WorldWideScience

Sample records for silica-coated fe3o4 nanoparticles

  1. Graphene grafted silica-coated Fe3O4 nanocomposite as absorbent for enrichment of carbamates from cucumbers and pears prior to HPLC.

    Sun, Meng; Ma, Xiaoxing; Wang, Juntao; Wang, Weina; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2013-04-01

    In this paper, a novel graphene (G) grafted silica-coated Fe3O4 nanocomposite was fabricated by the chemical bonding of G onto the surface of silica-coated Fe3 O4 nanoparticles. Some carbamates (metolcarb, carbaryl, pirimicarb, and diethofencarb) in cucumber and pear samples were enriched by this nanocomposite prior to their determination by HPLC with UV detection. Experimental parameters that may affect the extraction efficiency were investigated. Under the optimum conditions, a linear response was achieved in the concentration range of 0.5-100.0 ng/g for metolcarb, carbaryl, and diethofencarb, and 1.0-100 ng/g for pirimicarb with the correlation coefficients (r) ranging from 0.9956 to 0.9984. The LOD (S/N = 3) of the method were found to be in the range from 0.08 to 0.2 ng/g. The RSDs were in the range from 2.4 to 5.8%. The results indicated that the G grafted silica-coated Fe3 O4 nanocomposite was stable and efficient for magnetic SPE and has a great application potential for the preconcentration of other organic pollutants from real samples. PMID:23404952

  2. Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization

    Fe3O4/polystyrene composite particles were prepared from oleic acid (OA) modified Fe3O4 nanoparticles via miniemulsion polymerization. It was concluded that the surface properties of OA modified magnetite nanoparticles have a great effect on preparation of the composite particles. When Fe3O4 nanoparticles coated by multilayer of OA was employed, there were large amounts of free polystyrene particles in the product. Fe3O4/polystyrene composite particles with defined structure and different magnetite content can be readily prepared from monolayer OA modified Fe3O4 nanoparticles. It was concluded that surface of the monolayer OA modified Fe3O4 nanoparticles is more hydrophobic than that of the multilayer coated ones, thus improving the dispersibility of the Fe3O4 nanoparticles in styrene monomer and allowing preparation of the Fe3O4/polystyrene composite particles with defined structure and controllable magnetite content.

  3. Enzymes immobilization on Fe3O4-gold nanoparticles

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  4. Synthesis of Fe3O4 nanoparticles for biomedical applications

    Onar, K.; Yakinci, M. E.

    2016-01-01

    Nano particles of Fe3O4 with the range of 6.9 and 14.2 nm. By using chemical coprecipitation method. Particle size effect according to magnetic properties were investigated together with the constant reaction and crystallization temperature. According to calculations peaks were indexed as cubic Fe3O4 for all samples. The hysteresis loops shows superparamagnetic nature. It was found that when Fe2+/Fe3+ ratio increase 50% the particle size increases approximately one fold. We also realized that chemical coprecipitation method is suitable for biomedical applications of Fe3O4nano particles.

  5. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    Lirija Alili; Swetlana Chapiro; Gernot U. Marten; Schmidt, Annette M.; Klaus Zanger; Peter Brenneisen

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticl...

  6. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe3O4) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe3O4 MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium

  7. Synchrotron radiation photoelectron spectroscopy study of dextran-coated Fe3O4 magnetic nanoparticles

    Dextran-coated Fe3O4 nanoparticles were prepared by untrasonification of Fe3O4 nanoparticles with dextran at 85 degree C in sodium citrate medium. The surface chemical component, structure and bond of uncoated and dextran-coated nanoparticles were measured by synchrotron radiation XPS(X-ray photoelectron spectroscopy). Qualitative and quantitative analysis of C1s and O1s of Fe3O4 and dextran-Fe3O4 showed that the Fe3O4 nanoparticles were successively coated by sodium citrate via Fe-O-C bond, and dextrans, which can be linked with their carboxylate moiety via hydrogen bond. Sodium citrate could enhance the disperse stability of reaction system and hydrophilicity of dextran-Fe3O4. (authors)

  8. Magnetic Nanoparticle Hyperthermia Using Pluronic-Coated Fe3O4 Nanoparticles: An In Vitro Study

    Magnetic nanoparticles are promising materials for hyperthermia treatment. The temperature rise under ac magnetic field, cytotoxicity, and in vitro hyperthermia effect of Fe3O4 nanoparticles coated with Pluronic f-127 were evaluated in this paper. The Pluronic-coated Fe3O4 nanoparticles exhibited no cytotoxic effect on HeLa cells. The optimal magnetic field of Pluronic-coated Fe3O4 nanoparticles was 16 kA/m (200 Oe) at the field strength of 210 khz. Appropriate temperature rise significantly reduced the viability of HeLa cells and induced apoptosis.

  9. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles

    Fouad, Dina M.; El-Said, Waleed A.; Mohamed, Mona B.

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones.

  10. Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles

    Magnetic nanoparticles are of great interest both for fundamental research and emerging applications. In the biomedical field, magnetite (Fe3O4) has shown promise as a hyperthermia-based tumor therapeutic. However, preparing suitable solubilized magnetite nanoparticles is challenging, primarily due to aggregation and poor biocompatibility. Thus methods for coating Fe3O4 NPs with biocompatible stabilizers are required. We report a new method for preparing Fe3O4 nanoparticles by co-precipitation within the pores of agar gel samples. Permeated agar gels were then dried and ground into a powder, yielding agar-conjugated Fe3O4 nanoparticles. Samples were characterized using XRD, FTIR, TGA, TEM and SQUID. This method for preparing agar-coated Fe3O4 nanoparticles is environmentally friendly, inexpensive and scalable.

  11. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy

    Photoluminescence (PL) of Fe3O4 nanoparticle was observed from the visible to near-infrared (NIR) range by laser irradiation at 407 nm. PL spectra of ∼10 nm diameter Fe3O4 nanoparticles organized in different spatial configuration, showed characteristic emissions with a major peak near 560 nm, and two weak peaks near 690 nm and 840 nm. Different band gap energies were determined for these Fe3O4 nanoparticle samples corresponding to, respectively, the electron band structures of the octahedral site (2.2 eV) and the tetrahedral site (0.9 eV). Photothermal effect of Fe3O4 nanoparticles was found to be associated with the photoluminescence emissions in the NIR range. Also discussed is the mechanism responsible for the photothermal effect of Fe3O4 nanoparticles in medical therapy.

  12. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid

    A novel and simple method has been proposed to prepare magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system. - Highlights: • A novel and simple method for preparation of nanocomposites for biomedicine. • All the materials are non-toxic and biocompatibility. • This paper gives systematic study of the nanocomposites in biomedicine

  13. Microwave dielectric and magnetic properties of superparamagnetic 8-nm Fe3O4 nanoparticles

    The superparamagnetic 8-nm Fe3O4 nanoparticles were successfully prepared by chemical oxidation process. For the complex permittivity, the dual dielectric relaxation processes have been proved by two overlapped ColeCole semicircles, and the natural resonance frequency is 3.03 GHz for the complex permeability. The maximum reflection loss value reaches ?55.5 dB at 6.11 GHz with 3.85 mm in the thickness of the absorbers for the superparamagnetic 8-nm Fe3O4 nanoparticles which is better than that of 150 nm and 30 nm Fe3O4 nanoparticles. It is believed that the superparamagnetic 8-nm Fe3O4 nanoparticles can be used as a kind of candidate for microwave absorber. - Highlights: ? Superparamagnetic 8-nm Fe3O4 nanoparticles synthesized by the simple chemical oxidation. ? The dual dielectric relaxation processes have been proved by the two overlapped ColeCole semicircles for the complex permittivity. ? The natural resonance frequency is 3.03 GHz which is larger than the one of 150 nm and 30 nm Fe3O4 nanoparticles. ? These possess better microwave absorption properties than 150 nm and 30 nm Fe3O4 nanoparticles.

  14. Hydrothermal synthesis of superparamagnetic Fe3O4 nanoparticles with ionic liquids as stabilizer

    Highlights: • Superparamagnetic Fe3O4 nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C16mim]Cl acts as stabilizer for the Fe3O4 nanoparticles. • Fe3O4 nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe3O4 nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate that the as-synthesized inverse spinel Fe3O4 nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C16mim]Cl acts as stabilizer for the Fe3O4 nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe3O4 nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K

  15. Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites

    Ding, Daowei; Yan, Xingru; Zhang, Xi; He, Qingliang; Qiu, Bin; Jiang, Dawei; Wei, Huige; Guo, Jiang; Umar, Ahmad; Sun, Luyi; Wang, Qiang; Khan, Mojammel A.; Young, David P.; Zhang, Xin; Weeks, Brandon; Ho, Thomas C.; Guo, Zhanhu; Wei, Suying

    2015-09-01

    Polyimide (PI) nanocomposite reinforced with Fe3O4 nanoparticles (NPs) at various NPs loadings levels of 5.0, 10.0, 15.0, and 20.0 wt% were prepared. The chemical interactions of the Fe3O4 NPs/PI nanocomposites were characterized using Fourier Transform Infrared (FT-IR) spectroscopy. X-ray Diffraction (XRD) results revealed that the addition of NPs had a significant effect on the crystallization of PI. Scanning electron microscope (SEM) and the atomic force microscope (AFM) were used to characterize the dispersion and surface morphology of the Fe3O4 NPs and the PI nanocomposites. The obtained optical band gap of the nanocomposites characterized using Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) was decreased with increasing the Fe3O4 loading. Differential scanning calorimetry (DSC) results showed a continuous increase of Tg with increasing the Fe3O4 NPs loading. Some differences were observed in the onset decomposition temperature between the pure PI and nanocomposites since the NPs and the PI matrix were physically entangled together to form the nanocomposites. The contact angle of pure PI was larger than that of Fe3O4/PI nanocomposites films, and increased with increasing the loading of Fe3O4. The degree of swelling was increased with increasing the Fe3O4 loading and the swelling time. The dielectric properties of the nanocomposite were strongly related to the Fe3O4 loading levels. The Fe3O4/PI magnetic property also had been improved with increasing the loading of the magnetic nanoparticles.

  16. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; Gu, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used ...

  17. A Facile Solvothermal Synthesis of Octahedral Fe3O4 Nanoparticles

    Ooi, Frances; DuChene, Joseph S.; Qiu, Jianqing; Graham, Jeremy O.; Engelhard, Mark H.; Cao, Guixin; Gai, Zheng; Wei, Wei

    2015-06-01

    Magnetic nanoparticles are of great technological interest because they promise numerous potential opportunities in biomedicine and data storage. Although intriguing, these applications require exquisite control over nanostructure morphology in order to appropriately harness their magnetic properties. Most synthesis strategies reported to date are unable to routinely produce anisotropic Fe3O4 nanostructures with appropriate sizes to enable integration into biological systems. Here, we report a simple solvothermal synthesis for obtaining octahedral Fe3O4 nanoparticles with suitable sizes for cellular internalization. Furthermore, these ferromagnetic Fe3O4 octahedrons exhibit substantial saturation magnetization with minimal remanence, suggesting their potential applicability for a host of biomedical applications.

  18. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe3O4@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe3O4@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe3O4@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  19. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    K C Barick; D Bahadur

    2006-11-01

    The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.

  20. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ∼74 emu g−1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional nanoparticles showed no significant cytotoxicity to the CHO cells up to 48 h even at concentrations of 1 mg ml−1 making them suitable for biomedical applications such as local heat generators (hyperthermia) for cancer treatment and drug delivery vehicles. (paper)

  1. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional nanoparticles showed no significant cytotoxicity to the CHO cells up to 48 h even at concentrations of 1 mg ml-1 making them suitable for biomedical applications such as local heat generators (hyperthermia) for cancer treatment and drug delivery vehicles.

  2. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice

    Jun Wang

    2010-10-01

    Full Text Available Jun Wang1, Yue Chen1, Baoan Chen1, Jiahua Ding1, Guohua Xia1, Chong Gao1, Jian Cheng1, Nan Jin1, Ying Zhou1, Xiaomao Li1, Meng Tang2, Xue Mei Wang21Department of Hematology, Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, Peoples Republic of China; 1Department of Physics, University of Saarland, D-266041 Saarbruechen, Germany; 2National Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, Peoples Republic of ChinaBackground: This study explored the pharmacokinetic parameters and tissue distribution of magnetic iron oxide nanoparticles (Fe3O4 MNPs in imprinting control region (ICR mice.Methods: The Fe3O4 MNPs were synthesized by chemical coprecipitation, and their morphology and appearance were observed by transmission electron microscopy. ICR mice were divided into a control group and a Fe3O4 MNP-treated group. Probable target organs in ICR mice were observed, and the pharmacokinetic parameters and biodistribution of Fe3O4 MNPs in tissues were identified using atomic absorption spectrophotometry.Results: Fe3O4 MNPs were spherical with a well distributed particle diameter, and were distributed widely in various target organs and tissues including the heart, liver, spleen, lungs, kidneys, brain, stomach, small intestine, and bone marrow. The majority of Fe3O4 MNPs were distributed to the liver and the spleen. Fe3O4 MNP levels in brain tissue were higher in the Fe3O4 MNP-treated group than in the control group, indicating that Fe3O4 MNPs can penetrate the bloodbrain barrier.Conclusion: These results suggest that the distribution of Fe3O4 MNPs was mostly in the liver and spleen, so the curative effect of these compounds could be more pronounced for liver tumors. Furthermore, Fe3O4 MNPs might be used as drug carriers to overcome physiologic barriers.Keywords: magnetic nanoparticles, Fe3O4, tissue distribution, mice

  3. Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe3O4 nanoparticles

    Highlights: • A new method for fabrication of GPO–Fe3O4 nanostructured hybrid was demonstrated. • The FT-IR analysis of nanohybrid shows infrared peaks characteristic of amide link. • EDX spectrum shows intense peaks for Iron along with carbon and oxygen peaks. • SEM images confirm the presence of Fe3O4 nanoparticles on the GPO surface. • This nanohybrid is a potential material for electromagnetic devices and biomedicine. -- Abstract: We describe a novel method for the preparation of a graphene oxide (GPO) – magnetic nanoparticle (Fe3O4) (GPO–Fe3O4) nanostructured hybrids by a simple and effective method. In this method, the fabrication of multi-component nanostructure system involves covalent attachment of GPO with Fe3O4 through dopamine (do) (GPO–do-Fe3O4). Optical microscopy (OM), ultraviolet spectroscopy (UV), Fourier transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to demonstrate the successful attachment of Fe3O4 to GPO. It was found that the fabricated nanohybrid shows superparamagnetic behavior and allows rapid separation under an external-magnetic field. The FT-IR analysis of GPO–do-Fe3O4 nanohybrid shows infrared (IR) peaks characteristic of amide (-CO-NH-) link on the surface of GPO. TGA analysis clearly shows two major stages of thermal degradation, different from the pattern of observed for dopamine coated Fe3O4 surface. An EDX spectrum of GPO–do-Fe3O4 shows intense peaks for Iron (Fe) along with carbon and oxygen peaks. SEM images further support the FT-IR and TGA results and confirm the presence of Fe3O4 on GPO surface. Thus, the resultant GPO–do-Fe3O4 nanohybrid system carries both electrical and magnetic properties, which are important for applications ranging from electro-magnetic devices to biomedicine

  4. Electro-precipitation of Fe3O4 nanoparticles in ethanol

    The preparation of superparamagnetic magnetite (Fe3O4) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Moessbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe3O4)

  5. Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles

    Highlights: ? Fe3+ as the only Fe source for preparing Fe3O4 nanoparticles through in situ cover and sonication method. ? Surface modification enables the reduction of the grain size of Fe3O4. ? Increasing temperature reduces grain size of Fe3O4 until it exceeds 80 deg. C. ? Increasing pH values reduces grain size of Fe3O4 until it exceeds 11. ? Saturation magnetizations depend on the grain size of Fe3O4 nanoparticles. - Abstract: Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g-1 to 52-58 emu g-1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 deg. C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.

  6. Numerical characterization of magnetically aligned multiwalled carbon nanotube-Fe3O4 nanoparticle complex.

    Jia, Xiaolong; Li, Wusheng; Xu, Xianjuan; Li, Wenbin; Cai, Qing; Yang, Xiaoping

    2015-02-11

    Alignment states of one-dimensional multiwalled carbon nanotubes containing various contents of zero-dimensional ferriferrous oxide nanoparticles (MWCNT-Fe3O4) were numerically characterized. MWCNT-Fe3O4 complexes were successfully prepared via in situ surface-initiated atom transfer radical polymerization, followed by a coprecipitation process. The complexes showed strong magnetism, which endowed them with the ability to be aligned under the action of an external magnetic field. The intensity of the magnetic field, loading content of Fe3O4 nanoparticles, and viscosity of dispersing medium, however, all had substantial effects on the alignment degree. To evaluate the alignment effectively and quantitatively, an orientation tensor description based on marking the direction of a single MWCNT in a selected region of optical images was employed. The results showed that MWCNT-Fe3O4 complex containing 26 wt % of Fe3O4 nanoparticles achieved a desirable alignment in deionized water under a magnetic field intensity of 0.10 T. Accordingly, epoxy composites reinforced with such aligned MWCNT-Fe3O4 complexes displayed 12.3 and 10.9% enhancement in tensile strength and modulus, as well as 8.9 and 6.1% enhancement in flexural strength and modulus, respectively. PMID:25597815

  7. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe3O4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe3O4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe3O4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T2-weighted MRI images of PVPI-coated Fe3O4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe3O4 nanoparticles had great potential for application in MRI as a T2 contrast agent. - Highlights: PVPI-coated Fe3O4 nanoparticles were prepared using inverse co-precipitation method. Resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Prepared Fe3O4 nanoparticles exhibited superparamagnetic behavior. T2-weighted MRI images of PVPI-coated Fe3O4 nanoparticles were obtained

  8. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques.

    Tian, Fei; Chen, Guangcun; Yi, Peiwei; Zhang, Jichao; Li, Aiguo; Zhang, Jing; Zheng, Lirong; Deng, Zongwu; Shi, Qin; Peng, Rui; Wang, Qiangbin

    2014-08-01

    Superparamagnetic iron oxide nanoparticles (SPIOs) have been widely used as the magnetic resonance imaging (MRI) contrast agent in biomedical studies and clinical applications, with special interest recently in in vivo stem cell tracking. However, a full understanding of the fate of SPIOs in cells has not been achieved yet, which is particularly important for stem cells since any change of the microenvironment may disturb their propagation and differentiation behaviors. Herein, synchrotron radiation-based X-ray fluorescence (XRF) in combination with X-ray absorption spectroscopy (XAS) were used to in situ reveal the fate of Fe3O4 and Fe3O4@SiO2 NPs in human mesenchymal stem cells (hMSCs), in which the dynamic changes of their distribution and chemical speciation were precisely determined. The XAS analysis evidences that Fe3O4 NPs cultured with hMSCs are quite stable and almost keep their initial chemical form up to 14 days, which is contradictory to the previous report that Fe3O4 NPs were unstable in cell labeling assessed by using a simplified lysosomal model system. Coating with a SiO2 shell, Fe3O4@SiO2 NPs present higher stability in hMSCs without detectable changes of their chemical form. In addition, XRF analysis demonstrates that Fe3O4@SiO2 NPs can label hMSCs in a high efficiency manner and are solely distributed in cytoplasm during cell proliferation, making it an ideal probe for in vivo stem cell tracking. These findings with the help of synchrotron radiation-based XAS and XRF improve our understanding of the fate of SPIOs administered to hMSCs and will help the future design of SPIOs for safe and efficient stem cells tracking. PMID:24814428

  9. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles

    Fe3O4/Au composite nanoparticles (GoldMag NPs) have received considerable attention because of their advantageous properties arisen from both individual Au and Fe3O4 nanoparticles. Many efforts have been devoted to the synthesis of these composite nanoparticles. Herein, GoldMag NPs were reported to be synthesized by two-step method. Fe3O4 nanoparticles were prepared by co-precipitation and modified by the citric acid, and then citric acid-coated Fe3O4 nanoparticles were used as seeds in sodium citrate solution to reduce the HAuCl4. The size of obtained nanoparticles was geared from 25 to 300 nm by controlling the concentration of reactants. The GoldMag NPs were characterized by UV–vis spectrometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The GoldMag NPs showed good superparamagnetism at room temperature and were well dispersed in water with surface plasmon resonance absorption peak varied from 538 nm to 570 nm. - Highlights: • A low cost, simple manipulation and nontoxic approach was designed for preparation of magnetic Fe3O4/Au (GoldMag NPs) nanocomposites. • The size of GoldMag NPs could be controlled from 25 to 300 nm by varying the concentration of reactants. • GoldMag NPs possessed good magnetic response, high dispersion, and good stability

  10. Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles

    Highlights: ► A bran-new method is firstly used to fabricate Fe3O4 nanoparticles. ► The detailed analysis of formation mechanism is discussed. ► The electromagnetic absorption properties are defined. ► The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe3O4 nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe3O4 nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2–18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe3O4 nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was −21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe3O4 nanoparticles

  11. Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles

    Akbari, Hossein; Zeynali, Hossein; Bakhshayeshi, Ali

    2016-02-01

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe3O4 was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe3O4 core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner-Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe3O4 core/shell nanoparticles. There is a difference between the results from Stoner-Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe3O4 core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions.

  12. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  13. Preparation of Fe3O4 Nanoparticles and Removal of Methylene Blue through Adsorption

    Trujillo Hernandez, J. S.; Aragn Muriel, A.; Tabares, J. A.; Prez Alczar, G. A.; Bolaos, A.

    2015-07-01

    In this work, we studied the catalytic activity, structural properties, and behavior of a Fe3O4 magnetic system. The Fe3O4 nanoparticles were prepared by the thermal decomposition method. X-ray diffraction confirmed the presence of a structural Fe3O4 phase, where acicular shape of the grains is shown. Transmission Mossbauer spectroscopy showed a wide distribution of particle sizes at room temperature, some of these present superparamagnetic behavior and are responsible of paramagnetic sites. The hysteresis loops obtained by the use of a vibrating sample magnetometer showed that these nanoparticles exhibit superparamagnetic behavior. However, the cycles present a significant contribution from a ferrimagnetic component at 2 K, which agrees with Mossbauer results. Through scanning electron microscopy, a tendency to the agglomeration of nanoparticles was observed. Nanoparticle activity in the degradation of methylene blue (MB) was studied through fluorescence spectroscopy, finding dye adsorption properties.

  14. Single source preparation of superparamagnetic Fe3O4 nanoparticles by simple cyclic microwave approach

    Graphical abstract: - Highlights: Superparamagnetic Fe3O4 nanoparticles were synthesized in high yield. PEG-200 was applied as both solvent and reductive agent. Single source synthesis of Fe3O4 was performed. Nontoxic materials and surfactant were used in current investigation. Reaction time and temperature significantly decreased in current experiment. - Abstract: Polyol mediated process was applied for the synthesis of Fe3O4 nanoparticles under microwave irradiation. By combination of polyol medium and microwave irradiation different advantages including low reaction time, low consumption of energy, and simplicity were achieved. Different parameters affecting on products including microwave irradiation power, reaction time, reactants concentration, and solvent were changed to reach the optimum condition for synthesis of Fe3O4 nanoparticles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR) spectra, and vibrating sample magnetometer (VSM). Facile preparation and separation are important features of this route. This work has provided a general, simple, and effective method to control the composition and morphology of Fe3O4 nanoparticles in nonaqueous solution, which will be important for inorganic synthesis methodology

  15. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe3O4 nanoparticles with composition (80 − x)TeO2·xFe3O4·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm−1 to 671 cm−1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO3 peak at 752 cm−1. A new peak around 461 cm−1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe3O4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe3O4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe3O4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe3O4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  16. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia

    The magnetite (Fe3O4) nanoparticles were prepared by coprecipitation of Fe3+ and Fe2+ with an aqueous NaOH solution. The Fe3O4/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe3O4 magnetic fluid. The inductive heat property of Fe3O4/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe3O4/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, Ms, and coercivity, Hc, are 50.05 emu g-1 and 137 Oe for Fe3O4 nanoparticles and 26.34 emu g-1 and 0 Oe for Fe3O4/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe3O4 nanoparticles or Fe3O4/PANI composite nanoparticles are 63.6 0C and 52.4 0C, respectively. The Fe3O4/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers

  17. Catalytic performance of Fe3O4 nanoparticles for cyclocondensation synthesis of thiacrown ethers

    The catalytic function of nanoparticles is one the most successful applications of nanotechnologies so far. A novel and mild one-pot cyclocondensation reaction catalyzed by Fe3O4 nanoparticles is achieved for the first time in this work. By the function of those nanoparticles, the thiacrown ethers, including both 1,4-dithiane and 1,4,7-trithiacyclononane were obtained with considerable yield and turnover in a milder condition than that of the conventional routes. The excellent dehydrating ability and acid sensitivity of Fe3O4 nanoparticles were discovered in a series of experiments of esterification of DL-malic acid. The catalytic reaction mechanism of Fe3O4 nanoparticles was explored through the investigation of morphology evolution of those nanoparticles by transmission electron microscopy. Interestingly, the as-prepared big nanoparticles were decomposed into hollow or loose bounded aggregates of smaller nanoparticles after catalytic cycles. The result shown in this work claims promising utilization of Fe3O4 nanoparticles with big potential in catalytic synthesis. (paper)

  18. Magnetic hyperthermia and photothermal effect of functionalized Fe3O4 nanoparticles for biomedical applications

    Sadat, Md Ehsan; Shi, Donglu; Mast, David B.

    2014-03-01

    The heating of nanoparticle loaded tissue surrogates for potential applications in cancer therapy was achieved when the superparamagnetic Fe3O4 nanoparticles were subjected to either high frequency alternating (AC) magnetic fields or near infra-red (NIR) radiation. Four nanoparticles systems were studied, where each system was distinct in terms of the arrangement, surface modification and physical confinement of the Fe3O4 nanoparticles. It was observed that the thermal response of each nanoparticle system to AC magnetic fields was different and could be described in terms of linear response theory and by taking into account the dipole-dipole interaction for closely packed nanoparticle systems. It was also shown that the same nanoparticle systems could be effectively heated when illuminated with NIR radiation at 785 nm and 808 nm. The measured optical absorption and scattering of the Fe3O4 nanoparticle systems was analyzed in terms of Mie scattering theory. The overall results from this study clearly demonstrate that the temperature increase of Fe3O4 nanoparticle loaded tissue surrogate samples to therapeutic levels could be achieved using AC magnetic fields and NIR radiation.

