of immobilized enzyme. Furthermore, kinetic studies revealed that immobilized CGTase had higher affinity toward substrate; with k m values of 1.18 ± 0.05 mg/ml and 1.75 ± 0.07 mg/ml for immobilized and free CGTase, respectively. Immobilized CGTase retained 87% and 67 of its initial activity after 5 and 10 repeated batches reaction, indicating that immobilized CGTase on Fe3O4/NH2-SiO2 had good durability and magnetic recovery. Conclusion: The improvement in kinetic and stability parameters of immobilized CGTase makes the proposed method a suitable candidate for industrial applications of CGTase. To best of our knowledge, this is the first report about CGTase immobilization on silica coated magnetite nanoparticles.

  18. Biodesel Production from Pseudomonas Fluorescens Lp1 Lipase Immobilized on Amino-silane Modified Super Paramagnetic Fe3O4 Nanoparticles

    International Nuclear Information System (INIS)

    An extracellular lipase from Pseudomonas fluorescens Lp1 isolated from oil contaminated soil was immobilized onto amino silane modified superparamagnetic Fe3O4 nanoparticles. The magnetic nanoparticles, magnetite was synthesized chemically by co-precipitation and characterized by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FT-IR) and Powder X-ray diffraction studies (XRD). The structure of the synthesized magnetic nanoparticles was uniform, spherical and the size was determined around 31 nm by powder XRD. The biodiesel production mixture was prepared by addition of waste cooking oil, lipase immobilized magnetite and methanol. The transesterified products were analyzed by Gas Liquid chromatography-Mass spectroscopy (GC-MS). The methyl esters such as Oxiraneundecanoic acid, 3-pentyl-methyl ester, Hexadecanoic acid, methyl ester and 10-Octadecenoic acid, methyl ester were obtained. The study experimentally proved the use of amino silane modified superparamagnetic Fe3O4 nanoparticles in biodiesel production from waste cooking oil.

  19. Biodesel Production from Pseudomonas Fluorescens Lp1 Lipase Immobilized on Amino-silane Modified Super Paramagnetic Fe3O4 Nanoparticles

    Science.gov (United States)

    Kanimozhi, S.; Perinbam, K.

    2013-04-01

    An extracellular lipase from Pseudomonas fluorescens Lp1 isolated from oil contaminated soil was immobilized onto amino silane modified superparamagnetic Fe3O4 nanoparticles. The magnetic nanoparticles, magnetite was synthesized chemically by co-precipitation and characterized by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FT-IR) and Powder X-ray diffraction studies (XRD). The structure of the synthesized magnetic nanoparticles was uniform, spherical and the size was determined around 31 nm by powder XRD. The biodiesel production mixture was prepared by addition of waste cooking oil, lipase immobilized magnetite and methanol. The transesterified products were analyzed by Gas Liquid chromatography-Mass spectroscopy (GC-MS). The methyl esters such as Oxiraneundecanoic acid, 3-pentyl-methyl ester, Hexadecanoic acid, methyl ester and 10-Octadecenoic acid, methyl ester were obtained. The study experimentally proved the use of amino silane modified superparamagnetic Fe3O4 nanoparticles in biodiesel production from waste cooking oil.

  20. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    Science.gov (United States)

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security. PMID:26194089

  1. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering.

    Science.gov (United States)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-28

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >10(6). These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance. PMID:26079311

  2. Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.

    Science.gov (United States)

    Pang, Yuanfeng; Wang, Chongwen; Wang, Jing; Sun, Zhiwei; Xiao, Rui; Wang, Shengqi

    2016-05-15

    A functionalized Fe3O4@Ag magnetic nanoparticle (NP) biosensor for microRNA (miRNA) capture and ultrasensitive detection in total RNA extract from cancer cells was reported in this paper. Herein, Raman tags-DNA probes modified Fe3O4@Ag NPs were designed both as surface-enhanced Raman scattering (SERS) SERS and duplex-specific nuclease signal amplification (DSNSA) platform. Firstly, target miRNAs were captured to the surface of Fe3O4@Ag NPs through DNA/RNA hybridization. In the presence of endonuclease duplex specific nuclease (DSN), one target miRNA molecule could rehybrid thousands of DNA probes to trigger the signal-amplifying recycling. Base on the superparamagnetic of Fe3O4@Ag NPs, target miRNA let-7b can be captured, concentrated and direct quantified within a PE tube without any PCR preamplification treatment. The detection limit was 0.3fM (15 zeptomole, 50?L), nearly 3 orders of magnitude lower than conventional fluorescence based DSN biosensors for miRNA(?100fM), even single-base difference between the let-7 family members can be discriminated. The result provides a novel proposal to combine the perfect single-base recognition and signal-amplifying ability of the endonuclease DSN with cost-effective SERS strategy for miRNA point-of-care (POC) clinical diagnostics. PMID:26749099

  3. The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

    Science.gov (United States)

    Calatayud, M Pilar; Sanz, Beatriz; Raffa, Vittoria; Riggio, Cristina; Ibarra, M Ricardo; Goya, Gerardo F

    2014-08-01

    Nanoparticles engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the nanoparticle's surface, forming a swaddling layer that has been described as a 'protein corona', the nature of which is expected to influence not only the physicochemical properties of the particles but also the internalization into a given cell type. We have investigated the process of protein adsorption onto different magnetic nanoparticles (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. The role of the MNPs surface charge has been assessed by synthesizing two colloids with the same hydrodynamic size and opposite surface charge: magnetite (Fe3O4) cores of 25-30 nm were in situ functionalized with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold increase of the hydrodynamic size. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes of ?1500 nm (PAA-MNPs) and ?3000 nm (PEI-MNPs) were observed, each one containing an estimated number of magnetic cores between 450 and 1000. These results are consistent with the formation of large protein-MNPs aggregate units having a 'plum pudding' structure of MNPs embedded into a protein network that results in a negative surface charge, irrespective of the MNP-core charge. In spite of the similar negative ?-potential for both MNPs within cell culture, we demonstrated that PEI-MNPs are incorporated in much larger amounts than the PAA-MNPs units. Quantitative analysis showed that SH-SY5Y cells can incorporate 100% of the added PEI-MNPs up to ?100 pg/cell, whereas for PAA-MNPs the uptake was less than 50%. The final cellular distribution showed also notable differences regarding partial attachment to the cell membrane. These results highlight the need to characterize the final properties of MNPs after protein adsorption in biological media, and demonstrate the impact of these properties on the internalization mechanisms in neural cells. PMID:24816288

  4. Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation

    International Nuclear Information System (INIS)

    Electron beam irradiation technique as a novel method has been applied at room temperature and ambient pressure to prepare Fe3O4 nano-particles without adding any kind of catalysts. The effects of two different precipitator solutions such as NaOH and NH4OH have been investigated in the preparation of Fe3O4 nano-particles. The optical properties, the composition and the morphology of the irradiated samples have been measured by ultra-visible spectrometer, X-ray diffraction and transmission electron microscopy, respectively. The average particle size of the prepared oxide nanoparticles has been estimated to be about 15 nm and 33 nm by using NaOH and NH4OH as precipitators, respectively. (author)

  5. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells

    Science.gov (United States)

    Ebrahimi Fard, Ali; Zarepour, Atefeh; Zarrabi, Ali; Shanei, Ahmad; Salehi, Hossein

    2015-11-01

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe3O4 nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe3O4 nanoparticles, compared to the separate exposure of Fe3O4 nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals.

  6. Preparation and properties of Fe and Fe3O4 nanoparticles embedded in ZrO2 matrix

    International Nuclear Information System (INIS)

    The (Zr, ZrO2)-(Fe, Fe3O4) nanocomposites are investigated due to their magnetic properties and resistance against negative influence of the surrounding atmosphere namely at elevated temperatures. The particles of pure Zr and its intermetallic phases can effect as a getter protecting the iron particles against oxidation. We have investigated behaviour of the nanocrystalline powders prepared as a mixture from pure components. TEM and XRD were explored for standard phase composition and determination of the main particle size. Moessbauer spectra were collected by a standard transmission method at room temperature using 57Co/Rh source. Magnetic measurements were carried out using vibrating sample magnetometer at high temperature at (293 - 1093) K, in the vacuum (10-1 Pa) and in the pure hydrogen (5N) atmosphere. The structure study showed that as-prepared samples consist of Fe3O4 particles with the mean coherent length ?30 nm as determined by XRD which increased during the heat treatment up to ?50 - 100 nm. The samples annealed in vacuum were formed by particles of ZrO2-monoclinic, ZrO2-tetragonal and ZrO2-cubic and iron oxide (?-Fe2O3, Fe3O4 and FeO) phases. The annealing in hydrogen caused reduction of iron oxides to pure iron particles and clusters in ZrO2. The magnetic parameters confirm full transformation of iron oxides to bcc iron. (authors)

  7. Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles: Preparation, characterization and damage to bovine serum albumin under UV irradiation

    International Nuclear Information System (INIS)

    Novel magnetic-fluorescent nanoparticles (CS-Fe3O4@ZnS:Mn/ZnS) combined ZnS:Mn/ZnS semiconductor nanoparticles and Fe3O4 magnetic nanoparticles with chitosan (CS) matrix were prepared and characterized. Characterization results indicate that CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles show superparamagnetic and strong fluorescent properties. Introduction of ZnS shell significantly enhances the photoluminescence intensity by 3.5 times. The saturation magnetization of CS-Fe3O4@ZnS:Mn/ZnS nanoparticles was 14.85 emu g?1 at room temperature. The interaction and damage of CS-Fe3O4@ZnS:Mn/ZnS to bovine serum albumin (BSA) under UV irradiation was investigated by ultraviolet–visible and fluorescence spectra. The results show that electrostatic interaction is the major force for the binding processes of BSA to the surface of CS-Fe3O4@ZnS:Mn/ZnS. The damage of BSA is prone to happen in the presence of CS-Fe3O4@ZnS:Mn/ZnS under UV irradiation. CS-Fe3O4@ZnS:Mn/ZnS may be potential candidate for application as photosensitizers in photodynamic therapy, and fluorescence imaging and magnetic resonance imaging contrast agents for theranostics of cancer. - Highlights: • Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS nanoparticles were synthesized. • CS-Fe3O4@ZnS:Mn/ZnS possesses superparamagnetic and bright fluorescent properties. • Introduction of ZnS shell significantly enhances the PL intensity by 3.5 times. • BSA molecule was effectively damaged by CS-Fe3O4@ZnS:Mn/ZnS under UV irradiation. • Magnetic-fluorescent nanoparticles would be potential agents for cancer treatment

  8. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb(2+)) and chromium (Cr(6+)) removal from water.

    Science.gov (United States)

    Rajput, Shalini; Pittman, Charles U; Mohan, Dinesh

    2016-04-15

    Magnetic magnetite (Fe3O4) nanoparticles synthesized by chemical co-precipitation were characterized using XRD, TEM, SEM-EDX, FT-IR, ED-XRF, PPMS, point of zero charge (pHpzc) and surface area measurements. As-prepared Fe3O4 nanoparticles were successful for aqueous Cr(6+) and Pb(2+) removal. Batch adsorption experiments systematically investigated the influence of pH, temperature, contact time and adsorbate/adsorbent concentration on Cr(6+) and Pb(2+) adsorption. Maximum Cr(6+) and Pb(2+) removal occurred at pH 2.0 and 5.0, respectively. Sorption data fit pseudo-second order kinetics, indicating a chemical adsorption. The Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models were applied to describe equilibrium data. The Sips and Langmuir models best described Cr(6+) and Pb(2+) adsorption on magnetite nanoparticles, respectively. The maximum Langmuir adsorption capacities were 34.87 (Cr(6+)) and 53.11 (Pb(2+))mg/g at 45°C, respectively. Fe3O4 nanoparticles are promising potential adsorbents and exhibited remarkable reusability for metal ions removal in water and wastewater treatment. PMID:26859095

  9. Preparation and Characterization of Methylene Blue-Incorporated Folate-Functionalized Fe3O4/Mesoporous Silica Core/Shell Magnetic Nanoparticles.

    Science.gov (United States)

    Zhao, Xueiing; Zhao, Hongli; Chen, Zongyan; Zhang, Denghao; Lan, Minbo

    2015-07-01

    In the present work, a multifunctional nanomaterial, methylene blue-incorporated folate-functionalized Fe3O4/mesoporous silica core/shell magnetic nanoparticles, has been developed. Firstly, highly biocompatible monodisperse superparamagnetic Fe3O4@mSiO2 core/shell nanoparticles with mesoporous silica shells were synthesized. Then these particles were coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG) and modified with the cancer targeting ligand folic acid (FA). Finally, the water-soluble photosensitizer methylene blue (MB) was loaded into the mesoporous silica shell. Systematic experiments were performed to carefully evaluate the physical and chemical properties, cytotoxicity and cellular uptake of the multifunctional nanomaterial. PMID:26373064

  10. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of ?-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of ?-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS ?-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  11. Tris(2-Aminoethyl)Amine-Functionalized Fe3O4 Magnetic Nanoparticles as a Selective Sorbent for Separation of Silver and Gold Ions in Different pHs

    OpenAIRE

    Hamid Reza Lotfi Zadeh Zhad; Forouzan Aboufazeli; Omid Sadeghi; Vahid Amani; Ezzatollah Najafi; Najmeh Tavassoli

    2013-01-01

    The usage of tris(2-aminoethyl)amine-functionalized Fe3O4 nanoparticles as a novel magnetic sorbent for rapid extraction, preconcentration, and determination of trace amounts of silver and gold ions was investigated. The optimum conditions for sample pH, eluent parameters (type, concentration and volume) were obtained. The effect of various cationic interferences on the adsorption of silver and gold was evaluated. The analytical efficiency values of both silver and gold ions were higher than ...

  12. Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran- anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector

    OpenAIRE

    Cai Jingting; et al; Liu Huining

    2011-01-01

    Cai Jingting1,2, Liu Huining1, Zhang Yi11Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China; 2Department of Gynecological Oncology, Hunan Tumor Hospital, Changsha, Hunan, People’s Republic of ChinaObjective: To evaluate the feasibility of using magnetic iron oxide (Fe3O4)-dextran-anti-?-human chorionic gonadotropin (HCG) nanoparticles as a gene vector for cellular transfections.Study des...

  13. Effect of magnetic nanoparticles of Fe3O4 and 5-bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2009-09-01

    Full Text Available Jian Cheng1*, Weiwei Wu1*, Bao-an Chen1, Feng Gao1, Wenlin Xu2, Chong Gao1, Jiahua Ding1, Yunyu Sun1, Huihui Song1, Wen Bao1, Xinchen Sun3, Cuirong Xu1, Wenji Chen1, Ningna Chen1, Lijie Liu4, Guohua Xia1, Xiaomao Li5, Xuemei Wang61Department of Hematology, 3Department of Oncology, The Afiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The First People’s Hospital of Zhengjiang, Zhenjiang, People’s Republic of China; 4Institution of Physiology, 6State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, Germany; *These authors have contributed equally to this workAbstract: This study aims to evaluate the multidrug resistance (MDR reversal activity by magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 and 5-bromotetrandrine (BrTet MDR cell line K562/A02 solitarily or symphysially. The proliferation of K562 and K562/A02 cells and the cytotoxicity on peripheral blood mononuclear cells (PMBCs were evaluated by MTT assay. Cellular accumulation of daunorubicin (DNR was analyzed by flow cytometry. Real-time polymerase chain reaction and Western blotting analyses were performed to examine the mRNA and protein levels of mdr1, respectively. The results showed that the combination of MNPs-Fe3O4 and BrTet with effective concentrations significantly increased cytotoxicity against MDR cell line K562/A02. Both BrTet and MNPs-Fe3O4 increased the intracellular DNR accumulation in the K562/A02 cell line, and downregulated the level of mdr1 gene and expression of P-glycoprotein. Furthermore, the combination did not have significant cytotoxicity in PMBCs. We propose that MNPs-Fe3O4 conjugated with DNR and BrTet probably have synergetic effects on MDR reversal.Keywords: magnetic nanoparticles of Fe3O4, 5-bromotetrandrine, multidrug resistance K562/A02

  14. Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo

    Directory of Open Access Journals (Sweden)

    Bao-an Chen

    2009-09-01

    Full Text Available Bao-an Chen1, Bin-bin Lai1, Jian Cheng1, Guo-hua Xia1, Feng Gao1, Wen-lin Xu2, Jia-hua Ding1, Chong Gao1, Xin-chen Sun3, Cui-rong Xu1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu4, Xiao-mao Li5, Xue-mei Wang61Department of Hematology, 3Department of Oncology, the Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, 6State Key Lab of Bioelectronics (Chien-shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, GermanyAbstract: Multidrug resistance (MDR is a major obstacle to cancer chemotherapy. We evaluated the effect of daunorubicin (DNR-loaded magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 on K562-n/VCR cells in vivo. K562-n and its MDR counterpart K562-n/VCR cell were inoculated into nude mice subcutaneously. The mice were randomly divided into four groups: group A received normal saline, group B received DNR, group C received MNPs-Fe3O4, and group D received DNR-loaded MNPs-Fe3O4. For K562-n/VCR tumor, the weight was markedly lower in group D than that in groups A, B, and C. The transcriptions of Mdr-1 and Bcl-2 gene were significantly lower in group D than those in groups A, B, and C. The expression of Bcl-2 was lower in group D than those in groups A, B, and C, but there was no difference in the expression of P-glycoprotein. The transcriptions and expressions of Bax and caspase-3 in group D were increased significantly when compared with groups A, B, and C. In conclusion, DNR-loaded MNPs-Fe3O4 can overcome MDR in vivo.Keywords: multidrug-resistance reversal, leukemia, magnetic nanoparticles of Fe3O4, in vivo

  15. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles, with different FeO:Fe3O4 ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe3O4 phases, with an average size of ?20?nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specific absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135?W/g at 600?Oe and 310?kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy

  16. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic Fe3O4 nanoparticles and wheat bran.

    Science.gov (United States)

    Sun, Pengfei; Hui, Cai; Wang, Sheng; Khan, Rashid Azim; Zhang, Qichun; Zhao, Yu-Hua

    2016-01-15

    Algicidal bacteria offer a promising option for killing cyanobacteria. In this study, a newly isolated strain of Bacillus methylotrophicus, ZJU, was used to control Microcystis aeruginosa. Analyses of relative reactive oxygen level, malondialdehyde content, superoxide dismutase activity, and fluorescence staining indicated that oxidative damage caused by the algicidal supernatant of strain ZJU mainly affected the cell membrane and consequently the membrane permeability and membrane potential of M. aeruginosa cells. Furthermore, an embedded immobilization technique was employed to improve the practical application of strain ZJU as an algicidal agent. On this basis, we proposed a novel concept of enhancing the algicidal properties of immobilized ZJU by adding Fe3O4 nanoparticles and wheat bran in the process of immobilization. Our studies showed that Fe3O4 nanoparticles conferred the immobilized bacteria with a magnetization of 30.87emu/g, and this magnetization enabled efficient re-collection of the immobilized bacteria by magnetic means. Moreover, wheat bran endowed the immobilized bacteria with 10.34% higher algicidal activity than immobilized bacteria without wheat bran. The results indicate a novel concept of enhancing the algicidal property of bacteria against M. aeruginosa by adding Fe3O4 nanoparticles and wheat bran. PMID:26342577

  17. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  18. Design of magnetic and fluorescent Mg-Al layered double hydroxides by introducing Fe3O4 nanoparticles and Eu3+ ions for intercalation of glycine

    International Nuclear Information System (INIS)

    We describe a novel route for the preparation of magnetic and fluorescent magnesium-aluminum layered double hydroxides by introducing Fe3O4 nanoparticles and Eu3+ ions. From the powder X-ray diffraction results, it was found that the Fe3O4 nanoparticles were highly dispersed in the inner void of octahedral lattice, and the Eu3+ ions substituted for the Al3+ ions and entered into hydrotalcite lattice through isomorphous replacement. Moderate introduction of Fe3O4 nanoparticles and Eu3+ ions did not change the lamellar structure of magnesium-aluminum layered double hydroxides. Glycine can also be intercalated into this magnetic and fluorescent layered double hydroxides by ion-exchange method. After intercalation of glycine, the basal spacing of magnetic and fluorescent layered double hydroxides increased from 7.6 to 8.8 A, indicating that glycine was successfully intercalated into the interlayer space of layered double hydroxides. Magnetic measurements reveal that these novel layered double hydroxides possess paramagnetic property at room temperature, and the emission and excitation spectra indicate the layered double hydroxides exhibit fluorescent property.

  19. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery

    International Nuclear Information System (INIS)

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host–guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7 ± 1.8%) with a high saturation magnetization of 43.8 emu/g. UV–Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3+, and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. - Graphical abstract: A novel nanocarrier, chitosan-coated magnetic drug carrier nanoparticle (CS-CDpoly-MNPs) is fabricated for the delivery of insoluble anticancer drug by grafting CM-β-CD onto the magnetite surface. The grafting of CM-dextrins onto the surface of Fe3O4 nanocrystal clusters can markedly increase the loading capacity of 5-Fu by virtue of CM-dextrins/5-Fu inclusion complex formation. The release of 5-Fu from nanocomposite carriers is pH dependent and displays different release efficiencies in various release media solutions. - Highlights: • Fe3O4 nanoparticles were modified with carboxymethyl-β-cyclodextrin. • The grafting of CM-β-CD onto Fe3O4 nanoparticles enhanced the drug loading capacity. • The nanocarrier displayed excellent loading efficiency and magnetic property. • The drug release from the nanocarriers was diffusion and swelling controlled. • The drug release profile fits well with the Korsmeyer–Peppas model

  20. Fabrication of Pd Nanoparticles Embedded C@Fe3O4 Core-Shell Hybrid Nanospheres: An Efficient Catalyst for Cyanation in Aryl Halides.

    Science.gov (United States)

    Suresh Kumar, Basuvaraj; Amali, Arlin Jose; Pitchumani, Kasi

    2015-10-21

    Isolated chemical reactors were fabricated by integrating catalytically active sites (Pd) with magnetic functionality (Fe3O4) along with carbon while preserving the constituents functional properties to realize the structure-property relationship of Pd by comparing the catalytic activity of spherical Pd NPs with cubical Pd NPs for cyanation in aryl halides using K4[Fe(CN)6] as a green cyanating agent to yield corresponding nitriles. The superior catalytic reactivity of the cubical Pd NPs is attributed to the larger number of {100} surface facets. The TEM images of reused catalyst shows the change in structure from cubical to spherical nanoparticles, attributed to the efficient leaching susceptibility of Pd {100} surface facets. The cubical Pd NPs on carbon@Fe3O4 is attractive in view of its high catalytic efficiency, easy synthesis, magnetic separability, environmental friendliness, high stability, gram scale applicability, and reusability. PMID:26419954

  1. Fabrication of Fe3O4/SiO2 core–shell nanoparticle monolayer as catalyst for carbon nanotube growth using Langmuir–Blodgett technique

    International Nuclear Information System (INIS)

    In this work, an approach of controllable distance of catalytic nanoparticles (NPs) shrouded in shell layer for carbon nanotube (CNT) growth has been developed with the aid of the Langmuir–Blodgett (LB) technique. Coagulation of core–shell NPs was controlled by the surface pressure of the LB technique. Scanning electron microscope images show that core–shell NP LB film without coagulation and vacancies was observed. The approach of core–shell NP LB film revealed in this work could potentially be applied in catalytic NP monolayer formation and high activity of catalytic NPs for CNT growth. - Highlights: • Fe3O4 nanoparticles (NPs) and Fe3O4/SiO2 core–shell NPs were synthesized. • Fe3O4 NP as catalyst was almost retained at the center of SiO2 shell structure. • Core–shell NP monolayer without coagulation and vacancies was deposited on substrate. • Core–shell NP monolayer was closely packed by using Langmuir–Blodgett technique

  2. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    Science.gov (United States)

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000?gL(-1) for ciprofloxacin (CIP) and 0.5-500?gL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05?gL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. PMID:26231896

  3. Synthesis and Properties of Fe3O4-Activated Carbon Magnetic Nanoparticles for Removal of Aniline from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Babak Kakavandi

    2013-02-01

    Full Text Available In this study, powder activated carbon (PAC and magnetic nanoparticles of iron (III oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r2?>?0.98 and r2?>?0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH?=?6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater

  4. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    Science.gov (United States)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance. Electronic supplementary information (ESI) available: XRD, reflection spectra, zeta potential, TEM images, evaluations of reproducibility, EDS, tables of EF and RSD values of different substrates. See DOI: 10.1039/c5nr02491a

  5. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    Science.gov (United States)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  6. 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

    International Nuclear Information System (INIS)

    Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution ?-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

  7. Gambogic acid-loaded magnetic Fe3O4 nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1

    Directory of Open Access Journals (Sweden)

    Wang C

    2012-02-01

    Full Text Available Cailian Wang1, Haijun Zhang1, Yan Chen1, Fangfang Shi1, Baoan Chen2,31Department of Oncology, 2Department of Hematology, Zhongda Hospital, 3Faculty of Oncology, Medical School, Southeast University, Nanjing, People’s Republic of ChinaBackground: E26 transformation-specific sequence-1 (ETS1 transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe3O4 nanoparticles (GA-MNP- Fe3O4 on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells.Methods: The effects caused by GA-MNP- Fe3O4 on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA, and VEGF (vascular endothelial growth factor were examined by Western blot to elucidate the possible mechanisms involved.Results: In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP- Fe3O4 was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF.Conclusion: Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP- Fe3O4 nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.Keywords: ETS1 transcription factor, gambogic acid, pancreatic cancer, magnetic nanoparticles

  8. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe3O4-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe3O4-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K

  9. Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

    Directory of Open Access Journals (Sweden)

    Li T

    2015-07-01

    Full Text Available Tingting Li,1 Xue Shen,1 Yin Chen,1 Chengchen Zhang,1 Jie Yan,1 Hong Yang,1 Chunhui Wu,1,2 Hongjun Zeng,1,2 Yiyao Liu1,21Department of Biophysics, School of Life Science and Technology, 2Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of ChinaAbstract: Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (shRNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising as theranostic agents for cancer treatment and diagnosis in the future.Keywords: core/shell nanoparticle, PEI, VEGF silence, MR imaging, theranostics

  10. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells

    Directory of Open Access Journals (Sweden)

    Bao-an Chen

    2010-06-01

    Full Text Available Bao-an Chen1, Pei-pei Mao1, Jian Cheng1, Feng Gao1, Guo-hua Xia1, Wen-lin Xu2, Hui-lin Shen2, Jia-hua Ding1, Chong Gao1, Qian Sun1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu3, Xiao-mao Li4, Xue-mei Wang51Department of Hematology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 3Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 4Department of Physics, University of Saarland, Saarbruecken, Germany; 5State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaAbstract: In many instances, multidrug resistance (MDR is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp, a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe3O4 nanoparticle [MNP (Fe3O4] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of “classical” MDR by short hairpin RNA (shRNA aiming directly at the target sequence (3491–3509, 1539–1557, and 3103–3121 nucleotide of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1–1, PGY1–2, and PGY1–3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe3O4 for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM. PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1–2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe3O4 or PGY1–2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe3O4 and PGY1–2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe3O4 and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia. Keywords: K562/A02 cell line, multidrug resistance, magnetic nanoparticle of Fe3O4, recombinant plasmid vector PGY1–2

  11. Synthesis and diameter control of vertically-aligned carbon nanotube growth from Langmuir-Blodgett films deposited Fe3O4@SiO2 core-shell nanoparticles

    Science.gov (United States)

    Ohashi, Masaaki; Sugawara, Takehiro; Kawasaki, Kohei; Kushida, Masahito

    2014-02-01

    We synthesized Fe3O4 nanoparticles (NPs) and Fe3O4@SiO2 core-shell NPs. Vertically-aligned carbon nanotubes (VA-CNTs) were grown from Fe3O4 NP monolayer and Fe3O4@SiO2 core-shell NP monolayer, respectively, by thermal chemical vapor deposition (CVD). The monolayer was prepared on SiO2/Si substrate by Langmuir-Blodgett (LB) technique. Fe3O4 NP monolayer was used as catalyst for CNT growth, and core-shell NP monolayer was used as catalyst for CNT growth, too. We found that Fe3O4 NP covered with SiO2 shell was moved from the center to the surface of core-shell NP during pre-thermal process at thermal CVD. The CNT carpet height tended to increase with the increasing thermal annealing time and decreasing shell thickness. And the average diameter of CNTs grown from core-shell LB film was smaller than that of CNTs grown from Fe3O4 LB film, and average diameter of CNTs almost conformed to Fe3O4 core size with SiO2 shell.

  12. Antibacterial surfaces based on functionally graded photocatalytic Fe3O4@TiO2 core-shell nanoparticle/epoxy composites

    OpenAIRE

    Nardi, Tommaso; Rtimi, Sami; Pulgarin, Cesar; Leterrier, Yves

    2015-01-01

    Functionally graded epoxy composites with various concentration profiles of Fe3O4@TiO2 core-shell nanoparticles (NPs) were synthetized and characterized, with focus on their antibacterial properties. The NPs consisted of rutile, anatase, magnetite and hematite. Graded composites were produced starting with homogeneous 2 vol% to 12 vol% NPs suspensions using a magnetophorese process, leading to an enrichment of TiO2 at the surface of the composite up to 16 vol% from an initial 4 vol%. Homogene...

  13. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles

    International Nuclear Information System (INIS)

    A simple and reproducible method was developed to synthesize a novel class of Fe3O4/SiO2/dye/SiO2 composite nanoparticles. As promising candidates for use in bioassays, the obtained nanoparticles have an average diameter of 30 nm, and the thickness of the outer shell of silica could be tuned by changing the concentration of the silicon precursor tetraethyl orthosilicate during the synthesis. These multifunctional nanoparticles were found to be highly luminescent, photostable and superparamagnetic. The luminescence intensity of the nanoparticles was increased as the dye concentration was increased in the preparation process. The color of the luminescence was successfully tuned by incorporating different dyes into the nanoparticles. The measurements of the emission spectra indicated that relative to the dye molecules dissolved in ethanol, the emission of the dye-doped nanoparticles exhibited either a red shift or a blue shift, to which a tentative explanation was given

  14. Adsorption of acidic, basic, and neutral proteins from aqueous samples using Fe3O4 magnetic nanoparticles modified with an ionic liquid

    International Nuclear Information System (INIS)

    We have prepared and characterized Fe3O4 nanoparticles and their binary mixtures (IL-Fe3O4) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05-2.0 mg mL-1) were 4.0 mg mL-1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L mg-1, in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled. (author)

  15. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery

    Directory of Open Access Journals (Sweden)

    Ding W

    2013-12-01

    Full Text Available Wence Ding, Lin GuoKey Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of ChinaAbstract: Transferrin (Tf was immobilized onto Fe3O4@SiO2 nanoparticles with high doxorubicin (DOX loading (TfDMP, for dual targeting of cancer, by chemically coupling both Tf and DOX with dual-function magnetic nanoparticles (DMPs using a multi-armed crosslinker, poly-L-glutamic acid. With high trapping efficiency for magnetic targeting, TfDMP exhibits a Tf receptor-targeting function. Moreover, the DOX loading percentage of TfDMP is high, and can be controlled by adjusting the reactant ratio. TfDMP presents a narrow size distribution, and is sensitive to pH for drug release. Compared with DOX-coupled DMP without Tf modification (DDMP, TfDMP exhibits enhanced uptake by Tf receptor-expressing tumor cells, and displays stronger cancer cell cytotoxicity. This study provides an efficient method for the dual-targeted delivery of therapeutic agents to tumors, with controlled low carrier toxicity and high efficiency.Keywords: transferrin, Fe3O4@SiO2, nanoparticle, doxorubicin, targeted tumor

  16. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    Science.gov (United States)

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-?-cyclodextrin (CM-?-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-?-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. PMID:25579950

  17. The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption

    Science.gov (United States)

    Zhang, Lili; Dai, Peng; Yu, Xinxin; Li, Yang; Bao, Zhiwei; Zhu, Jin; Zhu, Kerong; Wu, Mingzai; Liu, Xiansong; Li, Guang; Bi, Hong

    2015-12-01

    Cube-like Fe3O4 nanoparticles with size between 60 nm and 80 nm were reduced via ethanol using α-Fe2O3 nanocubes as precursors at 350 °C. The possible mechanism for the CH3CH2OH reduction of α-Fe2O3 into Fe3O4 was discussed. Electromagnetic wave absorption test showed that these Fe3O4 nanoparticles possessed excellent microwave absorption performance due to its complementary effect of dielectric loss and magnetic loss. The minimum absorption reflection loss value is -47.8 dB for Fe3O4 nanoparticles/paraffin wax composite sample with thickness of 4 mm, much higher than that of the commercial microwave absorber [Fe, Ni].

  18. A facile "turn-on" fluorescent method with high sensitivity for Hg(2+) detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions.

    Science.gov (United States)

    Lv, Xiaoxiao; Wu, Wenchen; Niu, Chenggang; Huang, Dawei; Wang, Xiaoyu; Zhang, Xuegang

    2016-05-01

    In this manuscript, the authors molecularly engineered a hybridization chain reactions (HCRs) based probe on magnetic Fe3O4 nanoparticles for the sensitive detection of Hg(2+). The sensing system comprised three probes: capture probe H1, report probe H2, and report probe H3. The capture probe was modified on the surface of magnetic Fe3O4 nanoparticles. The report probes were labeled with fluorescein isothiocyanate (FITC). Without Hg(2+), the report probes were stable as molecular beacons in solution. In the presence of Hg(2+), the T-rich capture probes and report probes will hybridize into double-helical DNA domains with the aid of T-Hg(2+)-T coordination chemistry. Trigged by this reaction, more molecular beacons open and form a super tandem structure. Herein, the fluorescence signal was magnified by capturing more report probes. Separating the target and captured report probes from reaction solution was benefit to decrease the background signal and interference from other metal ions. The detection limit of this method was about 0.36nM, which is much lower than the regulations of World Health Organization and U.S. Environmental Protection Agency on Hg(2+) in drink water. This proposed sensing strategy also showed favorable selectivity over other common metal ions. In addition, it has good practicability in real water samples. PMID:26946010

  19. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  20. Fe3O4 and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol.

    Science.gov (United States)

    Wang, Yan; Li, Hai; Zhang, Jijun; Yan, Xinyu; Chen, Zexiang

    2016-01-01

    We report a highly efficient and reusable bifunctional nanostructured composite catalyst synthesized by a scalable facile hydrothermal method which enables the precise control of size and morphology of nanoparticles, wherein Au nanoparticles (NPs) and Fe3O4 particles exhibit excellent dispersing ability on the rGO (reduced graphene oxide) sheet surface (designated as rGO/Fe3O4/Au) to avoid adverse agglomeration between the nano particles and overlapping of the rGO sheets concurrently. The resultant bifunctional composite shows a high performance in the catalytic reduction of 4-nitrophenol (4-NP) with a conversion of 97% in 5 min and presents good reusability through highly efficient recovery by using external magnetic fields. In particular, there was no significant loss in catalytic activity of the reused catalysts even after being recycled for 8 cycles, displaying attractive potential in industrial applications where separation and recycling are imperative. The rational design provides an approach to synthesize a graphene-based composite with an interesting structure and multi-functional properties as well. PMID:26620837

  1. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles

    Science.gov (United States)

    2014-01-01

    The degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous solution of coated ZnO onto magnetite nanoparticale based on an advanced photocatalytic oxidation process. The photocatalysts were synthesized by coating of ZnO onto magnetite using precipitation method. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer (VSM). Besides, specific surface area was also determined by BET method. The four effective factors including pH of the reaction mixture, Fe3O4/ZnO magnetic nanoparticles concentration, initial MTBE concentration and molar ratio of [H2O2]/ [MTBE] were optimized using response surface modeling (RSM). Using the four-factor-three-level Box–Behnken design, 29 runs were designed considering the effective ranges of the influential factors. The optimized values for the operational parameters under the respective constraints were obtained at PH of 7.2, Fe3O4/ZnO concentration of 1.78 g/L, initial MTBE concentration of 89.14 mg/L and [H2O2]/ [MTBE] molar ratio of 2.33. Moreover, kinetics of MTBE degradation was determined under optimum condition. The study about core/shell magnetic nanoparticles (MNPs) recycling were also carried out and after about four times, the percentage of the photocatalytic degradation was about 70%. PMID:24393372

  2. Preconcentration of emerging contaminants in environmental water samples by using silica supported Fe3O4 magnetic nanoparticles for improving mass detection in capillary liquid chromatography.

    Science.gov (United States)

    Moliner-Martínez, Yolanda; Ribera, Antonio; Coronado, Eugenio; Campíns-Falcó, P

    2011-04-22

    A magnetic material based on Fe(3)O(4) magnetic nanoparticles incorporated in a silica matrix by using a sol-gel procedure has been used to extract and preconcentrate emerging contaminants such as acetylsalicylic acid, acetaminophen, diclofenac and ibuprofen from environmental water samples prior to the analysis with Capillary LC-MS. The use of the proposed silica supported Fe(3)O(4) magnetic nanoparticles enables surfactant free extracts for the analysis with MS detection without interferences in the ionisation step. Under the optimum conditions, we demonstrated the reusability of the magnetic sorbent material during 20 uses without loss in the extraction efficiency. In addition, no cleanup was necessary. The preconcentration factor was 100 and the detection limits were between 50 and 150 ng/L. The proposed procedure has been applied to the analysis of water samples obtaining recoveries between 80 and 110% and RSD values lower than 12%. Concentrations of the target analytes over the range 1.7 and 0.1 ?g/L have been found in different water samples. PMID:21388625

  3. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik-Fields multicomponent reaction

    Science.gov (United States)

    Rostamnia, Sadegh; Doustkhah, Esmail

    2015-07-01

    Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.

  4. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    Science.gov (United States)

    Kaur, Navjot; Chudasama, Bhupendra

    2015-05-01

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  5. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4?nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties

  6. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

    International Nuclear Information System (INIS)

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g?1) barium hexaferrite (BaFe12O19, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe3O4) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 ?g L?1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents

  7. Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Roshanak Khandanlou

    2014-10-01

    Full Text Available Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, Thermogravimetric analysis (TGA and Fourier transform infrared spectroscopy (FT-IR. The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli and Gram-positive bacteria (Staphylococcus aureus by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.

  8. Bare and protein-conjugated Fe3O4 ferromagnetic nanoparticles for utilization in magnetically assisted hemodialysis: biocompatibility with human blood cells

    Science.gov (United States)

    Stamopoulos, D.; Manios, E.; Gogola, V.; Benaki, D.; Bouziotis, P.; Niarchos, D.; Pissas, M.

    2008-12-01

    Magnetically assisted hemodialysis is a development of conventional hemodialysis and is based on the circulation of ferromagnetic nanoparticle-targeted binding substance conjugates (FN-TBS Cs) in the bloodstream of the patient and their eventual removal by means of a 'magnetic dialyzer'. Presented here is an in vitro investigation on the biocompatibility of bare Fe3O4 FNs and Fe3O4-bovine serum albumin Cs with blood cells, namely red blood cells (RBCs), white blood cells (WBCs) and platelets (Plts). Atomic force microscopy (AFM) and optical microscopy (OM) enabled the examination of blood cells at the nanometer and micrometer level, respectively. The observations made on FN- and C-maturated blood samples are contrasted to those obtained on FN- and C-free reference blood samples subjected to exactly the same maturation procedure. Qualitatively, both AFM and OM revealed no changes in the overall shape of RBCs, WBCs and Plts. Incidents where bare FNs or Cs were bound onto the surface of RBCs or internalized by WBCs were very rare. Detailed examination by means of OM proved that impaired coagulation of Plts is not initiated/promoted either by FNs or Cs. Quantitatively, the statistical analysis of the obtained AFM images from RBC surfaces clearly revealed that the mean surface roughness of RBCs maturated with bare FNs or Cs was identical to the one of reference RBCs.

  9. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 ?g g(-1) and 0.03-0.08 ?g g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 ?g g(-1) and 0.005-0.01 ?g g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 ?g g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%). PMID:25962876

  10. Separation and preconcentration of trace amounts of silver (I) in water samples based on dithizone modified sodium dodecyl sulfate-coated Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Complete text of publication follows. Using magnetic nanoparticles for separation and preconcentration in analytical chemistry is opening a new methodology that is faster, simpler and more precise than old ones. In this work, a simple and reliable solid-phase extraction method has been developed to selectively separate and preconcentrate trace amounts of silver (I) from aqueous samples for subsequent measurement by atomic absorption spectrometry. Silver ion was adsorbed quantitatively from aqueous solution onto magnetic nano-adsorbent with dithizone (DTZ) immobilized on sodium dodecyl sulfate (SDS)-coated Fe3O4 nanoparticles (DTZ-S-IONPs). SDS as a surfactant makes admicelle on the surface of Fe3O4 nanoparticles, which allows the metal complexing agent of DTZ, to be immobilized in its hydrocarbon cores. This assemble, as a chelating adsorbent, has made the separation and preconcentration of silver ion possible. It is shown that the novel magnetic nano-adsorbent is quite efficient for the adsorption and desorption of silver (I) at 25 deg C. Different parameters such as pH, temperature, ionic strength, equilibrium time, type and least amount of stripping solution were optimized. The effect of some co-existing ions on the determination was investigated. An aqueous solution containing thiourea has been used in order to selectively desorb the adsorbed silver ion from the surface of the adsorbent. No serious interferences have been observed due to the presence of another species in the sample. The separation selectivity of the adsorbent for other cations was studied. To improve this, EDTA was added to the source solution before applying to the DTZ-S-IONPs as chelating adsorbent. The procedure was applied for analysis of two real samples. The method is simple and inexpensive. This research was supported by the Department of Chemistry and Nanoscience and Nanotechnology Research Laboratory (NNRL) Payame Noor University of Sirjan.