  19. Protein surface labeling reactivity of N-hydroxysuccinimide esters conjugated to Fe3O4@SiO2 magnetic nanoparticles

    The N-hydroxysuccinimide (NHS) ester moiety is one of the most widely used amine reactive groups for covalent conjugation of proteins/peptides to other functional targets. In this study, a cleave-analyze approach was developed to quantify NHS ester groups conjugated to silica-coated iron oxide magnetic nanoparticles (Fe3O4@SiO2 MNPs). The fluorophore dansylcadaverine was attached to Fe3O4@SiO2 magnetic nanoparticles (MNPs) via reaction with NHS ester groups, and then released from the MNPs by cleavage of the disulfide bond in the linker between the fluorophore and the MNPs moiety. The fluorophore released from Fe3O4@SiO2 MNPs was fluorometrically measured, and the amount of fluorophore should be equivalent to the quantity of the NHS ester groups on the surface of Fe3O4@SiO2 MNPs that participated in the fluorophore conjugation reaction. Another sensitive and semiquantitative fluorescence microscopic test was also developed to confirm the presence of NHS ester groups on the surface of Fe3O4@SiO2 MNPs. Surface-conjugated NHS ester group measurements were primarily performed on Fe3O4@SiO2 MNPs of 100–150 nm in diameter and also on 20-nm nanoparticles of the same type but prepared by a different method. The efficiency of labeling native proteins by NHS ester-coated Fe3O4@SiO2 MNPs was explored in terms of maximizing the number of MNPs conjugated per BSA molecule or maximizing the number of BSA molecules conjugated per each nanoparticle. Maintaining the amount of fresh NHS ester moieties in the labeling reaction system was essential especially when maximizing the number of MNPs conjugated per protein molecule. The methodology demonstrated in this study can serve as a guide in labeling the exposed portions of proteins by bulky multivalent labeling reagents

  20. Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response

    Octahedral-shaped Fe3O4 nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe3O4 nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol.?% particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves

  1. Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response

    Jung, H. S.; Choi, H. J.

    2015-05-01

    Octahedral-shaped Fe3O4 nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe3O4 nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.

  2. Preparation and application of core–shell Fe3O4/polythiophene nanoparticles

    The Fe3O4/polythiophene nanoparticles, possessing core–shell structure, were prepared by two-step method. In the first step, the Fe3O4 particles were synthesized via co-precipitation of FeCl3 and FeSO4, using the NH3·H2O and N2H4·H2O as precipitant system. In the second step, the thiophene adsorbed and polymerized on the surface of the Fe3O4 in the solvent of chloroform. Raman, FTIR, EDS, XRD, TEM, Zeta potential measurement and TG-SDTA were employed to characterize the composition and structure of the products. The results showed that the Fe3O4/polythiophene nanoparticles were successfully synthesized with good dispersion and stable core–shell structure, provided with average particle size of approximately 20 nm, in which the diameter of Fe3O4 core was approximately 14 nm and the thickness of polythiophene shell was approximately 3–4 nm. Then, the nanoparticles were added into alkyd varnish to prepare a composite coating. The neutral salt spray test, paraffin control test and mechanical test were carried out to identify the properties of the composite coating. It was found that the composite coating had good performances of anticorrosion and paraffin controlling when the mass fraction of the nanoparticles was 0.8–1 wt% in alkyd varnish. As a multifunctional material, the Fe3O4/polythiophene nanoparticles can be used in the internal coating of pipeline and have great potential application in crude oil pipeline transportation.

  3. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    In this work we report the preparation of fucan-coated magnetite (Fe3O4) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe3O4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe3O4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe3O4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  4. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe3O4 nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe3O4 nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe3O4@Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes

  5. Green synthesis and characterization of superparamagnetic Fe 3O 4 nanoparticles

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2010-07-01

    In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe 3O 4 nanoparticles using ?- D-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe 3O 4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe 3O 4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature ( Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe 3O 4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm -1 was indicative of Fe 3O 4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.

  6. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles

    In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using ?-D-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm-1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.

  7. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation

    Peptide amyloid aggregation is a hallmark of several human pathologies termed amyloid diseases. We have investigated the effect of electrostatically stabilized magnetic nanoparticles of Fe3O4 on the amyloid aggregation of lysozyme, as a prototypical amyloidogenic protein. Thioflavin T fluorescence assay and atomic force microscopy were used for monitoring the inhibiting and disassembly activity of magnetic nanoparticles of Fe3O4. We have found that magnetic Fe3O4 nanoparticles are able to interact with lysozyme amyloids in vitro leading to a reduction of the amyloid aggregates, thus promoting depolymerization; the studied nanoparticles also inhibit lysozyme amyloid aggregation. The ability to inhibit lysozyme amyloid formation and promote lysozyme amyloid disassembly exhibit concentration-dependent characteristics with IC50 = 0.65 mg ml-1 and DC50 = 0.16 mg ml-1 indicating that nanoparticles interfere with lysozyme aggregation already at stoichiometric concentrations. These features make Fe3O4 nanoparticles of potential interest as therapeutic agents against amyloid diseases and their non-risk exploitation in nanomedicine and nanodiagnostics.

  8. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation

    Bellova, Andrea; Bystrenova, Eva; Koneracka, Martina; Kopcansky, Peter; Valle, Francesco; Tomasovicova, Natalia; Timko, Milan; Bagelova, Jaroslava; Biscarini, Fabio; Gazova, Zuzana

    2010-02-01

    Peptide amyloid aggregation is a hallmark of several human pathologies termed amyloid diseases. We have investigated the effect of electrostatically stabilized magnetic nanoparticles of Fe3O4 on the amyloid aggregation of lysozyme, as a prototypical amyloidogenic protein. Thioflavin T fluorescence assay and atomic force microscopy were used for monitoring the inhibiting and disassembly activity of magnetic nanoparticles of Fe3O4. We have found that magnetic Fe3O4 nanoparticles are able to interact with lysozyme amyloids in vitro leading to a reduction of the amyloid aggregates, thus promoting depolymerization; the studied nanoparticles also inhibit lysozyme amyloid aggregation. The ability to inhibit lysozyme amyloid formation and promote lysozyme amyloid disassembly exhibit concentration-dependent characteristics with IC50 = 0.65 mg ml-1 and DC50 = 0.16 mg ml-1 indicating that nanoparticles interfere with lysozyme aggregation already at stoichiometric concentrations. These features make Fe3O4 nanoparticles of potential interest as therapeutic agents against amyloid diseases and their non-risk exploitation in nanomedicine and nanodiagnostics.

  9. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization.

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; Gu, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45 degrees. The immobilization yields and K(m) value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 microM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  10. Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effective adsorbent

    Harajyoti Mazumdar

    2015-06-01

    Full Text Available The study was carried out to find out the adsorption efficiency of lignin from paper mill waste water by using Fe3O4 magnetic nanoparticles. The physico-chemical analysis of paper mill effluent results high B.O.D value. Separations of lignin from black liquor were done by acid precipitation method and removal of lignin was done with nanoparticles. Synthesis of nanoparticles was done by co-precipitation method by mixing and stirring of FeCl3.6H2O and FeCl2.4H2O solution at 2:1 molar ratio. The nanoparticles were characterized by using U.V-Vis spectrophotometer and X-Ray Diffraction. U.V-Vis spectra show absorbance spectra at around 585 nm while XRD revealed around 10 nm sizes of Fe3O4 MNPs. The removal efficiency of lignin by Fe3O4 MNPs was investigated at different pH and contact time. Maximum adsorption of lignin onto the surface of Fe3O4 MNPs took place at pH 2.5 and 10 mins of contact time. Desorption of lignin by nanoparticles was studies by using different organic solvents.

  11. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.

  12. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Chen DZ

    2012-09-01

    Full Text Available Daozhen Chen,1,3,* Qiusha Tang,2,* Xiangdong Li,3,* Xiaojin Zhou,1 Jia Zang,1 Wen-qun Xue,1 Jing-ying Xiang,1 Cai-qin Guo11Central Laboratory, Wuxi Hospital for Matemaland Child Health Care Affiliated Medical School of Nanjing, Jiangsu Province; 2Department of Pathology and Pathophysiology, Medical College, Southeast University, Jiangsu Province; 3The People’s Hospital of Aheqi County, Xinjiang, China *These authors contributed equally to this workBackground: The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells.Methods: Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays.Results: Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929 cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50 was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermia

  13. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting coreshells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs. - Highlights: Fe3O4 nanoparticles synthesized FeCl2 as the sole source by alkaline precipitation. Hydrophilicity imparted to OA-Fe3O4 MNPs. Improved heating induction ability. Highly stabilized colloidal suspension. Improved biocompatiblity

  14. Water-soluble rhamnose-coated Fe3O4 nanoparticles.

    Lartigue, Lenaic; Oumzil, Khalid; Guari, Yannick; Larionova, Joulia; Gurin, Christian; Montero, Jean-Louis; Barragan-Montero, Veronique; Sangregorio, Claudio; Caneschi, Andrea; Innocenti, Claudia; Kalaivani, T; Arosio, P; Lascialfari, A

    2009-07-16

    Water-soluble biocompatible rhamnose-coated Fe(3)O(4) nanoparticles of 4.0 nm are obtained by covalent anchorage of rhamnose on the nanoparticles surface via a phosphate linker. These nanoparticles present superparamagnetic behavior and nuclear relaxivities in the same order of magnitude as Endorem that make them potential magnetic resonance imaging (MRI) contrast agents of a second generation, where the saccharides represent also specific ligands able to target lectins on skin cells. PMID:19545163

  15. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-01-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more ?-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch. PMID:26902789

  16. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma.

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-01-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more ?-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch. PMID:26902789

  17. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M.

    2013-01-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glyce...

  18. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  19. Interactions in ?-Fe2O3 and Fe3O4 nanoparticle systems

    We have investigated interaction effects in two different systems of iron oxide nanoparticles. Samples of ?-Fe2O3 and Fe3O4 nanoparticles were synthesized using a matrix-mediated precipitation reaction and a chemical co-precipitation technique respectively. The structural properties of these nanoparticles were studied using x-ray diffraction and transmission electron microscopy. We also used temperature dependent ac magnetic susceptibility measurements to carefully investigate the interactions among these nanoparticles. Our analysis showed that the characteristic interaction energy does not depend simply on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution

  20. FMR Study of the Porous Silicate Glasses with Fe3O4 Magnetic Nanoparticles Fillers

    Zapotoczny, B.; Dudek, M R; N. Guskos; J. J. Kozioł; Padlyak, B. V.; M. Kośmider; Rysiakiewicz-Pasek, E.

    2012-01-01

    The results of research on new magnetic materials for biomedical applications are discussed. These materials are porous silicate glasses with magnetic fillers. To ensure the smallest number of components for subsequent removal from the body, the magnetic fillers are bare magnetite nanoparticles (Fe3O4). The magnetic properties of these materials have been investigated using the ferromagnetic resonance method (FMR). The FMR analysis has been complemented by scanning electron microscope (SEM) m...

  1. Growth mechanism of ZnO nanorod/Fe3O4 nanoparticle composites and their photocatalytic properties

    Wang, Wenda; Yu, Leiming; Yang, Hanjia; Hong, Kunquan; Qiao, Zhenfang; Wang, Hai

    2015-11-01

    ZnO nanorods/Fe3O4 nanocomposites as the recyclable photocatalyst were synthesized by a co-precipitation method, with microwave assistant by dropping alkaline solution with Fe3O4 nanoparticles into the aqueous of zinc salt. These Fe3O4 nanoparticles were the nucleated centers for the ZnO nanorods growth so that these nanorods ended with aggregated Fe3O4 nanoparticles. The growth processes and mechanism are explained as those insoluble zinc hydroxides prefer to nucleate on the surface of Fe3O4 nanoparticles (heterogeneous nucleation) rather than nucleated as isolated ZnO nanostructures (homogeneous nucleation). These nanocomposites have strong photocatalytic ability to reduce RhB and moderate magnetization, which make them being good recyclable photocatalysts.

  2. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25?nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  3. Microwave synthesis of magnetic Fe 3O 4 nanoparticles used as a precursor of nanocomposites and ferrofluids

    Hong, R. Y.; Pan, T. T.; Li, H. Z.

    2006-08-01

    Methods to synthesize magnetic Fe 3O 4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe 3O 4 magnetic nanoparticles were prepared by the co-precipitation of Fe 3+ and Fe 2+, NH 3H 2O was used as the precipitating agent to adjust the pH value, and the aging of Fe 3O 4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe 3O 4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe 3O 4 crystallites was found to be around 8-9 nm. Thereafter, the surface of Fe 3O 4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe 3O 4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe 3O 4 nanoparticles. The dispersion of Fe 3O 4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe 3O 4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe 3O 4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe 3O 4 nanoparticles. The Fe 3O 4 magnetic fluid was characterized using UV-vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.4610 -8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe 3O 4 nanoparticles in the fluid was 36.19 nm.

  4. Study on electric field induced structural color change of Fe3O4@C hybrid nanoparticles

    The photonic properties of Fe3O4@C and Fe3O4 colloidal suspensions in an external electric field have been investigated. Compared to Fe3O4, the Fe3O4@C colloidal suspension has been found to have a wider tunability range of the optical spectrum and a stronger electric response in low electric fields. Based on the dielectric spectroscopy analysis of Fe3O4@C and Fe3O4 colloidal suspensions, a dielectric loss model has been proposed to explain the significant effect of the carbon shell on the electrically modulated photonic property of the Fe3O4@C suspension. (paper)

  5. A facile strategy to synthesize monodisperse superparamagnetic OA-modified Fe3O4 nanoparticles with PEG assistant

    A facile strategy was reported to synthesize monodisperse super-paramagnetic oleic acid (OA) modified Fe3O4 nanoparticles, which the poly ethylene glycol (PEG) was used as the assistant. The influence of the molecular weight and concentration of PEG was investigated in the process of OA-modification. In addition, the mechanism of PEG action in the reaction system was discussed. The morphology and properties of the as-synthesized Fe3O4 magnetic nanoparticles were characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and superconducting quantum interference device (SQUID). The size (12 nm) of the as-prepared Fe3O4 nanoparticles is smaller than the superparamagnetic critical size (25 nm) of Fe3O4 nanoparticles, which endows the OA-modified Fe3O4 nanoparticles with superparamagnetic property. Furthermore, the dispersibility and stability of as-synthesized OA-modified Fe3O4 magnetic nanoparticles were very good. As the stabilizer and dispersant, PEG played a very important role and did not encapsulate the OA-modified Fe3O4 nanoparticles. The condition for OA-modified Fe3O4 nanoparticles preparation was optimized. - Highlights: A facile strategy with PEG assistant was adopted to synthesize OA-modified Fe3O4. As-prepared OA-modified Fe3O4 is super-paramagnetic, monodisperse and stable. The surface-modified method has good merits of celerity, simplicity and green. The molecular and concentration of PEG as the assistant were optimized

  6. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-07-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions.

  7. The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs

    Water-soluble mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) of two sizes and superparamagnetic Fe3O4 nanoparticles have been synthesized and used to investigate the effect of the mechanism of Fe3O4 nanoparticles on the fluorescence intensity of QDs. In the presence of a low concentration of Fe3O4 nanoparticles, the CdTe QDs with smaller particle size exhibit fluorescence quenching while fluorescence enhancement of CdTe QDs with larger particle size was observed, and the fluorescence intensity changes with the excitation wavelength and the concentration of Fe3O4 nanoparticles. The mechanism study shows that there is a double-effect between the Fe3O4 and CdTe QDs: one is the fluorescence quenching effect due to Fe3O4 strong absorption of excitation and emission light, the other is the fluorescence enhancement effect resulting from a localized electromagnetic field caused by the absorption of exciting light. The fluorescence of CdTe QDs with lower concentration of Fe3O4 nanoparticles was determined via the synergy of the double-effect. To our best knowledge, this is the first systematic study on the interaction between Fe3O4 nanoparticles and CdTe QDs, which finds the fluorescence enhancement effect in the presence of low concentration of Fe3O4. - Highlights: ? Interaction of Fe3O4 nanoparticles of CdTe QDs. ? Fluorescence intensity of different size QDs shows quenching or enhancement. ? Double-effect mechanism of fluorescence enhancement and fluorescence quenching.

  8. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with tetrapod morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m2 kg?1), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis. (paper)

  9. Study on the Synthesis and Properties of Superparamagnetic Monodisperse Fe3O4 Nanoparticles

    JIANG Wen,WEN Xian-Tao,WANG Wei,WU Yao,GU Zhong-Wei

    2009-07-01

    Full Text Available There are extensive applications for superparamagnetic Fe3O4 nanoparticles in the field of biomaterials. Superparamagnetic magnetite nanoparticles coated with oleic acid were prepared in the refluxing mixed system of water, ethanol alcohol and toluene at 74?The effect of the OH- concentration on the surface properties, size, dispersion and magnetic properties of magnetite nanoparticles was studied systematically. The properties of magnetite nanoparticles were tested by X-ray diffraction (XRD, fourier transform infrared (FTIR, dynamic light scattering (DLS, transmission electron microscopy (TEM and vibrating sample magnetometer (VSM. The results show that when the molar ratio of NaOH to Fe(

  10. Degenerate two-wave mixing via a dynamic grating in Fe3O4 nanoparticle suspensions

    Optical-gradient-force-induced spatially inhomogeneous disturbances of the dielectric permittivity of a suspension of spherical nanoparticles are analysed in the Maxwell Garnett approximation. Degenerate two-wave mixing in such media is shown to cause the formation of a spatial nanoparticle grating and the associated permittivity grating in the colloid. Relations are derived for the complex coupling constant of the waves. Codirectional and contradirectional two-wave mixing in suspensions of light-absorbing nanoparticles is considered. The two-beam coupling gain at 640 nm in various suspensions of Fe3O4 nanoparticles may reach ?10 cm-1. (nonlinear optical phenomena)

  11. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst

    A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity. - Graphical abstract: Covalently grafted polyethyleneimine on Fe3O4 magnetic nanoparticles as easily reusable catalyst for the synthesis of various 4H-pyrans. - Highlights: • Polyethyleneimine modified Fe3O4 via covalent bonding as a novel water tolerance catalyst. • The catalyst showed high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyrans in water. • Catalysts could be easily recovered and reused for several times without a significant loss in their catalytic activity

  12. Electrospun magnetic poly(L-lactide) (PLLA) nanofibers by incorporating PLLA-stabilized Fe3O4 nanoparticles

    Magnetic poly(L-lactide) (PLLA)/Fe3O4 composite nanofibers were prepared with the purpose to develop a substrate for bone regeneration. To increase the dispersibility of Fe3O4 nanoparticles (NPs) in the PLLA matrix, a modified chemical co-precipitation method was applied to synthesize Fe3O4 NPs in the presence of PLLA. Trifluoroethanol (TFE) was used as the co-solvent for all the reagents, including Fe(II) and Fe(III) salts, sodium hydroxide, and PLLA. The co-precipitated Fe3O4 NPs were surface-coated with PLLA and demonstrated good dispersibility in a PLLA/TFE solution. The composite nanofiber electrospun from the solution displayed a homogeneous distribution of Fe3O4 NPs along the fibers using various contents of Fe3O4 NPs. X-ray diffractometer (XRD) and vibration sample magnetization (VSM) analysis confirmed that the co-precipitation process had minor adverse effects on the crystal structure and saturation magnetization (Ms) of Fe3O4 NPs. The resulting PLLA/Fe3O4 composite nanofibers showed paramagnetic properties with Ms directly related to the Fe3O4 NP concentration. The cytotoxicity of the magnetic composite nanofibers was determined using in vitro culture of osteoblasts (MC3T3-E1) in extracts and co-culture on nanofibrous matrixes. The PLLA/Fe3O4 composite nanofibers did not show significant cytotoxicity in comparison with pure PLLA nanofibers. On the contrary, they demonstrated enhanced effects on cell attachment and proliferation with Fe3O4 NP incorporation. The results suggested that this modified chemical co-precipitation method might be a universal way to produce magnetic biodegradable polyester substrates containing well-dispersed Fe3O4 NPs. This new strategy opens an opportunity to fabricate various kinds of magnetic polymeric substrates for bone tissue regeneration. Highlights: • Polylactide coated Fe3O4 nanoparticles were synthesized by co-precipitation. • The co-precipitated Fe3O4 nanoparticles dispersed well in polylactide nanofibers. • Magnetic polylactide/Fe3O4 nanofibers are good substrates for osteoblasts

  13. Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction

    Research highlights: → This manuscript reports for the first time to study the effects of the heating temperatures and holding time on crystalline phase composition and magnetic properties of Fe3O4 nanoparticles prepared by carbothermal reduction method using glucose as carbon source both theoretically and experimentally. → This study is helpful for controlled synthesis of pure Fe3O4 with the carbothermal reduction method by controlling right temperature and time. → Fe3O4 powder heated at 650 deg. C for 2 h has the highest saturation magnetization (Ms = 97.99 emu/g), higher than Fe3O4 prepared by other techniques due to better crystallinity and expanded crystalline cell. - Abstract: Fe3O4 nanoparticles were prepared by carbothermal reduction method using glucose as carbon source. Heating temperature and holding time effects on crystalline phase composition and magnetic properties of Fe3O4 nanoparticles were investigated by X-ray diffraction, field-emission scanning electron microscopy and vibrating sample magnetometer. Pure Fe3O4 nanoparticles with an average crystallite size of 48 nm was obtained at higher heating temperature of 650 deg. C and shorter holding time of 0.5 h, or at lower heating temperature of 450 deg. C and longer holding time of more than 6 h. The crystallite size of Fe3O4 nanoparticles increases with heating temperature and holding time. Fe3O4 nanoparticles heated at 650 deg. C for 2 h have the highest saturation magnetization (Ms = 97.99 emu g-1), higher than Fe3O4 prepared by other techniques due to better microstructure, crystallinity and expanded crystalline cell.

  14. A selective nanocatalyst for an efficient Ugi reaction: Magnetically recoverable Cu(acac)2/NH2-T/SiO2@Fe3O4 nanoparticles

    Monireh Ghavami; Maryam Koohi; Mohammad Zaman Kassaee

    2013-11-01

    A novel, magnetically recoverable nanocatalyst is fabricated through simple immobilization of copper(II) acetylacetonate on the surface of amine-terminated silica-coated Fe3O4 nanoparticles: Cu(acac)2/NH2-T/SiO2@Fe3O4NPs. Unambiguous bonding of Cu to the terminal amine is indicated by Xray photoelectron spectroscopy (XPS). Further characterizations are carried out by different techniques. Selectivity of this catalyst is demonstrated through one-pot synthesis of fourteen α-aminoacyl amides using Ugi four-component reaction of cyclohexyl isocyanide, acetic acid, amines and various aldehydes. Interestingly, all aromatic aldehydes react with short reaction times and high yields, but heteroaromatic aldehydes do not yield any product. Catalyst efficiency remains unaltered through three consecutive experiments.

  15. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  16. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  17. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles

    In this work, we study the preparation and properties of bio-compatible magnetic nanoparticles for immunoassay and DNA detection. The magnetite (Fe3O4) nanoparticles were prepared by a chemical co-precipitation method and dextran was selected as the surfactant to suspend the nanoparticles. Suspended particles associated with avidin followed by biotin were qualitatively analyzed by enzyme-linked immunosorbent assay (ELISA) method. We found further the ethylenediamine blocked activated residual groups efficiently, hence enhancing the attachment of biotin for probing the avidin

  18. Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications

    Javier Bustamante, Mamani; Lionel Fernel, Gamarra; Giancarlo Espsito de Souza, Brito.

    2014-06-01

    Full Text Available Nowadays the use of magnetic nanoparticles (MNP) in medical applications has exceeded expectations. In molecular imaging, MNP based on iron oxide coated with appropriated materials have several applications in vitro and in vivo studies. For applications in nanobiotechnology these MNP must present so [...] me characteristics such as size smaller than 100 nanometers, high magnetization values, among others. Therefore the MNP have physical and chemical properties that are specific to certain studies which must be characterized for quality control of the nanostructured material. This study presents the synthesis and characterization of MNP of magnetite (Fe3O4) dispersible in water with perspectives in a wide range of biomedical applications. The characterization of the colloidal suspension based on MNP stated that the average diameter is (12.60.2) nm determined by Transmission Electron Microscopy where the MNP have the crystalline phase of magnetite (Fe3O4) that was identified by Diffraction X-ray and confirmed by Mssbauer Spectroscopy. The blocking temperature of (891) K, Fe3O4 MNP property, was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above blocking temperature. The magnetometry determined that the MNP showed superparamagnetic behavior confirmed by ferromagnetic resonance.

  19. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles.

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-12-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization (M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design. PMID:26858161

  20. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-02-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization ( M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  1. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  2. Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles

    Alveroğlu, E.; Sözeri, H.; Baykal, A.; Kurtan, U.; Şenel, M.

    2013-04-01

    In this study, Fe3O4 (magnetite) nanoparticles were synthesized by in situ in polyacrylamide (PAAm) gels. Structural and magnetic properties of magnetite nanoparticles were investigated by X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) methods. Interaction of pyranine molecules with Fe3O4 nanoparticles was investigated by fluorescence spectroscopy measurements in which pyranine (POH) molecules were used as a flouroprobe. It was observed that magnetite nanoparticles have single domain structure with average grain size of 12 nm which was also supported by magnetization measurements. M-H hysteresis curves revealed the superparamagnetic nature of magnetite nanoparticles synthesized in PAAm gels. Fluorescence measurements depicted that there is an interaction between POH and magnetite nanoparticles which was deduced from the presence of two new peaks at 380 nm and 405 nm in emission spectrum. Besides, it was observed that POH molecules could not diffuse into the gel when it consists of magnetite nanoparticles which also make the gel more homogeneous. As swelling ratio increases from 1 to 13, magnetization of the gel does not change which reveals that magnetic nanoparticles do not diffuse out of the gel during water-intake. This feature makes the gel suitable for applications as waste water treatments.

  3. Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics.

    Semkina, A; Abakumov, M; Grinenko, N; Abakumov, A; Skorikov, A; Mironova, E; Davydova, G; Majouga, A G; Nukolova, N; Kabanov, A; Chekhonin, V

    2015-12-01

    Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. PMID:26595387

  4. Functionalized Fe3O4-Au superparamagnetic nanoparticles: in vitro bioactivity

    The interaction of nanoparticles with cells has been a focus of interest during the past decade. We report the fabrication and characterization of hydrosoluble Fe3O4-Au nanoparticles functionalized with biocompatible and fluorescent molecules and their interaction with cell cultures by visualizing them with confocal microscopy. Gold covered iron oxide nanoparticles were synthesized by reducing metal salts in the presence of oleylamine and oleic acid. The functionalization of these particles with an amphiphilic polymer provides a water soluble corona as well as the possibility to incorporate different molecules relevant for bio-applications such as poly(ethylene glycol), glucose or a cadaverine derived dye. The particle size, and the presence of polymer layers and conjugated molecules were characterized and confirmed by transmission electron microscopy, thermogravimetric measurements and infrared spectroscopy. A complete magnetic study was performed, showing that gold provides an optimum coating, which enhances the superparamagnetic behaviour observed above 1015 K in this kind of nanoparticle. The interaction with cells and the cytotoxicity of the Fe3O4-Au preparations were determined upon incubation with the HeLa cell line. These nanoparticles showed no cytotoxicity when evaluated by the MTT assay and it was demonstrated that nanoparticles clearly interacted with the cells, showing a higher level of accumulation in the cells for glucose conjugated nanoparticles. (paper)

  5. Synthesis and Properties of Fe3O4 Nanoparticles by Co-precipitation Method to Removal Procion Dye

    Poedji Loekitowati Hariani

    2013-06-01

    Full Text Available Fe3O4 (magnetite nanoparticles were synthesized by chemical co-precipitation method. The structure, morphology and magnetic properties of as-prepared were characterized by X Ray Diffraction (XRD, Scanning Electron Microscope-Energy Dispersive X Ray Spectrometry (SEM-EDS, Transmission Electron Microscope (TEM and Vibrating Sample Magnetometer (VSM. The result of XRD characterization was indicated Fe3O4 as the product. SEM and TEM image of the Fe3O4 showed nanoparticles Fe3O4 have the mean diameter 5-20 nm. The EDS spectra showed strong peaks of Fe and O. Magnetic characteristic of Fe3O4 nanoparticles was indicated super paramagnetic properties. The saturation magnetic was 89.46 emu g-1. Therefore, the nanoparticles Fe3O4 is suitable to remove dye in the water by a simple magnetic separation process. The optimum adsorption occurred at initial concentration of procion dye 100 mg L-1, pH solution 6, dosage of Fe3O4 0.8 g L-1 and contact time 30 minutes under room temperature with color removal 24.40 % and adsorption capacity was 30.503 mg g-1.