  11. Room temperature synthesis of magnetite (Fe3??O4) nanoparticles by a simple reverse co-precipitation method.

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Heczko, Oleg; Söderberg, O.; Hannula, S.-P.

    2011-01-01

    Ro?. 18, ?. 3 (2011), 032020/1-032020/4. ISSN 1757-8981 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferromagnetic nanoparticles * magnetite nanoparticles synthesis * maghemi Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Enhanced performance of polymer solar cells using PEDOT:PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer.

    Science.gov (United States)

    Wang, Kai; Yi, Chao; Hu, Xiaowen; Liu, Chang; Sun, Yan; Hou, Jianhui; Li, Yongfang; Zheng, Jie; Chuang, Steven; Karim, Alamgir; Gong, Xiong

    2014-08-13

    Low efficiency and poor stability are two major obstacles limiting the manufacturing of renewable and cost-effective polymer solar cell (PSCs). To address these problems, solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) doped with Fe3O4 magnetic nanoparticles ((PEDOT:PSS):Fe3O4), and above (PEDOT:PSS):Fe3O4 thin film aligned by an external magnetostatic field ([(PEDOT:PSS):Fe3O4] W/H) were used as the anode buffer layer for PSCs, respectively. As compared with PSCs with PEDOT:PSS as an anode buffer layer, 38.5% enhanced efficiency and twice improved stability are observed from PSCs incorporated with [(PEDOT:PSS):Fe3O4] W/H anode buffer layer. It was found that enhanced efficiency and improved stability resulted from a combination of reduced acidity of PEDOT:PSS and enhanced electrical conductivity that originated from generated counterions and the paramagnetism of Fe3O4 magnetic nanoparticles by an external magnetostatic field. PMID:24980462

  13. Fe3O4 magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    International Nuclear Information System (INIS)

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe3O4 core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe3+ was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe3+ chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 °C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  14. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles.

    Science.gov (United States)

    Jayakumar, O D; Abdelhamid, Ehab H; Kotari, Vasundhara; Mandal, Balaji P; Rao, Rekha; Jagannath; Naik, Vaman M; Naik, Ratna; Tyagi, A K

    2015-09-28

    Flexible inorganic-organic magneto-electric (ME) nanocomposite films (PVDF, PVDF-GO, PVDF-Fe3O4 and PVDF-GO-Fe3O4), composed of well-dispersed graphene oxide (GO 5 wt%) and magnetic Fe3O4 nanoparticles (5 wt%) embedded into a poly(vinylidene-fluoride) (PVDF) matrix, have been prepared by a solvent casting route. The magnetic, ferroelectric, dielectric, magneto-dielectric (MD) coupling and structural properties of these films have been systematically investigated. Magnetic (Ms = 2.21 emu g(-1)) and ferroelectric (P = 0.065 ?C cm(-2)) composite films of PVDF-GO-Fe3O4 (PVDF loaded with 5% GO and 5% Fe3O4) with an MD coupling of 0.02% at room temperature (RT) showed a three times higher dielectric constant than that of the pure PVDF film, with a dielectric loss as low as 0.6. However, the PVDF-Fe3O4 film, which exhibited improved magnetic (Ms = 2.5 emu g(-1)) and MD coupling (0.04%) properties at RT with a lower dielectric loss (0.3), exhibited decreased ferroelectric properties (P = 0.06 ?C cm(-2)) and dielectric constant compared to the PVDF-GO-Fe3O4 film. MD coupling measurements carried out as a function of temperature on the multi-functional PVDF-GO-Fe3O4 film showed a systematic increase in MD values up to 100 K and a decrease thereafter. The observed magnetic, ferroelectric, dielectric, MD coupling and structural properties of the nanocomposite films are attributed to the homogeneous dispersion and good alignment of Fe3O4 nanoparticles and GO in the PVDF matrix along with a partial conversion of nonpolar ?-phase PVDF to polar ?-phase. The above multi-functionality of the composite films of PVDF-Fe3O4 and PVDF-GO-Fe3O4 paves the way for their application in smart multiferroic devices. PMID:26274764

  15. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using ?-cyclodextrin assemblied Fe3O4 nanoparticles

    Science.gov (United States)

    Wang, Congli; Huang, Lizhen; Song, Shengmei; Saif, Bassam; Zhou, Yehong; Dong, Chuan; Shuang, Shaomin

    2015-12-01

    The ?-cyclodextrin assemblied magnetic Fe3O4 nanoparticles (?-CD-MNPs) were successfully fabricated via a layer-by-layer method. Possessing an average size 14 nm, good stability and super-paramagnetic response (Ms 64 emu/g), the resultant nanocomposites could be served as a versatile biocompatible platform for selective loading, targeted delivery and pH-responsive release of stereoisomeric doxorubicin (DOX) and epirubicin (EPI). 1H-nuclear magnetic resonance (1H NMR) and the computer simulation further give the evidence that partial anthracene ring of drug molecule is included by ?-CD. In addition, non-toxic ?-CD-MNPs have excellent biocompatibility on MCF-7 cells, and cellular uptake indicate that different amounts of DOX or EPI can be transported to targeting site and released from the internalized carriers. The results demonstrate that as-prepared ?-CD-MNPs could be a very promising vehicle for DOX and EPI.

  16. Study on synthesis of poly(GMA)-grafted Fe3O4/SiOX magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization

    International Nuclear Information System (INIS)

    Functionalized superparamagnetic particles were prepared by atom transfer radical polymerization of glycidyl methacrylate onto the surface of modified Fe3O4/SiOX nanoparticles. The obtained particles were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Candida rugosa lipase was covalently immobilized on the magnetic particles in mild condition via covalent binding with a higher activity recovery. The resulting immobilized lipase had better resistance to pH and temperature inactivation in comparison to free lipase, the adaptive pH and temperature ranges of lipase were widened, and it exhibited good thermal stability and reusability.

  17. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores

    International Nuclear Information System (INIS)

    Metal oxide nanoparticles, hybridized with various polymeric chemicals, represent a novel and breakthrough application in drug delivery, hyperthermia treatment and imaging techniques. Radiolabeling of these nanoformulations can result in new and attractive dual-imaging agents as well as provide accurate in vivo information on their biodistribution profile. In this paper a comparison study has been made between two of the most promising hybrid core–shell nanosystems, bearing either magnetite (Fe3O4) or cobalt ferrite (CoFe2O4) cores, regarding their magnetic, radiolabeling, hyperthermic and biodistribution properties. While hyperthermic properties were found to be affected by the metal-core type, the radiolabeling ability and the in vivo fate of the nanoformulations seem to depend critically on the size and the shell composition. (paper)

  18. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides

    International Nuclear Information System (INIS)

    Highlights: ► Constructed AChE biosensor based on AChE/Fe3O4NPs/c-MWCNT/ITO electrode. ► Enzyme electrode was characterized by AFM, FTIR, CV and EIS. ► Detection limit and working range of biosensor were 0.1 nM and 0.1–100 nM. ► Half life of enzyme electrode was 3 months. ► Biosensor measured pesticides in environmental and food samples. - Abstract: A method is described for the construction of a highly sensitive electrochemical biosensor for the detection of malathion, chlorpyrifos, monocrotophos and endosulfan based on covalent immobilization of acetylcholinesterase (AChE) on iron oxide nanoparticles (Fe3O4NPs)-decorated carboxylated multi-walled carbon nanotubes (c-MWCNTs) electrodeposited onto indium tin oxide (ITO)-coated glass plate. Transmission electron microscopic (TEM) and UV analysis of nanocomposite materials demonstrated that Fe3O4NPs were well deposited on the outer walls of c-MWCNTs. The modified electrode was characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The resulting biosensor exhibited a linear response for acetylthiocholine in a concentration range of 0.1–700 μmol L−1 with a remarkable sensitivity of 0.402 mA/μmol L−1. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1–70 nmol L−1, 0.1–50 nmol L−1, 0.1–70 nmol L−1 and 0.1–100 nmol L−1 for malathion, chlorpyrifos, monocrotophos and endosulfan, respectively. The detection limit of the biosensor for all pesticides was 0.1 nmol L−1 at a signal-to-noise ratio of 3. The biosensor showed good reproducibility, no interference by metal ions and long-term stability. The measurement results obtained by the present biosensor were in good agreement with those obtained by the standard gas chromatography–mass spectrometry method. The biosensor was employed for the determination of pesticides in environmental and food samples.

  19. Synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1

    International Nuclear Information System (INIS)

    Highlights: ? Magnetic nanoparticles were synthesized by chemical co-precipitation method. ? Surface was functionalized with amino-silane and used for lipase immobilization. ? Characterized through TEM, SEM, XRD, FT-IR and VSM analysis. ? The functionalization and immobilization did not affect the magnetite properties. ? The immobilized lipase showed greater functional property than free lipase. - Abstract: Superparamagnetic nanoparticles (Fe3O4–magnetite) were prepared by chemical co-precipitation method and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction to obtain amino functionalized magnetic nanoparticles. The purified lipase from Pseudomonas fluorescens Lp1 was immobilized onto functionalized magnetite using glutaraldehyde as the coupling agent. The characterization of the nanoparticles was done by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, vibrating sample magnetometry and Fourier transformed infrared spectroscopy. The size of the magnetite was measured about 10–30 nm. The results of characterization study revealed the successful immobilization of lipase on to functionalized magnetite. The saturation magnetization of magnetic nanoparticles was found to be 28.34 emu/g whereas the immobilized magnetic nanoparticle was 17.074 emu/g. The immobilized lipase had greater activity at 50 °C and thermal stability upto 70 °C. It exhibited excellent reusability for 4 cycles and storage stability upto 15 days by retaining 75% of its initial activity

  20. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide.

    Science.gov (United States)

    Lai, Li; Xie, Qiang; Chi, Lina; Gu, Wei; Wu, Deyi

    2016-03-01

    Hydrous lanthanum oxide was loaded onto the surface of Fe3O4@SiO2 core/shell magnetic nanoparticles to obtain an easily separable adsorbent (abbreviated as Fe-Si-La) for efficient separation of phosphate from water. Fe-Si-La was characterized with XRF, XRD, TEM, specific surface area and magnetization and their performance for phosphate removal was investigated. The Fe3O4@SiO2 core/shell structure was confirmed and the hydrous lanthanum oxide was successfully loaded onto its surface. The newly developed adsorbent had magnetization of 51.27emu/g. The Langmuir adsorption capacity of phosphate by Fe-Si-La reached 27.8mg/g by loading only 1mmol lanthanum per gram of magnetite. The adsorption was fast; nearly 99% of phosphate could be removed within 10min. The removal of phosphate was favored within the pH range 5.0-9.0. The adsorption on Fe-Si-La was not significantly influenced by ionic strength and by the coexistence of the anions of chloride and nitrate but sulfate, bicarbonate and humic acid showed slightly greater negative effects. Phosphate removal efficiency of higher than 95% was attained for real effluent of a wastewater treatment plant when the dose of adsorbent was >0.2kg/ton. The results showed that adsorbed phosphate could be nearly completely desorbed with NaOH solution for further use. In conclusion, Fe-Si-La is a promising adsorbent for the removal and recovery of phosphate from water. PMID:26641568

  1. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei

    2013-06-12

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  2. A Novel DNA Nanosensor Based on CdSe/ZnS Quantum Dots and Synthesized Fe3O4 Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roozbeh Hushiarian

    2014-04-01

    Full Text Available Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4 nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  3. A facile method for the room-temperature synthesis of water-soluble magnetic Fe3O4 nanoparticles: Combination of in situ synthesis and decomposition of polymer hydrogel

    International Nuclear Information System (INIS)

    Highlights: ? A facile room-temperature method for achieving water-soluble magnetic Fe3O4 nanoparticles (NPs) by combining in situ synthesis and decomposition of magnetic polymer hydrogel has been demonstrated. ? The Fe3O4 NPs with average diameters of 6.3-8.3 nm were synthesized in a crosslinked polyacrylamide hydrogel. ? The saturation magnetization was 44.6 and 54.7 emu g-1 at 300 K and 5 K, respectively. ? The dried magnetic Fe3O4 NPs were easily dispersed in alkaline aqueous media. ? This study would be prospect for preparing functional water-soluble NPs used in metals and semiconductors. - Abstract: We propose and demonstrate a facile room-temperature synthetic method for obtaining water-soluble magnetic Fe3O4 nanoparticles (NPs) by combining the in situ synthesis and decomposition of a magnetic polymer hydrogel. The Fe3O4 NPs with average diameters of 6.3-8.3 nm were synthesized in a cross-linked polyacrylamide (PAAm) hydrogel by coprecipitating iron ions. The decomposition of the magnetic polymer hydrogel by an aqueous solution of sodium hydroxide led to the transfer of Fe3O4 NPs into the aqueous medium. The NPs can be dispersed stably in water for more than three months. The Fe3O4 NPs were characterized by X-ray photoelectron spectra (XPS), X-ray powder diffraction (XRD), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FT-IR). The saturation magnetization of the Fe3O4 NPs was 44.6 and 54.7 emu g-1 at 300 K and 5 K, respectively. The dried magnetic Fe3O4 NPs were easily dispersed in alkaline aqueous media (pH > ?8) and kept stable for a long time. This room-temperature synthetic method for water-soluble magnetic Fe3O4 NPs can be expected for wide applications in the preparation of functional water-soluble NPs, such as those used in metals and semiconductors.

  4. Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    OpenAIRE

    Catalayud, M. P.; Sanz, B.; Raffa, V; Riggio, C.; Ibarra, M. R.; Goya, G.F.

    2014-01-01

    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, sa...

  5. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    OpenAIRE

    Akbarzadeh A; Mikaeili H; Zarghami N; Mohammad R; Barkhordari A; Davaran S

    2012-01-01

    Abolfazl Akbarzadeh1, Haleh Mikaeili2, Nosratollah Zarghami3, Rahmati Mohammad3, Amin Barkhordari3, Soodabeh Davaran21Drug Applied Research Center, 2Tuberculosis and Lung Disease Research Center of Tabriz, 3Department of Clinical Biochemistry and Laboratory Medicine, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IranBackground: Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for...

  6. Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance.

    Czech Academy of Sciences Publication Activity Database

    Sedla?ík, M.; Mou?ka, R.; Kozáková, Z.; Kazantseva, N. E.; Pavlínek, V.; Ku?itka, I.; Kaman, Ond?ej; Peer, Petra

    2013-01-01

    Ro?. 326, january (2013), s. 7-13. ISSN 0304-8853 Grant ostatní: UTB Zlín(CZ) IGA/25/FT/10/D; GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 ; RVO:68378271 Keywords : iron oxide * nanoparticle * ferrofluid * hyperthermia * embolization * microwave synthesis * magnetorheology Subject RIV: BK - Fluid Dynamics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.002, year: 2013

  7. Sonochemical synthesis of magnetic core-shell Fe3O4-ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ? Magnetic core-shell Fe3O4-ZrO2 nanoparticle was synthesized by sonochemical approach. ? Fe3O4-ZrO2 NPs provided high capacity for trapping Mb on magnetic glassy carbon electrode surface. ? The constructed Mb/Fe3O4-ZrO2 film exhibited excellent electrocatalytic ability for the reduction of H2O2. ? The proposed method simplifies the immobilization methodology of proteins. - Abstract: In this study, bifunctional Fe3O4-ZrO2 magnetic core-shell nanoparticles (NPs), synthesized by a simple and effective sonochemical approach, were attached to the surface of a magnetic glassy carbon electrode (MGCE) and successfully applied to the immobilization/adsorption of myoglobin (Mb) for constructing a novel biosensor platform. With the advantages of the magnetism and the excellent biocompatibility of the Fe3O4-ZrO2 NPs, Mb could be easily immobilized on the surface of the electrode in the present of external magnetic field and well retained its bioactivity, hence dramatically facilitated direct electron transfer of Mb was demonstrated. The proposed Mb/Fe3O4-ZrO2 biofilm electrode exhibited excellent electrocatalytic behaviors towards the reduction of H2O2 with a linear range from 0.64 ?M to 148 ?M. This presented system avoids the complex synthesis for protecting Fe3O4 NPs, supplies a simple, effective and inexpensive way to immobilize protein, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.

  8. Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    International Nuclear Information System (INIS)

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers. - Highlights: ? The composite nanofibers including the MRF and PET. ? The fabrication of core/sheath structured nanofibers using coaxial electrospinning. ? Superparamagnetic composite nanofibers.

  9. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent

    Science.gov (United States)

    Jahandar, Marzieh; Zarrabi, Ali; Shokrgozar, Mohammad Ali; Mousavi, Hajar

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with an average size of 10 nm have been successfully synthesized by the polyol method. Then, hyperbranched polyglycerol (HPG) branches have been introduced on the surface of SPIONs through ring opening polymerization of glycidol as a biocompatible surface modifier with a more hydrophilic nature than other biomedical polymers. The as-synthesized SPION-HPGs were analyzed by FT-IR, CHNS and TGA analysis which all exhibited the successful HPG grafting onto the SPION surface. The anticancer herbal drug, curcumin, was loaded on the resultant nanocarrier. The MTT assay demonstrated the non-cytotoxicity effect of SPION-HPGs and the low cytotoxicity effect of curcumin at low concentrations on L929 and MCF-7 cell lines as normal and cancerous cells, respectively. Moreover, these nanoparticles exhibited an improved effect as a contrast agent in magnetic resonance imaging. Thus, it is concluded that SPION-HPG has the potential to be used in theranostics applications due to its simultaneous drug delivery and imaging capabilities.

  10. Extraction of Genomic DNA Using Magnetic Nanoparticles (Fe3O4 as a Solid-Phase Support

    Directory of Open Access Journals (Sweden)

    Z. M. Saiyed

    2007-01-01

    Full Text Available Magnetic separation technology, using magnetic particles, is quick and easy method for sensitive and reliable captures of specific proteins, genetic material and other biomolecules. The current paper describes a universal genomic DNA extraction method optimized in our laboratory using magnetic nanoparticles as a solid phase adsorbent. The yields of the isolated DNA with magnetic method were higher or equivalent to the conventional procedures in all the samples tested. Additionally, the magnetic method takes less than 15 minutes to extract DNA as against several hours taken by conventional protocols. Furthermore, the isolated DNA was found to function satisfactorily in PCR amplification and restriction endonuclease digestion. The developed procedure is simple, quick, cheap, robust and does not require the use of organic solvents or sophisticated equipments; thereby making it more amenable to automation.

  11. Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    CERN Document Server

    Catalayud, M P; Raffa, V; Riggio, C; Ibarra, M R; Goya, G F

    2014-01-01

    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the...

  12. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    International Nuclear Information System (INIS)

    Highlights: ? Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ? Magnetically attached TSF electrode shows high photoelectrochemical activity. ? Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ? Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO2/SiO2/Fe3O4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  13. Controlled flame synthesis of ?Fe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite ?Fe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6-12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50-60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50-60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50-90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.

  14. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    This paper demonstrates a fish pathogen reduction procedure that uses TiO2 sol–gel coating Fe3O4@TiO2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe3O4/TiO2 nanoparticles are synthesized and immobilized on glass using TiO2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe3O4@TiO2's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  15. Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT).

    Science.gov (United States)

    Mahmoud, Khaled A; Zourob, Mohammed

    2013-05-01

    A new lignin modified hybrid microsphere, comprising poly(styrene-co-acrylic acid) core and magnetite (Fe3O4)/Au nanoparticle (NP) shell, was proposed here for the selective and highly sensitive detection and removal of 2,4,6-trinitrotoluene (TNT) explosives based on surface enhanced Raman scattering (SERS) and electrochemical detection methods. The presence of lignin and the highly packed layer of Fe3O4/AuNPs as a magnetic collector and metal enhancer for SERS signals allowed for the detection of TNT below 1 pM. PMID:23515305

  16. Dispersive Micro-Solid-Phase Extraction Based on Decanoic Acid Coated-Fe3 O4 Nanoparticles for HPLC Analysis of Phthalate Esters in Liquor Samples.

    Science.gov (United States)

    Wang, Juan; Zhang, Lei; Xin, Dingqiang; Yang, Yaling

    2015-11-01

    A novel, simple and low cost through coating Fe3 O4 magnetic nanoparticles (MNPs) with decanoic acid were synthesized. The functionalized MNPs showed excellent dispersibility in aqueous solution and were applied to dispersive micro-solid-phase extraction (D-?-SPE) followed by high performance liquid chromatographic analysis for 4 phthalate esters (PAEs) including benzyl butyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-n-butyl phthalate (DBP), and di-n-octyl phthalate (DNOP) from liquor samples. The extraction equilibrium is achieved in 1 min. The MNPs allow easy and rapid isolation of PAEs by using an external magnet, which can be reused 5 times. The 4 PAEs linear dynamic ranges were in the range of 5 to 1000 ng/mL and the correlation coefficients values were 0.9999. The limits of detection were in the range of 0.91 to 2.43 ng/mL. The influences of the adsorbent dosage and the use frequency of adsorbent, the adsorption time, the solution pH and ionic strength were investigated and optimized. The proposed method was used to determine of PAEs in liquor samples and recoveries between 88.9% and 105.4%, with the relative standard deviations were below 4.0%. PMID:26447907

  17. Magnetic Fe3O4-C nanoparticles modified with 1-(2-thiazolylazo)-2-naphthol as a novel solid-phase extraction sorbent for preconcentration of copper (II)

    International Nuclear Information System (INIS)

    We report on a new magnetic nanosorbent for solid phase extraction of Cu(II) before its determination by flame atomic absorption spectrometry. The magnetic sorbent is composed of carbon-coated magnetite nanoparticles (Fe3O4-C) synthesized by a single-step solvothermal reaction and then loaded with the chelator 1-(2-thiazolylazo)-2-naphthol. It was used for the preconcentration of Cu(II) ions from water and food samples. The effects of pH value and volume of sample, of type and volume of eluent, and of interfering ions were investigated. Under the optimum conditions, the calibration graph is linear in the 4.0–400 μg L−1 concentration range, with a detection limit of 1.5 μg L−1. The method was validated by using a certified reference material (NIST 1566b; oyster tissue) and applied to the determination of trace copper in spiked water and food samples. (author)

  18. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

    Science.gov (United States)

    Cui, Xianjin; Belo, Salome; Krüger, Dirk; Yan, Yong; de Rosales, Rafael T.M.; Jauregui-Osoro, Maite; Ye, Haitao; Su, Shi; Mathe, Domokos; Kovács, Noémi; Horváth, Ildikó; Semjeni, Mariann; Sunassee, Kavitha; Szigeti, Krisztian; Green, Mark A.; Blower, Philip J.

    2014-01-01

    Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu. PMID:24768194

  19. Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(II) ions from water.

    Science.gov (United States)

    Venkateswarlu, Sada; Yoon, Minyoung

    2015-11-14

    Mercury is considered one of the most notorious global pollutants due to its high toxicity and widespread use in industry. Although many materials have been developed for the removal of mercury for water purification, most of these materials are difficult to reuse, which may lead to an increase in the mercury handling expense. Therefore, new sustainable materials that can be easily recycled and are highly efficient for the removal of mercury are required. Herein, we report the surfactant-free green synthesis of Fe3O4 magnetic nanoparticles (MNPs) using a watermelon (Citrullus lanatus) rind extract. The Fe3O4 MNPs were further functionalized with 3,4-dihydroxyphenethylcarbamodithioate (DHPCT) and applied to the removal of Hg(ii). Evaluation of the mercury removal efficiency and the amount adsorbed by DHPCT@Fe3O4 MNPs demonstrated a high Hg(ii) removal efficiency (98%) with a maximum Hg(ii) adsorption capacity of 52.1 mg g(-1). Systematic studies of the adsorption mechanism and selectivity suggest that the soft ligand (DHPCT) can preferentially coordinate with the soft metal ion (Hg(ii)) resulting in selective mercury removal. The developed DHPCT@Fe3O4 MNPs were readily recycled several times using an external magnet by exploiting their ferromagnetic character, without a significant decline in the Hg(ii) removal efficiency. This study provides a new insight into the preparation of a highly efficient adsorbent for Hg(ii) removal by an eco-friendly method. PMID:26436867

  20. [Solid-phase extraction based on mesoporous Fe3O4 @ mSiO2 @ Cu2+ magnetic nanoparticles coupled with high performance liquid chromatography for the determination of microcystins in water samples].

    Science.gov (United States)

    Sun, Hong; Lou, Dawei; Lian, Lili; Han, Xue; Guo, Tingxiu; Chen, Tujun

    2015-05-01

    Mesoporous magnetic nanoparticles of Fe3O4 @ mSiO2 @ Cu2+ were synthesized by two methods of hydrothermal synthesis and room temperature synthesis. The synthesized mesoporous Fe3O4 @ mSiO2 @ Cu2+ nanoparticles presented uniform sizes, good magnetic properties and specific selectivity. In this work, a novel magnetic solid-phase extraction (MSPE) method based on mesoporous Fe3O4 @ mSiO2 @ Cu2+ nanoparticles (NPs) coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction of trace amount of microcystin-LR (MC-LR) in water samples. The MSPE extraction conditions and HPLC conditions were optimized. The results showed that good linear relationship (r = 0.999 4) was obtained between peak area and mass concentration of MC-LR in the range of 0.1-15 µg/L. The limit of detection was 0.025 µg/L, and the limit of quantification was 0.082 µg/L. Furthermore, this method was used for the analysis of algal toxins in water samples with the recovery of 78%. The results indicated that Fe3O4 @ mSiO2 @ Cu2+ magnetic nanoparticles were good pretreatment alternatives for the concentration of microcystin-LR in water samples. PMID:26387200

  1. Study of the intra-arterial distribution of Fe3O4 nanoparticles in a model of colorectal neoplasm induced in rat liver by MRI and spectrometry

    Directory of Open Access Journals (Sweden)

    Echevarria-Uraga JJ

    2012-05-01

    Full Text Available José J Echevarria-Uraga,1 Ignacio García-Alonso,2 Fernando Plazaola,3 Maite Insausti,3 Néstor Etxebarria,3 Alberto Saiz-López,4 Begoña Fernández-Ruanova51Radiology Department, Hospital de Galdakao-Usánsolo, Bizkaia, Spain; 2Experimental Surgery Laboratory, Medicine Faculty, University of the Basque Country, Bizkaia, Spain; 3Faculty of Science and Technology, University of the Basque Country, Bizkaia, Spain; 4Pathology Department, Hospital de Galdakao-Usánsolo, Bizkaia, Spain; 5Osatek SA Unidad del Hospital de Galdakao-Usánsolo, Bizkaia, SpainPurpose: To evaluate, in an experimental model, the reliability of MRI for determining whether a higher iron concentration was obtained in tumor tissue than in normal liver parenchyma after intra-arterial administration of Fe3O4 lipophilic nanoparticles.Materials and methods: WAG/RijCrl rats were inoculated in the left hepatic lobe with 25,000 syngeneic CC-531 colon adenocarcinoma cells, after which they were randomized into two groups: control (CG and infused (IG. After confirming tumor induction, the IG rats received intra-arterial suspensions of Fe3O4 nanoparticles (2.6 mg in Lipiodol® (0.15 mL. To calculate the iron concentration, [Fe], in the tumor and liver tissues of both groups of rats, measurements of signal intensity from the tumors, healthy liver tissue, and paravertebral muscles were made on a 1.5T MRI system in gradient-echo DP* and T2*-weighted sequences. In addition, samples were collected to quantify the [Fe] by inductively coupled plasma-mass spectrometry (ICP-MS, as well as for histological analysis. Statistical analysis was performed with non-parametric tests, and Bland–Altman plots were produced; P values <0.05 were considered significant.Results: In the CG rats (n = 23, the mean [Fe] values estimated by MRI and ICP-MS were 13.2 µmol • g-1 and 5.9 µmol • g-1, respectively, in the tumors, and 19.0 µmol • g-1 and 11.7 µmol • g-1, respectively, in the hepatic tissue. In the IG rats (n = 19, the values obtained by MRI and ICP-MS were 148.9 µmol • g-1 and 9.4 µmol • g-1, respectively, in the tumors, and 115.3 µmol • g-1 and 11.6 µmol • g-1, respectively, in the healthy liver tissue. The IG results revealed a clear disagreement between MRI and ICP-MS. In the comparative analysis between the groups regarding the [Fe] values obtained by ICP-MS, significant differences were found for the tumor samples (P < 0.001, but not for the hepatic tissue (P = 0.92. Under microscopy, scattered intravascular deposits of nanoparticles were observed, especially in the tumors.Conclusion: ICP-MS demonstrated significant uptake of exogenous iron in tumor tissue. MRI was useful for quantifying the [Fe] in the different tissues in the CG animals, but not in the IG animals. Although the irregular distribution of nanoparticles caused an important bias in the measurements obtained by MRI, the relative increase in iron content inside the tumor was suggested.Keywords: liver neoplasm, hepatic arterial infusion, ferromagnetic particle, iron concentration, MRI, spectrometry 

  2. Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan

    International Nuclear Information System (INIS)

    Highlights: ? We have demonstrated a facile method to prepare Fe3O4 nanoparticles and chitosan-coated Fe3O4 nanoparticles. ? ?-Fe2O3 sensors prepared from those Fe3O4 materials have been investigated and compared. ? The results show potential application of ?-Fe2O3 for CO sensors in environmental monitoring. - Abstract: In this paper, Fe3O4 and chitosan (CS)-coated Fe3O4 nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe3O4 had a cubic spinal structure with irregular shapes and average diameters of 10–20 nm. The surface states and magnetic properties of Fe3O4-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe3O4-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe3O4 and CS-coated Fe3O4 nanoparticles were used in the fabrication of ?-Fe2O3 based gas sensors. Gas sensing measurements revealed that the ?-Fe2O3 gas sensor prepared from Fe3O4-CS had a better response to H2, CO, C2H5OH, and NH3 compared with the device prepared from pristine Fe3O4. Furthermore, the ?-Fe2O3 sensor prepared from Fe3O4-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  3. Anomalous Magnetic Properties of Nanoparticles Arising from Defect Structures : Topotaxial Oxidation of Fe1-xO|Fe3-?O4 Core|Shell Nanocubes to Single-Phase Particles

    OpenAIRE

    Wetterskog, Erik; Tai, Cheuk-Wai; Grins, Jekabs; Bergström, Lennart; Salazar-Alvarez, German

    2013-01-01

    Here we demonstrate that the anomalous magnetic properties of iron oxide nanoparticles are correlated with defects in their interior. We studied the evolution of microstructure and magnetic properties of biphasic core|shell Fe1–xO|Fe3??O4 nanoparticles synthesized by thermal decomposition during their topotaxial oxidation to single-phase nanoparticles. Geometric phase analysis of high-resolution electron microscopy images reveals a large interfacial strain at the core|shell interface and the ...

  4. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    International Nuclear Information System (INIS)

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe3O4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138?CD34? cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138?CD34? cells were evaluated by a variety of assays in vitro. The results showed that the CD138?CD34? cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138?CD34? cells. PTX-NPs significantly inhibited CD138? CD34? cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138?CD34? phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138?CD34? CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation

  5. Determination of triacetone triperoxide with a N,N-dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles.

    Science.gov (United States)

    Can, Ziya; Üzer, Ay?em; Türkekul, Kader; Erça?, Erol; Apak, Re?at

    2015-10-01

    The explosive triacetone triperoxide (TATP) can be easily manufactured from readily accessible reagents and is extremely difficult to detect, owing to the lack of UV absorbance, fluorescence, or facile ionization. The developed method is based on the acidic hydrolysis of TATP into H2O2, pH adjustment to 3.6, and the addition of magnetite nanoparticles (Fe3O4 MNPs) to the medium to produce hydroxyl radicals from H2O2, owing to the peroxidase-like activity of MNPs. The formed radicals converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe to the colored DMPD(+) radical cation, the optical absorbance of which was measured at a wavelength of 554 nm. The molar absorptivity (?) of the method for TATP was 21.06 × 10(3) L mol(-1) cm(-1). The colored DMPD(+) product in solution could be completely retained on a cation-exchanger Nafion membrane, constituting a colorimetric sensor for TATP and increasing the analytical sensitivity. The proposed method did not respond to a number of hand luggage items like detergent, sweetener, sugar, acetylsalicylic acid (aspirin), and paracetamol-caffeine-based analgesic drugs. On the other hand, TATP could be almost quantitatively recovered from a household detergent and sweetener that can be used as camouflage for the analyte. Neither common soil and groundwater ions (e.g., Ca(2+), Mg(2+), K(+), Cl(-), SO4(2-), and NO3(-)) at 100-fold ratios nor nitro-explosives of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) at 10-fold amounts interfered with the proposed assay. The method was statistically validated against the standard GC/MS reference method. PMID:26356315

  6. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples

    International Nuclear Information System (INIS)

    Highlights: ? A new sorbent based on functionalized magnetite nanoparticles with quercetin is reported. ? The quercetin based magnetic nanoparticles could be used as a sorbent to remove toxic uranyl ions from water samples. ? The sorbent provides a rapidly and easy separation of uranyl ions only by using a permanent magnet. ? This technique is considered more efficient separation compared to conventional filtering or centrifuging methods for the removing of the sorbent. - Abstract: In this study, silica-coated magnetic nanoparticles modified with quercetin were synthesized by a sol–gel method. These magnetic nanoparticles were assessed as a new solid phase sorbent for extraction of uranyl ions from aqueous solutions. The crystal and chemical structures and magnetic property of the new sorbent were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FT-IR), and vibration sample magnetometer (VSM). The experimental parameters affecting the extraction efficiency of uranyl ions from aqueous solutions using the synthesized sorbent were optimized by means of the response surface methodology. The adsorption equilibrium of uranyl ions onto the sorbent was explained by Langmuir isotherm and maximum monolayer adsorption capacity was found 12.33 mg/g. The synthesized sorbent was applied to extraction of uranyl ions from different water samples.

  7. Bio and Nanomaterials Based on Fe3O4

    Directory of Open Access Journals (Sweden)

    Jia-Kun Xu

    2014-12-01

    Full Text Available During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.

  8. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment

    International Nuclear Information System (INIS)

    In this study magnetic fluids were manufactured by the adsorption of chitosan (CS) and O-carboxymethyl chitosan (OCMCS) on Fe3O4 nanoparticles to be used as hyperthermic thermoseeds. Fe3O4 particles were characterized by physico-chemical methods such as: thermogravimetry analysis (TGA), x-ray diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The SEM images and XRD patterns showed that the synthesized Fe3O4 nanoparticles were of single phase and spherical shape with 10–15?nm in diameter. The VSM measurements showed that Fe3O4 particles were superparamagnetic with saturation magnetization of 70?emu?g?1. The adsorbed layers of CS and OCMCS on the magnetite surface (Fe3O4/CS) and (Fe3O4/OCMCS) were confirmed by FTIR, Raman spectra and SEM. In the ac magnetic field of 80?Oe and 236?kHz, the saturation heating temperatures of the sample Fe3O4/CS and Fe3O4/OCMCS were 100 and 98?°C, respectively. At the same concentration of Fe3O4 nanoparticles in suspension, the two magnetic fluids exhibited quite high heating capacity, with different behaviors of concentration dependence. The Fe3O4/CS and Fe3O4/OCMCS nanoparticles would serve as good thermoseeds for localized hyperthermia treatment of cancers

  9. Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation

    International Nuclear Information System (INIS)

    Synthetic sodium type A zeolite bearing Fe2O3 and Fe3O4 nanoparticles composites have been prepared by means of a coprecipitation method with two different activation methodologies, one using Sn and the other using Sn/Pd nanoparticles as activators. Sn activation generates hematite nanoparticles while Sn/Pd produces magnetite nanoparticles. Amount of HCl used during the activation of the zeolite with SnCl2 showed a correlation between the stannous activating species and the particle size. Both Sn and Sn–Pd activated nanocomposites show nearly narrow size distributions but only those iron oxides obtained with Sn–Pd showed supermagnetism.

  10. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

    International Nuclear Information System (INIS)

    The functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2–SO3H) that can be applied as an organic–inorganic hybrid heterogeneous catalyst. The used Fe3O4 magnetic nanoparticles are 18–30 nm sized that was rapidly functionalized and can be used as catalyst in organic synthesis. The prepared nanoparticles were characterized by X-ray diffraction analysis, magnetization curve, scanning electron microscope, dynamic laser scattering, and FT-IR measurements. The resulting immobilized catalysts have been successfully used in the synthesis of 1,8?dioxo-octahydroxanthene derivatives under solvent free condition. This procedure has many advantages such as; a much milder method, a shorter reaction time, a wide range of functional group tolerance, and absence of any tedious workup or purification. Other remarkable features include the catalyst can be reused at least five times without any obvious change in its catalytic activity. This procedure also avoids hazardous reagents/solvents, and thus can be an eco-friendly alternative to the existing methods.Graphical AbstractA highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

  11. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds.

    Science.gov (United States)

    Tuo, Ya; Liu, Guangfei; Dong, Bin; Zhou, Jiti; Wang, Aijie; Wang, Jing; Jin, Ruofei; Lv, Hong; Dou, Zeou; Huang, Wenyu

    2015-01-01

    Magnetically recoverable noble metal nanoparticles are promising catalysts for chemical reactions. However, the chemical synthesis of these nanocatalysts generally causes environmental concern due to usage of toxic chemicals under extreme conditions. Here, Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites are biosynthesized under ambient and physiological conditions by Shewanella oneidensis MR-1. Microbial cells firstly transform akaganeite into magnetite, which then serves as support for the further synthesis of Pd, Au and PdAu nanoparticles from respective precursor salts. Surface-bound cellular components and exopolysaccharides not only function as shape-directing agent to convert some Fe3O4 nanoparticles to nanorods, but also participate in the formation of PdAu alloy nanoparticles on magnetite. All these three kinds of magnetic nanocomposites can catalyze the reduction of 4-nitrophenol and some other nitroaromatic compounds by NaBH4. PdAu/Fe3O4 demonstrates higher catalytic activity than Pd/Fe3O4 and Au/Fe3O4. Moreover, the magnetic nanocomposites can be easily recovered through magnetic decantation after catalysis reaction. PdAu/Fe3O4 can be reused in at least eight successive cycles of 4-nitrophenol reduction. The biosynthesis approach presented here does not require harmful agents or rigorous conditions and thus provides facile and environmentally benign choice for the preparation of magnetic noble metal nanocatalysts. PMID:26310728

  12. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles

    Science.gov (United States)

    Rao, Ashit; Bankar, Ashok; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-03-01

    The removal of hexavalent chromium [Cr (VI)], an important ground water pollutant by phyto-inspired Fe0/Fe3O4 nanocomposite-modified cells of Yarrowia lipolytica (NCIM 3589 and NCIM 3590), was investigated. Electron microscopy and magnetometer studies indicated an effective modification of yeast cell surfaces by the nanocomposites. The effect of pH, temperature, agitation speed, contact time and initial metal ion concentration on the removal of Cr (VI) was determined. The specific uptake values at pH 2.0 were 186.32 ± 3.17 and 137.31 ± 4.53 mg g- 1 for NCIM 3589 and NCIM 3590, respectively, when 1000 mg L- 1 of metal ion concentrations were used. The equilibrium data fitted to Scatchard, Langmuir and linearized Freundlich models suggesting that adsorption played a role in the removal of Cr (VI) ions. The surface modified yeast cells displayed higher values of Langmuir and Scatchard coefficients than the unmodified cells indicating that the former were more efficient in Cr (VI) removal. The enhanced detoxification of Cr (VI) ions by this composite material could be attributed to the reductive power of the Fe0/Fe3O4 nanocomposites as well the yeast cell surface functional groups.

  13. Cellular biosensor based on red blood cells immobilized on Fe3O4 Core/Au Shell nanoparticles for hydrogen peroxide electroanalysis

    International Nuclear Information System (INIS)

    A core/shell Fe3O4/gold nanocomposite was prepared for immobilizing of red blood cells on a gold electrode via conjugation to a cysteamine monolayer. The hemoglobin in the film undergoes direct electron transfer at a formal potential of -330 mV and displays excellent electrocatalytic response to hydrogen peroxide, with a linear range from 9. 6 ?M to 2. 6 mM. The limit of detection is 4. 4 ?M (S/N = 3). The Michaelis-Menten constant is 120 ?M. Owing to its good biocompatibility, the biosensor exhibits good stability and acceptable reproducibility. The nanocomposite film provided a good matrix for the immobilization of cells and for the preparation of cellular biosensors. (author)

  14. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate

    International Nuclear Information System (INIS)

    Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of 'smart' soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA.Fe3O4). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe3O4). Deswelling kinetic studies that were carried out at ?60 oC in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future exploitation in the biomedical field. - Research Highlights: ? Fabrication of novel, dual stimuli-responsive conetworks based on hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive), 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) and oleic-acid-coated magnetite nanoparticles (OA.Fe3O4). ? Tuneable superparamagnetic behavior. ? Thermoresponsive properties.