  6. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    Dorniani D

    2012-11-01

    Full Text Available Dena Dorniani,1 Mohd Zobir Bin Hussein,1,2 Aminu Umar Kura,3 Sharida Fakurazi,3 Abdul Halim Shaari,4 Zalinah Ahmad51Chemistry Department, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Vaccines and Immunotherapeutics Laboratory, 4Physics Department, Faculty of Science, 5Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, MalaysiaBackground and methods: Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.Results: X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG nanocarriers.Conclusion: The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3 line, and anticancer activity was higher in HT29 than MCF7 cell lines.Keywords: magnetic nanoparticles, chitosan, superparamagnetic, controlled-release, gallic acid, drug delivery

  7. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Chittor Raghuraman

    2010-12-01

    Full Text Available Abstract Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses for human life. Iron (Fe based material especially FePt is used in the isolation of ultralow concentrations (2 cfu/ml of bacteria in less time and it has been demonstrated that van-FePt may be used as an alternative fast detection technique with respect to conventional polymerase chain reaction (PCR method. However, still further improved demonstrations are necessary with interest to biocompatibility and green chemistry. Herein, we report the synthesis of Fe3O4 nanoparticles by template medication and its application for the detection/isolation of S. aureus bacteria. Results The reduction of anhydrous Iron chloride (FeCl3 in presence of sodium borohydride and water soluble polyelectrolyte (polydiallyldimethyl ammonium chloride, PDADMAC produces black precipitates. The X-ray diffraction (XRD, XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM showed isolated staphylococcous aureus (S. aureus bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION. Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units/ml within ~3 minutes.

  8. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids

    Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3.6H2O and FeSO4.7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4.H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT-IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively

  9. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth. PMID:20958021

  10. Heat dissipation and magnetic properties of surface-coated Fe3O4 nanoparticles for biomedical applications

    In this study, the influence of surface coating on the magnetic and heat dissipation properties of Fe3O4 nanoparticles was investigated. Fe3O4 nanoparticles that ranged in size between (particle sizes of 20 and 30 nm) were coated with polyethylenimine (PEI), oleic acid, and Pluronic F-127. Surface coatings that were composed of thick layers of oleic acid and Pluronic F-127 reduced dipole interactions between the particles, and resulted in reduced coercivity and decreased Néel relaxation times. The ac magnetization measurements revealed that the heat dissipation of the PEI-coated Fe3O4 nanoparticles was induced by hysteresis loss and Brownian relaxation loss and that of the oleic-acid-coated Fe3O4 nanoparticles was mainly induced by hysteresis loss and Néel relaxation loss.

  11. Efficient purification of lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles.

    Zhu, Xinjun; Zhang, Lianying; Fu, Aiyun; Yuan, Hao

    2016-02-01

    2-Mercapto-5-benzimidazolesulfonic acid (MBISA) modified Fe3O4/Au nanoparticles were synthesized in aqueous solution and characterized by photo correlation spectroscopy (PCS) and vibrating sample magnetometer (VSM). The so-obtained Fe3O4/Au-MBISA nanoparticles were capable of specific adsorbing lysozyme. The maximum amount of lysozyme adsorbed on 1.0mg Fe3O4/Au-MBISA nanoparticles was 346?g. The lysozyme desorption behavior was studied and the lysozyme recovery from Fe3O4/Au-MBISA nanoparticles approached 100% under optimal conditions, and the reusability studies showed that the nanoparticles could maintain about 91% of the initial lysozyme adsorption capacity after 7 repeated adsorption-elution cycles. The Fe3O4/Au-MBISA nanoparticles were used in the purification of lysozyme from chicken egg white, which was verified by a single SDS-PAGE band. Therefore, the obtained Fe3O4/Au-MBISA nanoparticles exhibited excellent performance in the direct purification of lysozyme from egg white. PMID:26652366

  12. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  14. Interface composition between Fe3O4 nanoparticles and GaAs for spintronic applications

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe3O4) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of γ-Fe2O3 directly underneath the Fe3O4 nanoparticles, followed by a solid solution of Ga2O3 and FeO and mostly Ga2O3 when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed

  15. Ethylene glycol methacrylate phosphate coated Fe3O4 nanoparticles for selective separation of plutonium

    Recovery of lanthanides and actinides from high level nuclear waste is an area of world-wide concern. Recently, interest has been focused on magnetic fluidized bed separation technology and the development of magnetically assisted chemical separation (MACS) systems for nuclear waste remediation. The magnetic-sorbent have larger surface area, can be quickly recovered from the medium using external magnetic field, and secondary waste is not generated. However, sorption selectivity and efficiency of these materials towards targeted radionuclides have still scope for improvement. Ethylene glycol methacrylate phosphate takes up actinides. Yudhisthira Sahoo and co-workers demonstrates that alkyl phosphonates and phosphates bind efficiently to iron oxide particle surfaces and can serve, in general, as potential alternatives to fatty acids as coating agents for oxide nanoparticles. In the present work, 0.1 g of Fe3O4 nanoparticles (20-30 nm) were dispersed in 10 mL 0.1 M Ethylene glycol methacrylate phosphate (EGMP) solution in methanol at room temperature under shaking condition for 24 h. Organic layer is then removed and the particles were washed 3 times with 1 mL methanol. It was the dried in air at room temperature overnight. Weighed amount of EGMP coated Fe3O4 nanoparticles were equilibrated with 241Am, 233U or 239Pu activity spiked in feed having acid concentration varying from 0.01-3.0 M HNO3

  16. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    2010-01-01

    Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses) for human life. Iron (Fe) based material especially FePt is used in the isolation of ultralow concentrations (PDADMAC) produces black precipitates. The X-ray diffraction (XRD), XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM) showed isolated staphylococcous aureus (S. aureus) bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION). Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units)/ml within ~3 minutes. PMID:21159158

  17. Characterization of the magnetic Fe3O4 nanoparticles prepared by gamma irradiation

    In this study, gamma irradiation treatment has been applied for preparation of the magnetic nanoparticles from iron(III) chloride (FeCl3). Structure of the resulting black powders were characterized with X-ray diffraction (XRD). The results revealed that the products prepared by gamma irradiation were mainly magnetite (Fe3O4) instead of maghemite (Fe2O3). The basic characteristics of the magnetite nanoparticles such as their particle size and magnetic properties were investigated using scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The nanoparticles showed superparamagnetism with the saturated magnetization of about 48.6 emu/g. Influences of radiation conditions on radiation preparation of magnetite nanoparticles and their properties were also discussed. Reaction yield increased, while average diameter of the obtained nanoparticles reduced from 46 to 17 nm depended on the absorbed dose. (author)

  18. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging

    Biofunctionalized chitosan@Fe3O4 nanoparticles are synthesized by combining Fe3O4 and CS chemically modified with PEG and lactobionic acid in one step. The biofunctionalized nanoparticles are characterized by TEM, X-ray, DLS, zeta-potential and magnetic measurements. The in vitro and in vivo behaviors of the biofunctionalized nanoparticles, especially, the cytotoxicity, the protein resistance, metabolism and iron toxicity are assessed. The functional groups, PEG enable the nanoparticles more biocompatible and the lactobionic acid groups enable liver targeting. The potential applications of the nanoparticles in liver magnetic resonance imaging are confirmed. The results demonstrated that the nanoparticles are suspension stability, non-cytotoxicity, non-tissue toxicity and sensitive in liver magnetic resonance imaging, representing potential tools for applications in the biomedical field. - Highlights: • Biofunctionalized PEG/LA-CS@Fe3O4 NPs were prepared in one step. • PEG/LA-CS@Fe3O4 NPs show excellent monodispersity and suspension stability. • PEG/LA-CS@Fe3O4 NPs show excellent biocompatibility. • PEG/LA-CS/Fe3O4 NPs are efficiently used in liver magnetic resonance imaging

  19. Fabrication of Docetaxel Surfaced Fe3O4 Magnetite Nanoparticles and their Cytotoxicity on 4 T1 Breast Cancer Cells

    MH Yazdi

    2012-08-01

    Full Text Available Background:In the recent years, there is an increasing attention to the using of Fe3O4 magnetite nanoparticles (MNPs as drug delivery systems. Application of this nanoparticles could profit advantages of nanomedicine to enhance biological activity of pharmaceutical ingredients. Methods:Fe3O4 MNPs were synthesised by a chemical method and characterized by transmission electron microscopy and energy-dispersive spectroscopy techniques. In the next step, docetaxel-coated Fe3O4 MNPs were prepared, using percipitation method. The surface chemistry of docetaxel-coated Fe3O4 MNPs as well as their thermal decomposition characteristics were examined using fourier transform infrared spectroscopy and thermogravimetric analyzer equipment, respectively. The cytotoxicity assay was conducted on 4 T1 breast cancer carsinoma by MTT assay to evaluate the possible in vitro antiproliferative effects of docetaxel-coated Fe3O4 MNPs. Results:During precipitation process, docetaxel molecules were precipitated on the surface of Fe3O4 MNPs by the ratio of 3:100 w/w which indicates that each milligram of coated Fe3O4 MNPs averagely contained 30 mug pure docetaxel compound. Docetaxel showed aniproliferative effects against mentioned cell line. The higestest concentartion of docetaxel (80 mug/ml caused about 80% cell death. However, the results demostarted that much lower amounts of docetaxel will be needed in combination of Fe3O4 MNPs to produce the potent antiproliferative effect compared to docetaxel alone. Dose response cytotoxicity assay of docetaxel-coated Fe3O4 MNPs against 4 T1 breast cancer cells showed that lower amount of docetaxel (0.6 mug/ml can exhibit higher cytotoxic effect against this cancer cell line (90% cell death.

  20. Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles

    Jafari, A.; Farjami Shayesteh, S.; Salouti, M.; Boustani, K.

    2015-04-01

    Fe3O4 (magnetite) nanoparticles (NPs) were synthesized using a co-precipitation method, and then annealed at various temperatures between 50 and 850 °C for 1 h in air. After annealing, the NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). The FTIR and XRD results indicated that Fe3O4 NPs were converted to γ-Fe2O3 (maghemite) by annealing at 250 °C for 1 h and then to α-Fe2O3 (hematite) on annealing in the range of 550-650 °C. The average crystallite size of the NPs estimated by the Debye-Scherrer equation increased from 6.6 to 37.6 nm by increasing annealing temperature from 50 to 850 °C. According to VSM results, the magnetite NPs were superparamagnetic and converted to the maghemite with superparamagnetic phase by annealing up to 550 °C. A phase transition from soft to hard ferromagnetic was occurred at annealing temperature 650 and 850 °C, respectively °C. This phase transition was attributed to the conversion of magnetite to hematite. The VSM analysis confirmed the XRD and FTIR results. The saturation magnetization (Ms) of Fe3O4 NPs was increased from 41.69 to 53.61 emu/g by increasing annealing temperature from 50 to 550 °C, and then decreased intensively to 0.49 emu/g after annealing at 850 °C. By increasing annealing temperature from 50 to 550, the crystallite size of NPs was increased from 6.6 to 12.7 and the coercive force (Hc) was reached to 4.20 Oe after annealing at 550 °C and then intensively increased to 1459.02 Oe for any further increasing of particle size up to 850 °C.

  1. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl36H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  2. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene

    Fe3O4 nanoparticles supported on graphene (Fe3O4/graphene) and Printex carbon (Fe3O4/Printex) are reported as promising catalysts for oxygen reduction reaction (ORR) to H2O2 in alkaline medium. The catalysts were synthesized by a simple precipitation method using NaBH4 as reducing agent to favor the formation of the magnetite phase. The structure and morphology of the catalysts was evaluated by x-ray diffraction, transmission electron microscopy and small angle electron diffraction. The electrocatalytic activity towards ORR was investigated by means of cyclic and linear voltammetries in 1 mol L−1 KOH. The linear polarization curves highlighted the synergetic effect between the oxide and the carbon supports. Analysis of the polarization curves showed that electro-catalytic activity of the materials towards oxygen reduction expressed by the current density at −0.3 V vs SCE increases from Printex (0.29 mA cm−2) < Fe3O4/Printex (0.38 mA cm−2) < graphene (0.85 mA cm−2) < Fe3O4/graphene (1.12 mA cm−2). The number of exchanged electrons was close to 2.7 for both catalysts, and the % H2O2 electro-generated above 60% in the −0.2 to −0.7 V (vs SCE) potential range. Furthermore, both Fe3O4/graphene and Fe3O4/Printex catalysts show excellent durability

  3. Fe3O4/salicylic acid nanoparticles versatility in magnetic mediated vascular nanoblockage

    An aqueous dispersion of Fe3O4/salicylic acid magnetic nanoparticles (SaMNPs) was synthesized by a modified Massart method, characterized by Inductively Coupled Plasma–Optic Emission Spectrometry (ICP-OES), High-Resolution Transmission Electron Microscopy (HRTEM) and Dynamic Light Scattering (DLS) methods, and tested on the chick chorioallantoic membrane (CAM) model to evaluate biocompatibility, biodistribution, intravascular time persistence, and ability to be magnetically target driven in order to block the blood supply into a tumor xenograft. ICP-OES, DLS, and HRTEM SaMNPs sample analyses showed a 0.356 mg/mL Fe concentration, a good stability in water (average Zeta potential of 39.3 mV), a hydrodynamic diameter around 52 nm and a core diameter in the 7–15 nm range for the Fe3O4 nanoparticles. In vivo CAM assay showed that SaMNPs were biocompatible with the chick embryo, were fixed almost completely by the liver, had no embolic potential, and a threshold-dose-dependent intravascular magnetic targeting time. Study on the CAM tumor model showed that SaMNPs could be used for long-term magnetically mediated nanoblocking of the capillary networks and 70-µm smaller arterioles

  4. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-08-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage.

  5. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    Mukherjee Joyeeta

    2012-11-01

    Full Text Available Abstract Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter led to the formation of enzyme coated clusters of nanoparticles (ECCNs. These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering. Transmission electron microscopy (TEM, showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3 showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD(with a spinning cell accessory showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% ?-helix, 37% ?-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. Conclusion A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis.

  6. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst

    Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli

    2015-07-01

    A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.

  7. Line Narrowing in Mssbauer Spectra of Superparamagnetic Fe3O4 Nanoparticles

    Nanoparticles of magnetic crystals below a critical size are single domain and exhibit superparamagnetism. If there are N atoms or molecules with magnetic moment ? in each particle, the magnetic moment of the particle is N?. At high temperatures the thermal fluctuations of the magnetic moments give an ensemble average moment of zero and the Mssbauer spectrum is a single line. As the temperature, T, is lowered the fluctuations slow down and the sample acquires a magnetization and the Mossbauer line broadens and eventually shows magnetic hyperfine splitting. We have observed 57Fe line broadening in nanoparticles of ferrimagnetic Fe3O4 with diameters of 5.3 and 10.6 nm. The results have been analyzed using the motional narrowing equation familiar in nuclear magnetic resonance to determine the superparamagnetic fluctuation time and magnetic anisotropy

  8. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids

    Altan, Cem L.; Bucak, Seyda

    2011-07-01

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

  9. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids

    Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

  10. Graphene oxide-Fe3O4 nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    The potential of graphene oxideFe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01?g, 0.1?g, and 0.2?g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells

  11. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  12. Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles

    Wang, Jian; Yang, Jinghai; Li, Xiuyan; Wang, Dandan; Wei, Bing; Song, Hang; Li, Xuefei; Fu, Siwei

    2016-01-01

    Fe3O4@ZnO binary nanoparticles were synthesized by a simple two-step chemical method and characterized using various analytical instruments. TEM result proved the binary nanoparticles have core/shell structures and average particle size is 60 nm. Photocatalytic investigation of Fe3O4@ZnO core/shell nanoparticles was carried out using rhodamine B (RhB) solution under UV light. Fe3O4@ZnO core/shell nanoparticles showed enhanced photocatalytic performance in comparison with the as prepared ZnO nanoparticles. The enhanced photocatalytic activity for Fe3O4@ZnO might be resulting from the higher concentration of surface oxygen vacancies and the suppressing effect of the Fe3+ ions on the recombination of photoinduced electron-hole pairs. Magnetization saturation value (5.96 emu/g) of Fe3O4@ZnO core/shell nanoparticles is high enough to be magnetically removed by applying a magnetic field. The core/shell photocatalyst can be easily separated by using a commercial magnet and almost no decrease in photocatalytic efficiency was observed even after recycling six times.

  13. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator.

    Wang, Chengquan; Qian, Jing; Wang, Kun; Yang, Xingwang; Liu, Qian; Hao, Nan; Wang, Chengke; Dong, Xiaoya; Huang, Xingyi

    2016-03-15

    Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety. PMID:26583358

  14. Simple Surfactant Concentration-Dependent Shape Control of Polyhedral Fe3 O4 Nanoparticles and Their Magnetic Properties.

    Ge, Wanyin; Sato, Ryota; Wu, Hsin-Lun; Teranishi, Toshiharu

    2015-10-26

    The shape and size of monodisperse Fe3 O4 nanoparticles (NPs) are controlled using a chemical solution synthesis in the presence of the surfactant cetylpyridinium chloride (CPC). Cubic Fe3 O4 NPs surrounded by six {100} planes are obtained in the absence of CPC. Increasing the CPC content during synthesis causes the shape of the resulting Fe3 O4 NPs to change from cubic to truncated cubic, cuboctahedral, truncated octahedral, and finally octahedral. During this evolution, the predominantly exposed planes of the Fe3 O4 NPs vary from {100} to {111}. The shape control results from the synergistic effect of the pyridinium cations, chloride anions, and long-chain alkyl groups of CPC, which is confirmed by comparison with NPs synthesized in the presence of various related cationic surfactants. The size of the cubic Fe3 O4 NPs can be tuned from 50 to 200?nm, by changing the concentration of oleic acid in the reaction solution. The Fe3 O4 NPs exhibit shape-dependent saturation magnetization, remanent magnetization, and coercivity. PMID:26303185

  15. Synthesis of Fe3O4 nanoparticles at 100 deg. C and its magnetic characterization

    Superparamagnetic iron oxide nanoparticles were synthesized by a novel, simple and cost-effective gel-to-crystalline method by alkalizing ferrous chloride with ammonium hydroxide at 80-100 deg. C under refluxing conditions. Average crystallite size is determined as 11 nm from XRD and 11.4 nm from TEM: magnetic domain size is 9.7 nm. The saturation magnetization is 390 emu/cm3 at 300 K, and TB is 134 K. The reduction of magnetic particle size and Ms is attributed to the presence of non-magnetic (dead) surface layer, compositional variations, superparamagnetic relaxation and spin canting because of the ultrafine nature of the material. The maximization in magnetization near the blocking temperature, TB, is attributed to a large degree of inversion of the Fe3O4 particles. Results also indicated the existence of interparticle interactions in the thermomagnetic characteristics of spinels at lower field strengths

  16. Adsorption of cobalt and strontium on Fe3O4 magnetic nanoparticles

    Adsorption is an efficiency method to decrease the pollution of 90Sr and 60Co. The ad- sorption behavior of cobalt and strontium on Fe3O4 magnetic nanoparticles was studied in this paper. The adsorbent applied here was prepared by co-precipitation, and can form water-based ferrofluids. Its saturation magnetization is 350 kA/m. The experiments show that the Qmax of cobalt and strontium are 1.794 mmol/g and 0.962 mmol/g at pH=7 and pH=8, respectively. The adsorption process follows a pseudo-second kinetics and the Langmuir isotherm, which indicates the adsorption is a monolayer adsorption. (authors)

  17. Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe(3)O(4) nanoparticle composite.

    Huang, Jun; Xiao, Haiyan; Li, Bin; Wang, Juntao; Jiang, Desheng

    2006-05-01

    A magnetic nanoparticle composite of CuTAPc (copper tetra-aminophthalocyanine)-Fe(3)O(4) was prepared by in situ complexation and was characterized by FTIR (Fourier-transform IR) spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FESEM (field emission scanning electron microscopy) micrograph and hysteresis loop. The results showed that CuTAPc formed the covering layer on the surface of the composite. Using glutaraldehyde, laccase was covalently attached to the surface of the composite. When white-rot-fungus (Pycnoporus sanguineus) laccase was immobilized on the CuTAPc-Fe(3)O(4) nanoparticle composite in PBS, the optimal reaction pH was 5.0 and the optimal temperature was 0 degrees C. When 2.0 mg/ml laccase solution was used, the immobilization yield was 20%. The activity, K(m), k(cat)/K(m) and V(max) values of the immobilized laccase were 1.43 units/mg, 2.38 x 10(-5) mol/l, 2.1 x 10(3) mol(-1) x s(-1) x l and 1.19 x 10(-6) mol x l(-1) /x min(-1) respectively. The system exhibited maximum enzyme activity at pH 3.0 and at 45 degrees C. After storage at 4 degrees C for 1 month, the residual activity of the immobilized laccase was 85% of its initial activity, while that of free laccase was only 30%. During 240 min incubation at 55 degrees C, the activity of immobilized laccase quickly increased to a maximum after 150 min and then decreased to 95% in the next 90 min, while the activity of the free enzyme decreased monotonically to 28%. After five consecutive operations, the immobilized laccase still retained 80% of its initial activity. PMID:16420188

  18. Preparation of acid–base bifunctional core–shell structured Fe3O4@SiO2 nanoparticles and their cooperative catalytic activity

    An acid–base bifunctionalized magnetic nanoparticles catalyst Fe3O4@SiO2-A/B was successfully synthesized by immobilization of both organic base and acid groups together over silica-coated magnetite nanoparticles. The catalyst has been characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS) measurements. The bifunctionalized magnetic nanoparticles act as an easily recovered, highly efficient catalyst for the Henry reaction of 4-nitrobenzaldehyde with nitromethane at mild reaction conditions, even exceeding any monofunctionalized catalyst or physical mixture of two monofunctionalized nanoparticles in the catalytic behavior. In addition, a probable mechanism has been proposed to explain the cooperative interactions from the presence of the immobilized base and acid groups in close proximity. Importantly, the catalyst can be simply recoverable from the reaction mixture by magnetic decantation and recycled without significant degradation in reactivity.

  19. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-01-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Qr. PMID:24134544

  20. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-?-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 1.7 nm; zeta potential = -47.1 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 13.9 nm; zeta potential = -19.1 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.

  1. Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature

    A modified ferrite co-precipitation synthesis was used to obtain core–shell Fe3O4/salicylic acid magnetic nanoparticles (Sa-MNP) with well-dispersed aqueous solution properties. The newly developed iron oxide nanoparticles properties were investigated with X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and laser light scattering for their characteristic establishment. The resulting Sa-MNPs have spherical morphology, homogenous size distribution around 60 nm (35 nm FWHM), and a 67 mV Zeta potential value (15.5 mV STDV). In vivo biocompatibility and intravascular behavior of the 60 nm diameter size range synthesized nanoparticles were evaluated on chick chorioallantoic membrane model. The results show a reversible and good controlled intravascular accumulation under static magnetic field, a low risk of embolisation with nanoparticle aggregates detached from venous intravascular nanoblocked areas, a persistent blocking of the arterioles and dependent capillaries network, a good circulating life time and biocompatibility. The beneficial effects of salicylic acid (SA) and in vivo demonstrated capacity of Sa-MNPs to cutoff regional vascular supply under static magnetic field control suggest a possible biomedical application of these MNPs in targeted cancer therapy through magnetic controlled blood flow nanoblocking mechanism

  2. Fe3O4/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein

    Gan, Ning; Jin, Haijuan; Li, Tianhua; Zheng, Lei

    2011-01-01

    Background The purpose of this study was to devise a novel electrochemical immunosensor for ultrasensitive detection of alfa-fetoprotein based on Fe3O4/Au nanoparticles as a carrier using a multienzyme amplification strategy. Methods and results Greatly enhanced sensitivity was achieved using bioconjugates containing horseradish peroxidase (HRP) and a secondary antibody (Ab2) linked to Fe3O4/Au nanoparticles (Fe3O4/Au-HRP-Ab2) at a high HRP/Ab2 ratio. After a sandwich immunoreaction, the Fe3O4/Au-HRP-Ab2 captured on the electrode surface produced an amplified electrocatalytic response by reduction of enzymatically oxidized hydroquinone in the presence of hydrogen peroxide. The high content of HRP in the Fe3O4/Au-HRP-Ab2 could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with increasing alfa-fetoprotein concentration in the sample, and exhibited a dynamic range of 0.005–10 ng/mL with a detection limit of 3 pg/mL. Conclusion The amplified immunoassay developed in this work shows good precision, acceptable stability, and reproducibility, and can be used for detection of alfa-fetoprotein in real samples, so provides a potential alternative tool for detection of protein in the laboratory. Furthermore, this immunosensor could be regenerated by simply using an external magnetic field. PMID:22228994

  3. Effect of interaction of magnetic nanoparticles of Fe3O4 and artesunate on apoptosis of K562 cells

    Wang, Ying; Han, Yuxiang; Yang, Yingying; Yang, Jingci; Guo, Xiaonan; Zhang, Jingnan; Pan, Ling; Xia, Guohua; Chen, Baoan

    2011-01-01

    The present study evaluated whether the magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4) could enhance the activity of artesunate (ART), and to explore its potential mechanisms. Cytotoxicity of the copolymer of ART with MNPs-Fe3O4 on K562 cells was detected by MTT assay and the apoptosis rate of K562 cells was measured by flow cytometry. Protein expression levels of bcl-2, bax, bcl-rambo, caspase-3, and survivin in K562 cells were measured by Western blot. After being incubated with the copolymer of ART with MNPs-Fe3O4 for 48 hours, the growth inhibition rate of K562 cells was significantly increased compared with that of K562 cells treated with ART alone (P < 0.05), and the apoptosis rate of K562 cells was increased significantly compared with that of K562 cells treated with ART alone, suggesting that MNPs-Fe3O4 can enhance the activity of ART. Interestingly, the copolymer-induced cell death was attenuated by caspase inhibitor Z-VAD-FMK. Our results also showed that treatment with the copolymer of MNPs-Fe3O4 and ART increased the expression of bcl-2, bax, bcl-rambo, and caspase-3 proteins, and decreased the expression of survivin protein in K562 cells compared with ART treatment alone. These results suggest that MNPs-Fe3O4 can enhance ART-induced apoptosis, which may be related to the upregulation of bcl-rambo and downregulation of survivin. PMID:21822380

  4. One-step solvothermal synthesis of Fe3O4-C core–shell nanoparticles with tunable sizes

    We report the synthesis of Fe3O4-C core–shell nanoparticles (FCNPs) by using a facile one-step solvothermal method. The FCNPs consisted of Fe3O4 particles as the cores and amorphous uniform carbon shells. The content of Fe3O4 is up to 81.6 wt%. These core–shell nanoparticles are aggregated by primary nanocrystals with a size of 10–12 nm. The FCNPs possess a hollow interior, high magnetization, excellent absorption properties and abundant surface hydroxyl groups. A possible growth mechanism of the FCNPs is proposed. The role of glucose in regulating the grain size and morphology of the particles is discussed. The absorption properties of the FCNPs towards Cr(VI) in aqueous solution is investigated. We demonstrate that the FCNPs can effectively remove more than 90 wt% of Cr(VI) from aqueous solution. (paper)

  5. One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes

    Zheng, J.; Liu, Z. Q.; Zhao, X. S.; Liu, M.; Liu, X.; Chu, W.

    2012-04-01

    We report the synthesis of Fe3O4@C core-shell nanoparticles (FCNPs) by using a facile one-step solvothermal method. The FCNPs consisted of Fe3O4 particles as the cores and amorphous uniform carbon shells. The content of Fe3O4 is up to 81.6 wt%. These core-shell nanoparticles are aggregated by primary nanocrystals with a size of 10-12 nm. The FCNPs possess a hollow interior, high magnetization, excellent absorption properties and abundant surface hydroxyl groups. A possible growth mechanism of the FCNPs is proposed. The role of glucose in regulating the grain size and morphology of the particles is discussed. The absorption properties of the FCNPs towards Cr(VI) in aqueous solution is investigated. We demonstrate that the FCNPs can effectively remove more than 90 wt% of Cr(VI) from aqueous solution.

  6. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection

    The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4-Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.

  7. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-01-01

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05342g

  8. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    Highlights: • Ag-loaded Fe3O4@C nanospheres were synthesized by a facile method. • The Fe3O4 encapsulated mesoporous carbon was decorated with 10 nm Ag nanocrystals. • The as-prepared Ag-Fe3O4@C nanocomposite showed excellent catalytic activity. • The nanocomposite had convenient magnetic separability. - Abstract: A novel approach for the synthesis of Ag-loaded Fe3O4@C nanospheres (Ag-Fe3O4@C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH4. The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs

  9. Fe3O4/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein

    Gan N

    2011-12-01

    Full Text Available Ning Gan1*, Haijuan Jin1*, Tianhua Li1, Lei Zheng21The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 2Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China *Both authors contributed equally to this workBackground: The purpose of this study was to devise a novel electrochemical immunosensor for ultrasensitive detection of alfa-fetoprotein based on Fe3O4/Au nanoparticles as a carrier using a multienzyme amplification strategy.Methods and results: Greatly enhanced sensitivity was achieved using bioconjugates containing horseradish peroxidase (HRP and a secondary antibody (Ab2 linked to Fe3O4/Au nanoparticles (Fe3O4/Au-HRP-Ab2 at a high HRP/Ab2 ratio. After a sandwich immunoreaction, the Fe3O4/Au-HRP-Ab2 captured on the electrode surface produced an amplified electrocatalytic response by reduction of enzymatically oxidized hydroquinone in the presence of hydrogen peroxide. The high content of HRP in the Fe3O4/Au-HRP-Ab2 could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with increasing alfa-fetoprotein concentration in the sample, and exhibited a dynamic range of 0.005–10 ng/mL with a detection limit of 3 pg/mL.Conclusion: The amplified immunoassay developed in this work shows good precision, acceptable stability, and reproducibility, and can be used for detection of alfa-fetoprotein in real samples, so provides a potential alternative tool for detection of protein in the laboratory. Furthermore, this immunosensor could be regenerated by simply using an external magnetic field.Keywords: Fe3O4/Au nanoparticles, alfa-fetoprotein, sandwich immunoassay, electrochemical immunosensor

  10. Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    Nemala, H.; Thakur, J. S.; Naik, V. M.; Vaishnava, P. P.; Lawes, G.; Naik, R.

    2014-07-01

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe3O4 nanoparticles, subjected to external magnetic fields of various frequencies (188-375 kHz) and amplitudes (140-235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 1.2 nm, and a reduced saturation magnetization (65 emu/g) compared to the bulk value of Fe3O4 (95 emu/g). This is due to the presence of a finite surface layer (1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe3O4 core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 2 kJ/m3) of Fe3O4 nanoparticles.

  11. Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe3O4 nanoparticles, subjected to external magnetic fields of various frequencies (188375 kHz) and amplitudes (140235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8??3.1?nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6??1.2?nm, and a reduced saturation magnetization (?65?emu/g) compared to the bulk value of Fe3O4 (?95?emu/g). This is due to the presence of a finite surface layer (?1?nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe3O4 core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28??2?kJ/m3) of Fe3O4 nanoparticles.

  12. Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol gel silica network

    Thomas, Senoy; Sakthikumar, D.; Joy, P. A.; Yoshida, Yasuhiko; Anantharaman, M. R.

    2006-11-01

    Composite Fe3O4-SiO2 materials were prepared by the sol-gel method with tetraethoxysilane and aqueous-based Fe3O4 ferrofluids as precursors. The monoliths obtained were crack free and showed both optical and magnetic properties. The structural properties were determined by infrared spectroscopy, x-ray diffractometry and transmission electron microscopy. Fe3O4 particles of 20 nm size lie within the pores of the matrix without any strong Si-O-Fe bonding. The well established silica network provides effective confinement to these nanoparticles. The composites were transparent in the 600-800 nm regime and the field dependent magnetization curves suggest that the composite exhibits superparamagnetic characteristics.

  13. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal

    Magnetic iron oxide nanoparticles (MION-Tea) successfully synthesized using tea waste template. MION-Tea exhibit super magnetic properties under external magnetic field with saturation magnetization value of 6.9 emu/g at room temperature. SEM of MION-Tea shows cuboid/pyramid shaped crystals structure of Fe3O4 (magnetite). TEM of MION-Tea shows the particle size in the range of 5–25 nm. XRD pattern of MION-Tea is identical to magnetite. Magnetic nanoparticles are tested for removal of As(III) and As(V) from aqueous solution. The adsorption data obeyed the Langmuir equation with high adsorption capacity of 188.69 mg/g for arsenic (III), and 153.8 mg/g for arsenic (V). The mean sorption energy (E) calculated from D–R model, indicated physico-chemical sorption process. A pseudo-second-order kinetic model fitted best for As(III) adsorption on MION-Tea and the derived activation energy was 64.27 kJ/mol. Thermodynamics revealed the endothermic nature of adsorption. The effects of solution pH, interfering anions and initial As(III) concentration have been investigated. MION-Tea was very low cost (Rs. 136 per kg). MION-Tea can be reused up to 5 adsorption cycles and regenerated using NaOH. Cost of As(III) removal from water of was estimated to be Rs. 14 for 100 L. Comparison with reported adsorbents proved MION-Tea a potential adsorbent for As(III) and As(V) adsorption. - Highlights: • Used tea has been used to prepare magnetic nanoparticles. • Nanoparticles have particle size of 2-25nm and cuboid/pyramid structure. • Magnetic nanoparticles show high adsorption capacity for arsenic

  14. Design, characterization and magnetic properties of Fe3O4-nanoparticle arrays coated with PEGylated-dendrimers

    Graphical abstract: The preparation of magnetite Fe3O4 MNPs using the chemical co-precipitation method in presence of biocompatible PAMAM-based dendrimers with end-grafted ethylene glycol ethers is discussed. The magnetic peculiarities of the Fe3O4 MNPs were analyzed by SQUID VSM. Highlights: ? (Poly)ethylene glycol terminated (amidoamine)-based dendrimers are applied. ? Act as stabilizers in Fe3O4 MNPs formation. ? Influence on particle size and morphology is presented. ? Magnetic peculiarities are discussed. - Abstract: Stable magnetic magnetite nanoparticles (Fe3O4 NPs) were synthesized using the chemical co-precipitation method of ferrous (Fe2+)/ferric (Fe3+) mixed aqueous salt solutions in presence of well-defined biocompatible low generation (poly)amidoamine (PAMAM)-based dendrimers with end-grafted n ethylene glycol ether (n = 1, 2, 9) moieties, accessible by means of straightforward consecutive divergent synthesis methodologies including addition and amidation cycles. Addition of NH4OH to the respective dendritic nanoreagent containing iron salt solution produced dendritic stabilized uniform shaped magnetite nanoparticles. The structural and magnetic properties of Fe3O4 NPs were analyzed by FT-IR spectroscopy, thermogravimetry (TG), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) vibrating sample magnetometry (VSM). The coherence of affecting the average magnetite particle diameter in range of 5.6 (1.4)10.1 (1.9) nm by the dendritic scaffold, the number and length of the attached ethylene glycol ether termini, as well as the adjusted stabilizer-to-Fe3O4 ratio is discussed along with their magnetic peculiarities.

  15. Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells

    Baoan Chen

    2009-11-01

    Full Text Available Baoan Chen1,*, Yiqiong Liang1,*, Weiwei Wu1, Jian Cheng1, Guohua Xia1, Feng Gao1, Jiahua Ding1, Chong Gao1, Zeye Shao1, Guohong Li1, Wenji Chen1, Wenlin Xu2, Xinchen Sun3, Lijie Liu4, Xiaomao Li5, Xuemei Wang61Department of Hematology; 3Department of Oncology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, Germany; 6State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, Peoples Republic of China; *These authors have contributed equally to this workAbstract: Gambogic acid (GA has a significant anticancer effect on a wide variety of solid tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential benefit of combination therapy with GA and magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4. The proliferation of K562 cells and their cytotoxicity were evaluated by MTT assay. Cell apoptosis was observed and analyzed by microscope and flow cytometry, respectively. Furthermore, realtime polymerase chain reaction and Western blotting analyses were performed to examine gene transcription and protein expression, respectively. The results showed that MNPs-Fe3O4 dramatically enhanced GA-induced cytotoxicity and apoptosis in K562 cells. The typical morphological features of apoptosis treated with GA and MNPs-Fe3O4 were observed under an optical microscope and a fluorescence microscope, respectively. The transcription of caspase-3 and bax gene in the group treated with GA and MNPs-Fe3O4 was higher than that in the GA-alone group or MNPs-Fe3O4-alone group, but the transcription of bcl-2, nuclear factor-κB, and survivin degraded as did the expression of corresponding proteins in K562 cells. Our data suggests a potential clinical application of a combination of GA and MNPs-Fe3O4 in leukemia therapy.Keywords: gambogic acid, magnetic nanoparticles of Fe3O4, traditional Chinese medicine, K562 leukemia cells, apoptosis

  16. Passively Q-switched EDFL using Fe3O4-nanoparticle saturable absorber

    Bai, Xuekun; Xu, Luxi; Huang, Sujuan; Wang, Tingyun; Pu, Shengli; Zeng, Xianglong

    2015-01-01

    We experimentally demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) operation by using a saturable absorber based on Fe3O4 nanoparticles (FONP) in magnetic fluid (MF). As a kind of transition metal oxide, the FONP has a large nonlinear optical response with a fast response time for saturable absorber. By depositing MF at the end of optical fiber ferrule, we fabricated a FONP-based saturable absorber, which enables a strong light-matter interaction owing to the confined transmitted optical field within the single mode fiber. Because of large third-order optical nonlinearities of FONP-based saturable absorber, large modulation depth of 8.2% and non saturable absorption of 56.6% are demonstrated. As a result, stable passively Q-switched EDFL pulses with maximum output pulse energy of 23.76 nJ, repetition rate of 33.3 kHz, and pulse width of 3.2 {\\mu}s are achieved when the input pump power is 110 mW at the wavelength of 980 nm. The laser features a low threshold pump power of ~15 mW.

  17. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-06-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16??M, a sensitivity of 5.658?mA/cm2/M, and a linear detection range up to 26?mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents.

  18. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation

    Javad Safari; Zohre Zarnegar

    2013-07-01

    Trisubstituted imidazoles have been synthesized in high yield in the presence of sulphamic acidfunctionalized magnetic Fe3O4 nanoparticles (SA-MNPs) as a novel solid acid catalyst under solvent-free classical heating conditions or using microwave irradiation. The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.

  19. Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy.

    Dunn, Andrew W; Ehsan, Sadat M; Mast, David; Pauletti, Giovanni M; Xu, Hong; Zhang, Jiaming; Ewing, Rodney C; Shi, Donglu

    2015-01-01

    The photothermal effect of magnetite (Fe3O4) nanoparticles was characterized by photonic absorption in the near-infrared (NIR) region. Upon laser irradiation at 785 nm, the Fe3O4 nanoparticles generate localized hyperthermia in tumorous lesions, which is an effective strategy for cancer therapy; however, uncoated magnetite possesses an innate toxicity which can lead to drawbacks in the clinical setting. To reduce innate toxicity, a poly(acrylic acid) (PAA) coating on the nanoparticles was investigated in order to determine the alterations to stability and the degree of toxicity in an attempt to create a higher utility vector. It was found that the PAA coating significantly reduced the innate toxicity of the uncoated magnetite. Furthermore, the efficacy of PAA-coated magnetite nanoparticles (PAA-Fe3O4) was investigated for treating MDA-MB-231 (human mammary gland adenocarcinoma) cultures in viable concentration ranges (0.1-0.5mg/ml). An appropriate PAA-Fe3O4 concentration range was then established for inducing significant cell death by hyperthermic ablation, but not through innate toxicity. PMID:25491964

  20. Effect of interaction of magnetic nanoparticles of Fe3O4 and artesunate on apoptosis of K562 cells

    Wang Y

    2011-06-01

    Full Text Available Ying Wang1, Yuxiang Han1, Yingying Yang1, Jingci Yang1, Xiaonan Guo1, Jingnan Zhang1, Ling Pan1, Guohua Xia2, Baoan Chen21Department of Hematology, the 2nd Hospital of Hebei Medical University, People’s Republic of China; 2Department of Hematology, the Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of ChinaAbstract: The present study evaluated whether the magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 could enhance the activity of artesunate (ART, and to explore its potential mechanisms. Cytotoxicity of the copolymer of ART with MNPs-Fe3O4 on K562 cells was detected by MTT assay and the apoptosis rate of K562 cells was measured by flow cytometry. Protein expression levels of bcl-2, bax, bcl-rambo, caspase-3, and survivin in K562 cells were measured by Western blot. After being incubated with the copolymer of ART with MNPs-Fe3O4 for 48 hours, the growth inhibition rate of K562 cells was significantly increased compared with that of K562 cells treated with ART alone (P < 0.05, and the apoptosis rate of K562 cells was increased significantly compared with that of K562 cells treated with ART alone, suggesting that MNPs-Fe3O4 can enhance the activity of ART. Interestingly, the copolymer-induced cell death was attenuated by caspase inhibitor Z-VAD-FMK. Our results also showed that treatment with the copolymer of MNPs-Fe3O4 and ART increased the expression of bcl-2, bax, bcl-rambo, and caspase-3 proteins, and decreased the expression of survivin protein in K562 cells compared with ART treatment alone. These results suggest that MNPs-Fe3O4 can enhance ART-induced apoptosis, which may be related to the upregulation of bcl-rambo and downregulation of survivin.Keywords: magnetic nanoparticles, MNPs-Fe3O4, artesunate, K562 cells, apoptosis, bcl-rambo

  1. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications

    Anbarasu, M.; Anandan, M.; Chinnasamy, E.; Gopinath, V.; Balamurugan, K.

    2015-01-01

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications.

  2. A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors.

    Guivar, Juan A Ramos; Fernandes, Edson G R; Zucolotto, Valtencir

    2015-08-15

    Magnetic nanoparticles have been applied in many areas of nanomedicine. Sensing platforms based on this type of nanoparticles have received attention due to the relative low cost and biocompatibility. Biosensor is the most widely investigated type of analytical device. This type of sensor combines the physicochemical transduction with the incorporation of biological sensing components. Among the biological components, enzymes are the most commonly used as sensitive elements. However, natural enzymes may exhibit serious disadvantages such as lack of stability and loss of catalytic activity after immobilization. The study of enzymatic biomimetic systems are of great interest. This study reports the development of a new sensor composed of Fe3O4@CTAB and poly(sodium 4-styrenesulfonate) (PSS) films assembled via Layer-by-Layer (LbL) technique and used as peroxidase mimetic systems. Magnetic nanoparticles (MNps) were synthesized using thermal decomposition method and further dispersed to aqueous medium by ligand modification reaction using cetyltrimethylammonium bromide (CTAB). The amperometric detection limit of H2O2 was found to be ca. 103 µmol L(-1). By chronoamperometry, the peroxidase biomimetic sensor exhibited a linear response for H2O2 in the range from 100 µmol L(-1) to 1.8 mmol L(-1) (R(2) = 0.994) with sensitivity of 16 nA mol(-1) L. The apparent Michaelis-Menten constant was 5.3 mmol L(-1), comparable with some biosensors based on peroxidase enzyme. Moreover, the sensor presented a reproducibility of ca. 7.7% (n = 4) and their response (response time: 90 s) is not significantly affected in the presence of some interferents including K(+), Na(+), Cl(-), Mg(2+), Ca(2+), and Uric Acid. PMID:25966419

  3. Novel magnetic Fe3O4-C nanoparticles as adsorbents for removal of organic dyes from aqueous solution

    Highlights: → In this work, novel magnetic Fe3O4-C nanoparticles have been synthesized and employed as high efficient adsorbent for removal cationic dyes from polluted water. → While up to now, little study is done on adsorption of dyes by the Fe3O4-C nanoparticles. → Hence, here we provide a simply and environment friendly method for removal of cationic dyes or other pollutants from water. - Abstract: The magnetic Fe3O4/C core-shell nanoparticles have been synthesized by a simple strategy and used as adsorbents for removal of organic dyes from aqueous solution. The resulting products are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectra (FTIR). Adsorption performances of the nanomaterial adsorbents are tested with removal of methylene blue (MB) and cresol red (CR) from aqueous solution. The effects of solution pH value, adsorption time and capacity of the nanocomposites have been fully investigated. The results reveal that the nanospheres can be easily manipulated by an external magnetic field with high separation efficiency. In addition, the process is clean and safe for purifying water pollution. The prepared Fe3O4/C complex nanomaterials could thus be used as promising adsorbents for the remove organic dyes, especially, cationic dye, from polluted water.

  4. Fe3O4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery

    One-dimensional hierarchical nanostructures composed of Fe3O4 nanoparticles and carbon nanofibers (CNFs) have been successfully synthesized through a facile solvothermal method followed by a simple thermal annealing treatment. X-ray diffraction and electron microscopy reveal that Fe3O4 nanoparticles with a size of 80–100 nm are uniformly dispersed on CNFs. The Fe3O4/CNFs nanocomposites show an enhanced reversible capacity and excellent rate performance as anode for Li-ion battery. The reversible capacity of the nanocomposites retains 684 mAh g−1 after 55 cycles at 100 mA g−1. Even when cycled at various rate (100, 200, 500, 1000, and 2000 mA g−1) for 50 cycles, the capacity can recover to 757 mAh g−1 at the current of 100 mA g−1. The enhanced electrochemical performances are attributed to the characteristics of interconnected one-dimensional nanostructures that provide three-dimensional networks for Li-ion diffusion and electron transfer, and can further accommodate the volumetric change of Fe3O4 nanoparticles during charge–discharge cycling

  5. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications

    A straightforward technique for functionalization of multiwalled carbon nanotubes (MWCNTs) with magnetite (Fe3O4) nanoparticles was developed. Iron oxide nanoparticles were deposited on MWCNT surfaces by a deposition–precipitation method using Fe3+/Fe2+ salts precursors in basic solution. The characterizations by HRTEM, XRD, SEM/EDX, AAS and TPR analyses confirmed the successful formation of magnetic iron oxide nanoparticles on the MWCNT surface. Fe3O4/MWCNT hybrid composites were analysed in vitro by incubation with mesenchymal stem cells for 1, 3 and 7 days, either in the presence or absence of a static magnetic field. Analysis of cell proliferation was performed by the MTT assay, quantification of cellular stress was performed by the Lactate Dehydrogenase assay and analysis of cell morphology was performed by actin immunofluorescence and scanning electron microscopy. Results demonstrate that the introduction of magnetite into the MWCNT structure increases biocompatibility of oxidized MWCNTs. In addition, the presence of a static magnetic field further increases Fe3O4/MWCNT influence on cell behaviour. These results demonstrate this novel Fe3O4/MWCNT hybrid composite has good potential for tissue engineering applications. (paper)

  6. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core–shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection. - Graphical abstract: In this article, Fe3O4/PS nanoparticles present a property called selective adsorption. When the nanocomposites are added into watchglass with a layer diesel oil dyed by Sudan red for clarity on a water surface, oil is quickly absorbed in few seconds and then keeps a balance of adsorption. Owing to the presence of Fe3O4 nanoparticles, the nanocomposites could be collected to the oil-polluted region by a magnet bar. The particles can dissolve in ethanol by ultrasonic washing. After that we can regenerate the magnetic composite materials through filtering, washing and drying, the process is showed in the following Figure. Adsorption and desorption of Fe3O4/PS nanoparticles. - Highlights: • We prepared Fe3O4/PS nanocomposites with different coating rates by emulsion polymerization method successfully. • Prepared nanocomposites could be used for oil absorption and be recycled by applying an external magentic field. • We got nanocomposites with optimal coating rates which had best oil absorption ratio and magnetic properties. • The nanocomposites also remain about 92.05% of oil absorption ability after being reused for 10 times

  7. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging

    Song, Xiaoli; Luo, Xiadan; Zhang, Qingqing; Zhu, Aiping; Ji, Lijun; Yan, Caifeng

    2015-08-01

    Biofunctionalized chitosan@Fe3O4 nanoparticles are synthesized by combining Fe3O4 and CS chemically modified with PEG and lactobionic acid in one step. The biofunctionalized nanoparticles are characterized by TEM, X-ray, DLS, zeta-potential and magnetic measurements. The in vitro and in vivo behaviors of the biofunctionalized nanoparticles, especially, the cytotoxicity, the protein resistance, metabolism and iron toxicity are assessed. The functional groups, PEG enable the nanoparticles more biocompatible and the lactobionic acid groups enable liver targeting. The potential applications of the nanoparticles in liver magnetic resonance imaging are confirmed. The results demonstrated that the nanoparticles are suspension stability, non-cytotoxicity, non-tissue toxicity and sensitive in liver magnetic resonance imaging, representing potential tools for applications in the biomedical field.

  8. Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy

    The photothermal effect of magnetite (Fe3O4) nanoparticles was characterized by photonic absorption in the near-infrared (NIR) region. Upon laser irradiation at 785 nm, the Fe3O4 nanoparticles generate localized hyperthermia in tumorous lesions, which is an effective strategy for cancer therapy; however, uncoated magnetite possesses an innate toxicity which can lead to drawbacks in the clinical setting. To reduce innate toxicity, a poly(acrylic acid) (PAA) coating on the nanoparticles was investigated in order to determine the alterations to stability and the degree of toxicity in an attempt to create a higher utility vector. It was found that the PAA coating significantly reduced the innate toxicity of the uncoated magnetite. Furthermore, the efficacy of PAA-coated magnetite nanoparticles (PAA-Fe3O4) was investigated for treating MDA-MB-231 (human mammary gland adenocarcinoma) cultures in viable concentration ranges (0.1–0.5 mg/ml). An appropriate PAA-Fe3O4 concentration range was then established for inducing significant cell death by hyperthermic ablation, but not through innate toxicity. - Highlights: • Uncoated magnetite NPs possess high innate toxicity in MDA-MB-231 cultures. • PAA coating significantly reduces innate toxicity and stabilizes magnetite NPs. • Thermal ablation begins at 0.2 mg/ml for PAA-Fe3O4 at 785 nm NIR laser, 38.5 kW/m2. • 38.5 kW/m2 does not significantly affect MDA-MB-231 viability in-vitro

  9. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  10. Preparation and characterization of poly(glycidyl methacrylate)-grafted magnetic nanoparticles: Effects of the precursor concentration on polyol synthesis of Fe3O4 and [PMDETA]0/[CuBr2]0 ratios on SI-AGET ATRP

    Jiang, Liping; Zhou, Xuyang; Wei, Guyun; Lu, Xiaoduo; Wei, Weiping; Qiu, Jianhua

    2015-12-01

    Polymer brushes based on poly(glycidyl methacrylate) (PGMA) have been successfully grafted from the surface of silica coated iron oxide (Fe3O4@SiO2) nanoparticles via surface-initiated activators generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The size of the nanoparticles could be adjusted from 7.3 to 9.6 nm by varying the precursor concentration of iron(III) acetylacetonate. The Fe3O4 nanoparticles possessed a highly crystalline structure, and the saturation magnetization of the as-prepared magnetite was strongly related to the particle size. Furthermore, the grafted PGMA content on the magnetic nanoparticles could be controlled by varying the ligand to transition metal ratio in a N,N,N?,N?,N?-pentamethyldiethylenetriamine (PMDETA)/CuBr2 catalyst system. The maximum grafted content was 23.1% at a ratio of [PMDETA]0/[CuBr2]0 = 2:1.

  11. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Jung Kyoo Lee; Jinku Kim; Taegyune Yoon; Jaegyeong Kim

    2013-01-01

    Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g?1), high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS) were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assemb...

  12. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature

    Fe3O4 nanoparticles were synthesized solvothermally using oleylamine and oleic acid as surfactants, and the surface composition was determined by X-ray photoelectron spectroscopy (XPS) as a function of temperature, from the as-synthesized nanoparticles to those annealed under vacuum at 883K. XPS of the as-synthesized nanoparticles was consistent with a surface composition of stoichiometric Fe3O4 capped with a mixture of monodentate carboxylate and chemisorbed amine, although the surface was enriched in carboxylate over that present in the synthesis reaction concentration. The method of synthesis and capping surfactants effectively protect the nanoparticle surface from detectable hydroxylation. The capped nanoparticle is stable for 24 h at 373K, and the capping agents persist to 523K, at which point the oleylamine decomposes to desorb nitrogen and deposit aliphatic carbon from the capping tail. The carboxylate decomposes over a wider range and at 883K some carboxylate remains on the surface. The iron oxide nanoparticle undergoes substantial reduction as the aliphatic capping tail decomposes. While the as-introduced nanoparticle is essentially Fe3O4, reduction to FeO, Fe and Fe3C occurs sequentially as the nanoparticle is heated to higher temperatures.

  13. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    Sadat, M E [University of Cincinnati; Patel, Ronak [University of Cincinnati; Sookoor, Jason [University of Cincinnati; Bud' ko, Sergey L [Ames Laboratory; Ewing, Rodney C [Stanford University; Zhang, Jiaming [Stanford University; Xu, Hong [Shanghai Jiao Tong University; Wang, Yilong [Tongji University School of Medicine; Pauletti, Giovanni M [University of Cincinnati; Mast, David B [University of Cincinnati; Shi, Donglu [University of Cincinnati

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.