  15. Bio and Nanomaterials Based on Fe3O4

    OpenAIRE

    Jia-Kun Xu; Fang-Fang Zhang; Jing-Jing Sun; Jun Sheng; Fang Wang; Mi Sun

    2014-01-01

    During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispers...

  16. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode

    International Nuclear Information System (INIS)

    A disposable biosensor for determination of hydrogen peroxide (H2O2) based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase (HRP) and graphene sheets (GS)–Nafion film modified screen-printed carbon electrode (SPCE) was fabricated. To construct the H2O2 biosensor, GS–Nafion solution was first dropped onto the surface of SPCE. Subsequently, the biocomposites of Fe3O4–Au magnetic nanoparticles coated HRP were adsorbed on the surface with the aid of an external magnetic field to fabricate the SPCE|GS–Nafion/Fe3O4–Au-HRP electrode. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry(i–t curve) were employed to study the synthesis of GS, the construction processes and electrochemical properties of the biosensor. Under optimized experimental conditions, CV demonstrated that the direct electron transfer (DET) of HRP was realized. The biosensor had an excellent performance in terms of electrocatalytic reduction toward H2O2. The linear response of the biosensor to H2O2 was in the concentration range of 2.0 × 10?5 mol/L to 2.5 × 10?3 mol/L (R = 0.9994) with a detection limit of 1.2 × 10?5 mol/L (S/N = 3). The proposed electrochemical biosensor was sensitive, rapid, disposable with low cost, fewer sample volume, easy preparation and strong anti-interference, which showed great promise for screen-determination of trace H2O2 in real samples

  17. Preparation and characterization of a magneto-polymeric nanocomposite: Fe3O4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    International Nuclear Information System (INIS)

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) 'plastic films' and (2) magnetic plastic films 'magneto-polymeric nanocomposites' were prepared. Precursor solutions or 'plastisols' used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe3O4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis

  18. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions

    International Nuclear Information System (INIS)

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV–vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt > Au > Ag > CuO > Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles

  19. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    Science.gov (United States)

    Padil, Vinod Vellora Thekkae; ?erník, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. PMID:25636139

  20. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery.

    Science.gov (United States)

    Ming, Hai; Ming, Jun; Oh, Seung-Min; Tian, Shu; Zhou, Qun; Huang, Hui; Sun, Yang-Kook; Zheng, Junwei

    2014-09-10

    A simple surfactant-assisted reflux method was used in this study for the synthesis of cocklebur-shaped Fe2O3 nanoparticles (NPs). With this strategy, a series of nanostructured Fe2O3 NPs with a size distribution ranging from 20 to 120 nm and a tunable surface area were readily controlled by varying reflux temperature and the type of surfactant. Surfactants such as cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (F127) and sodium dodecyl benzenesulfonate (SDBS) were used to achieve large-scale synthesis of uniform Fe2O3 NPs with a relatively low cost. A new composite of Fe3O4@CFx was prepared by coating the primary Fe2O3 NPs with a layer of F-doped carbon (CFx) with a one-step carbonization process. The Fe3O4@CFx composite was utilized as the anode in a lithium ion battery and exhibited a high reversible capacity of 900 mAh g(-1) at a current density of 100 mA g(-1) over 100 cycles with 95% capacity retention. In addition, a new Fe3O4@CFx/LiNi(0.5)Mn(1.5)O4 battery with a high energy density of 371 Wh kg(-1) (vs cathode) was successfully assembled, and more than 300 cycles were easily completed with 66.8% capacity retention at 100 mA g(-1). Even cycled at the high temperature of 45 °C, this full cell also exhibited a relatively high capacity of 91.6 mAh g(-1) (vs cathode) at 100 mA g(-1) and retained 54.6% of its reversible capacity over 50 cycles. Introducing CFx chemicals to modify metal oxide anodes and/or any other cathode is of great interest for advanced energy storage and conversion devices. PMID:25141154

  1. Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV fenton-like digestion and solid phase extraction.

    Science.gov (United States)

    Ai, Xi; Wu, Li; Zhang, Mengni; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2014-08-27

    A UV Fenton-like digestion method was developed first time for a complete digestion of milk samples by using 1.6 g L(-1) Fe3O4 magnetic nanoparticles, 0.2% (v/v) nitric acid, and 6% (w/w) H2O2. During the digestion, the liberated As-, Sb-, and Bi-containing species were preconcentrated onto the surface of Fe3O4 magnetic nanoparticles, which were conveniently separated with a hand-held magnet and subsequently dissolved in hydrochloric acid prior to hydride generation atomic fluorescence spectrometric detection. Owing to the integration of UV Fenton-like digestion, solid phase extraction, and magnetic separation into a single step, the developed method significantly simplifies sample preparation steps and reduces chemical consumption and hazardous waste. Limits of detection of 0.0015, 0.0022, and 0.0025 ?g L(-1) were obtained for As, Sb, and Bi, respectively, using a 50 mL milk sample. The method was applied to the determination of these elements in a Certified Reference Material and milk samples. PMID:25072530

  2. Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries.

    Science.gov (United States)

    Lei, Cheng; Han, Fei; Sun, Qiang; Li, Wen-Cui; Lu, An-Hui

    2014-01-01

    In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of "confined nanospace pyrolysis". The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod-shaped ?-FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice-grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open-ended nanostructure delivers a high specific capacity (ca. 864 mA h g(-1) at 1 A g(-1)), excellent rate capability with a capacity of about 582 mA h g(-1) at 2 A g(-1), and a high Coulombic efficiency (>97%). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high-performance Li-ion batteries. PMID:24273057

  3. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution

    International Nuclear Information System (INIS)

    Silica-coated magnetite nanoparticles have been synthesized successfully using a one-step electrochemical method. In this method, pure iron in a dilute aqueous sodium silicate solution that served as a silica precursor was electrooxidized. We show that the presence of silicate can significantly enhance the purity of the magnetite formed. Impurities in the form of FeOOH (found in the magnetite prepared in water) are not found. The magnetite nanoparticles produced by this method are nearly spherical with a mean size ranging from 6 to 10 nm, which is lower than the size of particles prepared in water, and this size range depends on the applied voltage and the sodium silicate concentration. The magnetite nanoparticles exhibit superparamagnetic properties with saturation magnetization ranging from 15 to 22 emu g?1, which is lower than the saturation magnetization of the Fe3O4 bulk materials (Ms = 92 emu g?1). This facile method appears to be promising as a synthetic route for producing silica-coated magnetite nanoparticles.

  4. Vanillin-molecularly targeted extraction of stir bar based on magnetic field induced self-assembly of multifunctional Fe3O4@Polyaniline nanoparticles for detection of vanilla-flavor enhancers in infant milk powders.

    Science.gov (United States)

    Wu, Jinhua; Yang, Zaiyue; Chen, Ning; Zhu, Wanying; Hong, Junli; Huang, Changgao; Zhou, Xuemin

    2015-03-15

    A molecularly imprinted stir bar was constructed based on Fe3O4@Polyaniline nanoparticles with magnetic field-induced self-assembly process. The monomer, methacrylic acid, was pre-assembled into the pre-polymers with vanillin as template by the formation of hydrogen bonds. After that, the magnetic complexes were generated by the hydrogen bonding, the hydrophobic and ?-? interaction between the pre-polymers and Fe3O4@Polyaniline. The complexes were adsorbed on the surface of magnetic stir bar under the magnetic induction, and the coating of vanillin-molecularly imprinted polymers was generated by the one-step copolymerization basing on the cross linking of ethylene glycol dimethacrylate. The molecular imprinting stir bar showed superior selectivity and fast binding kinetics for vanillin, and was used for the enrichment of vanilla-flavor enhancers (vanillin, ethyl maltol and methyl vanillin) in infant milk powders. The results measured by HPLC-UV exhibited good linear ranges of 0.01-100, 0.02-100 and 0.03-100?gmL(-1) with the limit of detection of 2.5-10.0ngmL(-1), and the recoveries were 94.7-98.9%, 82.1-96.7% and 84.5-93.2% with RSD<7.2% for the three enhancers, respectively. PMID:25514645

  5. Maximizing surface-enhanced Raman scattering sensitivity of surfactant-free Ag-Fe3O4 nanocomposites through optimization of silver nanoparticle density and magnetic self-assembly

    Science.gov (United States)

    Bao, Zhi Yong; Dai, Jiyan; Yuan Lei, Dang; Wu, Yucheng

    2013-09-01

    Magnetic composite nanomaterials consisting of more than two functional constituents have been attracting much research interests due to the realization of multiple functionalities in a single entity. In particular, integration of ferromagnetic oxides and noble metal nanoparticles (NPs) in composites results in simultaneous magnetic activity and optical response where the optical property of the whole system could be modulated by application of an external magnetic field. In this work, we prepared Ag NPs-coated Fe3O4 microspheres as a novel surfactant-free surface-enhanced Raman scattering (SERS) substrate through a solid-phase thermal decomposition reaction. The SERS sensitivity of the fabricated nanocomposites is maximized by adjusting the size and density of Ag NPs supported on the Fe3O4 microspheres and further increased by magnetic-field-directed self-assembly of the composite substrates, with both effects attributed to the efficient generation of plasmonic near-field "hot" spots. At the optimal conditions, the prepared substrate is capable of detecting rhodamine 6G molecules at a concentration down to 10-12 M, thus demonstrating the great potential of using bifunctional nanocomposites as an excellent candidate for ultra-high sensitive Raman spectroscopy and biosensors. We also reveal the underlying mechanisms responsible for the observed SERS enhancements through full-wave numerical simulations.

  6. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration

    International Nuclear Information System (INIS)

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe3O4/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe3O4 nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe3O4 nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe3O4/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe3O4, CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe3O4 loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe3O4 nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe3O4 nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe3O4 nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  7. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration.

    Science.gov (United States)

    Wei, Yan; Zhang, Xuehui; Song, Yu; Han, Bing; Hu, Xiaoyang; Wang, Xinzhi; Lin, Yuanhua; Deng, Xuliang

    2011-10-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe(3)O(4)/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe(3)O(4) nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe(3)O(4) nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe(3)O(4)/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe(3)O(4), CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe(3)O(4) loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe(3)O(4) nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe(3)O(4) nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe(3)O(4) nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe(3)O(4)/CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis. PMID:21893702

  8. Studies on the synthesis and microwave absorption properties of Fe3 O4/polyaniline FGM

    Science.gov (United States)

    Han, Xiao; Wang, Yuan-Sheng

    2007-12-01

    Electrically conducting polyaniline (PANI)-magnetic oxide (Fe3 O4) composites were synthesized by emulsion polymerization in the presence of dodecyl benzene sulfonic acid (DBSA) as the surfactant and dopant and ammonium persulfate (APS) as the oxidant. Transmission electron microscopy (TEM) indicates that the composite has a magnetic core and an electric shell and the modification has prevented the aggregation of Fe3 O4 nanoparticles effectively. The electromagnetic parameter measurements (?'', ?', ?'' and ?') in the range of 2-18 GHz prove that Fe3 O4 in the Fe3 O4/PANI/DBSA is responsible for the electric and ferromagnetic behavior of the composites. As a result, the electromagnetic parameters can be designed by adjusting the content of the Fe3 O4. The microwave absorption of functionally graded material (FGM) was simulated by the computer according to the principle of impedance match and the calculated results agreed quite well with the experimentally measured data (R4 GHz).

  9. Studies on the synthesis and microwave absorption properties of Fe3 O4/polyaniline FGM

    International Nuclear Information System (INIS)

    Electrically conducting polyaniline (PANI)-magnetic oxide (Fe3 O4) composites were synthesized by emulsion polymerization in the presence of dodecyl benzene sulfonic acid (DBSA) as the surfactant and dopant and ammonium persulfate (APS) as the oxidant. Transmission electron microscopy (TEM) indicates that the composite has a magnetic core and an electric shell and the modification has prevented the aggregation of Fe3 O4 nanoparticles effectively. The electromagnetic parameter measurements (?-prime, ?', ?-prime and ?') in the range of 2-18 GHz prove that Fe3 O4 in the Fe3 O4/PANI/DBSA is responsible for the electric and ferromagnetic behavior of the composites. As a result, the electromagnetic parameters can be designed by adjusting the content of the Fe3 O4. The microwave absorption of functionally graded material (FGM) was simulated by the computer according to the principle of impedance match and the calculated results agreed quite well with the experimentally measured data (R4 GHz)

  10. Core-Shell Nanostructure of ?-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl Orange

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2011-01-01

    Full Text Available Fe3O4 nanoparticle was synthesized in the solution involving water and ethanol. Then, ?-Fe2O3 shell was produced in situ on the surface of the Fe3O4 nanoparticle by surface oxidation in molten salts, forming ?-Fe2O3/Fe3O4 core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe3O4 nanoparticles were oxidized. Furthermore, the obtained ?-Fe2O3/Fe3O4 core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed that ?-Fe2O3/Fe3O4 nanoparticles were more efficient than the self-prepared ?-Fe2O3 nanoparticles. At the same time, the photocatalyzer was recyclable by applying an appropriate magnetic field.

  11. A survey of approaches for morphological, optical, and transport characterization of Fe3O4 and ?-Fe2O3 nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticles’ structure, size, morphology, and surface conditions have significant influence on their performance and considerable impact on their application in biosystems. In this study some methods of nanoparticle analysis including structural x-ray diffraction, scanning electron and transmission electron microscopy size distribution and morphology characterization, superconducting quantum interference device and Faraday method magnetic and temperature dependence of specific resistance measurements, infrared spectroscopy, and laser light scattering based estimation of particle size distribution are surveyed. These methods illustrate the importance of a versatile approach to nanoparticle characterization, as the basis for their selection for particular applications. Since the methods of synthesis crucially affect the nanoparticle characteristics, the presented characterization techniques could also help to choose the most appropriate one. (paper)

  12. A survey of approaches for morphological, optical, and transport characterization of Fe3O4 and ?-Fe2O3 nanoparticles

    Science.gov (United States)

    Mamula Tartalja, Danica; Sre?kovi?, Milesa

    2014-09-01

    Nanoparticles’ structure, size, morphology, and surface conditions have significant influence on their performance and considerable impact on their application in biosystems. In this study some methods of nanoparticle analysis including structural x-ray diffraction, scanning electron and transmission electron microscopy size distribution and morphology characterization, superconducting quantum interference device and Faraday method magnetic and temperature dependence of specific resistance measurements, infrared spectroscopy, and laser light scattering based estimation of particle size distribution are surveyed. These methods illustrate the importance of a versatile approach to nanoparticle characterization, as the basis for their selection for particular applications. Since the methods of synthesis crucially affect the nanoparticle characteristics, the presented characterization techniques could also help to choose the most appropriate one.

  13. NOVEL SYNTHESIS OF PEG COATED IRON NANOPARTICLES (Fe3O4 AND IT’S EVALUATION OF CONTROLLED RELEASE KINETICS IN DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Doppalapudi Swathi

    2014-06-01

    Full Text Available Magnetic Nanoparticles (MNPs because of their high magnetic responsiveness, biodegradability, high delivery efficiency and potential targeting function is a possible material as drug delivery system, since drug –loaded MNPs can be directly injected in to solid tumors and are expected to be held in place by an external magnetic field and to release the drug in a controlled manner. In the present research study Synthesis, Characterization and in vitro rate studies of super paramagnetic Iron Nanoparticles coated with PEG has been carried out. The nanoparticle synthesized in the present study had an average particle size of ~ 30 nm. starch-based polysaccharide nanocarrier encapsulated with the drug i.e. THC and MNPs as anticancer drug delivery was constructed. This efficiently reduces tumor growth thus providing a proof of concept for the utilization of this formulation in cannabinoid-based anti-cancer therapies. Evaluation of THC loaded magnetic nanoparticles was successfully carried out and correlation coefficient (R2 value 0.999 and drug released was found to be 97% for 48hrs at pH7.0. The entrapment efficiency and drug loading of THC-MNPs in the starch based nanoparticles was found to be high.

  14. Electrostatic vs steric stabilization of Fe3O4 and Co0.5Fe2.5O4 nanoparticles

    Science.gov (United States)

    Puscasu, E.; Domocos, A.; Leostean, C.; Turcu, R.; Brinza, F.; Nadejde, C.; Iacomi, F.; Creanga, D.

    2015-12-01

    Magnetic nanoparticles of magnetite/maghemite and cobalt ferrite Co0.5Fe2.5O4 were stabilized in deionized water with perchloric acid and, respectively, sodium oleate in order to prevent agglomeration and sedimentation tendency aiming further biomedical applications. Results obtained through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Nanoparticle Tracking Analysis (NTA), and Vibrating Sample Magnetometry (VSM) were discussed comparatively for the four suspensions highlighting specific microstructural and magnetic features of each type of soft magnetic colloidal nanomaterial on the background of coprecipitation method adjusting. The results entitled us to plan in the next research stage biological tests focused on such nanoparticle suspensions impact on cell cultures.

  15. Acute Phase Pulmonary Responses to a Single Intratracheal Spray Instillation of Magnetite (Fe3O4) Nanoparticles in Fischer 344 Rats

    OpenAIRE

    Tada, Yukie; Yano, Norio; TAKAHASHI, Hiroshi; Yuzawa, Katsuhiro; ANDO, Hiroshi; Kubo, Yoshikazu; Nagasawa, Akemichi; Ogata, Akio; Nakae, Dai

    2012-01-01

    Iron nanomaterials are of considerable interest for application to nanotechnology-related fields including environmental catalysis, biomedical imaging, drug delivery and hyperthermia, because of their superparamagnetic characteristics and high catalytic abilities. However, information about potential risks of iron nanomaterials is limited. The present study assessed pulmonary responses to a single intratracheal spray instillation of triiron tetraoxide nanoparticles (magnetite) ...

  16. Calcein-functionalized Fe3O4-SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion

    International Nuclear Information System (INIS)

    Calcein was first covalently grafted onto the surface of magnetic silica nanoparticles to obtain a novel fluorescent nanoprobe for sensitive and selective determination of Cu(II) ion. The nanoparticles were synthesized in a two-step reaction under mild conditions and characterized using small-angle X-ray scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The nanoprobe also displays good selectivity over other metal ions and is highly stable under conditions of high ionic strength. The response to Cu(II) ranges from 80 nM to 1.25 ?M. The detection limit (LOD) is 43 nM which is lower than previously reported LODs. The probe can be regenerated by adding the complexing agent EDTA and also can be separated from a sample mixture by applying a magnetic field. We conclude that this method represents a new and convenient approach to the development of magnetic and reusable optical probes. (author)

  17. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier.

    Science.gov (United States)

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10-2000nM and 2-720?M for MO with a detection limit of 3nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained. PMID:26478286

  18. Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    In this study, we proposed a unique method for hollow Fe3O4 microspheres and confirmed their electrochemical properties as anode materials for lithium-ion batteries. Poly(MAA/EGDMA)/Fe3O4 core–shell microspheres were prepared by simple ionic attraction between hydrogel microspheres with negative charge and magnetic Fe3O4 nanoparticles under alkaline conditions. The poly(MAA/EGDMA) core spheres were removed by heat treatment in order to form the hollow structure of Fe3O4 microspheres. Their hollow structure prevents cracking of the electrode during the volume change of repetitive Li-ion insertion and extraction reactions and improves the Li-ion transfer during cycling. The morphologies and structure of the hollow Fe3O4 microspheres were confirmed by scanning electron microscopy, focused ion beam-scanning electron microscopy, transmission electron microscopy, optical microscopy and X-ray diffraction. The electrochemical performance of the composite electrode was evaluated by constant current charging and discharging, cyclic voltammetry and cycling performance at various cycling rates. The results showed excellent cycle stability compared with a composite electrode containing bare Fe3O4 nanoparticles. These results indicate that the unique structures of Fe3O4 microspheres contribute to the excellent life and high reversible capacity of the battery when they are used as an anode of a lithium-ion battery.

  19. Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC-MS/MS.