  14. The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice

    Bao-An Chen

    2010-08-01

    Full Text Available Bao-An Chen1, Nan Jin1, Jun Wang1, Jiahua Ding1, Chong Gao1, Jian Cheng1, Guohua Xia1, Feng Gao1, Yin Zhou1, Yue Chen1, Guina Zhou1, Xiaomao Li2, Yu Zhang3, Men Tang3, Xuemei Wang31Department of Hematology, Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Physics, University of Saarland, D-266041 Saarbruechen, Germany; 3National Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaAbstract: We investigated the effect of magnetic nanoparticles of Fe3O4 (Fe3O4-MNPs on the mice immune system. Imprinting control region (ICR mice were assigned randomly into four groups and treated with normal saline or low, medium, or high doses of Fe3O4-MNPs, respectively. After intravenous administration of Fe3O4-MNPs for 72 hours, the peripheral T cells and the induction of primary immune responses in mice were investigated by flow cytometry and determined using enzyme-linked immunosorbent assay, respectively. The results showed that the ratio of spleen to body weight was not different between the experimental groups and control group (P > 0.05. The lymphocyte transformation rates in the suspension of spleen were higher in low-dose group than those in the control group (P < 0.05, while the proliferation of splenocytes was low in the medium and high groups when compared to the control group (P < 0.05. In peripheral blood, both the proportions of subset CD4+ and CD8+ T lymphocytes in the low-dose group were higher than those in the control group, whereas there was no difference in the number of CD4+ T cells between the medium- and low-dose groups. Interestingly, the Fe3O4-MNPs enhanced the production of interleukin-2 (IL-2, interferon-γ, and IL-10 but did not affect the production of IL-4 in peripheral blood. It is concluded that Fe3O4-MNPs could influence immune functions of normal ICR mice in a dose-dependent manner.Keywords: magnetic nanoparticle of Fe3O4, immune function, splenocyte proliferation, cytokine

  15. Regional selective construction of nano-Au on Fe3O4@SiO2@PEI nanoparticles by photoreduction

    Zhou, Ying; Ping, Tuo; Maitlo, Inamullah; Wang, Bowen; Yasir Akram, Muhammad; Nie, Jun; Zhu, Xiaoqun

    2016-05-01

    A magnetically separatable catalyst Fe3O4@SiO2@PEI@Au (gold) nanoparticle was successfully constructed by a novel regional selective photoreduction method. Based on the photolysis mechanism of a type II photoinitiator, through controlling the distribution of polyethylene imine (PEI), Au nanoparticles about 10 nm, which are only on the surface of the Fe3O4@SiO2@PEI nanoparticle, could be photoreduced due to the PEI acting as a coordinating agent, capping agent, and photoreducing agent simultaneously. The small size Au nanoparticles endow the catalyst with a high catalytic performance toward the reduction of 4-nitroaniline to 4-aminophenol by NaBH4. In addition, magnetic Fe3O4@SiO2@PEI@Au nanoparticles could easily be recovered and could be reused at least six times still keeping catalytic efficiency higher than 95%, which contributes to their high stability and magnetization. Furthermore, compared to another reported approach, this method showed great regional selectivity of reducing metal nanoparticles by controlling the distribution of the PEI. Taking advantage of the regional selectivity of the photoreducing method could also be used to fabricate other metal nanoparticles as catalysts for various reactions.

  16. Biocompatible PEGylated Fe3O4 Nanoparticles as Photothermal Agents for Near-Infrared Light Modulated Cancer Therapy

    Gang Yuan; Yongjie Yuan; Kan Xu; Qi Luo

    2014-01-01

    In accordance with the World Cancer Report, cancer has become the leading cause of mortality worldwide, and various therapeutic strategies have been developed at the same time. In the present study, biocompatible magnetic nanoparticles were designed and synthesized as high-performance photothermal agents for near-infrared light mediated cancer therapy in vitro. Via a facile one-pot solvothermal method, well-defined PEGylated magnetic nanoparticles (PEG–Fe3O4) were prepared with cheap inhesion...

  17. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.

  18. The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells

    Zhi Jiang

    2009-04-01

    Full Text Available Zhi Jiang1,6, Bao-An Chen1,6, Guo-Hua Xia1, Qiang Wu2, Yu Zhang1, Tie-Yan Hong1, Wei Zhang1, Jian Cheng1, Feng Gao1, Li-Jie Liu3, Xiao-Mao Li4, Xue-Mei Wang51Department of Hematology, the Affiliated Zhongda Hospital of Southeast University, Nanjing, China; 2The Jiangsu Province Cancer Hospital, Nanjing, China; 3Institutions of Physiology, Southeast University, Nanjing, China; 4Department of Physics, University of Saarland, Saarbruechen, Germany; 5National Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, China; 6These authors have contributed equally to this workAbstract: To explore whether the magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 loaded with cisplatin can reverse the diaminedichloro platinum (DDP resistance to multidrug resistance of ovarian carcinoma cells and to investigate its mechanisms. The SKOV3/DDP cells were divided into DDP treatment (DDP group, MNPs-Fe3O4 treatment (MNPs-Fe3O4 group, DDP + MNPs-Fe3O4 treatment (DDP + MNPs-Fe3O4 group, and control group. After incubation with those conjugates for 48 h, the cytotoxic effects were measured by MTT assay. Apoptosis and the intracellular DDP concentration were investigated by flow cytometry and inductively coupled plasma atomic emission spectroscopy, respectively. The expression of apoptosis associated gene Bcl-2 mRNA was detected by reverse transcription polymerase chain reaction and the expressions of MDR1, lung resistance-related protein (LRP, and P-glycoprotein (P-gp genes were studied by Western blot. Our results indicated that the 50% inhibition concentration (IC50 of the MNPs-Fe3O4 loaded with DDP was 17.4 µmol/ l, while the IC50 was 39.31 µmol/l in DDP groups (p < 0.05; Apoptosis rates of SKOV3/DDP cells increased more than those of DDP groups. Accumulation of intracellular cisplatin in DDP + MNPs-Fe3O4 groups was higher than those in DDP groups (p < 0.05. Moreover, the expression of Bcl-2 mRNA and the protein expressions of MDR1, LRP, and P-gp were decreased when compared with those of DDP groups, respectively. Our results suggest that MNPs-Fe3O4 can reverse the DDP resistance to the ovarian carcinoma cell. The effects may be associated with over-expression of MDR1, LRP, P-gp, and Bcl-2, which can increase the intracellular platinum accumulation and induce the cell apoptosis.Keywords: magnetic nanoparticles of Fe3O4 , multidrug resistance reversal, SKOV3/DDP, MDR1, LRP, P-gp, Bcl-2

  19. Photoelectron diffraction of Rh nanoparticles growth on Fe3O4/Pd(111) ultra thin film

    Full text: Heterogeneous catalysis is a highly complex process. Usually, a catalyst is formed by transition metal nanoparticles (for example, Pd, Pt, Rh, Ni, Au) supported by an oxide such as alumina, silica, titania among others [1-4]. The performance of the catalyst in terms of macroscopic chemical parameters such as the temperature for reaction activation, selectivity and efficiency can be strongly influenced by different characteristics of the catalyst at the atomic level, for instance, its electronic and atomic structure, particle size and shape, crystallographic structure [5-6] and support material effects[1]. Metal-oxide-based catalysts are used for many important synthesis reactions in the chemical industry, such as selective oxidation, dehydrogenation, isomerization and other chemical processes [7]. Rhodium nanoparticles have been used, for example, in the studies of propionaldehyde decomposition under ultra-high vacuum (UHV) conditions. The aim of this work is to prepare rhodium nanoparticles on magnetite (Fe3O4) (111) growth on Pd(111). The rhodium clusters and iron oxide ultra-thin films (thickness <10ML) were prepared in UHV conditions by Molecular Beam Epitaxy (MBE) and keeping the substrate at 450 deg C. The system was characterized by X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED) and photoelectron diffraction (PED) performed at the SGM beam line at the Brazilian Synchrotron Light Source (LNLS). Our results shows the formation of small Rh an island with the same atomic structure of fcc Rh at bulk, and thickness lower then 5MLs. The islands cover approximately 15% of the iron surface. These findings were determined mainly with the PED experiments supported by a comprehensive simulation approach based on multiple scattering calculations. References: [1] J. Libuda, H.-J. Freund, Surf. Sci. Rep. 57, 157 (2005). [2] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998). [3] N. Nilius, A. Corper, G. Bozdech, N. Ernst , H.-J. Freund, Prog. Surf. Sci. 67, 99 (2001). [4] C. T. Campbell, Surf. Sci. Rep. 27, 1 (1997). [5] M. Frank, S. Andersson, J. Libuda, S. Stempel, A. Sandell, B. Brena, A. Giertz, P. A. Bruhwiler, M. Baumer, N. Martensson, H.-J. Freund, Chem. Phys. Lett. 279 92 (1997). [6] S. Andersson, M. Frank, A. Sandell, A. Giertz, B. Brena, P. A. Bruhwiler, N. Martensson, J. Libuda, M. Baumer, H.-J. Freund, J. Chem. Phys. 108 2967 (1998). [7] G. Ertl, H. Knozinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997. (author)

  20. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract

    Venkateswarlu, Sada; Natesh Kumar, B.; Prasad, C. H.; Venkateswarlu, P.; Jyothi, N. V. V.

    2014-09-01

    A novel and bio-inspired Fe3O4 spherical magnetic nanoparticles (SMNPs) were synthesized using Syzygium cumini (S. cumini) seed extract, which is a non-toxic ecofriendly fruit waste material. S. cumini seed extract acts as a green solvent, reducing and capping agent in which sodium acetate acts as electrostatic stabilizing agent. The green synthesized nanoparticles were characterized with the help of various techniques such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Energy-dispersive spectroscopy (EDS), Vibrating sample magnetometer (VSM), FTIR spectroscopy and nitrogen adsorption and desorption analysis techniques. The XRD study divulged that the synthesized SMNPs have inverse spinel cubic structure. The hysteresis loop of Fe3O4 nanoparticles shows an excellent ferromagnetic behavior with saturation magnetization value of 13.6 emu/g.

  1. Effect of Fe3O4 nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    Wenxia Sima

    2015-12-01

    Full Text Available Addition of nanoparticles of the ferromagnetic material Fe3O4 can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe3O4 nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge.

  2. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract

    A novel and bio-inspired Fe3O4 spherical magnetic nanoparticles (SMNPs) were synthesized using Syzygium cumini (S. cumini) seed extract, which is a non-toxic ecofriendly fruit waste material. S. cumini seed extract acts as a green solvent, reducing and capping agent in which sodium acetate acts as electrostatic stabilizing agent. The green synthesized nanoparticles were characterized with the help of various techniques such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Energy-dispersive spectroscopy (EDS), Vibrating sample magnetometer (VSM), FTIR spectroscopy and nitrogen adsorption and desorption analysis techniques. The XRD study divulged that the synthesized SMNPs have inverse spinel cubic structure. The hysteresis loop of Fe3O4 nanoparticles shows an excellent ferromagnetic behavior with saturation magnetization value of 13.6 emu/g

  3. Effect of Fe3O4 nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    Addition of nanoparticles of the ferromagnetic material Fe3O4 can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe3O4 nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge

  4. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    Graphical abstract: - Highlights: • Magnetic Fe3O4/C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe3O4 and coated organic carbon has been demonstrated in Fe3O4/C. • The straight influences of synthesis conditions of Fe3O4/C on MSPE were investigated. • The extraction characteristics of Fe3O4/C nanoparticles were further elucidated. - Abstract: Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction

  5. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. PMID:27133054

  6. Fe3O4@SiO2 core-shell nanoparticles: Synthesis, characterization and application in environmental remediation

    Majeed, J.; Ramkumar, Jayshree; Chandramouleeswaran, S.; Tyagi, A. K.

    2014-04-01

    In this study, Fe3O4@SiO2 core-shell structure was synthesized by a one pot co-precipitation method, and its applicability as Low-Cost Abundantly available adsorbent for removal of heavy metal ions from simulated industrial waste water was examined. The detailed characterization of morphology showed that the Fe3O4 nanoparticle was coated with amorphous silica of a shell thickness of 2-3 nm. The core-shell magnetic nanoparticles (MNPs) showed a great removal capability of four different heavy metal ions (Zn (II), Co (II), Ni (II), and Cu (II). These MNPs showed high magnetic saturation values, which ensure the convenience of recovering sorbent for reusability with the assistance of external magnetic field. Specifically, this present study shows the use of MNPs as an effective recyclable adsorbent for environmental remediation.

  7. Extraction of organophosphorus pesticides by carbon-coated Fe3 O4 nanoparticles through response surface experimental design.

    Maddah, Bozorgmehr; Alidadi, Sattar; Hasanzadeh, Mahdi

    2016-01-01

    In this paper, carbon-coated Fe3 O4 nanoparticles were successfully synthesized and used as a magnetic solid-phase extraction absorbent for the preconcentration and extraction of organophosphorus pesticides in environmental water samples. The carbon-coated Fe3 O4 nanoparticles were characterized by transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The determination of organophosphorus pesticides in water samples with carbon-coated Fe3 O4 nanoparticles was investigated by high-performance liquid chromatography with a diode array detector. Furthermore, the response surface model based on the central composite design was applied to quantitatively investigate the effect of some important variables influencing the extraction efficiency, such as pH, treatment time, amount of nanoparticle sorbents, and amount of salt and to find the optimized conditions providing the highest extraction efficiency. Under optimized conditions, the calibration curve was linear in the range of 0.5-15.0 ng/mL with a regression coefficient of 0.9948, 0.9958, and 0.9931 for fenitrothion, diazinon, and ethion, respectively. The obtained results showed that this analytical method would be useful for the analysis of fenitrothion, diazinon, and ethion in tap water with high precision and accuracy. PMID:26519201

  8. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution

    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe3O4-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe3O4) were prepared by chemical precipitation of a Fe2+ and Fe3+ salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe3O4 were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90 x 10-2 min-1 at 100 mg L-1 and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L-1. It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Qo, was found to be (38.3) mg g-1. The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.

  9. Continuous and Delayed Photohemolysis Sensitized With Methylene Blue and Iron Oxide Nanoparticles (Fe3O4)

    AL-Akhras, M.-Ali; Aljarrah, Khaled; Albiss, Borhan; Alhaji Bala, Abba

    2015-10-01

    This research present the sensitization of methylene blue (MB), as a potential photodynamic therapy photo sensitizer which showed phototoxicity for many tumor cells in vitro incorporated with iron oxide nanoparticles (Fe3O4, IO-NP), which offer magnificent interaction both inside and outside the surface of biomolecules together with red blood cells (RBC's) with significant change in hemolysis process. The study investigated the sensitization of continuous photohemolysis (CPH) for MB and MB with IO-NP, delayed photohemolysis (DPH) at different irradiation temperature (Tirr). The photohemolysis rate for CPH at room temperature has a power dependence of 0.39 ± 0.05 with relative of steepness of 1.25 ± 0.02 and for different concentration of MB and power dependent of 0.15 ± 0.03 with relative steepness of 1.34 ± 0.01 for different MB and IO-NP. Logistic and Gompertz functions were applied as appropriate mathematical models to fit the collected experimental data for CPH and DPH respectively, and to calculate fractional photohemolysis rate with minimum errors. The Logistic function parameter; α, the hemolysis rate, increases with increasing concentrations of MB and decreases with increasing IO-NP concentrations in the presence of 6 μg/ml of MB. The parameter β the time required to reduce the maximum number of RBCs to one half of its value, decreases with increasing MB concentration and increases with increasing IO-NP concentrations in the presence of 6 pg/ml of MB. In DPH at different Tirr, the Gompertz parameter; a, fractional hemolysis ratio, is independent of temperature in both case MB and MB plus IO-NP, while the parameter; b, rate of fractional hemolysis change, increases with increasing Tirr, in both case MB and MB plus IO-NP. The apparent activation energy of colloid-osmotic hemolysis is 9.47±0.01 Kcal/mol with relative steepness of 1.31 ± 0.05 for different MB and 6.06±0.03 Kcal/mol with relative steepness of 1.41 ± 0.09 for MB with iron oxide. Our results suggest that Logistic equation is the best fit for the CPH and Gompertz function for the DPH. Both models predict also that the relative steepness is independent of the light dose, sensitizer and IO-NP concentrations.

  10. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice

    Ma P

    2012-09-01

    Full Text Available Ping Ma,1,2,* Qing Luo,2,* Jiaoe Chen,1 Yaping Gan,1 Juan Du,2 Shumao Ding,2 Zhuge Xi,3 Xu Yang2 1College of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, People's Republic of China; 2Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, People's Republic of China; 3Tianjin Institute of Health and Environmental Medicine, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Because of its unique magnetic properties, the iron oxide (Fe3O4 nanoparticle has been widely exploited and its application in various fields has promised immense benefits. However, doubts exist over the use of Fe3O4-nanoparticles in human beings. Thus, the aim of the current study was to find out the potential safety range of medical use. Twenty-five Kunming mice were exposed to Fe3O4-nanoparticles via intraperitoneal injection daily for 1 week at doses of 0, 5, 10, 20, and 40 mg/kg. Hepatic and renal tissues were sliced for physiological observation. Injuries were observed in the high-dose groups (20 and 40 mg/kg compared with the control group (0 mg/kg. Biomarkers of reactive oxygen species, glutathione, malondialdehyde, DNA-protein crosslinks, and 8-hydroxy-2'-deoxyguanosine in the hepatic and renal tissues were detected. Injury to tissues and oxidative damage to cells at the molecular level was found. The safest dose recommended from the results of this study is 5 mg/kg, as we believe this to be an upper limit balancing the benefits and risks for sub-long-term exposure.Keywords: Fe3O4-nanoparticles, reactive oxygen species, glutathione, malondialdehyde, DNA-protein crosslinks, 8-hydroxy-2'-deoxyguanosine

  11. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02680f

  12. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-12-01

    Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.

  13. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    Highlights: • Fe3O4 nanoparticles prepared from waste liquor were functionalized with EDA. • EDA-Fe3O4 nanoparticles had high adsorption capacity and selectivity for Cr(VI). • The adsorption kinetics, thermodynamics and isotherm were studied. • Electrostatic attraction and complexation were postulated as adsorption mechanisms. • EDA-Fe3O4 nanoparticles retained high capacity after several adsorption processes. - Abstract: In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20–50 nm and a BET surface area of 28 m2 g−1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl−or Cr(VI)/SO42− double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption–desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI)

  14. One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Lai Yongchao

    2009-01-01

    Full Text Available Abstract Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g−1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to thel-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9480-x contains supplementary material, which is available to authorized users. Click here for file

  15. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells

    In order to reveal the biocompatibility of Fe3O4 nanoparticles and bipolar surfactant tetramethylammonium 11-aminoundecanoate cytotoxicity tests were performed as a function of concentration from low (0.1 μg ml-1) to higher concentration (100 μg ml-1) using various human glia, human breast cancer and normal cell lines. Cytotoxicity tests for human glia (D54MG, G9T, SF126, U87, U251, U373), human breast cancer (MB157, SKBR3, T47D) and normal (H184B5F5/M10, WI-38, SVGp12) cell lines exhibited almost nontoxicity and reveal biocompatibility of Fe3O4 nanoparticles in the concentration range of 0.1-10 μg ml-1, while accountable cytotoxicity can be seen at 100 μg ml-1. The results of our studies suggest that Fe3O4 nanoparticles coated with bipolar surfactant tetramethylammonium 11-aminoundecanoate are biocompatible and promising for bio-applications such as drug delivery, magnetic resonance imaging and magnetic hyperthermia.

  16. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor.

    Baby, Tessy Theres; Ramaprabhu, S

    2010-03-15

    A new type of amperometric glucose biosensor based on silicon dioxide coated magnetic nanoparticle decorated multiwalled carbon nanotubes (Fe(3)O(4)@SiO(2)/MWNTs) on a glassy carbon electrode (GCE) has been developed. MWNTs have been synthesized by catalytic chemical vapour decomposition (CCVD) of acetylene over rare earth (RE) based AB(3) alloy hydride catalyst. The as-grown MWNTs have been purified and further functionlized. Functionalized MWNTs have been decorated with magnetic Fe(3)O(4) nanoparticles which have been uniformly coated with biocompatible SiO(2) using a simple chemical reduction method. The characterization of magnetic nanoparticle modified MWNTs have been done by X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX) and UV-vis spectroscopy. Amperometric biosensor has been fabricated by the deposition of glucose oxidase (GOD) over Nafion-solubilized Fe(3)O(4)@SiO(2)/MWNTs electrode. The resultant bioelectrode retains its biocatalytic activity and offers fast and sensitive glucose quantification. The performance of the biosensor has been studied using cyclic voltammetry and amperometry and the results have been discussed. The fabricated glucose biosensor exhibits a linear response from 1 microM to 30 mM with an excellent detection limit of 800 nM indicating the potential applications in food industries. PMID:20152447

  17. Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe3O4–TiO2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO2) through a modified sol-gel process onto preformed magnetite (Fe3O4) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe3O4 and TiO2 magnetic and optical properties, respectively.

  18. Multifunctional Fe3O4@C@Ag hybrid nanoparticles: Aqueous solution preparation, characterization and photocatalytic activity

    Highlights: ► Ag-loaded Fe3O4@C magnetic-optical bifunctional materials have been investigated. ► The magnetism was studied at the room temperature. ► The photocatalytic activity was evaluated under visible light irradiation. ► Ag-loaded Fe3O4@C nanocomposites show superior magnetism and photocatalytic activity. ► A simple synthetic process was discussed. - Abstract: The paper describes a kind of multifunctional Fe3O4@C@Ag hybrid nanoparticles, which can be successfully synthesized using a simple route based on directly adsorption and spontaneous reduction of silver ions onto the surface shell of carbon-coated magnetic nanoparticles. The as-prepared samples have been characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectrum, vibrating sample magnetometer (VSM) and UV–vis spectrum (UV–vis). The Ag nanocrystals loaded on the surface shell of carbon-coated magnetic nanoparticles are nearly spherical with an average diameter of 10 nm. And the carbonaceous polysaccharides shell obtained using an glucose hydrothermal reaction act as a role of a bridge between magnetic Fe3O4 core and noble metallic Ag nanocrystals. The as-prepared samples can be used as an effective catalyst for the photodegradation of organic dyes (neutral red) under the exposure of visible light. Results show that the as-prepared samples have a degradation rate of 93.7% for dyes within 30 min, which indicates their high-efficiency and rapid photocatalytic activity

  19. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  20. Magnetic field induced ferroelectric and dielectric properties in Pb(Zr0.5Ti0.5)O3 films containing Fe3O4 nanoparticles

    About 1.05 μm-thick Pb(Zr0.5Ti0.5)O3 (PZT) films containing Fe3O4 nanoparticles were deposited on LaNiO3-coated silicon substrates through a sol-gel technique. Fe3O4 nanoparticles were effectively dispersed into PZT solution under the involvement of polyvinylpyrrolidone. X-ray diffraction confirmed the coexistence of PZT and Fe3O4 phases without other impurity phases. Scanning electron microscope revealed that the thick composite films possess well-defined and crack-free microstructure. The composite films exhibit good ferroelectric and ferromagnetic properties at room temperature. An obvious magnetodielectric effect has been demonstrated in the Pb(Zr0.5Ti0.5)O3/Fe3O4 composite films. Magnetic field induced change in ferroelectric polarization loop may support the possible magnetoelectric coupling between PZT and Fe3O4 phases.

  1. The Effect of Emulation Formulation to Encapsulation of Fe3O4 Magnetic nanoparticle with Poly (Lactic Acid)

    The research to study the effect of emulsion formulation to encapsulation Fe3O4 magnetic nanoparticle with Poly(Lactic Acid) (PLA) has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 mL, 8 mL, 10 mL, 12 mL and 14 mL, whereas water phase volume is constant (55 mL). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of Fe3O4 with PLA. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of Fe3O4 + PLA nanosphere is 2.556 emu/g and encapsulation percentage is 24.94 %. (author)

  2. Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries

    We report a scalable strategy to synthesize Fe3O4/graphene nanocomposites as a high-performance anode material for lithium ion batteries. In this study, ferric citrate is used as precursor to prepare Fe3O4 nanoparticles without introducing additional reducing agent; furthermore and show that such Fe3O4 nanoparticles can be anchored on graphene sheets which attributed to multifunctional group effect of citrate. Electrochemical characterization of the Fe3O4/graphene nanocomposites exhibit large reversible capacity (∼1347 mA h g−1 at a current density of 0.2 C up to 100 cycles, and subsequent capacity of ∼619 mA h g−1 at a current density of 2 C up to 200 cycles), as well as high coulombic efficiency (∼97%), excellent rate capability, and good cyclic stability. High resolution transmission electron microscopy confirms that Fe3O4 nanoparticles, with a size of ∼4–16 nm are densely anchored on thin graphene sheets, resulting in large synergetic effects between Fe3O4 nanoparticles and graphene sheets with high electrochemical performance. - Graphical abstract: The reduction of Fe3+ to Fe2+ and the deposition of Fe3O4 on graphene sheets occur simultaneously using citrate function as reductant and anchor agent in this reaction process. Highlights: ► Fe3O4/graphene composites are synthesized directly from graphene and C6H5FeO7. ► The citrate function as reductant and anchor agent in this reaction process. ► The resulting Fe3O4 particles (∼4–16 nm) are densely anchored on graphene sheets. ► The prepared Fe3O4/graphene composites exhibit excellent electrochemical performance

  3. FMR study of carbon nanotubes filled with Fe3O4 nanoparticles

    Ordered arrays of carbon nanotubes were produced using a non-catalytic chemical vapour deposition. The multiwall nanotubes with an inner diameter of 120 nm were grown inside porous alumina templates and then filled with a magnetic colloid of 7.5 nm Fe3O4 particles. X-ray diffraction, electron microscopy and ferromagnetic resonance (FMR) were used to characterize structural and magnetic properties of the grown samples. To estimate the filling factor from the angular dependence of the FMR resonance field, we have derived an effective demagnetization factor for our system using the formalism proposed by Skomsky and Dubowik. Angular dependence of the FMR line width allows one to conclude about the non-uniform filling, while temperature dependent measurements reflect typical features of a superparamagnetic resonance. - Highlights: • Synthesis of CNTs inside of alumina membrane and filling it with Fe3O4 particles. • X-ray diffraction and electron microscopy study of the samples. • Magnetic properties of the samples studied by FMR. • Filling factor has been determined from the angular dependences of FMR. • Resulted magnetic CNTs are attractive for production of magnetic nanofluids

  4. One step grafting of iron phthalocyanine containing flexible chains on Fe3O4 nanoparticles towards high performance polymer magnetic composites

    To develop high-performance inorganic particles/polymer composites, the interfacial interaction and dispersion of inorganic particles are the two essential issues to be considered. Herein, we report an effective approach to graft iron phthalocyanine containing flexible chains (NP-ph) on Fe3O4 nanoparticles (NP-ph@Fe3O4). The hybrids were monodispersed solid nanoparticles with the average diameter of about 250 nm. About 16.8% of the phthalocyanine oligomer was incorporated into the resulting NP-ph@Fe3O4 nanoparticles. The NP-ph@Fe3O4 nanoparticles were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PAEN) composites. The scanning electron microscopy (SEM) investigation showed that the NP-ph@Fe3O4 nanoparticles present better dispersion and interfacial compatibility with PAEN matrix than that of raw Fe3O4, which was further confirmed by rheological study. Consequently, the improved thermal stability and enhanced mechanical properties were obtained from composites using NP-ph@Fe3O4. Vibrating sample magnetometer (VSM) results showed that the prepared PAEN composites exhibited higher saturation magnetization and soft magnetic properties. Meanwhile, the saturation magnetization (Ms) of the PAEN/NP-ph@Fe3O4 composite films increased with the increase of the hybrid nanoparticles loading. Thus, the PAEN/NP-ph@Fe3O4 composite would find potential applications in organic magnetic films fields due to their high thermal stability, excellent flexibility and tunable magnetic properties. - Highlights: • An effective approach to graft CuPc containing flexible chains on Fe. • Effect on the mechanical, thermal and interfacial properties were investigated. • The dispersion state was characterized using parallel-plate rheometry. • The mechanism of interfacial compatibility was clarified

  5. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe3O4 nanoparticles

    Monodisperse magnetizable silica composite particles were prepared from heteroaggregates of carboxylic polystyrene latex and Fe3O4 nanoparticles. It was found that the heteroaggregation of the carboxylic latex and Fe3O4 nanoparticles is dependent on the pH of the solution. At low pH value (pH 2-4), the aggregation proceeds effectively due to opposite charges on the surfaces of the latex and the magnetic nanoparticles. At high pH value (pH>8), no aggregation was observed due to the negative charge on both the surface of the latex and the magnetic nanoparticles. The heteroaggregate of the latex and magnetic nanoparticles was found to be stable in a wide range of pH values, due to the existence of coordination interactions at the interface of the latex and magnetic nanoparticles. After silica layer coating on the heteroaggregate by the Stoeber process and removal of the latex by calcination, hollow monodisperse magnetizable silica composite particles are obtained

  6. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  7. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries

    Wan, Yizao; Yang, Zhiwei; Xiong, Guangyao; Guo, Ruisong; Liu, Ze; Luo, Honglin

    2015-10-01

    There is growing interest in flexible, cost-effective, and binder-free energy storage devices to meet the special needs of modern electronic systems. Herein we report a general, scalable, eco-friendly, and cost-effective approach for the fabrication of nano-Fe3O4-anchored three-dimensional (3D) carbon nanofiber (CNFs) aerogels (Fe3O4@BC-CNFs). The preparation processes include the anchoring of Fe2O3 nanoparticles on bacterial cellulose (BC) nanofibers with intrinsic 3D network structure and subsequent carbonization at different temperatures. The aerogel carbonized at 600 °C (Fe3O4@BC-CNFs-600) is highly flexible and was directly used as working electrodes in lithium-ion batteries without metal current collectors, conducting additives, or binders. The Fe3O4@BC-CNFs-600 demonstrates greatly improved electrochemical performance in comparison to the bare Fe3O4 nanoparticles. In addition to its excellent flexibility, a stable capacity of 755 mAh g-1 for up to 80 cycles is also higher than most of carbon-Fe3O4 hybrids. The high reversible capacity and excellent rate capability are attributed to its 3D porous network structure with well-dispersed Fe3O4 nanoparticles on the surfaces of CNFs.

  8. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  9. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    Uribe Madrid, Sergio I; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-01-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show ve...

  10. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    Lemine, O. M.

    2012-10-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  11. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis

    Wang, Hua; Li, Shuai; Si, Yanmei; Sun, Zhongzhao; Li, Shuying; Lin, Yuehe

    2014-01-01

    Fe3O4 nanoparticles as nanocatalysts may present peroxidase-like catalysis activities and high electrocatalysis if loaded on conductive carbon nanotube (CNT) supports; however, their catalysis performances in an aqueous system might still be challenged by the poor aqueous dispersion of hydrophobic carbon supports and/or low stability of loaded iron catalysts. In this work, amphiphilic graphene oxide nanosheets were employed as “surfactant” to disperse CNTs to create stable graphene oxide-dispersed CNT (GCNT) supports in water for covalently loading cubic Fe3O4 nanoparticles with improved distribution and binding efficiency. Compared with original Fe3O4 nanos and CNT-loaded Fe3O4 nanocomplex, the prepared GCNT–Fe3O4 nanocomposite could achieve higher aqueous stability and, especially, much stronger peroxidase-like catalysis and electrocatalysis to H2O2, presumably resulting from the synergetic effects of two conductive carbon supports and cubic Fe3O4 nanocatalysts effectively loaded. Colorimetric and direct electrochemical detections of H2O2 and glucose using the GCNT–Fe3O4 nanocomposite were conducted with high detection sensitivities, demonstrating the feasibility of practical sensing applications. Such a magnetically recyclable “enzyme mimic” may circumvent some disadvantages of natural protein enzymes and common inorganic catalysts, featuring the multi-functions of high peroxidase-like catalysis, strong electrocatalysis, magnetic separation/recyclability, environmental stability, and direct H2O2 electrochemistry.

  12. Magnetic Nanoparticle Hyperthermia Using Pluronic-Coated Fe3O4 Nanoparticles: An In Vitro Study

    Tsutomu Yamada; Asahi Tomitaka; Yasushi Takemura

    2012-01-01

    Magnetic nanoparticles are promising materials for hyperthermia treatment. The temperature rise under ac magnetic field, cytotoxicity, and in vitro hyperthermia effect of F e 3 O 4 nanoparticles coated with Pluronic f-127 were evaluated in this paper. The Pluronic-coated F e 3 O 4 nanoparticles exhibited no cytotoxic effect on HeLa cells. The optimal magnetic field of Pluronic-coated F e 3 O 4 nanoparticles was 16 kA/m (200 Oe) at the field strength of 210 kHz. Appropriate temperature rise si...

  13. Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

    Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.

    2016-05-01

    Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

  14. The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol

    Nikazar, Manouchehr; Alizadeh, Mehriana; Lalavi, Reza; Rostami, Mohammad Hossein

    2014-01-01

    The photocatalysis of phenol was studied using Fe3O4/ZnO core/shell magnetic nanoparticles (MNPs). The photocatalysts were synthesized by coating of ZnO onto the magnetite by precipitation method and characterized by XRD, SEM and FTIR measurements. Using the Taguchi method, this study analyzes the effect of parameters such as calcinations time, calcinations temperature and molar ratio of Fe3O4:ZnO on the photo activity of Fe3O4/ZnO MNPs. XRD and FTIR analysis confirm that coating process was ...

  15. One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles

    A one-step strategy for the facile synthesis of polyethyleneimine-functionalized Fe3O4 (Fe3O4-PEI) composite is presented in this study. We also investigated the effects of reaction time and NaAc on the composite sizes. The composite with good dispersion, wonderful crystallization, and excellent magnetism was obtained through one-pot solvothermal reaction. In the sequential presence of PEI and colloidal gold (Au) solution, plentiful Au nanoparticles with a diameter of 5 nm were assembled on the surface of Fe3O4–PEI to get Fe3O4–PEI–Au1–PEI–Au2 (Fe3O4/Au) composite. In-depth characterization of the composite formation process was performed using transmission electron microscopy, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and UV–Visible spectroscopy. The Fe3O4/Au composite was obtained with an average diameter of 150 nm, and the absorption peak was red-shifted to 580 nm. The synthesized Fe3O4/Au composite, the saturation magnetization of which was 40.4 emu/g, presented good magnetic property. Moreover, the composite could easily combine with up to 890 μg antibodies per mg, and the antibodies still kept good immunocompetence after immobilization. These advantages suggest its great potential for applications in vitro, such as separation and immunoassay.

  16. A novel amperometric immunosensor based on Fe3O4 magnetic nanoparticles/chitosan composite film for determination of ferritin.

    Wang, Sheng-Fu; Tan, Yu-Mei

    2007-01-01

    A novel amperometric immunosensor was developed by immobilizing ferritin antibody (FeAb) on the surface of Fe(3)O(4) magnetic nanoparticles/chitosan composite film modified glassy carbon electrode (GCE). This material combined the advantages of inorganic Fe(3)O(4) nanoparticles with the organic polymer chitosan. The stepwise assembly procedure of the immunosensor was characterized by means of differential pulse voltammetry (DPV) and ac impedance. The K(3)Fe(CN)(6)/K(4)Fe(CN)(6) was used as a marker to probe the interface and to determinate ferritin. The factors that could influence the performance of the resulting immunosensor were studied in detail. After the immunosensor was incubated with ferritin for 32 min at 35 degrees C, the DPV current decreased linearly with the logarithm of ferritin concentration in the range from 20 to 500 ng mL(-1) with a correlation coefficient of 0.995 and a detection limit of 7.0 ng mL(-1). This immunosensor was used to analyze ferritin in human serum samples. The analytical results showed that the developed immunoassay was comparable with the radioimmunoassay (RIA), and the studied immunosensor exhibited good accuracy, high sensitivity, and long-term stability for 3 weeks, which implies a promising alternative approach for detecting ferritin in clinical diagnosis. PMID:17146621

  17. Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications

    We demonstrate a single-step facile approach for the fabrication of citric acid functionalized (citrate-stabilized) Fe3O4 aqueous colloidal magnetic nanoparticles (CA-MNP) of size 8-10 nm using soft chemical route. The surface functionalization of Fe3O4 nanoparticles with citric acid was evident from infrared spectroscopy, thermal and elemental analyses, and zeta-potential measurements. The drug-loading efficiency of CA-MNP was investigated using doxorubicin hydrochloride (DOX) as a model drug to evaluate their potential as a carrier system. The quenching of fluorescence intensity and decrease in surface charge of drug loaded CA-MNP strongly suggest the interaction/attachment of drug molecules with CA-MNP. More specifically, the present investigation discusses a method for entrapping positively charged drugs onto the surface of negatively charged CA-MNP through electrostatic interactions and suggests that bound drug molecules will be released in appreciable amounts in the mild acidic environments of the tumors. Furthermore, the aqueous colloidal stability, optimal magnetization, good specific absorption rate (under external AC magnetic field) and cytocompatibility with cells suggested that CA-MNP is appropriate candidate for biomedical applications.

  18. Quantitative two-dimensional strain mapping of small core-shell FePt@Fe3O4 nanoparticles

    Monteforte, Marianne; Kobayashi, Shoko; Tung, Le D.; Higashimine, Koichi; Mott, Derrick M.; Maenosono, Shinya; Thanh, Nguyen T. K.; Robinson, Ian K.

    2016-03-01

    We report a facile one-pot chemical synthesis of colloidal FePt@Fe3O4 core-shell nanoparticles (NPs) with an average diameter of 8.7 ± 0.4 nm and determine their compositional morphology, microstructure, two-dimensional strain, and magnetic hysteresis. Using various state-of-the-art analytical transmission electron microscopy (TEM) characterization techniques—including high resolution TEM imaging, TEM tomography, scanning TEM-high angle annular dark field imaging, and scanning TEM-energy dispersive x-ray spectroscopy elemental mapping—we gain a comprehensive understanding of the chemical and physical properties of FePt@Fe3O4 NPs. Additional analysis using x-ray photoelectron spectroscopy, x-ray diffraction, and superconducting quantum interference device magnetometry distinguishes the oxide phase and determines the magnetic properties. The geometric phase analysis method is effective in revealing interfacial strain at the core-shell interface. This is of fundamental interest for strain engineering of nanoparticles for desirable applications.

  19. Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection

    Microwave-induced thermoacoustic tomography can provide a novel imaging modality for clinical detection. Significant progress has been made in the past several years in microwave-induced thermoacoustic tomography. In this paper, we investigate the feasibility of using dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. Dextran-coated Fe3O4 magnetic nanoparticles administered intravenously are phagocytosed by resident Kupffer cells in normal reticuloendothelial system (RES) within the liver, but are not retained in tumor tissue. Consequently, there are significant differences in thermoacoustic signal intensity between normal RES and tumors, which result in increased lesion conspicuity and detectability. This provides the improvement of lesion-to-liver contrast for thermoacoustic tomography. A fast thermoacoustic computed tomography system with a multielement linear transducer array was used to image cancerous liver tissue with circular scanning. The results show that the system can provide molecular imaging with functionalized contrast agents for high-contrast detecting hepatocellular carcinoma and has the potential to become a novel approach for clinical diagnosis in the future.

  20. On the passivation mechanism of Fe3O4 nanoparticles during Cr(VI) removal from water: A XAFS study

    Pinakidou, F.; Katsikini, M.; Simeonidis, K.; Kaprara, E.; Paloura, E. C.; Mitrakas, M.

    2016-01-01

    X-Ray Absorption Spectroscopies (XAFS) are employed in order to gather a thorough insight on the uptake mechanism of Cr(VI) by Fe3O4 nanoparticles under water treatment conditions. The XANES measurements identify that the reducing potential of Fe3O4 activates the precipitation of Cr(VI) in the form of insoluble and non-toxic Cr(III). However, electron donation from Fe(II) is responsible for its gradual consumption, resulting in the presence of a surface maghemite layer and the formation of structural vacancies. EXAFS analysis reveal that adsorption of Cr(III)-oxyanions occurs on sorption sites provided by the vacancies in the maghemite layer, where Cr(III) is involved in a bidentate binuclear (2E) geometry with Fe-octahedra while it also forms monodentate (1V) complexes with the Fe(III)O4 tetrahedra. The surface maghemitization along with the reduced Cr(III) adsorption into the vacancies, tracks the degree of Cr-reduction, since this surface structural modifications hinder Cr(VI) access to the Fe(II) ions of the magnetite nanoparticles. Thus, high surface coverage leads to the passivation of the reduction ability since physisorbed Cr(VI) is also detected through the formation of outer sphere complexes.

  1. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property

  2. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  3. The synthesis and properties of bifunctional and intelligent Fe3O4@titanium oxide core/shell nanoparticles.

    Yin, Yichao; Liu, Chenjie; Wang, Baoxiang; Yu, Shoushan; Chen, Kezheng

    2013-05-21

    A simple, one-pot solvothermal method has been demonstrated for the preparation of bifunctional Fe3O4@titanium oxide core/shell nanoparticles. In a typical procedure, tetraalkoxyl titanium Ti(OC4H9)4 and FeCl3 as precursors were added into ethylene glycol and further solvothermal treatment was used to synthesize the core/shell particles. The core/shell particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), SQUID MPMS and rheometry. The morphological results showed titanium oxide nanorods with 100-200 nm length and 10-20 nm diameter coated on the surface of 200-300 nm Fe3O4 submicrospheres. Reaction time, the titanium source, the barium salt etc. have an influence on the morphology of core/shell particles. The core/shell particles can not only respond to an external magnetic field, but also to an electric field--a novel application of electrorheological fluid. PMID:23532087

  4. Preparation of Fe3O4-Embedded Poly(styrene/Poly(thiophene Core/Shell Nanoparticles and Their Hydrogel Patterns for Sensor Applications

    Yong Seok Kim

    2014-01-01

    Full Text Available This research describes the preparation and sensor applications of multifunctional monodisperse, Fe3O4 nanoparticles-embedded poly(styrene/poly(thiophene (Fe3O4-PSt/PTh, core/shell nanoparticles. Monodisperse Fe3O4-PSt/PTh nanoparticles were prepared by free-radical combination (mini-emulsion/emulsion polymerization for Fe3O4-PSt core and oxidative seeded emulsion polymerization for PTh shell in the presence of FeCl3/H2O2 as a redox catalyst, respectively. For applicability of Fe3O4-PSt/PTh as sensors, Fe3O4-PSt/PTh-immobilized poly(ethylene glycol (PEG-based hydrogels were fabricated by photolithography. The hydrogel patterns showed a good sensing performance under different H2O2 concentrations. They also showed a quenching sensitivity of 1 g/mL for the Pd2+ metal ion within 1 min. The hydrogel micropatterns not only provide a fast water uptake property but also suggest the feasibility of both H2O2 and Pd2+ detection.

  5. The effect of initial alignment on the optical properties of Fe3O4 nanoparticles doped in nematic liquid crystals

    Recently the nonlinear effects of the different materials doped liquid crystals are more interesting. In all previous works, nonlinearity of samples with the homeotropic alignment is investigated because of the larger component of the refractive index in this direction. Here, there are spherical Fe3O4 nanoparticles that have both parallel and perpendicular components. We were looking for the effect of initial alignment on the nonlinearity of pure and doped nematic liquid crystals (NLCs). The experimental results emphasize, even the same compositional percentage of nanoparticles prepared by two different alignment configurations are showing different results when dispersed in the same NLCs. Comparing nonlinear studies, the magnitude of nonlinear refraction index, n2 and nonlinear absorption coefficient, β increase 102 and 101 times, respectively, in homeotropic alignment samples and the sign of these parameters is changed rather than homogeneous ones

  6. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    Allia, Paolo Maria Eugenio Icilio; Sangermano, Marco

    2014-01-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnet...

  7. Remocin de pesticidas rgano-fosforados en aguas con nanopartculas magnticas de Fe3O4 soportadas en slice / Removal of organophosphorus pesticides in water with supported silica Fe3O4 magnetic nanoparticles

    Yosmery, Vitta Brito; Alberto, Fernndez Cuervo; Yolanda, Moliner-Martnez; Pilar, Campns Falco.

    2014-09-01

    Full Text Available En este trabajo se evalu la eficiencia de Nanopartculas, (Nps), magnticas de Fe3O4 incorporadas en una matriz de slice mediante el mtodo sol-gel, como adsorbente de los pesticidas organofosforados: Chlorfenvifos (Chlorf) y Chlorpyrifos (Chlorp) en aguas de efluentes residuales. Las Nps de Fe3O4 [...] -SiO2 presentaron un tamao promedio de 5 nm. Los lmites de deteccin fueron de 1 ?g L-1 y 2 ?g L-1 para el Chlorf y el Chlorp respectivamente, obteniendo una precisin intradiaria del 2 % e inter-diaria del 3%. La isoterma de adsorcin segn Langmuir, report que el Chlorp fue la especie ms adsorbida por el nano-adsorbente con una capacidad mxima de adsorcin, Smx de 0,70 0,35 ?g g-1, mientras que el Chlorf report un Smx de 0,40 0,12 ?g g-1. El procedimiento fue ensayado en aguas residuales, alcanzando una remocin entre el 60 - 85% en los analitos. El mecanismo de adsorcin de los pesticidas, se atribuye a la interaccin entre estos compuestos apolares y las cadenas alifticas de las micelas del Bromuro de hexadeciltrimetilamonio, CTAB, del adsorbente, dado que los porcentajes de los analitos en el lquido fueron inferiores al 10%. Abstract in english This paper evaluates the efficiency of Fe3O4 magnetic nanoparticles embedded in silica matrix, by a sol-gel method, as adsorbent of two organophosphate pesticides, Chlorfenvifos (Chlorf) and Chlorpyrifos (Chlorp), in sewage. The Fe3O4- SiO2 Nps have an average size of 5 nm. The detection limits were [...] 1 ? g L-1 for the Chlorf and 2 ? g L-1 for the Chlorp, obtaining an intra-day precision of 2% and inter-day 3%. According to the Langmuir adsorption isotherm, the Chlorp was identified as the more adsorbed species with Smax = de 0.70 0.15 ?g g-1, while Smax = 0.40 0.12 ?g g-1 for Chlorf. The procedure was tested on sewage, reaching analytes removal between 60 - 85%. The adsorption mechanism of pesticides is attributed to the hydrophobic interaction between these compounds and aliphatic chains of CTAB micelles, since the percentage of compounds in the liquid was less than 10%.

  8. Nanosized Fe3O4 an efficient PCR yield enhancer-Comparative study with Au, Ag nanoparticles.

    Kambli, Priyanka; Kelkar-Mane, Varsha

    2016-05-01

    Nanomaterials-assisted PCR is a promising field of nanobiotechnology that amalgamates nanomaterials into the conventional PCR system to achieve better amplification of desired product. With literature documenting the variable effects of these nanomaterials on the PCR yield and amplification; it was thought worthwhile to compare the PCR enhancing efficiency of three transition metal nanoparticles in form of stable colloidal suspensions at varying concentrations.The nanoparticles(NPs) of silver, gold and magnetite were chemically synthesized by reducing their respective salts and characterized using UV-vis spectroscopy. Their morphology was assessed using nanoparticle tracking system and AFM. The effect of these nanofluids on amplification of 800bp prokaryotic DNA template with 30% GC content was studied using conventional thermal cycler. The reaction kinetics for all the three nanofluids yielded a Gaussian curve of amplification with varying concentrations. The ammonium salt of oleic acid coated magnetite (Fe3O4) nanoparticles at a concentration of 0.72×10(-2)nM and average size of 33nm demonstrated highest amplification efficiency of 190% as compared to the citrate stabilized AgNP-25nm (45%) and AuNP-15.19nm (134%) using a conventional PCR system. The major reasons that allow Fe3O4 NPs outperform the other 2 transition metal NP's seem to be attributed to its heat conduction property as well as effective adsorption of PCR components onto the ammonium salt of oleic acid coated magnetite nanofluids. The data from our study offers valuable information for the application of ferrofluids as economically, efficient and effective alternative for nanomaterial-assisted PCR yield enhancers. PMID:26896662

  9. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo

    Li K

    2013-05-01

    Full Text Available Ke Li,1 Baoan Chen,1,2 Lin Xu,3 Jifeng Feng,3 Guohua Xia,1,2 Jian Cheng,1,2 Jun Wang,1,2 Feng Gao,1,2 Xuemei Wang,41Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School, Southeast University, Nanjing, 2Faculty of Oncology, Medical School, Southeast University, Nanjing, 3Department of Thoracic Surgery, Jiangsu Province Cancer Hospital, Jiangsu Province, 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of ChinaAbstract: The purpose of this study was to explore whether magnetic Fe3O4 nanoparticles (Fe3O4-MNP loaded with cisplatin (Fe3O4-MNP-DDP can reverse DDP resistance in lung cancer cells and to investigate mechanisms of multidrug resistance in vitro and in vivo. MTT assay showed that DDP inhibited both A549 cells and DDP-resistant A549 cells in a time-dependent and dose-dependent manner, and that this inhibition was enhanced by Fe3O4-MNP. An increased rate of apoptosis was detected in the Fe3O4-MNP-DDP group compared with a control group and the Fe3O4-MNP group by flow cytometry, and typical morphologic features of apoptosis were confirmed by confocal microscopy. Accumulation of intracellular DDP in the Fe3O4-MNP-DDP group was greater than that in the DDP group by inductively coupled plasma mass spectrometry. Further, lower levels of multidrug resistance-associated protein-1, lung resistance-related protein, Akt, and Bad, and higher levels of caspase-3 genes and proteins, were demonstrated by reverse transcriptase polymerase chain reaction and Western blotting in the presence of Fe3O4-MNP-DDP. We also demonstrated that Fe3O4-MNP enhanced the effect of DDP on tumor growth in BALB/c nude mice bearing DDP-resistant human A549 xenografts by decreasing localization of lung resistance-related protein and Ki-67 immunoreactivity in cells. There were no apparent signs of toxicity in the animals. Overall, these findings suggest potential clinical application of Fe3O4-MNP-DDP to increase cytotoxicity in lung tumor xenografts.Keywords: Fe3O4, nanoparticles, multidrug resistance, reversal, DDP-resistant A549 cells, cisplatin

  10. Preparation and characterization of bifunctional dendrimer modified Fe3O4/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe3O4/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe3O4 were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe3O4 nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe3O4/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe3O4/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g

  11. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    Fang, X. B.; Fang, Z. Q.; Tsang, P. K. E.; Cheng, W.; Yan, X. M.; Zheng, L. C.

    2014-09-01

    In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20-50 nm and a BET surface area of 28 m2 g-1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl-or Cr(VI)/SO42- double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption-desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI).

  12. Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase

    A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y = -0.5-1.82x, the correlation coefficient is 0.998 (n = 3), and the detection limit is 0.01 mM (S/N = 3). The sensor exhibits favorable selectivity and excellent stability. (author)

  13. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide.

    Figueredo, Federico; Garcia, Paulo T; Cortón, Eduardo; Coltro, Wendell K T

    2016-01-13

    Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (μPADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with μPADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 μM, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis. PMID:26693736

  14. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber

    Bai, Xuekun; Mou, Chengbo; Xu, Luxi; Wang, Shaofei; Pu, Shengli; Zeng, Xianglong

    2016-04-01

    We experimentally demonstrate passively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONP-based SA possesses a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable passively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 µs were achieved when the input pump power was 110 mW. The laser features a low threshold pump power of ∼15 mW.

  15. Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples.

    Gholivand, Mohammad Bagher; Torkashvand, Maryam; Yavari, Eilnaz

    2015-03-01

    In the present work, a simple and sensitive electrochemical sensor based on magnetic Fe3O4 nanoparticles modified carbon paste electrode (CPE) was introduced for detection of low level with 0.21μM of warfarin. Under the optimum experimental conditions the oxidation peak current of warfarin was used for its monitoring for the first time. The analytical curve was linear for warfarin concentrations from 0.5 to 1000μM with a limit of detection of 0.21μM by square wave anodic stripping voltammetry (SWASV). The proposed sensor showed excellent stability and was used for the determination of warfarin in tablet, human serum and urine with satisfactory results. PMID:25579919

  16. Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging

    Iron oxide (Fe3O4) nanoparticles coated with biocompatible chitosan were synthesized for use as an MRI (magnetic resonance imaging) contrast agent. The coating was performed simultaneously with the synthesis of the ferrite nanoparticles. A dynamic light-scattering spectrometer (DLS) and a transmission electron microscope (TEM) were used to measure the average diameter of the coated nanoparticles, which was 67.0 nm. Fourier transform infrared (FT-IR) measurements showed strong bonding of the chitosan molecules to the surfaces of the ferrite nanoparticles. The spin-lattice (T1) and the spin-spin (T2) relaxation times of the nuclear spins (hydrogen protons) in aqueous solutions of various concentrations of coated ferrite nanoparticles were determined using a nuclear magnetic resonance (NMR) spectrometer. Using these data, we found that the T1 and the T2 relaxivities of the nuclear spins in aqueous solutions of ferrite nanoparticles were 0.00291 and 0.0691 ppm-1sec-1, respectively. In particular, the value of the T2 relaxivity was much larger than that of the commercial contrast agent GD-DTPA (gadolinium diethylenetriamine penta-acetic acid). A 31.7% intensity loss in the T2 image of a rabbit liver was observed after injecting the aqueous solution of coated nanoparticles into the rabbit, which shows that our coated ferrite nanoparticles can be used as a T2 MRI contrast agent.