    Science.gov (United States)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Yuan, Li; Liu, Yi-Ming; Liang, Jian; Liao, Xun

    2015-04-15

    Oolong tea is an important member in tea family, which claims for various health benefits such as preventing obesity and improving lipid metabolism. In this work, using pancreatic lipase (PL) functionalised magnetic nanoparticles (PL-MNPs) as solid phase extraction absorbent in combination with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), we developed a method for rapid screening and identification of lipase inhibitors from oolong tea. Three PL ligands were selectively extracted and identified as (-)-epigallocatechin-3-O-gallate (EGCG), (-)-gallocatechin-3-O-gallate (GCG) and (-)-epicatechin-3-O-gallate (ECG). Their lipase inhibitory activities were significantly higher than those non-ligands. Structure-activity analysis revealed that the presence of a galloyl moiety in the structure was required for binding to PL-MNPs, and therefore, exhibiting a strong inhibition on the enzyme. Taking advantages of the specificity in enzyme binding and the convenience of magnetic separation, this method has great potential for fast screening of lipase inhibitors from natural resources. PMID:25466054

  20. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on ?-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Science.gov (United States)

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto ?-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11?U?g immobilized cellulase?1 at an ionic liquid concentration of 200?mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739?g?h?1?L?1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15?g?L?1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  1. Photodegradation of Methylene Blue by TiO2-Fe3O4-Bentonite Magnetic Nanocomposite

    OpenAIRE

    Wei Chen; Hongyao Xiao; Hang Xu; Tonggang Ding; Yanmei Gu

    2015-01-01

    Fe3O4-bentonite nanoparticles have been prepared by a coprecipitation technique under a nitrogen atmosphere. An aqueous suspension of bentonite was first modified with FeCl2 and FeCl3. TiO2 was then loaded onto the surface of the Fe3O4-bentonite by a sol-gel method. After sufficient drying, the colloidal solution was placed in a muffle furnace at 773 K to obtain the TiO2-Fe3O4-bentonite composite. The material has been characterized by scanning electron microscopy (SEM), X-ray diffraction (XR...

  2. Microwave absorption property of aligned MWCNT/Fe3O4

    International Nuclear Information System (INIS)

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe3O4 nanoparticles using the wet chemical method and the resulting MWCNT/Fe3O4 was then used as a filler in a MWCNT/Fe3O4/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe3O4 was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe3O4 to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe3O4 aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10–11 GHz range. The 5 wt% parallel aligned MWCNT/Fe3O4 showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz. - Highlights: • Multiwall carbon nanotube decorated with Fe3O4 nanoparticles (MWCNT/Fe3O4) using the wet chemical method. • MWCNT/Fe3O4 aligned in an epoxy resin matrix by being exposed to a weak magnetic field. • Aligned magnetic carbon nanotubes were parallel and perpendicular to the electric field of incident electromagnetic wave. • The effect of nanotubes orientation with respect to the electric field on the microwave absorption property of MWCNT/Fe3O4/epoxy resin composite was investigated. • We obtained that alignment of MWCNT/Fe3O4, parallel to incident electric field leads to a strong improvement in absorption property of composite

  3. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    International Nuclear Information System (INIS)

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO2. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  4. Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-κ-carrageenan nanoparticles.

    Science.gov (United States)

    Long, Jie; Xu, Enbo; Li, Xingfei; Wu, Zhengzong; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan; Zhan, Xiaobei

    2016-07-01

    The interactions between pullulanase and chitosans of different molecular weights (Mw) were comprehensively studied, and their applications in pullulanase immobilization onto Fe3O4-κ-carrageenan nanoparticles upon chitosan-pullulanase complexation were also evaluated. Chitosan (CS) complexation with pullulanase was found to be dependent on pH and chitosan Mw. The critical pH of structure-forming events during complexation shifted significantly (p<0.05) to a lower pH with a low Mw chitosan (50kDa) compared to other chitosan types. Binding constants for the chitosan-pullulanase interaction increased in the following order: CS-500

  5. Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Mashhadizadeh, Mohammad Hossein; Amoli-Diva, Mitra; Shapouri, Mahmoud Reza; Afruzi, Hossein

    2014-05-15

    Extraction, pre-concentration, and determination of trace amounts of silver, cadmium, copper, mercury, and lead from some food samples were investigated by magnetic solid phase extraction using Fe3O4 nanoparticles coated with 3-(trimethoxysilyl)-1-propanethiol and modified with ethylene glycol bis-mercaptoacetate as a new adsorbent. SEM, X-ray diffraction, and FT-IR were used to characterise the adsorbent. Metal ions were measured using ICP-OES, except for mercury, which was determined by CV-AAS method. Various factors affecting the extraction and desorption of target metal ions were investigated. 1 mL of 1 mol/L HCl and 5% thiourea was used as eluent. The detection limits of 0.07, 0.06, 0.09, 0.01, and 0.08 ng/mL were obtained for silver, cadmium, copper, mercury, and lead with enrichment factors of 240, 294, 297, 291, and 236, respectively. The method was used for determination of target metal ions in rice, canned tuna fish, and tea leaves. PMID:24423536

  6. Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II)

    International Nuclear Information System (INIS)

    We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 ?g L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 ?g L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water. (author)

  7. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    Science.gov (United States)

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  8. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2?gFe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed. PMID:26674701

  9. Removal of Cr(VIin water by Fe3O4/IP6

    Directory of Open Access Journals (Sweden)

    CHEN Lu

    2014-12-01

    Full Text Available The preparation of functional ferroferric oxide (Fe3O4 magnetic nanoparticles is widely concerned.However,during their preparation,it is difficult to control the morphology of Fe3O4 nanoparticles and also a serious agglomeration exists,greatly restricting their applications.In present paper,an economical and ?green? reagent-phytic acid (IP6 can form micelle in the water and then the nanoparticles can grow in a soft template.The as-prepared Fe3O4/IP6 exhibited a good stability and high dispersion.Fe3O4/IP6 can chelate with Cr (VI due to its phosphate structure.The Fe3O4/IP6 chelated with Cr (VI can be removed conveniently from water using an external magnet.Fe3O4/IP6 nanocomposites have a good adsorption capacity to Cr (VI within a short time (10 min.Additionally,the effect of pH on adsorption efficiency was studied.

  10. The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite

    International Nuclear Information System (INIS)

    Highlights: •Electrochemical characteristics on nanoparticles and nanocomposites were compared. •The reasons for superior electrochemical activity of Fe3O4@Pt were discussed. •We report an excellent nitrite biosensor based on Fe3O4@Pt. •Electro-analytical parameters of nitrite at Fe3O4@Pt were evaluated in detail. -- Abstract: The electrochemical differences (such as charge transfer resistivity, electroactive surface, standard electron transfer rate constant, adsorption amount and analytical performance of nitrite sensor) between Fe3O4@Pt nanocomposites with two elements and core–shell structure and NPs (Fe3O4 nanoparticles and Pt nanoparticles) with single component and simple structure were investigated in detail. Above those investigations, it is believed that for the Fe3O4@Pt core–shell nanocomposites, Pt shell could provide more electro-catalytic activity while magnetic Fe3O4 core could provide larger surface area and facilitate the purification of nanocomposites. After that, Fe3O4@Pt nanocomposites modified GCE served as a nitrite sensor. Electrochemical parameters of nitrite at Fe3O4@Pt nanocomposites such as electron transfer number, electron transfer coefficient, standard heterogeneous rate constant and electron diffusion coefficient were evaluated. With the proposed electrochemical sensors, nitrite in tap water and orange juice could be detected. This investigation suggested that core–shell nanocomposites were superior for the fabrication of electrochemical sensors

  11. Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite

    International Nuclear Information System (INIS)

    Graphical abstract: We successfully developed an easier and more effective method to prepare a magnetic polymer nanocomposite by in situ radical polymerization of 2-hydroxyethyl methacrylate in the presence of the surface-modified Fe3O4 nanoparticles with a coupling agent in supercritical CO2. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal. Highlights: ? A magnetic polymer nanocomposite (Fe3O4-g-PHEMA) was successfully synthesized via in-situ dispersion polymerization in supercritical carbon dioxide. ? The Fe3O4 nanoparticles were well dispersed in the polymer matrix. ? The resulting nanocomposites have an excellent superparamagnetic property, which is favorable for their bio-applications. ? This new environmentally benign green synthetic route offers advantages of avoiding the use of organic solvents as well as easy separation of solvent. - Abstract: Poly(2-hydroxyethyl methacrylate) (PHEMA) and magnetic nanoparticle (Fe3O4) hybrid nanocomposite was synthesized by dispersion polymerization in supercritical carbon dioxide (scCO2) using a copolymeric stabilizer, poly[(2-dimethylamino)ethyl methacrylate-co-1H,1H-perfluorooctyl methacrylate] (PDMAEMA-co-PFOMA). Fe3O4 nanoparticles were first surface-modified with a silane coupling agent methacryloxypropyltrimethoxysilane (MPTMS), which provides a reactive C=C bond and can copolymerize with 2-hydroxyethyl methacrylate (HEMA). After immobilization of the silane coupling agent, polymer chains were successfully grafted onto the surface of Fe3O4, resulting in the formation of core-shell nanostructure. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal.

  12. Large scale growth and magnetic properties of Fe and Fe3O4 nanowires

    International Nuclear Information System (INIS)

    Fe and Fe3O4 nanowires have been synthesized by thermal decomposition of Fe(CO)5, followed by heat treatments. The Fe wires are formed through the aggregation of nanoparticles generated by decomposition of Fe(CO)5. A core-shell structure with an iron oxide shell and Fe core is observed for the as-prepared Fe wires. Annealing in air leads to the formation of Fe2O3/Fe3O4 wires, which after heat treatment in a N2/alcohol atmosphere form Fe3O4 wires with a sharp Verwey [Nature (London) 144, 327 (1939)] transition at 125 K. The Fe3O4 wires have coercivities of 261 and 735 Oe along the wire axis at RT and 5 K, respectively. The large increase of coercivity at 5 K as compared to RT is due to the increase of anisotropy resulting from the Verwey transition

  13. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  14. Synthesis and characterization of Fe3O4 magnetic nanofluid

    Scientific Electronic Library Online (English)

    Javier A, Lopez; Ferney, González; Flavio A, Bonilla; Gustavo, Zambrano; Maria E, Gómez.

    2010-06-01

    Full Text Available Los ferrofluidos son sistemas coloidales compuestos de nanopartículas magnéticas con mono-dominios magnéticos, dispersas en un líquido portador. En el presente trabajo, nanopartículas magnéticas de ferrita (Fe3O4) se sintetizaron por el método de co-precipitación química, y se recubrieron con ácido [...] oleico como agente surfactante. Las propiedades magnéticas de las nanopartículas en el ferrofluido fueron investigadas por medio de un magnetómetro de muestra vibrante (VSM) a temperatura ambiente, mostrando un comportamiento superparamagnético, característico de estas nanopartículas magnéticas. Esto se determinó a partir de la curva de histéresis de M vs H. La muestra en polvo se caracterizó por medio de Difracción de Rayos X. El patrón DRX resultante muestra la presencia del pico más intenso correspondiente a la orientación cristalográfica (311) de la fase espinel para las nanopartículas magnéticas de Fe3O4. El tamaño medio de las nanopartículas se determinó a partir del patrón de difracción de rayos X utilizando la aproximación de Scherrer, siendo este tamaño medio de 9,64 nm. La microscopía de fuerza atómica, se utilizó para visualizar la morfología de las nanopartículas y para determinar su diámetro. Las medidas de AFM muestran un diámetro promedio para las nanopartículas de D N = 15,3 nm La espectroscopia de absorción FTIR se utilizó para confirmar la formación de los enlaces Fe-O, permitiendo identificar la estructura tipo espinela de la ferrita, así como la presencia de otras sustancias químicas adsorbidas en la superficie de las partículas. Abstract in english Ferrofluids are colloidal systems composed of single domain of magnetic nanoparticles dispersed in a liquid carrier. In the present work, Fe3O4 magnetic ferrite nanoparticles were synthesized by chemical coprecipitation method, and were coated with oleic acid as surfactant agent. Magnetic properties [...] of nanoparticles in ferrofluids were investigated with the aid of a vibrating sample magnetometer (VSM) at room temperature. Superparamagnetic behavior, characteristic of magnetic nanoparticles, was determined from the hysteresis loop of M vs. H measurements. The sample as powder was characterized by means of X-ray diffraction. XRD pattern result shows the presence of the most intense peak corresponds to the (311) crystallographic orientation of the spinel phase of Fe3O4 magnetic nanoparticles. The mean size of the nanoparticles was determined from the X-ray diffraction pattern by using the Scherrer approximation. The particle size was calculated to be 9.64 nm. Atomic Force Microscopy was used to visualize the morphology of nanoparticles and to measure their diameter. The AFM method showed an average nanoparticles diameter of D N = 15.3 nm. FTIR absorption spectroscopy was used to confirm the formation of Fe-O bonds, allowing to identify the inverse ferrites spinel structure, as well as, the presence of other chemical substances adsorbed on the surface of particles.

  15. Synthesis and characterization of Fe3O4 magnetic nanofluid

    Directory of Open Access Journals (Sweden)

    Javier A Lopez

    2010-06-01

    Full Text Available Ferrofluids are colloidal systems composed of single domain of magnetic nanoparticles dispersed in a liquid carrier. In the present work, Fe3O4 magnetic ferrite nanoparticles were synthesized by chemical coprecipitation method, and were coated with oleic acid as surfactant agent. Magnetic properties of nanoparticles in ferrofluids were investigated with the aid of a vibrating sample magnetometer (VSM at room temperature. Superparamagnetic behavior, characteristic of magnetic nanoparticles, was determined from the hysteresis loop of M vs. H measurements. The sample as powder was characterized by means of X-ray diffraction. XRD pattern result shows the presence of the most intense peak corresponds to the (311 crystallographic orientation of the spinel phase of Fe3O4 magnetic nanoparticles. The mean size of the nanoparticles was determined from the X-ray diffraction pattern by using the Scherrer approximation. The particle size was calculated to be 9.64 nm. Atomic Force Microscopy was used to visualize the morphology of nanoparticles and to measure their diameter. The AFM method showed an average nanoparticles diameter of D N = 15.3 nm. FTIR absorption spectroscopy was used to confirm the formation of Fe-O bonds, allowing to identify the inverse ferrites spinel structure, as well as, the presence of other chemical substances adsorbed on the surface of particles.Los ferrofluidos son sistemas coloidales compuestos de nanopartículas magnéticas con mono-dominios magnéticos, dispersas en un líquido portador. En el presente trabajo, nanopartículas magnéticas de ferrita (Fe3O4 se sintetizaron por el método de co-precipitación química, y se recubrieron con ácido oleico como agente surfactante. Las propiedades magnéticas de las nanopartículas en el ferrofluido fueron investigadas por medio de un magnetómetro de muestra vibrante (VSM a temperatura ambiente, mostrando un comportamiento superparamagnético, característico de estas nanopartículas magnéticas. Esto se determinó a partir de la curva de histéresis de M vs H. La muestra en polvo se caracterizó por medio de Difracción de Rayos X. El patrón DRX resultante muestra la presencia del pico más intenso correspondiente a la orientación cristalográfica (311 de la fase espinel para las nanopartículas magnéticas de Fe3O4. El tamaño medio de las nanopartículas se determinó a partir del patrón de difracción de rayos X utilizando la aproximación de Scherrer, siendo este tamaño medio de 9,64 nm. La microscopía de fuerza atómica, se utilizó para visualizar la morfología de las nanopartículas y para determinar su diámetro. Las medidas de AFM muestran un diámetro promedio para las nanopartículas de D N = 15,3 nm La espectroscopia de absorción FTIR se utilizó para confirmar la formación de los enlaces Fe-O, permitiendo identificar la estructura tipo espinela de la ferrita, así como la presencia de otras sustancias químicas adsorbidas en la superficie de las partículas.

  16. Architecture of Fe3O4–graphene oxide nanocomposite and its application as a platform for amino acid biosensing

    International Nuclear Information System (INIS)

    Highlights: ? Fe3O4–GO nanocomposites are prepared. ? Fe3O4–GO exhibits high catalysis towards the oxidation of cysteine and N-acetyl cysteine. ? Mediating Fe3O4–GO on a glassy carbon electrode developed an electrochemical sensor. ? The sensor showed high selectivity and stability. - Abstract: The Fe3O4–graphene oxide (Fe3O4–GO) nanocomposites were prepared by a chemical co-precipitation of FeSO4, FeCl3,·NH3·H2O and GO. The Fe3O4–GO was characterized by scanning electron microscopy, X-ray powder diffraction, thermogravimetric analysis and electrochemical method. The results showed that ultrafine Fe3O4 nanoparticles was prepared and densely assembled on GO nanosheets. The Fe3O4–GO exhibits large surface area and high catalysis towards the oxidation of cysteine and N-acetyl cysteine, which could be used for cysteine and N-acetyl cysteine sensing with a wide linear range (0.5–13.5 mM for cysteine and 0.12–13.3 mM for N-acetyl cysteine) and low detection limit (56 ?M for cysteine and 25 ?M for N-acetyl cysteine). The excellent catalytic activity, high sensitivity and good stability made such Fe3O4–GO nanocomposites to be promising nanomaterials for constructing nonenzymatic sensor.

  17. Novel method of room temperature ionic liquid assisted Fe3O4 nanocubes and nanoflakes synthesis

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • First time [Bmim][TfO] IL is used for the Fe3O4 nanoparticle synthesis. • Novel method tunes Fe3O4 nanocubes and nanoflakes forms influenced by the base and IL. • Fe3O4 oxidized topotactically into ?-Fe2O3 nanoparticles by annealing and base. • Uniform morphology with average size of 33 nm negligible superstructure are formed. • Ms values are characterized by thin layer of ?-Fe2O3 on the nanoparticle surface. - Abstract: For the first time, the nanomagnetite superparamagnetic particles are successfully synthesized by precipitation method using 1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [Bmim][TfO] ionic liquid medium/surfactant. The obtained Fe3O4 particles are nanocubes and nanoflakes and this formation is influenced by the base concentration and anisotropic circumstances produced by the ionic liquid and their size varies from 20 nm to 150 × 300 nm (width × length). The synthesized magnetite nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The results show that the core of the Fe3O4 nanoparticles is surrounded by a thin layer of ?-Fe2O3 by topotactical partial oxidation, which is remarkably proceed with the subsequent calcination. The magnetite nanocubes have high saturation magnetization value and exhibit superparamagnetic hysteresis loop

  18. Magnetic composite nanofibers fabricated by electrospinning of Fe3O4/gelatin aqueous solutions

    International Nuclear Information System (INIS)

    Graphical abstract: Superparamagnetic Fe3O4/GE composite nanofibers with saturation magnetization of 12.87 em? g?1 were prepared from gelatin aqueous solution at an elevated temperature by electrospinning. - Highlights: • Electrospinning GE aqueous solution at higher temperature. • Presenting a simple and effective technique, combining wet blending with high temperature electrospinning to prepare magnetic composite nanofibers. • Developing composite nanofibers with higher superparamagnetic properties is expected to be useful in application for the biomedical field. - Abstract: We have fabricated magnetic composite nanofibers containing superparamagnetic Fe3O4 nanoparticles by the electrospinning method. Highly dispersed Fe3O4 magnetic nanoparticles were synthesized by one-step co-precipitation of Fe2+/Fe3+ under an alkaline condition with 4 wt% poly(vinyl alcohol) (PVA) aqueous solution as the stabilizer. Gelatin (GE) was used as a polymeric matrix for fabricating the nanocomposites. The prepared Fe3O4/GE composite nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. These composite nanofibers show uniform and continuous morphology with the Fe3O4 nanoparticles embedded in the nanofibers. By studying the magnetic properties of the Fe3O4/GE composite nanofibers, we confirm that the composite nanofibers possess superparamagnetic properties with a high saturated magnetization (Ms = 12.87 em? g?1) at room temperature. The features of this approach for getting one-dimensional magnetic nanostructure are its simplicity, effectiveness and safety. The Fe3O4/GE nanofibers with superparamagnetic properties would be potentially applied in biomedical field

  19. Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions

    Science.gov (United States)

    Wu, Han-Chun; Coileáin, Cormac Ó; Abid, Mourad; Mauit, Ozhet; Syrlybekov, Askar; Khalid, Abbas; Xu, Hongjun; Gatensby, Riley; Jing Wang, Jing; Liu, Huajun; Yang, Li; Duesberg, Georg S.; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2015-01-01

    Magnetite is a half-metal with a high Curie temperature of 858?K, making it a promising candidate for magnetic tunnel junctions (MTJs). Yet, initial efforts to exploit its half metallic nature in Fe3O4/MgO/Fe3O4 MTJ structures have been far from promising. Finding suitable barrier layer materials, which keep the half metallic nature of Fe3O4 at the interface between Fe3O4 layers and barrier layer, is one of main challenges in this field. Two-dimensional (2D) materials may be good candidates for this purpose. Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMD) semiconductor with distinctive electronic, optical, and catalytic properties. Here, we show based on the first principle calculations that Fe3O4 keeps a nearly fully spin polarized electron band at the interface between MoS2 and Fe3O4. We also present the first attempt to fabricate the Fe3O4/MoS2/Fe3O4 MTJs. A clear tunneling magnetoresistance (TMR) signal was observed below 200?K. Thus, our experimental and theoretical studies indicate that MoS2 can be a good barrier material for Fe3O4 based MTJs. Our calculations also indicate that junctions incorporating monolayer or bilayer MoS2 are metallic. PMID:26522127

  20. Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions

    Science.gov (United States)

    Wu, Han-Chun; Coileáin, Cormac Ó.; Abid, Mourad; Mauit, Ozhet; Syrlybekov, Askar; Khalid, Abbas; Xu, Hongjun; Gatensby, Riley; Jing Wang, Jing; Liu, Huajun; Yang, Li; Duesberg, Georg S.; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2015-11-01

    Magnetite is a half-metal with a high Curie temperature of 858?K, making it a promising candidate for magnetic tunnel junctions (MTJs). Yet, initial efforts to exploit its half metallic nature in Fe3O4/MgO/Fe3O4 MTJ structures have been far from promising. Finding suitable barrier layer materials, which keep the half metallic nature of Fe3O4 at the interface between Fe3O4 layers and barrier layer, is one of main challenges in this field. Two-dimensional (2D) materials may be good candidates for this purpose. Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMD) semiconductor with distinctive electronic, optical, and catalytic properties. Here, we show based on the first principle calculations that Fe3O4 keeps a nearly fully spin polarized electron band at the interface between MoS2 and Fe3O4. We also present the first attempt to fabricate the Fe3O4/MoS2/Fe3O4 MTJs. A clear tunneling magnetoresistance (TMR) signal was observed below 200?K. Thus, our experimental and theoretical studies indicate that MoS2 can be a good barrier material for Fe3O4 based MTJs. Our calculations also indicate that junctions incorporating monolayer or bilayer MoS2 are metallic.

  1. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method.

    Science.gov (United States)

    Kalantari, Katayoon; Bin Ahmad, Mansor; Shameli, Kamyar; Khandanlou, Roshanak

    2013-01-01

    The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94-0.93 nm); therefore, Fe(3)O(4) nanoparticles formed on the exterior surface of talc, with an average size of 1.95-2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe(3)O(4) nanocomposites may have potential applications in the chemical and biological industries. PMID:23696700

  2. Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: ? Fe3O4 nanoparticles dispersed homogeneously on graphene nanosheets were synthesized by hydrothermal route. ? The Fe3O4/graphene nanocomposite as the anode material for lithium ion batteries showed a high reversible specific capacity of 771 mAh g-1 during up to 50 cycles and good rate capability. ? The simple and low-cost method provides a potential approach for fabricating other graphene based materials. - Abstract: Using hydrothermal method, Fe3O4/graphene nanocomposite is prepared by synthesizing Fe3O4 particles in graphene. The synthesized Fe3O4 is nano-sized sphere particles (100-200 nm) and uniformly distributed on the planes of graphene. Fe3O4/graphene nanocomposite as anode material for lithium ion batteries shows high reversible specific capacity of 771 mAh g-1 at 50th cycle and good rate capability. The excellent electrochemical performance of the nanocomposite can be attributed to the high surface area and good electronic conductivity of graphene. Due to the high surface area, graphene can prevent Fe3O4 nanoparticles from aggregating and provide enough space to buffer the volume change during the Li insertion/extraction processes in Fe3O4 nanoparticles.

  3. Synthesis of Fe3O4 nanocrystals using hydrothermal approach

    International Nuclear Information System (INIS)

    Magnetite (Fe3O4) nanocrystals were synthesized using a facile hydrothermal method. FeCl2, FeCl3 and NaOH with a molar ratio of 1:2:8 were added into an autoclave and this was followed by heat treatment at elevated temperature (100, 150 and 200 °C). The produced results show that the average crystallite and the physical size of the resulting Fe3O4 nanocrystals increased with the hydrothermal temperature. The Fe3O4 nanocrystals exhibited superparamagnetic behavior. The saturation magnetization and coercivity of the produced nanocrystals also increased with the hydrothermal temperature. - Highlights: ? The crystallinity of Fe3O4 nanocrystals has been improved. ? The particle and crystallite size of nanocrystals are well-fitted with single crystal structure. ? The crystallite and physical sizes of the nanocrystals increased with hydrothermal temperature. ? The Ms and Hc of Fe3O4 nanocrystals enhanced with increase of hydrothermal temperature.

  4. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

    Science.gov (United States)

    Tran, Minh Thi; Nguyen, Thi Huyen Trang; Vu, Quoc Trung; Nguyen, Minh Vuong

    2016-03-01

    The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25-30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption-desorption isotherm of samples at 77 K at a relative pressure P/ P 0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH = 7. In the solution with pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  5. Polymide/Fe3O4-carbonized Membranes for Gas Separation

    Directory of Open Access Journals (Sweden)

    ZHAO Xuan-Ying,WANG Tong-Hua,LI Lin,LIU Ying,CAO Yi-Ming

    2010-07-01

    Full Text Available Novel functional carbon membranes for gas separation were designed and prepared by incorporating Fe3O4 nanoparticles into carbon membranes precursor polyimide. The assynthesized membranes were characterized by TEM, XRD and VSM. The effects of Fe3O4 addition and the final pyrolysis temperature on the gas permeability were investigated. The results show that Fe3O4 nanoparticles transformed into other phase morphologies are helpful to form the graphite-like layers during the pyrolysis process, which make the membrane with two types of carbon structure : amorphous carbon and graphite-like layers. All the functional carbon membranes exhibit magnetism. Single gas permeation test results show that the assynthesized membranes exhibit an outstanding molecular sieving capability together with high gas permeability. The gas permeability of H2 is 61 times higher than the pure carbon membrane and the H2/CO2 selectivity is also improved. Fe3O4 addition and the final pyrolysis temperature siginificantly impair the gas permeability. When the Fe3O4 content is 20wt%, the permeabilities of pure gas H2, CO2, O2, N2, CH4 in the functional carbon membrane are 15476, 4385, 1565, 193 and 114 Barrers (1Barrer=1×10-10 cm3 (STP ·cm/(cm2·s·cmHg, respecticvely. The final pyrolysis temperature also has a remarkable effect on the gas separation performance.

  6. Mössbauer study of a Fe3O4/PMMA nanocomposite synthesized by sonochemistry

    Science.gov (United States)

    Martínez, H.; D'Onofrio, L.; González, G.

    2014-01-01

    Magnetite nanoparticles of 10 nm average size were synthesized by ultrasonic waves from the chemical reaction and precipitation of ferrous and ferric iron chloride (FeCl3 · 6H2O y FeCl2 · 4H2O) in a basic medium. The formation and the incorporation of the magnetite in PMMA were followed by XRD and Mössbauer Spectroscopy. These magnetite nanoparticles were subsequently incorporated into the polymer by ultrasonic waves in order to obtain the final sample of 5 % weight Fe3O4 into the polymethylmethacrylate (PMMA). Both samples Fe3O4 nanoparticles and 5 % Fe3O4/PMMA nanocomposite, were studied by Mössbauer spectroscopy in the temperature range of 300 K-77 K. In the case of room temperature, the Mössbauer spectrum of the Fe3O4 nanoparticles sample was fitted with two magnetic histograms, one corresponding to the tetrahedral sites (Fe3 + ) and the other to the octahedral sites (Fe3 + and Fe2 + ), while the 5 % Fe3O4/PMMA sample was fitted with two histograms as before and a singlet subspectrum related to a superparamagnetic behavior, caused by the dispersion of the nanoparticles into the polymer. The 77 K Mössabuer spectra for both samples were fitted with five magnetic subspectra similar to the bulk magnetite and for the 5 % Fe3O4/PMMA sample it was needed to add also a superparamagnetic singlet. Additionally, a study of the Verwey transition has been done and it was observed a different behavior compared with that of bulk magnetite.

  7. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method

    Directory of Open Access Journals (Sweden)

    Kalantari K

    2013-05-01

    Full Text Available Katayoon Kalantari,1 Mansor Bin Ahmad,1,* Kamyar Shameli,1,2,* Roshanak Khandanlou11Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia; 2Nanotechnology and Advance Materials Department, Materials and Energy Research Center, Karaj, Alborz, Karaj, Iran*These authors contributed equally to this workAbstract: The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe3O4 nanoparticles on talc layers using an environmentally friendly process. The Fe3O4 magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe3O4 precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94–0.93 nm; therefore, Fe3O4 nanoparticles formed on the exterior surface of talc, with an average size of 1.95–2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe3O4 nanocomposites may have potential applications in the chemical and biological industries.Keywords: nanocomposites, Fe3O4 nanoparticles, talc, powder X-ray diffraction, scanning electron microscopy

  8. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    Science.gov (United States)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08624h

  9. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe2O3 shell was produced in situ on the surface of the Fe3O4 nanoparticle by surface oxidation in molten salts, forming ?-Fe2O3/Fe3O4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe3O4 nanoparticles were oxidized. Furthermore, the obtained a-Fe2O3/Fe3O4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe2O3/Fe3O4 nanoparticles were more efficient than the self-prepared ?-Fe2O3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  10. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix. (paper)

  11. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  12. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability.

    Science.gov (United States)

    Shiomi, Shohei; Kawamori, Makoto; Yagi, Shunsuke; Matsubara, Eiichiro

    2015-12-15

    With the recent development of nanotechnology, enhancement of the stability of nanomaterials is becoming ever more important for their practical applications. We studied the silica-coating of Cu nanoparticles and the enhanced stability of silica-coated Cu nanoparticles to oxidation. The metallic nanoparticles are easily oxidized and agglomerated compared with the bulk metals because the nanoparticles possess large specific surfaces. The Cu nanoparticle is one of the most difficult nanoparticles to be handled due to its absence of the oxidation stability. In the synthesis of silica-coated Cu nanoparticles via a sol-gel process using tetraethyl orthosilicate, the addition of NH3 as a catalyst of sol-gel reaction yielded homogeneous silica-coating. However, a large amount of Cu nanoparticles is instantly dissolved by forming complex ions in a NH3 solution during and before the silica-coating process. This is the difficulty in the silica-coating of Cu nanoparticles. In the present work, the dissolution behavior of Cu nanoparticles was electrochemically examined. This electrochemistry-based optimization of reducing power of a reaction bath enabled us to synthesize the silica-coated Cu nanoparticle via a consecutive liquid-phase reaction which requires only basic equipment and involves no separate centrifuging or extraction step. Cu nanoparticles coated by silica shells had the remarkable stability even in the presence of a strong oxidizing agent. Furthermore, we demonstrated that the highly stable Cu nanoparticles can be applied to a red pigment using a unique red color of Cu nanoparticles because of its surface plasmon resonance. PMID:26313712

  13. Differential Scanning Calorimetry Investigations on Polyvinylidene Fluoride - Fe3O4 Nanocomposites

    Science.gov (United States)

    Salinas, Samantha; Jones, Robert; Chipara, Dorina M.; Chipara, Mircea

    2015-03-01

    Nanocomposites of polyvinylidene fluoride (PVDF)-magnetite (Fe3O4) with various weight fractions of nanofiller (0%, 0.2 %, 0.6 %, 1.2%, 2.4 %, 5.8 %, 12 %, 23 %, and 30 %) have been obtained via melt mixing by loading PVDF with Fe3O4 particles (average size 75 nm from Nanostructured & Amorphous Materials, Inc). Thermal stability of PVDF-Fe3O4 has been investigated by TGA in nitrogen. The increase of the thermal stability of PVDF due to the loading with Fe3O4 was quantified by the shift of the temperature at which the (mass) degradation rate is maximum as a function of Fe3O4 content. The effect of the nanofiller on the crystallization of PVDF was investigated by isothermal DSC (TA Instruments, Q500). Non isothermal DSC tests, (at various heating rates ranging from 1 to 25 °C/min) have been used to locate the glass, crystallization, and melting temperatures. The dependence of the glass, crystallization, and melting temperatures on the concentration of nanoparticles is reported and analyzed in detail. The data are critically analyzed within the classical Avrami theory.

  14. Immobilization of Horseradish Peroxidase on NH2-Modified Magnetic Fe3O4/SiO2 Particles and Its Application in Removal of 2,4-Dichlorophenol

    Directory of Open Access Journals (Sweden)

    Qing Chang

    2014-09-01

    Full Text Available Fe3O4 nanoparticles were prepared by a co-precipitation method with the assistance of ultrasound irradiation, and then coated with silica generated by hydrolysis and condensation of tetraethoxysilane. The silica-coated Fe3O4 nanoparticles were further modified with 3-aminopropyltriethoxysilane, resulting in anchoring of primary amine groups on the surface of the particles. Horseradish peroxidase (HRP was then immobilized on the magnetic core-shell particles by using glutaraldehyde as a crosslinking agent. Immobilization conditions were optimized to obtain the highest relative activity of the immobilized enzyme. It was found the durability of the immobilized enzyme to heating and pH variation were improved in comparison with free HRP. The apparent Michaelis constants of the immobilized HRP and free HRP with substrate were compared, showing that the enzyme activity of the immobilized HRP was close to that of free HRP. The HRP immobilized particles, as an enzyme catalyst, were used to activate H2O2 for degrading 2,4-dichlorophenol. The rapid degradation of 2,4-dichlorophenol indicated that the immobilized enzyme has potential applications for removing organic pollutants.

  15. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    International Nuclear Information System (INIS)

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe3O4 nanoparticles heterogeneous nucleation. The Fe3O4 nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe3O4-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ? The amount of water tunes size and size distribution of the Fe3O4 nanoparticles (FNs). ? FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ? FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ? Fe3O4-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ? Fe3O4-MWCNTs displayed a higher activity than nanometer-size Fe3O4. -- Abstract: Fe3O4-multi-walled carbon nanotubes (Fe3O4-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe3O4, and the homogeneous distribution of the Fe3O4 nanoparticles deposited on the MWCNTs. The Fe3O4 nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe3O4.

  16. Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria

    OpenAIRE

    Alexandru Mihai Grumezescu; Monica Cartelle Gestal; Alina Maria Holban; Valentina Grumezescu; Bogdan ?tefan Vasile; Lauren?iu Mogoant?; Florin Iordache; Coralia Bleotu; George Dan Mogo?anu

    2014-01-01

    This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles...

  17. Preparation and study of magnetic and luminescence properties of Eu doped YPO4 and Fe3O4 hybrid nanocomposite

    International Nuclear Information System (INIS)

    Nanoparticles based hyperthermia therapy is one possible way for a low cost effective technique in killing cancer tissues in human body. Fe3O4 and Fe3O4 at the rate YPO4:5Eu hybrid magnetic nanoparticles have been prepared by co-precipitation method and their average particle sizes are found to be 10 and 25 nm, respectively. The particles are perfectly spherical, non agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4 at the rate YPO4:5Eu hybrid magnetic nanoparticles. The chemical interaction between Fe3O4 and YPO4:5Eu has been confirmed through Fe---O-P bonding using infrared spectroscopy. The magnetization of hybrid nanocomposites shows saturation magnetization Ms = 11.1 emu/g with zero coercivity at room temperature indicating superparamagnetic behaviour

  18. Synthesis, Characterization, and Application of Core-Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents.

    Science.gov (United States)

    Cui, Xianjin; Mathe, Domokos; Kovács, Noémi; Horváth, Ildikó; Jauregui-Osoro, Maite; Torres Martin de Rosales, Rafael; Mullen, Gregory E D; Wong, Wilson; Yan, Yong; Krüger, Dirk; Khlobystov, Andrei N; Gimenez-Lopez, Maria; Semjeni, Mariann; Szigeti, Krisztián; Veres, Dániel S; Lu, Haizhou; Hernández, Ignacio; Gillin, William P; Protti, Andrea; Petik, Katalin Kis; Green, Mark A; Blower, Philip J

    2016-02-17

    Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM(-1) s(-1) at 3T, a high affinity to [(18)F]-fluoride or radiometal-bisphosphonate conjugates (e.g., (64)Cu and (99m)Tc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432

  19. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin.

    Science.gov (United States)

    Wang, Long; Zhao, Qi; Hou, Juan; Yan, Jin; Zhang, Fengshuang; Zhao, Jiahui; Ding, Hong; Li, Yi; Ding, Lan

    2016-01-01

    A novel Fe3O4-graphite composite was prepared, characterized, and investigated as a heterogeneous Fenton-like catalyst for the degradation of levofloxacin (LEV) in an aqueous solution. The results revealed that the Fe3O4-graphite composite exhibited excellent properties for the degradation and mineralization of LEV, achieving a nearly complete degradation of 50 mg L(-1) LEV in 15 min and 48% of total organic carbon removal in 60 min under optimal conditions. A large electronic conjugation structure exists in graphite, which may lead to the fast production of •OH radical species because of the easy reduction of Fe(III) to Fe(II). In addition, we observed that the graphite can degrade LEV in the presence of H2O2. Therefore, the synergistic results of the graphite structure and Fe3O4 magnetic nanoparticles (MNPs) may contribute to the high catalytic activity of the Fe3O4-graphite composite. Compared with pure Fe3O4 MNPs, lesser iron leaching of the Fe3O4-graphite composite was observed during the degradation of LEV. The degradation efficiency of LEV remained approximately 80% at the fifth recycling run, which indicates that the Fe3O4-graphite composite has potential applications in water treatment for removing organic pollutants. PMID:26513011

  20. Strategy to Synthesize Fe3O4/C Nanotubes as Anode Material for Advanced Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • A electrospinning route for one-step synthesis of Fe3O4/C nanotubes. • The formation mechanism of Fe3O4/C nanotubes fabricated by electrospinning is discussed. • The composite exhibits an unexpected cycling stability with capacity 600 mA h g?1 after 100 cycles at 0.15 C. - Abstract: A facile electrospinning route for one-step synthesis of Fe3O4/C nanotubes has been developed depending on the separation of mineral oil and polyacrylonitrile in N, N-dimethylformamide solvent followed by stabilization and carbonization. The obtained Fe3O4 nanoparticles with diameter 10 to 100 nm were uniformly embedded into highly conductive carbon nanotube wall. The carbon combined conducting, buffering and confining effects during electrochemical cycling. In addition, the hollow tubular structure with more space can accommodate large volume changes of Fe3O4 associated with Li ions insertion/extraction, and increase the surface area accessible to the electrolyte, facilitating the Li ions diffusion at the interior and exterior of the nanotube. The half cells based on Fe3O4/C nanotubes exhibit an unexpected cycling stability with capacity of 600 mA h g?1 after 100 cycles. These results are encouraging for the development of Fe3O4/C nanotubes as potential building blocks for high-performance anodes in LIBs

  1. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles doped into chitosan films were prepared by the solution casting technique. Various samples were synthesized in atmospheric medium and in vacuum. The morphological properties of the samples were characterized by high resolution transmission electron microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). The structural, magnetic, and microwave absorption properties of magnetic chitosan films have been carried out using the Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR). It is shown that the composite polymer behaves like a superparamagnetic material with high blocking temperature. The effective magnetization shows gradual increments with the concentration of dopant Fe3O4 nanoparticles. The microwave absorption characteristic of superparamagnetic composite polymer shows low reflection loss. - Highlights: • Chitosan polymers doped with Fe3O4 are prepared by the solution casting technique. • The structural, magnetic, and microwave absorption properties of the samples are analyzed. • The polymer behaves like a superparamagnetic material with high blocking temperature. • The effective magnetization shows gradual increments with the concentration of Fe3O4. • The microwave absorption characteristic shows low reflection loss

  2. Superparamagnetic Fe3O4/Poly(N-isopropyl acrylamide) Nanocomposites Synthesized in Inverse Miniemulsions: Magnetic and Particle Properties.

    Science.gov (United States)

    Cui, Qinmin; Zhu, Shudi; Yan, Yingjie; Ye, Quanlin; Ziener, Ulrich; Cao, Zhihai

    2015-06-01

    In the present study, superparamagnetic Fe3O4/poly(N-isopropyl acrylamide) nanocomposites were synthesized by one-step inverse miniemulsion copolymerization of N-isopropyl acrylamide and N,N'-methylene diacrylamide. The loading of Fe3O4 nanoparticles in the nanocomposites was 27 wt%, and the saturation moment of the nanocomposites was 12.4 emu x g(-1). Fe3O4 nanoparticles were prepared through a coprecipitation method. The amount of stabilizer (poly(acrylic acid)) significantly influenced the size and size distribution of the Fe3O4 nanoparticles, and, therefore, their magnetic properties. Superparamagnetism of the Fe3O4 nanoparticles was preserved in the nanocomposites. The effects of synthetic parameters on the particle properties, namely surfactant loading, concentration of ferrofluid, type of lipophobe and initiator, and amount of cross-linker were investigated. Nanocomposites of Fe3O4/poly(N-isopropyl acrylamide) displayed a guava-like morphology, which they could retain after being redispersed in polar solvents. PMID:26369088

  3. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    A facile and efficient approach to synthesize Fe3O4@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe3O4@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe3O4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe3O4@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe3O4@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe3O4@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe3O4@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe3O4@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe3O4@Cu display high catalytic activity after 13 cycles

  4. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Atarod, Monireh; Sajadi, S. Mohammad

    2016-02-01

    This paper reports the green and in-situ preparation of the Cu/Fe3O4 magnetic nanocatalyst synthesized using Morinda morindoides leaf extract without stabilizers or surfactants. The catalyst was characterized by XRD, SEM, EDS, UV-visible, TEM, VSM and TGA-DTA. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4-nitrophenol (4-NP), Congo red (CR) and Rhodamine B (RhB) in an environmental friendly medium at room temperature. The catalyst was recovered using an external magnet and reused several times without appreciable loss of its catalytic activity. In addition, the stability of the recycled catalyst has been proved by SEM and EDS techniques.