  17. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    Akbarzadeh A

    2012-02-01

    Full Text Available Abolfazl Akbarzadeh1, Haleh Mikaeili2, Nosratollah Zarghami3, Rahmati Mohammad3, Amin Barkhordari3, Soodabeh Davaran21Drug Applied Research Center, 2Tuberculosis and Lung Disease Research Center of Tabriz, 3Department of Clinical Biochemistry and Laboratory Medicine, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IranBackground: Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid poly (ethylene glycol (PLGA-PEG nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet.Methods: A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG2000, PEG3000, and PEG4000 as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry.Results: The doxorubicin encapsulation amount was reduced for PLGA:PEG2000 and PLGA:PEG3000 triblock copolymers, but increased to a great extent for PLGA:PEG4000 triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible.Conclusion: There is potential for use of these nanoparticles for biomedical application. Future work includes in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.Keywords: superparamagnetic iron oxide nanoparticles, triblock copolymer, doxorubicin encapsulation, water uptake, drug encapsulation efficiency

  18. Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran- anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector

    Cai Jingting

    2011-02-01

    Full Text Available Cai Jingting1,2, Liu Huining1, Zhang Yi11Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China; 2Department of Gynecological Oncology, Hunan Tumor Hospital, Changsha, Hunan, People’s Republic of ChinaObjective: To evaluate the feasibility of using magnetic iron oxide (Fe3O4-dextran-anti-β-human chorionic gonadotropin (HCG nanoparticles as a gene vector for cellular transfections.Study design: Fe3O4-dextran-anti-β-HCG nanoparticles were synthesized by chemical coprecipitation. The configuration, diameter, and iron content of the nanoparticles were detected by transmission electron microscopy (TEM, light scatter, and atomic absorption spectrophotometry. A3-(4,5-dimethylthiahiazo(-z-y1-3,5-di-phenytetrazoliumromide assay was used to evaluate the cytotoxicity of Fe3O4-dextran-anti-β-HCG nanoparticles. Enzyme-linked immunosorbent assay and indirect immunofluorescence were used to evaluate immunoreactivity. The efficiency of absorbing DNA and resisting deoxyribonuclease I (DNase I digestion when bound to Fe3O4-dextran-anti-β-HCG nanoparticles was examined by agarose gel electrophoresis. The ability of Fe3O4-dextran-anti-β-HCG nanoparticles to absorb heparanase antisense oligodeoxynucleotides (AS-ODN nanoparticles in different cell lines was evaluated by flow cytometry. The tissue distribution of heparanase AS-ODN magnetic nanoparticles in choriocarcinoma tumors transplanted in nude mice was detected by atomic absorption spectrophotometry.Results: TEM demonstrated that the shape of nanoparticles is irregular. Light scatter revealed nanoparticles with a mean diameter of 75.5 nm and an iron content of 37.5 µg/mL. No cytotoxicity was observed when the concentration of Fe3O4-dextran-anti-β-HCG nanoparticles was <37.5 µg/mL. Fe3O4-dextran nanoparticles have a satisfactory potential to combine with β-HCG antibody. Agarose gel electrophoresis analysis of binding experiments showed that after treatment with sodium periodate, Fe3O4-dextran-anti-β-HCG nanoparticles have a satisfactory potential to absorb DNA, and the protection experiment showed that nanoparticles can effectively protect DNA from DNase I digestion. Aldehyde Fe3O4-dextran-anti-β-HCG nanoparticles can transfect reporter genes, and the transfection efficiency of these nanoparticles is greater than that of liposomes (P <0.05. Fe3O4-dextran-anti-β-HCG nanoparticles can concentrate in choriocarcinoma cells and in transplanted choriocarcinoma tumors.Conclusions: The results confirm that Fe3O4-dextran-anti-β-HCG nanoparticles have potential as a secure, effective, and choriocarcinoma-specific targeting gene vector.Keywords: magnetic nanoparticles, Fe3O4-dextran-anti-β-HCG, choriocarcinoma, targeting vector, gene vector

  19. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10−9 mol·cm−2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s−1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM−1 cm−2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe3O4-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe3O4 nanoparticles. ► Fabrication of core/shell Fe3O4-silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  20. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions

    Graphical abstract: Using Fe2+ as precursors, air as oxidant and cysteine as protectant, this novel cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) was facilely one-pot synthesized at room temperature by oxidation–precipitation method with the assistance of sonication. Then the Cys-Fe3O4 MNPs were demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for as high as 95% Hg(II) removal efficiency. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water. - Highlights: • A simplified one-step synthesis method of superparamagnetic Cys-Fe3O4 MNPs was developed. • It was synthesized at room temperature by oxidation-precipitation method with the assistance of sonication. • It was demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for Hg(II) removal. - Abstract: Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation–precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min−1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water

  1. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier

    Highlights: → Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. → Modified nanoparticles improved the sensitivity of dye measurements. → Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe3O4 as well as the binary nanoparticles of ionic liquid and Fe3O4 (IL-Fe3O4) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe3O4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L-1 were used. The maximum adsorption capacity of IL-Fe3O4 was 166.67 and 49.26 mg g-1 for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg-1 for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe3O4 by using a mixed NaCl-acetone solution and adsorbent was reusable.

  2. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe3O4@LaF3: Ce3+,Tb3+/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19-37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe3O4@LaF3: Ce3+,Tb3+/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV-visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe3O4@LaF3:Tb3+/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe3O4@LaF3:Tb3+/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX.

  3. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer.

    Yang, Guangbao; Gong, Hua; Liu, Teng; Sun, Xiaoqi; Cheng, Liang; Liu, Zhuang

    2015-08-01

    Integrating multiple imaging and therapy functionalities into one single nanoscale platform has been proposed to be a promising strategy in cancer theranostics. In this work, WS2 nanosheets with their surface pre-adsorbed with iron oxide (IO) nanoparticles via self-assembly are coated with a mesoporous silica shell, on to which polyethylene glycol (PEG) is attached. The obtained WS2-IO@MS-PEG composite nanoparticles exhibit many interesting inherent physical properties, including high near-infrared (NIR) light and X-ray absorbance, as well as strong superparamagnetism. In the mean time, the mesoporous silica shell in WS2-IO@MS-PEG could be loaded with a chemotherapy drug, doxorubicin (DOX), whose intracellular release afterwards may be triggered by NIR-induced photothermal heating for enhanced cancer cell killing. Upon systemic administration of such drug-loaded nano-theranostics, efficient tumor homing of WS2-IO@MS-PEG/DOX is observed in tumor-bearing mice as revealed by three-modal fluorescence, magnetic resonance (MR), and X-ray computed tomography (CT) imaging. In vivo combined photothermal & chemotherapy is then carried out with WS2-IO@MS-PEG/DOX, achieving a remarkably synergistic therapeutic effect superior to the respective mono-therapies. Our study highlights the promise of developing multifunctional nanoscale theranostics based on two-dimensional transition metal dichalcogenides (TMDCs) such as WS2 for multimodal imaging-guided combination therapy of cancer. PMID:25985153

  4. Uniform superparamagnetic Fe3O4 nanoparticles: preparation, characterization and surface modification

    Patsula, Vitalii; Horák, Daniel

    Prague : Institute of Macromolecular Chemistry AS CR, 2014. P5. ISBN 978-80-85009-79-8. [Workshop "Career in Polymers" /6./. 18.07.2014-19.07.2014, Prague] R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : nanoparticles * iron oxide * thermal decomposition Subject RIV: CG - Electrochemistry

  5. The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol.

    Nikazar, Manouchehr; Alizadeh, Mehriana; Lalavi, Reza; Rostami, Mohammad Hossein

    2014-01-01

    The photocatalysis of phenol was studied using Fe3O4/ZnO core/shell magnetic nanoparticles (MNPs). The photocatalysts were synthesized by coating of ZnO onto the magnetite by precipitation method and characterized by XRD, SEM and FTIR measurements. Using the Taguchi method, this study analyzes the effect of parameters such as calcinations time, calcinations temperature and molar ratio of Fe3O4:ZnO on the photo activity of Fe3O4/ZnO MNPs. XRD and FTIR analysis confirm that coating process was done successfully. SEM images show that the average particle size of synthesized Fe3O4/ZnO nanoparticles was about 50 nm. The phenol removal efficiency of 88% can be achieved by using a photocatalyst which is synthesized through the optimum conditions: calcinations temperature of 550°C, calcinations time of 2 hours and molar ratio of 1:10 for Fe3O4:ZnO. PMID:24406040

  6. Casp3/7-Instructed Intracellular Aggregation of Fe3O4 Nanoparticles Enhances T2 MR Imaging of Tumor Apoptosis.

    Yuan, Yue; Ding, Zhanling; Qian, Junchao; Zhang, Jia; Xu, Jinyong; Dong, Xuejiao; Han, Tao; Ge, Shuchao; Luo, Yufeng; Wang, Yuwei; Zhong, Kai; Liang, Gaolin

    2016-04-13

    Large magnetic nanoparticles or aggregates are advantageous in their magnetic resonance properties over ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), but the former are cleared faster from the blood pool. Therefore, the "smart" strategy of intracellular aggregation of USPIO NPs is required for enhanced T2-weighted MR imaging. Herein, employing an enzyme-instructed condensation reaction, we rationally designed a small molecule Ac-Asp-Glu-Val-Asp-Cys(StBu)-Lys-CBT (1) to covalently modify USPIO NPs to prepare monodispersive Fe3O4@1 NPs. In vitro results showed that Fe3O4@1 NPs could be subjected to caspase 3 (Casp3)-instructed aggregation. T2 phantom MR imaging showed that the transverse molar relaxivity (r2) of Fe3O4@1 NPs with Casp3 or apoptotic HepG2 cells was significantly larger than those of control groups. In vivo tumor MR imaging results indicated that Fe3O4@1 NPs could be specifically applied for enhanced T2 MR imaging of tumor apoptosis. We propose that the enzyme-instructed intracellular aggregation of Fe3O4 NPs could be a novel strategy for the design of "smart" probes for efficient T2 MR imaging of in vivo biomarkers. PMID:27031226

  7. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole

    Humic acid coated Fe3O4 magnetic nanoparticles (Fe3O4/HA) were prepared for the removal of sulfathiazole from aqueous media. Fe3O4/HA exhibited high activity to produce hydroxyl (·OH) radicals through catalytic decomposition of H2O2. The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe3O4/HA dosage and H2O2 concentration. When 3 g L-1 of Fe3O4/HA and 0.39 M of H2O2 were introduced to the aqueous solution, most sulfathiazole was degraded within 1 h, and >90% of total organic carbon (TOC) were removed in the reaction period (6 h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO42-, CO2, and N2). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min-1, respectively. However, when 3 g L-1 of bare Fe3O4 were used as catalyst, only 54% of TOC was eliminated, and SO42- was not detected within 6 h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min-1, respectively. The high catalytic ability of Fe3O4/HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of ·OH radicals.

  8. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. PMID:26896661

  9. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo

    The folic acid (FA)-conjugated Fe3O4 magnetic nanoparticles (MNPs) were synthesized by co-precipitation of Fe3+ and Fe2+ solution followed by surface modification with carboxymethyl dextran (CMD) to form carboxymethyl group terminated MNPs, then FA was conjugated with the carboxyl group functionalized MNPs. The morphology and properties of obtained nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–visible spectra (UV–vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The FA-conjugated MNPs exhibited relatively high saturation magnetization and fast magneto-temperature response which could be applied to hyperthermia therapy. To determine the accurate targeting effect of FA, we chose FA-conjugated MNPs as MRI contrast enhancement agent for detection of KB cells with folate receptor over-expression in vitro and in vivo. The results show that these magnetic nanoparticles appear to be the promising materials for local hyperthermia and MRI.

  10. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent

    2010-06-01

    Full Text Available The magnetite (Fe3O4 nanoparticles (MNPs coated with poly(N-vinyl pyrrolidone (PVP via covalent bonds were prepared as T2 contrast agent for magnetic resonance imaging (MRI. The surface of MNPs was first coated with 3-(trimethoxysilyl propyl methacrylate (silan A by a silanization reaction to introduce reactive vinyl groups onto the surface, then poly(N-vinyl pyrrolidone was grafted onto the surface of modified-MNPs via surface-initiated radical polymerization. The obtained nanoparticles were characterized by FT-IR (Fourier transform infrared spectroscopy, XRD (X-ray diffraction, TEM (transmission electron microscopy, VSM (vibrating sample magnetometer, and TGA (thermogravimetric analysis. The MNPs had an average size of 14 nm and exhibited superparamagnetism and high saturation magnetization at room temperature. T2-weighted MRI images of PVP-grafted MNPs showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water. The r1 and r2 values per millimole Fe, and r2/r1 value of the PVP-grafted MNPs were calculated to be 2.6 , 72.1, and 28.1(mmol/l1s1, respectively. These results indicate that the PVP-grafted MNPs have great potential for application in MRI as a T2 contrast agent.

  11. Inhibition of choriocarcinoma by Fe3O4-dextran-anti-ß-human chorionic gonadotropin nanoparticles containing antisense oligodeoxynucleotide of heparanase

    Huining L

    2013-11-01

    Full Text Available Liu Huining,1 Zhang Yi,1 Tang Dihong,2 Pan Yifeng,3 Xia Man,2 Yang Ting,2 Cai Jingting1,2 1Department of Obstetrics and Gynecology, Xiangya Hospital, 2Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, 3National Hepatobiliary and Enteric Surgery Research Center, Central South University, Changsha, Hunan, People's Republic of China Objective: To observe the influence of Fe3O4-dextran-anti-ß-human chorionic gonadotropin (HCG carrying heparanase (Hpa antisense oligodeoxynucleotide (ASODN, via the invasion, proliferation, and Hpa expression of JEG-3 cell lines and inhibitory effect of transplanted choriocarcinoma tumor growth. Methods: The different abilities of invasion and proliferation between transfected JEG-3 and untransfected JEG-3 were measured by Matrigel invasion assay and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay in vitro. The effect of Hpa ASODN transfection on the expression of Hpa mRNA and protein was measured by reverse-transcription polymerase chain reaction and Western blot. The transplanted choriocarcinoma tumors were taken out to calculate the inhibitory effect on tumor growth of Hpa ASODN. Results: In this study, we found that: (1 the invasive ability of JEG-3 cells was inhibited sufficiently (P < 0.05 after JEG-3 cells were transfected by Fe3O4-dextran-anti-βHCG carrying Hpa ASODN; (2 after JEG-3 cells were transfected by Fe3O4-dextran-anti-βHCG carrying Hpa ASODN at 48 and 72 hours, the proliferative ability of JEG-3 cells was inhibited sufficiently (P < 0.05; (3 the expression of Hpa mRNA and protein in JEG-3 cells was inhibited efficiently after JEG-3 cells were transfected by Fe3O4-dextran-anti-βHCG carrying Hpa ASODN (P < 0.05; and (4 Fe3O4-dextran-anti-βHCG carrying Hpa ASODN had an inhibitory effect on the transplanted choriocarcinoma tumor growth (P < 0.05 and was harmless on nude mice. Conclusion: Fe3O4-dextran-anti-βHCG carrying Hpa ASODN weakened the invasive and proliferative ability of choriocarcinoma, with a significant inhibitory effect on the transplanted choriocarcinoma tumor. Therefore, Fe3O4-dextran-anti-βHCG carrying Hpa ASODN is an effective gene therapy, and Fe3O4-dextran-anti-βHCG nanoparticles are a harmless and effective gene vector. Keywords: heparanase, antisense oligodeoxynucleotide, Fe3O4-dextran-anti-βHCG nanoparticles, choriocarcinoma, invasive ability

  12. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24nt, which are much longer than the length of sticky ends of auxiliary hairpins (6nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples. PMID:26469729

  13. Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators.

    Shi, Lili; Ma, Fuying; Han, Yuling; Zhang, Xiaoyu; Yu, Hongbo

    2014-08-30

    A novel strategy was applied in the oriented immobilization of laccase from Echinodontium taxodii on concanavalin A-activated Fe3O4 nanoparticles (GAMNs-Con A) based on laccase surface analysis. These nanoparticles showed higher enzyme loading and activity recovery compared with conventional covalent binding. Along with the improvement in thermal and operational stabilities, the oriented immobilized laccase (GAMNs-Con A-L) exhibited higher substrate affinity than free laccase. Free laccase and GAMNs-Con A-L were then applied in the removal of sulfonamide antibiotics (SAs). Although both free and immobilized laccase resulted in the rapid removal of SAs, GAMNs-Con A-L showed a higher removal rate of SAs compared with the free counterpart in the presence of S-type compounds present in lignin structure. Syringic acid mediated the fastest removal efficiency of SAs among S-type compounds and resulted in an almost complete removal of these substances after incubation for 5min. The oxidation products of SAs were identified via LC-ESI(+)-MS. The results suggested the transformation of SAs and S-type compounds were catalyzed by laccase, resulting in the formation of cross-coupled products. PMID:25064257

  14. Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines

    This article systematically evaluated the biocompatibility of multiple mammalian cell lines to 11-nm DMSA-coated Fe3O4 magnetic nanoparticles (MNPs). Cells including RAW264.7, THP-1, Hepa1-6, HepG2, HL-7702, and HeLa were incubated with six different concentrations (0, 20, 30, 40, 50, and 100 μg/mL) of MNPs for 48 h, and then the cell labeling, iron loading, cell viability, apoptosis, cycle, and oxidative stress were all quantitatively evaluated. The results revealed that all the cells were effectively labeled by the nanoparticles; however, the iron loading of RAW264.7 was significantly higher than that of other cells at any dose. The proliferations of all the cells were not significantly suppressed by MNPs at the studied dose except HepG2 that was exposed to 100 μg/mL MNPs. The investigation of oxidative stress demonstrated that the levels of total superoxide dismutase and xanthine oxidase had no significant changes in all the cells treated by all the doses of MNPs, while the levels of malonyldialdehyde activity of MNP-treated cells significantly increased. The nanoparticles did not produce any significant effect on cell cycles at any of the doses, but resulted in significant apoptosis of THP-1 and HepG2 cells at the highest concentration of 100 μg/mL. At a concentration of 30 μg/mL which was used in human studies with an intravascular nanoparticle imaging agent (Combidex), the nanoparticles efficiently labeled all the cells studied, but did not produce any significant influence on their viability, oxidative stress, and apoptosis and cycle. Therefore, the nanoparticles were concluded with better biocompatibility, which provided some useful information for its clinical applications.

  15. Fabrication of magnetic porous hollow silica drug carriers using CaCO3/Fe3O4 composite nanoparticles and cationic surfactant double templates

    Ma, H.; Zhou, J.; Caruntu, D.; Yu, M. H.; Chen, J. F.; O'Connor, C. J.; Zhou, W. L.

    2008-04-01

    Magnetic porous hollow silica nanosphere is a new class of structured nanomaterials for drug delivery. In this paper, we report a synthesis of magnetic porous hollow silica nanospheres (MPHSNs) using CaCO3/Fe3O4 composite nanoparticles and cationic surfactant double templates. Fe3O4 nanoparticles were first mixed into CaCO3 using rotating packed bed forming CaCO3/Fe3O4 composite nanoparticles. Tetraethoxysilane was then added as precursor to form silica layer on the surface of CaCO3/Fe3O4 composite nanoparticles, while hexadecyltrimethylammonium bromide was used as a second template to direct the formation of porous silica shells. After the calcination of the surfactants and etching away CaCO3, MPHSNs were formed with the magnetite nanoparticles remaining in the cores. Transmission electron microscopy was applied for the nanostructure determination. The pore size can be measured by micromeritics analyzer. Magnetic properties of MPHSNs were measured by a superconducting quantum interface device. Zero-field-cooled and field-cooled magnetization data in the temperature range of 5-300K show that the MPHSNs are superparamagnetism above the blocking temperature and ferromagnetism below the blocking temperature after the calcination. The MPHSNs can be used as potential nanocarriers for targeted delivery and controlled releasing.

  16. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2+ and PO43-. The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 A, c = 9.534 A) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  17. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

    Tingting Gu

    2014-02-01

    Full Text Available A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS show that Fe3O4 and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET and bioelectrocatalysis of HRP in the DNA/chitosan/Fe3O4 film were investigated by cyclic voltammetry (CV and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s−1. The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe(III and HRP(Fe(II. The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The resulting DNA/chitosan/Fe3O4/HRP/glassy carbon electrode (GCE shows a high sensitivity (20.8 A·cm−2·M−1 toward H2O2. A linear response to H2O2 measurement was obtained over the range from 2 µM to 100 µM (R2 = 0.99 and an amperometric detection limit of 1 µM (S/N = 3. The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.

  18. Co-adsorption of gaseous benzene, toluene, ethylbenzene, m-xylene (BTEX) and SO2 on recyclable Fe3O4 nanoparticles at 0-101% relative humidities.

    Ye, Connie Z; Ariya, Parisa A

    2015-05-01

    We herein used Fe3O4 nanoparticles (NPs) as an adsorption interface for the concurrent removal of gaseous benzene, toluene, ethylbenzene and m-xylene (BTEX) and sulfur dioxide (SO2), at different relative humidities (RH). X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy were deployed for nanoparticle surface characterization. Mono-dispersed Fe3O4 (Fe2O3·FeO) NPs synthesized with oleic acid (OA) as surfactant, and uncoated poly-dispersed Fe3O4 NPs demonstrated comparable removal efficiencies. Adsorption experiments of BTEX on NPs were measured using gas chromatography equipped with flame ionization detection, which indicated high removal efficiencies (up to (95±2)%) under dry conditions. The humidity effect and competitive adsorption were investigated using toluene as a model compound. It was observed that the removal efficiencies decreased as a function of the increase in RH, yet, under our experimental conditions, we observed (40±4)% toluene removal at supersaturation for Fe3O4 NPs, and toluene removal of (83±4)% to (59±6)%, for OA-Fe3O4 NPs. In the presence of SO2, the toluene uptake was reduced under dry conditions to (89±2)% and (75±1)% for the uncoated and coated NPs, respectively, depicting competitive adsorption. At RH>100%, competitive adsorption reduced the removal efficiency to (27±1)% for uncoated NPs whereas OA-Fe3O4 NPs exhibited moderate efficiency loss of (55±2)% at supersaturation. Results point to heterogeneous water coverage on the NP surface. The magnetic property of magnetite facilitated the recovery of both types of NPs, without the loss in efficiency when recycled and reused. PMID:25968270

  19. Study of the enhanced anticancer efficacy of gambogic acid on Capan-1 pancreatic cancer cells when mediated via magnetic Fe3O4 nanoparticles

    Wang C

    2011-09-01

    Full Text Available Cailian Wang1,*, Haijun Zhang1,*, Baoan Chen2, Haitao Yin1, Wenwen Wang11Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China; 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China *These authors contributed equally to this workBackground: Gambogic acid (GA, a potent anticancer agent, is limited in clinical administration due to its poor water solubility. The aim of this study was to explore a drug delivery system based on magnetic Fe3O4 nanoparticles (MNP- Fe3O4 conjugated with GA to increase water solubility of the drug and enhance its chemotherapeutic efficiency for pancreatic cancer.Methods: GA was conjugated with the MNP- Fe3O4 colloidal suspension by mechanical absorption polymerization to construct GA-loaded MNP- Fe3O4, which acted as a drug delivery system.Results: Combination therapy with GA and MNP- Fe3O4 induced remarkable improvement in anticancer activity, which was demonstrated by optical microscopic observations, MTT assay, and nuclear DAPI staining. Furthermore, the possible signaling pathway was explored by Western blot. In Capan-1 pancreatic cancer cells, our observations demonstrated that this strategy could enhance potential anticancer efficiency by inducing apoptosis. The mechanisms of the synergistic effect may be due to reducing protein expression of Bcl-2 and enhancing that of Bax, caspase 9, and caspase 3.Conclusion: These findings demonstrate that a combination of GA and MNPs- Fe3O4 represents a promising approach to the treatment of pancreatic cancer.Keywords: gambogic acid, pancreatic cancer, magnetic nanoparticles, drug delivery system, apoptosis

  20. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate

    Graphical abstract: - Highlights: • The APAP degradation exhibited a pseudo-first-order kinetics pattern well. • The Fe3O4 was stable without significant leaching of iron to water during reaction. • XPS and EPR results show that Fe2+-Fe3+ cycle was answerable for radical generation. • The removal of APAP is a result of oxidation due to both OH• and SO4−• . - Abstract: Magnetic nano-scaled particles Fe3O4 were studied for the activation of peroxymonosulfate (PMS) to generate active radicals for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for removal of APAP, and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95). Within 120 min, approximately 75% of 10 ppm APAP was accomplished by 0.2 mM PMS in the presence of 0.8 g/L Fe3O4 MNPs with little Fe3+ leaching (<4 μg/L). Higher Fe3O4 MNP dose, lower initial APAP concentration, neutral pH, and higher reaction temperature favored the APAP degradation. The production of sulfate radicals and hydroxyl radicals was validated through two ways: (1) indirectly from the scavenging tests with scavenging agents, tert-butyl alcohol (TBA) and ethanol (EtOH); (2) directly from the electron paramagnetic resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 MNP activation of PMS are proposed based on the results of radical identification tests and XPS analysis. It appeared that Fe2+-Fe3+ on the catalyst surface was responsible for the radical generation. The results demonstrated that Fe3O4 MNPs activated PMS is a promising technology for water pollution caused by contaminants such as pharmaceuticals

  1. Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria.

    Reddy, P Muralidhar; Chang, Kai-Chih; Liu, Zhen-Jun; Chen, Cheng-Tung; Ho, Yen-Peng

    2014-08-01

    The development of nanotechnology in biology and medicine has raised the need for conjugation of nanoparticles (NPs) to biomolecules. In this study, magnetic and functionalized magnetic iron oxide nanoparticles were synthesized and used as affinity probes to capture Gram-positive/negative bacteria. The morphology and properties of the magnetic NPs were examined by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. Furthermore, this study investigated the interaction between functionalized magnetic nanoparticles and Gram positive/negative bacteria. The positively and negatively charged magnetic nanoparticles include functionalities of Fe3O4, SiO2, TiO2, ZrO2, poly ethyleneimine (PEI) and poly acrylic acid. Their capture efficiencies for bacteria were investigated based on factors such as zeta potential, concentration and pH value. PEI particles carry a positive charge over a range of pH values from 3 to 10, and the particles were found to be an excellent candidate for capturing bacteria over such pH range. Since the binding force is mainly electrostatic, the architecture and orientation of the functional groups on the NP surface are not critical. Finally the captured bacteria were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The minimum detection limit was 10(4) CFU/mL and the analysis time was reduced to be less than 1 hour. In addition, the detection limit could be reduced to an extremely low concentration of 50 CFU/mL when captured bacteria were cultivated. PMID:25016643

  2. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    Baoan Chen

    2009-03-01

    Full Text Available Baoan Chen1,* Jian Cheng1,* Yanan Wu1, Feng Gao1, Wenlin Xu2, et al 1Department of Hematology;2Department of Hematology, The Affiliated Peoples Hospital, Jiangsu University, Zhenjiang, PR China*These authors have contributed equally to this workAbstract: In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4 combined with daunorubicin (DNR in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 107 cells/each respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.Keywords: 5-bromotetrandrine, magnetic nanoparticle of Fe3O4, multidrug-resistance, xenograft model

  3. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10min when initial protein concentrations of 0.05-2.0mgmL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused. PMID:26149480

  4. Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging.

    Patsula, Vitalii; Kosinová, Lucie; Lovrić, Marija; Ferhatovic Hamzić, Lejla; Rabyk, Mariia; Konefal, Rafal; Paruzel, Aleksandra; Šlouf, Miroslav; Herynek, Vít; Gajović, Srećko; Horák, Daniel

    2016-03-23

    Monodisperse superparamagnetic Fe3O4 nanoparticles coated with oleic acid were prepared by thermal decomposition of Fe(III) glucuronate. The shape, size, and particle size distribution were controlled by varying the reaction parameters, such as the reaction temperature, concentration of the stabilizer, and type of high-boiling-point solvents. Magnetite particles were characterized by transmission electron microscopy (TEM), as well as electron diffraction (SAED), X-ray diffraction (XRD), dynamic light scattering (DLS), and magnetometer measurements. The particle coating was analyzed by atomic absorption spectroscopy (AAS) and attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FTIR) spectroscopy. To make the Fe3O4 nanoparticles dispersible in water, the particle surface was modified with α-carboxyl-ω-bis(ethane-2,1-diyl)phosphonic acid-terminated poly(3-O-methacryloyl-α-D-glucopyranose) (PMG-P). For future practical biomedical applications, nontoxicity plays a key role, and the PMG-P&Fe3O4 nanoparticles were tested on rat mesenchymal stem cells to determine the particle toxicity and their ability to label the cells. MR relaxometry confirmed that the PMG-P&Fe3O4 nanoparticles had high relaxivity but rather low cellular uptake. Nevertheless, the labeled cells still provided visible contrast enhancement in the magnetic resonance image. In addition, the cell viability was not compromised by the nanoparticles. Therefore, the PMG-P&Fe3O4 nanoparticles have the potential to be used in biomedical applications, especially as contrast agents for magnetic resonance imaging. PMID:26928653

  5. Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets

    Highlights: •Fe3O4@TiO2 nanoparticles loaded on graphene sheets are synthesized for the first time. •This ternary structure can induce photo-degradation of methyl orange. •The interfacial structure between TiO2 and Fe3O4 is stable at 450 °C. •Fe3O4@TiO2/graphene as ternary photocatalyst can be retrieved by magnetic field. -- Abstract: A ternary nanocomposite of Fe3O4@TiO2/reduced graphene oxide (FTR) was prepared successfully by a facile route in this work. Fe3O4@TiO2 core/shell nanospheres were loaded on the surface of reduced graphene oxide (RGO), making the ternary nanocomposite possessed enhanced charge separation efficiency in combined with the supporting media of RGO. The morphology of the ternary nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation efficiency on methyl orange of the FTR nanocomposite was investigated. The photocatalytic degradation efficiency of ternary composite was about three times than that of pure TiO2. The result show that the photocatalytic efficiency of 25 mg FTR can reach 83.8% in 50 min, In addition to the high efficiency of the degradation property, the ternary composite can be easily recycled by normal magnet due to the magnetite core. It is suggested that the FTR ternary composite of Fe3O4@TiO2/reduced graphene oxide can be an efficient multifunctional photocatalyst for the degradation of hazardous compounds in waste water

  6. Fluorescence-based immunoassay for human chorionic gonadotropin based on polyfluorene-coated silica nanoparticles and polyaniline-coated Fe3O4 nanoparticles

    We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF.SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4.PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF.SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL−1 concentration range, with a detection limit of 3 pg·mL−1. (author)

  7. h-BN Nanosheets as 2D Substrates to Load 0D Fe3 O4 Nanoparticles: A Hybrid Anode Material for Lithium-Ion Batteries.

    Duan, Zhi-Qiang; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying; Zhu, Xiao-Dong

    2016-03-18

    h-BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid-phase production of h-BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h-BN nanosheets as 2D substrates to load 0D Fe3 O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon-encapsulated h-BN@Fe3 O4 hybrid architecture exhibits synergistic interactions: 1) The h-BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3 O4 nanoparticles; 2) The Fe3 O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials. PMID:26833884

  8. Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values.

    Wang, Wei; Mao, Qiong; He, Huanhuan; Zhou, Minghua

    2013-01-01

    In order to promote the practical application of the heterogeneous Fenton process in wastewater treatment, Fe3O4 nanoparticles were prepared and used to degrade organic pollutants efficiently over a wide pH range, using phenol as a model. During fabrication, the effects of Fe(2+)/Fe(3+) ratio and thermal treatment temperature were investigated and optimized. Using a transmission electron microscope and X-ray diffraction, the nanoparticles were found in the form of Fe3O4 with an average size of 15 nm. The effects of Fe3O4 nanoparticle concentration H2O2 concentration, and pH on the removal efficiency and chemical oxygen demand (COD) abatement efficiency of phenol were investigated. Under optimized conditions, the nano-Fe3O4 heterogeneous Fenton system could achieve phenol and COD removal efficiencies of 100 and 70% respectively. This nanocatalyst was observed to have a high efficiency at a wider pH range (2-9), and a possible mechanisms for this effect was proposed. PMID:24334884

  9. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides.

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe(3)O(4) at TiO(2) magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe(3)O(4) at TiO(2) nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe(3)O(4) magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe(3)O(4) at TiO(2) nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was performed by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe(3)O(4) at TiO(2)/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides and nerve agents. PMID:23122753

  10. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.

  11. Reclamation of acid pickling waste: A facile route for preparation of single-phase Fe3O4 nanoparticle

    Zhang, Wenxue; Lu, Bin; Tang, Huihui; Zhao, Jingxiang; Cai, Qinghai

    2015-05-01

    Using an alternative method of dropwise addition of iron salt in NaOH aqueous solution, nanocrystalline Fe3O4 materials were prepared from acid pickling waste as a starting material with ultrasonic enhancement and polyethylene glycol as a dispersant, as proved by XRD, TEM, TG-DSC and ICP-MS. The results showed that the Fe3O4 material was a well-crystallized magnetite with an average size of about 25 nm and purity 99.15%. Magnetic measurement revealed the nanocrystals were stronger superparamagnetic with a saturation magnetization of 82.1 emu/g.

  12. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples

    Chen, Jieping; Zhu, Xiashi

    2015-02-01

    Three hydrophobic ionic liquids (ILs) including 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluorophosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluoro-phosphate ([OMIM]PF6) coated Fe3O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (Fe3O4@SiO2@ILs) and establish a new method of magnetic solid phase extraction (MSPE) coupled with UV spectrometry for separation/analysis of linuron. The results showed that linuron was adsorbed rapidly by Fe3O4@SiO2@[OMIM]PF6 and eluanted by ethanol. Under the optimal conditions, preconcentration factor of the proposed method was 10-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.04-20.00 μg mL-1, 5.0 ng mL-1, 0.9993 and 2.8% (n = 3, c = 4.00 μg mL-1), respectively. The Fe3O4@SiO2 nanoparticles could be used repeatedly for 10 times. This proposed method has been successfully applied to the determination of linuron in food samples.

  13. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells

    Baoan Chen

    2008-06-01

    Full Text Available Baoan Chen1,5, Qian Sun1,5, Xuemei Wang2, Feng Gao1, Yongyuan Dai1, Yan Yin1, Jiahua Ding1, Chong Gao1, Jian Cheng1, Jingyuan Li2, Xinchen Sun1, Ningna Chen1, Wenlin Xu3, Huiling Shen3, Delong Liu41Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China; 2State Key Lab of Bioelectronics(Chien-Shiung Wu Laboratory, Southeast University, Nanjing 210096, China; 3Department of Hematology, The First Peoples Hospital of Zhenjiang, Zhenjiang, China; 4Westchester Medical Center, New York Medical College, NY, USA; 5These authors have contributed equally to this work.Abstract: Drug resistance is a primary hindrance for efficiency of chemotherapy. To investigate whether Fe3O4-magnetic nanoparticles (Fe3O4-MNPs loaded with adriamycin (ADM and tetrandrine (Tet would play a synergetic reverse role in multidrug resistant cell, we prepared the drug-loaded nanoparticles by mechanical absorption polymerization to act with K562 and one of its resistant cell line K562/A02. The survival of cells which were cultured with these conjugates for 48 h was observed by MTT assay. Using cells under the same condition described before, we took use of fluorescence microscope to measure fluorescence intensity of intracellular ADM at an excitation wavelength of 488 nm. P-glycoprotein (P-gp was analyzed with flow cytometer. The expression of mdr1 mRNA was measured by RT-PCR. The results showed that the growth inhibition efficacy of both the two cells increased with augmenting concentrations of Fe3O4-MNPs which were loaded with drugs. No linear correlation was found between fluorescence intensity of intracellular adriamycin and augmenting concentration of Fe3O4-MNPs. Tet could downregulate the level of mdr-1 gene and decrease the expression of P-gp. Furthermore, Tet polymerized with Fe3O4-MNPs reinforced this downregulation, causing a 100-fold more decrease in mdr1 mRNA level, but did not reduce total P-gp content. Our results suggest that Fe3O4-MNPs loaded with ADM or Tet can enhance the effective accumulation of the drugs in K562/A02. We propose that Fe3O4-MNPs loaded with ADM and Tet probably have synergetic effect on reversal in multidrug resistance.Keywords: magnetic nanoparticles, tetrandrine, adriamycin, multidrug resistance reversal, leukemia K562/A02

  14. Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.

    Pang, Yuanfeng; Wang, Chongwen; Wang, Jing; Sun, Zhiwei; Xiao, Rui; Wang, Shengqi

    2016-05-15

    A functionalized Fe3O4@Ag magnetic nanoparticle (NP) biosensor for microRNA (miRNA) capture and ultrasensitive detection in total RNA extract from cancer cells was reported in this paper. Herein, Raman tags-DNA probes modified Fe3O4@Ag NPs were designed both as surface-enhanced Raman scattering (SERS) SERS and duplex-specific nuclease signal amplification (DSNSA) platform. Firstly, target miRNAs were captured to the surface of Fe3O4@Ag NPs through DNA/RNA hybridization. In the presence of endonuclease duplex specific nuclease (DSN), one target miRNA molecule could rehybrid thousands of DNA probes to trigger the signal-amplifying recycling. Base on the superparamagnetic of Fe3O4@Ag NPs, target miRNA let-7b can be captured, concentrated and direct quantified within a PE tube without any PCR preamplification treatment. The detection limit was 0.3fM (15 zeptomole, 50μL), nearly 3 orders of magnitude lower than conventional fluorescence based DSN biosensors for miRNA(∼100fM), even single-base difference between the let-7 family members can be discriminated. The result provides a novel proposal to combine the perfect single-base recognition and signal-amplifying ability of the endonuclease DSN with cost-effective SERS strategy for miRNA point-of-care (POC) clinical diagnostics. PMID:26749099

  15. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering.

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-28

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >10(6). These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance. PMID:26079311

  16. Biodesel Production from Pseudomonas Fluorescens Lp1 Lipase Immobilized on Amino-silane Modified Super Paramagnetic Fe3O4 Nanoparticles

    An extracellular lipase from Pseudomonas fluorescens Lp1 isolated from oil contaminated soil was immobilized onto amino silane modified superparamagnetic Fe3O4 nanoparticles. The magnetic nanoparticles, magnetite was synthesized chemically by co-precipitation and characterized by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FT-IR) and Powder X-ray diffraction studies (XRD). The structure of the synthesized magnetic nanoparticles was uniform, spherical and the size was determined around 31 nm by powder XRD. The biodiesel production mixture was prepared by addition of waste cooking oil, lipase immobilized magnetite and methanol. The transesterified products were analyzed by Gas Liquid chromatography-Mass spectroscopy (GC-MS). The methyl esters such as Oxiraneundecanoic acid, 3-pentyl-methyl ester, Hexadecanoic acid, methyl ester and 10-Octadecenoic acid, methyl ester were obtained. The study experimentally proved the use of amino silane modified superparamagnetic Fe3O4 nanoparticles in biodiesel production from waste cooking oil.

  17. Biodesel Production from Pseudomonas Fluorescens Lp1 Lipase Immobilized on Amino-silane Modified Super Paramagnetic Fe3O4 Nanoparticles

    Kanimozhi, S.; Perinbam, K.

    2013-04-01

    An extracellular lipase from Pseudomonas fluorescens Lp1 isolated from oil contaminated soil was immobilized onto amino silane modified superparamagnetic Fe3O4 nanoparticles. The magnetic nanoparticles, magnetite was synthesized chemically by co-precipitation and characterized by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FT-IR) and Powder X-ray diffraction studies (XRD). The structure of the synthesized magnetic nanoparticles was uniform, spherical and the size was determined around 31 nm by powder XRD. The biodiesel production mixture was prepared by addition of waste cooking oil, lipase immobilized magnetite and methanol. The transesterified products were analyzed by Gas Liquid chromatography-Mass spectroscopy (GC-MS). The methyl esters such as Oxiraneundecanoic acid, 3-pentyl-methyl ester, Hexadecanoic acid, methyl ester and 10-Octadecenoic acid, methyl ester were obtained. The study experimentally proved the use of amino silane modified superparamagnetic Fe3O4 nanoparticles in biodiesel production from waste cooking oil.

  18. Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation

    Electron beam irradiation technique as a novel method has been applied at room temperature and ambient pressure to prepare Fe3O4 nano-particles without adding any kind of catalysts. The effects of two different precipitator solutions such as NaOH and NH4OH have been investigated in the preparation of Fe3O4 nano-particles. The optical properties, the composition and the morphology of the irradiated samples have been measured by ultra-visible spectrometer, X-ray diffraction and transmission electron microscopy, respectively. The average particle size of the prepared oxide nanoparticles has been estimated to be about 15 nm and 33 nm by using NaOH and NH4OH as precipitators, respectively. (author)

  19. Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles: Preparation, characterization and damage to bovine serum albumin under UV irradiation

    Novel magnetic-fluorescent nanoparticles (CS-Fe3O4@ZnS:Mn/ZnS) combined ZnS:Mn/ZnS semiconductor nanoparticles and Fe3O4 magnetic nanoparticles with chitosan (CS) matrix were prepared and characterized. Characterization results indicate that CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles show superparamagnetic and strong fluorescent properties. Introduction of ZnS shell significantly enhances the photoluminescence intensity by 3.5 times. The saturation magnetization of CS-Fe3O4@ZnS:Mn/ZnS nanoparticles was 14.85 emu g−1 at room temperature. The interaction and damage of CS-Fe3O4@ZnS:Mn/ZnS to bovine serum albumin (BSA) under UV irradiation was investigated by ultraviolet–visible and fluorescence spectra. The results show that electrostatic interaction is the major force for the binding processes of BSA to the surface of CS-Fe3O4@ZnS:Mn/ZnS. The damage of BSA is prone to happen in the presence of CS-Fe3O4@ZnS:Mn/ZnS under UV irradiation. CS-Fe3O4@ZnS:Mn/ZnS may be potential candidate for application as photosensitizers in photodynamic therapy, and fluorescence imaging and magnetic resonance imaging contrast agents for theranostics of cancer. - Highlights: • Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS nanoparticles were synthesized. • CS-Fe3O4@ZnS:Mn/ZnS possesses superparamagnetic and bright fluorescent properties. • Introduction of ZnS shell significantly enhances the PL intensity by 3.5 times. • BSA molecule was effectively damaged by CS-Fe3O4@ZnS:Mn/ZnS under UV irradiation. • Magnetic-fluorescent nanoparticles would be potential agents for cancer treatment

  20. The effects of magnetite (Fe3O4 nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3 cells and in RAW 264.7 macrophages

    Liu YC

    2012-03-01

    Full Text Available Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,71Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, TaiwanAims: Fe3O4 nanoparticles (NPs have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3 cells via voltage clamp methods.Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.Keywords: iron oxide, ion current, free radical

  1. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe3O4 nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe3O4 nanoparticles, compared to the separate exposure of Fe3O4 nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals. - Highlights: • We examined the combination effect of Fe3O4 nanoparticles and ultrasound wave on MCF7. • The combination effect featured significant cytotoxic effects. • The cytotoxic effect is due to the production of reactive oxygen species

  2. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells

    Ebrahimi Fard, Ali; Zarepour, Atefeh; Zarrabi, Ali; Shanei, Ahmad; Salehi, Hossein

    2015-11-01

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe3O4 nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe3O4 nanoparticles, compared to the separate exposure of Fe3O4 nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals.

  3. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of β-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS β-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  4. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb(2+)) and chromium (Cr(6+)) removal from water.

    Rajput, Shalini; Pittman, Charles U; Mohan, Dinesh

    2016-04-15

    Magnetic magnetite (Fe3O4) nanoparticles synthesized by chemical co-precipitation were characterized using XRD, TEM, SEM-EDX, FT-IR, ED-XRF, PPMS, point of zero charge (pHpzc) and surface area measurements. As-prepared Fe3O4 nanoparticles were successful for aqueous Cr(6+) and Pb(2+) removal. Batch adsorption experiments systematically investigated the influence of pH, temperature, contact time and adsorbate/adsorbent concentration on Cr(6+) and Pb(2+) adsorption. Maximum Cr(6+) and Pb(2+) removal occurred at pH 2.0 and 5.0, respectively. Sorption data fit pseudo-second order kinetics, indicating a chemical adsorption. The Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models were applied to describe equilibrium data. The Sips and Langmuir models best described Cr(6+) and Pb(2+) adsorption on magnetite nanoparticles, respectively. The maximum Langmuir adsorption capacities were 34.87 (Cr(6+)) and 53.11 (Pb(2+))mg/g at 45°C, respectively. Fe3O4 nanoparticles are promising potential adsorbents and exhibited remarkable reusability for metal ions removal in water and wastewater treatment. PMID:26859095

  5. Novel Functionalized Polythiophene-Coated Fe3O4 Nanoparticles for Magnetic Solid-Phase Extraction of Phthalates

    Siti Nor Atika Baharin

    2016-04-01

    Full Text Available Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy-benzylidene-amine (P3TArH was successfully synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs. The nanocomposites were characterized by Fourier transform infra-red (FTIR, X-ray diffractometry (XRD, Brunauer-Emmett-Teller (BET surface area analysis, analyzer transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. P3TArH-coated MNPs (MNP@P3TArH showed higher capabilities for the extraction of commonly-used phthalates and were optimized for the magnetic-solid phase extraction (MSPE of environmental samples. Separation and determination of the extracted phthalates, namely dimethyl phthalate (DMP, diethyl phthalate (DEP, dipropyl phthalate (DPP, dibutyl phthalate (DBP, butyl benzyl phthalate (BBP, dicyclohexyl phthalate (DCP, di-ethylhexyl phthalate (DEHP and di-n-octyl phthalate (DNOP, were conducted by a gas chromatography-flame ionization detector (GC-FID. The best working conditions were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and 15 g·L−1 concentration of NaCl. Under the optimized conditions, the analytical performances were determined with a linear range of 0.1–50 µg·L−1 and a limit of detection at 0.08–0.468 µg·L−1 for all of the analytes studied. The intra-day (n = 7 and inter-day (n = 3 relative standard deviations (RSD% of three replicates were each demonstrated in the range of 3.7–4.9 and 3.0–5.0, respectively. The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five cycles. The proposed method was executed for the analysis of real water samples, namely commercial bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%–101% and RSD% lower than 7.7 were attained.

  6. Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran- anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector

    Cai Jingting; et al; Liu Huining

    2011-01-01

    Cai Jingting1,2, Liu Huining1, Zhang Yi11Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, Peoples Republic of China; 2Department of Gynecological Oncology, Hunan Tumor Hospital, Changsha, Hunan, Peoples Republic of ChinaObjective: To evaluate the feasibility of using magnetic iron oxide (Fe3O4)-dextran-anti-?-human chorionic gonadotropin (HCG) nanoparticles as a gene vector for cellular transfections.Study des...

  7. Tris(2-Aminoethyl)Amine-Functionalized Fe3O4 Magnetic Nanoparticles as a Selective Sorbent for Separation of Silver and Gold Ions in Different pHs

    Hamid Reza Lotfi Zadeh Zhad; Forouzan Aboufazeli; Omid Sadeghi; Vahid Amani; Ezzatollah Najafi; Najmeh Tavassoli

    2013-01-01

    The usage of tris(2-aminoethyl)amine-functionalized Fe3O4 nanoparticles as a novel magnetic sorbent for rapid extraction, preconcentration, and determination of trace amounts of silver and gold ions was investigated. The optimum conditions for sample pH, eluent parameters (type, concentration and volume) were obtained. The effect of various cationic interferences on the adsorption of silver and gold was evaluated. The analytical efficiency values of both silver and gold ions were higher than ...

  8. Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo

    Bao-an Chen

    2009-09-01

    Full Text Available Bao-an Chen1, Bin-bin Lai1, Jian Cheng1, Guo-hua Xia1, Feng Gao1, Wen-lin Xu2, Jia-hua Ding1, Chong Gao1, Xin-chen Sun3, Cui-rong Xu1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu4, Xiao-mao Li5, Xue-mei Wang61Department of Hematology, 3Department of Oncology, the Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, 6State Key Lab of Bioelectronics (Chien-shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, GermanyAbstract: Multidrug resistance (MDR is a major obstacle to cancer chemotherapy. We evaluated the effect of daunorubicin (DNR-loaded magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 on K562-n/VCR cells in vivo. K562-n and its MDR counterpart K562-n/VCR cell were inoculated into nude mice subcutaneously. The mice were randomly divided into four groups: group A received normal saline, group B received DNR, group C received MNPs-Fe3O4, and group D received DNR-loaded MNPs-Fe3O4. For K562-n/VCR tumor, the weight was markedly lower in group D than that in groups A, B, and C. The transcriptions of Mdr-1 and Bcl-2 gene were significantly lower in group D than those in groups A, B, and C. The expression of Bcl-2 was lower in group D than those in groups A, B, and C, but there was no difference in the expression of P-glycoprotein. The transcriptions and expressions of Bax and caspase-3 in group D were increased significantly when compared with groups A, B, and C. In conclusion, DNR-loaded MNPs-Fe3O4 can overcome MDR in vivo.Keywords: multidrug-resistance reversal, leukemia, magnetic nanoparticles of Fe3O4, in vivo

  9. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles

    Spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles, with different FeO:Fe3O4 ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe3O4 phases, with an average size of ?20?nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specific absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135?W/g at 600?Oe and 310?kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy

  10. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  11. Design of magnetic and fluorescent Mg-Al layered double hydroxides by introducing Fe3O4 nanoparticles and Eu3+ ions for intercalation of glycine

    We describe a novel route for the preparation of magnetic and fluorescent magnesium-aluminum layered double hydroxides by introducing Fe3O4 nanoparticles and Eu3+ ions. From the powder X-ray diffraction results, it was found that the Fe3O4 nanoparticles were highly dispersed in the inner void of octahedral lattice, and the Eu3+ ions substituted for the Al3+ ions and entered into hydrotalcite lattice through isomorphous replacement. Moderate introduction of Fe3O4 nanoparticles and Eu3+ ions did not change the lamellar structure of magnesium-aluminum layered double hydroxides. Glycine can also be intercalated into this magnetic and fluorescent layered double hydroxides by ion-exchange method. After intercalation of glycine, the basal spacing of magnetic and fluorescent layered double hydroxides increased from 7.6 to 8.8 A, indicating that glycine was successfully intercalated into the interlayer space of layered double hydroxides. Magnetic measurements reveal that these novel layered double hydroxides possess paramagnetic property at room temperature, and the emission and excitation spectra indicate the layered double hydroxides exhibit fluorescent property.

  12. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host–guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7 ± 1.8%) with a high saturation magnetization of 43.8 emu/g. UV–Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3+, and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. - Graphical abstract: A novel nanocarrier, chitosan-coated magnetic drug carrier nanoparticle (CS-CDpoly-MNPs) is fabricated for the delivery of insoluble anticancer drug by grafting CM-β-CD onto the magnetite surface. The grafting of CM-dextrins onto the surface of Fe3O4 nanocrystal clusters can markedly increase the loading capacity of 5-Fu by virtue of CM-dextrins/5-Fu inclusion complex formation. The release of 5-Fu from nanocomposite carriers is pH dependent and displays different release efficiencies in various release media solutions. - Highlights: • Fe3O4 nanoparticles were modified with carboxymethyl-β-cyclodextrin. • The grafting of CM-β-CD onto Fe3O4 nanoparticles enhanced the drug loading capacity. • The nanocarrier displayed excellent loading efficiency and magnetic property. • The drug release from the nanocarriers was diffusion and swelling controlled. • The drug release profile fits well with the Korsmeyer–Peppas model

  13. Synthesis and Properties of Fe3O4-Activated Carbon Magnetic Nanoparticles for Removal of Aniline from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies

    Babak Kakavandi

    2013-02-01

    Full Text Available In this study, powder activated carbon (PAC and magnetic nanoparticles of iron (III oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r2 > 0.98 and r2 > 0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH = 6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater

  14. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0μmolL(-1) with a detection limit of 0.09μmolL(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. PMID:27040259

  15. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  16. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000?gL(-1) for ciprofloxacin (CIP) and 0.5-500?gL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05?gL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. PMID:26231896

  17. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance. Electronic supplementary information (ESI) available: XRD, reflection spectra, zeta potential, TEM images, evaluations of reproducibility, EDS, tables of EF and RSD values of different substrates. See DOI: 10.1039/c5nr02491a

  18. Liquid-phase deposition of TiO2 nanoparticles on core–shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol–gel TiO2, core–shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core–shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol–gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F− ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6–8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  19. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  20. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe3O4-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe3O4-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K

  1. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  2. Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

    Li T

    2015-07-01

    Full Text Available Tingting Li,1 Xue Shen,1 Yin Chen,1 Chengchen Zhang,1 Jie Yan,1 Hong Yang,1 Chunhui Wu,1,2 Hongjun Zeng,1,2 Yiyao Liu1,21Department of Biophysics, School of Life Science and Technology, 2Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of ChinaAbstract: Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (shRNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising as theranostic agents for cancer treatment and diagnosis in the future.Keywords: core/shell nanoparticle, PEI, VEGF silence, MR imaging, theranostics

  3. Morphological, Thermal, and Magnetic Analysis of Ball-Milled γ-Fe2O3 and Fe3O4 Nanoparticles for Biomedical Application

    Burnham, Philip; Papaefthymiou, Georgia C.; Viescas, Arthur; Li, Calvin; Dollahon, Norman

    2013-03-01

    Superparamagnetic iron oxide nanoparticles are promising agents for hyperthermia cancer treatment, because, when exposed to an alternating magnetic field, they impart heat to surrounding tissue. A comparison of γ-Fe2O3 and Fe3O4 nanoparticles for such application is presented. The particles were obtained via surfactant-assisted high energy ball-milling in a hexane/oleic acid carrier-fluid environment. Particles with diameters of 5 to 16 nm were prepared with mass ratios (oleic acid):(γ-Fe2O3) of 0:1, 1:5, 1:10 and 1:20, with milling times of 3, 6, 9, and 12 hours. TEM micrographs revealed spherical morphology and the effect of oleic acid shells. Optimal size distributions were obtained for high oleic acid contents. At room temperature, a reduced internal magnetic field ~480 kOe) was recorded via Mössbauer spectroscopy compared to bulk γ-Fe2O3 ~500 kOe), due to magnetic relaxation; Fe3O4 particles produced similar results. For the γ-Fe2O3 and Fe3O4 nanoparticles with 20% oleic acid by mass, comparative ZFC/FC magnetization (Happ = 200 Oe in temperature range from 2 to 400 K) and hysteresis loops (T = 2 K and 300 K up to Happ = 6 kOe) were obtained. Thermal transport characteristics were verified by Specific Absorption Rate (SAR) measurements using an AC magnetic field (f = 282 kHz). Differences and similarities in behavior will be discussed.

  4. Magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles and their magnetic properties

    Graphical abstract: Phase- and shape-controlled synthesis of the magnetite Fe3O4 nanoparticles and the hematite α-Fe2O3 uniform oblique hexagonal microdisks to drum-like particles and spindles has been realized by simply adjusting the volume ratio of ethylene glycol (EG) and