  5. Localization and scintigraphy vizualization of nanocomposite based on 99mTc-phosphate with Fe3O4 and KCl nanoparticles under radiofrequency hyperthermia on animal tumor Walker-256

    International Nuclear Information System (INIS)

    A comparative experimental study of the localization under the influence of constant magnetic fields and local radio frequency moderate hyperthermia for the scintigraphic imaging of malignant Walker-256 carcinosarcoma tumors by conventional 99mTc-phosphate and nanocomposite based on 99mTc-phosphate with Fe3O4 and KCl is performed. It is shown that, after the introduction of conventional 99mTc-phosphate to animals from control group, no tumor is visualized. After the introduction of nanocomposite, we observed the accumulation and the visualization of radiopharmaceuticals in the tumor with diffusion-uneven distribution. Accumulation of nanocomposite in the projection of a tumor as compared with control animals increased by more than 2 times.

  6. Synthesis of Three-Dimensional Fe3O4/Graphene Aerogels for the Removal of Arsenic Ions from Water

    OpenAIRE

    Yan Ye; Da Yin; Bin Wang(INPAC, Department of Physics and Shanghai Key Lab for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China); Qingwen Zhang

    2015-01-01

    We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network stru...

  7. Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst.

    Science.gov (United States)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai; Jayabharathi, Jayaraman

    2014-12-16

    Fe3O4-implanted ZnO and pristine ZnO nanosheets have been synthesized hydrothermally. High-resolution scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, selected area electron diffractometry, powder X-ray diffractometry, Raman spectroscopy, vibrating sample magnetometry, solid state impedance spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy show implantation of Fe3O4 in ZnO nanosheets. Fe3O4 core with ZnO shell is of type I core/shell heterostructure which is to quench charge carriers and suppress photocatalysis. But the photocatalytic activity is not suppressed on implantation of Fe3O4 in ZnO nanosheets, and time controlled single photon counting lifetime spectroscopy shows that the photogenerated charge carriers are not quenched by the Fe3O4 core in the ZnO nanosheets. The composite nanosheets are photostable, reusable, and magnetically recoverable, revealing potential application in mineralization of organic pollutants. PMID:25425261

  8. Chemically synthesized Au-Fe3O4 nanostructures with controlled optical and magnetic properties

    Science.gov (United States)

    Velasco, Victor; Muñoz, Laura; Mazarío, Eva; Menéndez, Nieves; Herrasti, Pilar; Hernando, Antonio; Crespo, Patricia

    2015-01-01

    Au-Fe3O4 dumbbell-like, flower-like and core-shell nanostructures with different sizes ranging between 4-15?nm have been synthesized via the thermal decomposition of iron pentacarbonyl and reduction of gold salts. By means of the variation of the precursors’ molar ratio, the injection temperature and the reaction time, the optical and magnetic properties have been tailored. A strong dependence on the dielectric function of the present Fe3O4 nanoparticles (NPs) was detected. The gold characteristic plasmon peak shifts from 525?nm (pure gold NPs) to close to 600?nm showing an electron damping in the Au NPs surrounded by Fe3O4. These NPs are ferromagnetic at low temperature, exhibiting a coercive field ranging between 85-500?Oe, whereas they behave as a superparamagnetic system above the blocking temperature, which is found to be between 18-110?K. A high magnetic anisotropy is generated in the interface of Au-Fe3O4 NPs.

  9. Tribological Properties of Graphene-based Fe3O4 Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    QIAO Yu-Lin, ZHAO Hai-Chao, ZANG Yan, ZHANG Qing

    2015-01-01

    Full Text Available Graphene-based Fe3O4 nanocomposite materials were prepared by the melthod of Liquid-phase Ultrasonic Exfoliation. Morphologies of nanocomposite materials were characterized by means of SEM and TEM. Its tribological properties as a pure water additive were investigated using multi-functional reciprocating friction and wear tester. The lubrication mechanism was discussed based on results of analyses of SEM, XPS. The results showed that the Fe3O4 nanoparticles with size of 20­90 nm were densely and randomly deposited on interlamination and surface of graphene sheets. The nanocomposite materials as a pure water additive displayed good friction-reducing and antiwear performance. Compared with pure water, the graphene-based Fe3O4 nanocomposite could reduce the friction coefficient of 26.7% and the wear mass of 35.4% under condition of 10 N of load and 0.01wt% of concentration. The prosperity was attributed to the effect of adsorption membrane and boundary lubrication film containing graphene and Fe3O4 which inhibited oxidation of Fe and reduced wear on the frictional surface.

  10. Preparation and Characterization of Silica-Coated Magnetic–Fluorescent Bifunctional Microspheres

    Directory of Open Access Journals (Sweden)

    Xiao Qi

    2009-01-01

    Full Text Available Abstract Bifunctional magnetic–fluorescent composite nanoparticles (MPQDs with Fe3O4MPs and Mn:ZnS/ZnS core–shell quantum dots (QDs encapsulated in silica spheres were synthesized through reverse microemulsion method and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer, and photoluminescence (PL spectra. Our strategy could offer the following features: (1 the formation of Mn:ZnS/ZnS core/shell QDs resulted in enhancement of the PL intensity with respect to that of bare Mn:ZnS nanocrystals due to the effective elimination of the surface defects; (2 the magnetic nanoparticles were coated with silica, in order to reduce any detrimental effects on the QD PL by the magnetic cores; and (3 both Fe3O4MPs and Mn:ZnS/ZnS core–shell QDs were encapsulated in silica spheres, and the obtained MPQDs became water soluble. The experimental conditions for the silica coating on the surface of Fe3O4nanoparticles, such as the ratio of water to surfactant (R, the amount of ammonia, and the amount of tetraethoxysilane, on the photoluminescence properties of MPQDs were studied. It was found that the silica coating on the surface of Fe3O4could effectively suppress the interaction between the Fe3O4and the QDs under the most optimal parameters, and the emission intensity of MPQDs showed a maximum. The bifunctional MPQDs prepared under the most optimal parameters have a typical diameter of 35 nm and a saturation magnetization of 4.35 emu/g at room temperature and exhibit strong photoluminescence intensity.

  11. Spectroscopic and photoluminescence studies on optically transparent magnetic nanocomposites based on sol-gel glass: Fe3O4

    International Nuclear Information System (INIS)

    Sol-gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10-20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si-O-Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto-optical applications

  12. Synthesis of Fe3O4-LaF3:Ce,Tb nanocomposites with bright fluorescence and strong magnetism

    International Nuclear Information System (INIS)

    In this paper, fluorescent-magnetic Fe3O4-LaF3:Ce,Tb nanocomposites were synthesized by combining fluorescent LaF3:Ce,Tb and magnetic Fe3O4 nanoparticles into new 'two-in-one' entities. The obtained Fe3O4-LaF3:Ce,Tb nanocomposites were small (about 30 nm in diameter) and well dispersed in water. Under ultraviolet light irradiation, the Fe3O4-LaF3:Ce,Tb nanocomposites emitted bright green fluorescence, and they could be easily manipulated by an external magnetic field. Such bifunctional nanocomposites may find many biomedical applications, such as cancer detection and drug delivery. And the method we used can be extended to the synthesis of other nanocomposites based on lanthanide-doped materials and metal oxides.

  13. In vitro and ex vivo evaluation of silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biomedical photoacoustic contrast agent

    Science.gov (United States)

    Alwi, Rudolf; Telenkov, Sergey A.; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk; Dickie, Kristopher

    2013-03-01

    The employment of contrast agents in photoacoustic imaging has gained significant attention within the past few years for their biomedical applications. In this study, the use of silica-coated superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) was investigated as a contrast agent in biomedical photoacoustic imaging. SPIONs have been widely used as Food-and-Drug-Administration (FDA)-approved contrast agents for magnetic resonance imaging (MRI) and are known to have an excellent safety profile. Using our frequency-domain photoacoustic correlation technique ("the photoacoustic radar") with modulated laser excitation, we examined the effects of nanoparticle size, concentration and biological medium (e.g. serum, sheep blood) on its photoacoustic response in turbid media (intralipid solution). Maximum detection depth and minimum measurable SPION concentration were determined experimentally. The detection was performed using a single element transducer. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus) was evaluated using a phased array photoacoustic probe and the strong potential of silicacoated SPION as a possible photoacoustic contrast agent was demonstrated. This study opens the way for future clinical applications of nanoparticle-enhanced photoacoustic imaging in cancer therapy.

  14. Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper

    International Nuclear Information System (INIS)

    Graphical abstract: Fe3O4/multi-walled carbon nanotubes (MWCNTs) sandwich buckypapers were fabricated with monodispersion solutions of MWCNTs and Fe3O4 nanoparticles through layer by layer vacuum filtration method. The Fe3O4/MWCNTs sandwich buckypaper can be co-cured on the surface of fiber reinforce composites and exhibits excellent magnetism and microwave absorbing ability only with a 0.1 mm thickness absorbing layer. - Highlights: • Sandwich buckypapers were fabricated with MWCNTs/Fe3O4 monodispersions through vacuum filtration. • Composite with a 0.1 mm thickness sandwich buckypaper exhibits strong microwave absorbing ability. • The sandwich buckypaper has higher magnetic loss and suitable dielectric loss. • The sandwich buckypaper can fulfil the impedance matching and attenuation characteristics. - Abstract: Fe3O4/multi-walled carbon nanotubes (MWCNTs) sandwich buckypapers were fabricated with monodisperse solutions of MWCNTs and Fe3O4 nanoparticles through layer by layer vacuum filtration method and can be co-cured with composites for microwave absorbing application. The morphology, element composition and magnetic properties of sandwich buckypapers were characterized by field-emission scanning electron microscope, energy dispersive spectrometer, X-ray diffraction and vibrating sample magnetometer. The complex permittivity and permeability, the reflection loss properties of polymer composites surface coated buckypapers were investigated in the frequency range of 8.2–18 GHz. The results indicate that, due to the electromagnetic matching of magnetic loss and dielectric loss, the microwave absorption properties of the Fe3O4/MWCNTs sandwich buckypaper attached polymer composites are evidently improved. When the blending Fe3O4 content in sandwich buckypaper is 20 wt%, the composite displays a larger and wider absorption peak (−12.62 dB at 17.72 GHz), and the bandwidth of the reflection loss below −5 dB is larger than 5.6 GHz with a absorbing thickness of 0.1 mm

  15. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe3O4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe3O4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 ?g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: ?Synthesis of Fe3O4-Ag core-shell nanocolloids. ?Antifungal activity of Fe3O4-Ag nanocolloids against Aspergillus glaucus isolates. ?The MIC value for A. glaucus is 2000 ?g/mL. ?Antifungal activity is better or comparable with most prominent antibiotics.

  16. Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics

    International Nuclear Information System (INIS)

    BSA/Fe3O4 magnetic composite microspheres with high saturation magnetization and paramagnetic property were prepared via inverse emulsion technology at room temperature, bovine serum albumin (BSA, 60 KD), magnetic nanoparticles (Fe3O4) and glutaraldehyde as macromonomer, inorganic particles and cross-linking agent, respectively. Fourier transform infrared (FTIR), scanning electron microscope (SEM), metalloscope, and particle size analyzer were used to characterize morphology and structure of composite microspheres. Vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) were used to test magnetic properties of the synthesized samples, adsorption capacity of microspheres was determined by ultraviolet spectrophotometer (UV). The results showed that BSA/Fe3O4 microspheres were 43 μm with relatively narrow particle size distribution, perfect sphere-shaped morphologies, superparamagnetism with a saturation magnetization of 11 emu/g, and high magnetic content with a value of 57.29%. The main factors influencing properties of microspheres including raw material ratio, the amount of emulsifier and cross-linking agent, agitation speed were investigated and optimized. Furthermore, these microspheres accompanying with high separable and reusable efficient may have great potential application in the field of separation, in particular, removal of antibiotics. Adsorption capacities of the microspheres of four different kinds of antibiotics (erythromycin, streptomycin, tetracycline and chloramphenicol) ranging from 69.35 mg/g to 147.83 mg/g were obtained, and Langmuir isotherm model coincided with equilibrium data than that of the Freundlich model. - Highlights: • BSA/Fe3O4 microspheres with high saturation magnetization were prepared. • BSA/Fe3O4 microspheres for the removal of antibiotics are proposed. • The obtained results have significant importance in environmental processes

  17. Nitrogen-Enriched Fe3 O4 @Carbon Nanospheres Derived from Fe3 O4 @3-Aminophenol/Formaldehyde Resin Nanospheres Based on a Facile Hydrothermal Strategy: Towards a Robust Catalyst Scaffold for Platinum Nanocrystals.

    Science.gov (United States)

    Tian, Kesong; Guo, Wanchun; Zhao, Xiaoqing; Xu, Zhaopeng; Jiao, Jiao; Jia, Yin; Li, Ruifei; Wang, Haiyan

    2015-12-01

    Robust nitrogen-enriched Fe3 O4 @carbon nanospheres have been fabricated as a catalyst scaffold for Pt nanoparticles. In this work, core-shell Fe3 O4 @3-aminophenol/formaldehyde (APF) nanocomposites were first synthesized by a simple hydrothermal method, and subsequently carbonized to Fe3 O4 @N-Carbon nanospheres for in situ growth of Pt nanocrystals. Abundant amine groups were distributed uniformly onto Fe3 O4 @N-Carbon nanospheres, which not only improved the dispersity and stability of the Pt nanocrystals, but also endowed the Pt-based catalysts with good compatibility in organic solvents. The dense three-dimensional cross-linked carbon shell protects the Fe3 O4 cores against damage from harsh chemical environments, even in aqueous HCl (up to 1.0?m) or NaOH (up to 1.0?m) solutions under ultrasonication for 24?hours, which indicates that it can be used as a robust catalyst scaffold. In the reduction of nitrobenzene compounds, the Fe3 O4 @N-Carbon@Pt nanocatalysts show outstanding catalytic activity, stability, and recoverability. PMID:26282338

  18. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances

    International Nuclear Information System (INIS)

    Fe3O4–noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe3O4 NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe3O4–noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe3O4–noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe3O4–noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe3O4–Ag aggregates for R6G is as low as 10?14 M, and the calculated EF reaches up to 1.2 × 106, which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances

  19. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    Science.gov (United States)

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis. PMID:26478345

  20. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

    Directory of Open Access Journals (Sweden)

    Salehizadeh Hossein

    2012-01-01

    Full Text Available Abstract Background Fe3O4-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. Results Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe3O4 monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au3+ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD, Fourier Transformed Infrared Spectroscopy (FTIR, Transmission Electron Microscopy (TEM, and Atomic Force Microscopy (AFM indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. Conclusions A rapid, mild method for synthesizing Fe3O4-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

  1. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer

    Science.gov (United States)

    Karaca, E.; ?at?r, M.; Kazan, S.; Aç?kgöz, M.; Öztürk, E.; Gürda?, G.; Uluta?, D.

    2015-01-01

    Fe3O4 nanoparticles doped into chitosan films were prepared by the solution casting technique. Various samples were synthesized in atmospheric medium and in vacuum. The morphological properties of the samples were characterized by high resolution transmission electron microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). The structural, magnetic, and microwave absorption properties of magnetic chitosan films have been carried out using the Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR). It is shown that the composite polymer behaves like a superparamagnetic material with high blocking temperature. The effective magnetization shows gradual increments with the concentration of dopant Fe3O4 nanoparticles. The microwave absorption characteristic of superparamagnetic composite polymer shows low reflection loss.

  2. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology

    Science.gov (United States)

    Xu, Huan-Yan; Shi, Tian-Nuo; Zhao, Hang; Jin, Li-Guo; Wang, Feng-Chun; Wang, Chun-Yan; Qi, Shu-Yan

    2016-03-01

    Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto MWCNTs surface remained the inverse spinel crystal structure of cubic Fe3O4 phase. The FTIR characteristic peaks of MWCNTs weakened or disappeared due to the anchor of Fe3O4 nanoparticles and Fe-O peak at 570 cm-1 was indicative of the formation of Fe3O4. TEM observation revealed that Fe3O4 nanoparticles were tightly anchored by MWCNTs. The Fenton-like catalytic activity of Fe3O4/MWCNTs nanocomposites for the discoloration of methyl orange (MO) was much higher than that of Fe3O4 nanoparticles. The process optimization of this heterogeneous Fenton-like system was implemented by response surface methodology (RSM). The optimum conditions for MO discoloration were determined to be of 12.3 mmol/L H2O2 concentration, 2.9 g/L catalyst dosage, solution pH 2.7 and 39.3 min reaction time, with the maximum predicted value for MO discoloration ratio of 101.85%. The corresponding experimental value under the identical conditions was obtained as 99.86%, which was very close to the predicted one with the absolute deviation of 1.99%.

  3. Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B

    Science.gov (United States)

    Mufti, Nandang; Munfarriha, Ulfatien; Fuad, Abdulloh; Diantoro, Markus

    2016-02-01

    The aim of this research is to synthesis Fe3O4@TiO2 core-shell and used it as photocatalytic for degradation of Rhodamine B. The Fe3O4 nanoparticle core was synthesized by coprecipitation method from the iron sand. The TiO2 shell synthesized using coprecipitation method to capsulated Fe3O4 nanoparticle with vary of Fe3O4 mass. The Fe3O4@TiO2 core-shells were characterized using SEM-EDX, XRD. Photocatalytic activity of Rhodamine B degradation was performed under UV irradiation with variation of time exposure. The efficiency of photodegradation is measured by UV-Vis spectrophotometer. The XRD result showed that Fe3O4 nanoparticle is single phase with crystal size of 15.5 nm. The existence of Fe3O4 and anatase of TiO2 phases in the XRD pattern shows that The Fe3O4@TiO2 core-shells are successfully synthesized. While, the TiO2 shell is confirmed by thermal test up to 550 OC for two hours to the samples. Based on SEM characterization, The Fe3O4@TiO2 core-shells are agglomerated with averages diameter sizes of particles between 38.5 nm to 72.8 nm. The concentration of TiO2 decrease with increasing Fe3O4 mass with atomic composition of Fe/Ti elements in Fe3O4@TiO2 core-shells are 0.083, 1.12, and 1.48. Based on photo degradation test of Rhodamine B under UV irradiation, we conclude that the degradation of Rhodamin B is caused by absorbsion and photocatalytic mechanism. For photocatalytic mechanism the efficiency of photodegradation of Rhodamin B increases by increasing TiO2 concentration.

  4. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method

    OpenAIRE

    Kalantari K; Bin Ahmad M; Shameli K; Khandanlou R

    2013-01-01

    Katayoon Kalantari,1 Mansor Bin Ahmad,1,* Kamyar Shameli,1,2,* Roshanak Khandanlou11Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia; 2Nanotechnology and Advance Materials Department, Materials and Energy Research Center, Karaj, Alborz, Karaj, Iran*These authors contributed equally to this workAbstract: The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe3O4) nanoparticles on talc layers using an environmentally friendl...

  5. Surface reconstruction of Fe3O4(100)

    International Nuclear Information System (INIS)

    Preliminary results of low-energy ion scattering (LEIS) and low-energy electron diffraction (LEED) studies of Fe3O4(100) are presented. Thin epitaxial Fe3O4(100) films were grown by O2-assisted molecular beam epitaxy (MBE) of Fe on a MgO(100) substrate. LEED measurements revealed a (?2x?2)R45 reconstruction pattern as has already been reported in the literature. The surface structure on an atomic scale was studied by LEIS. The sample surface was bombarded with 3 or 6 keV Ar+ ions in a grazing-angle geometry, and azimuthal scans of the yields of the recoiled Fe and O atoms emitted at scattering angles of 37 deg. and 53 deg. were measured. The scans were analyzed by performing computer simulations of the scattering and recoiling of atoms for a number of trial models. We confirm the presence of two mutually perpendicular structural domains at the surface of the films grown. Bulk Fe3O4 contains Fe atoms in tetrahedral and octahedral positions. The surface was found to be terminated by tetrahedral Fe atoms. Further details of the atomic arrangement and surface relaxation were studied

  6. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion.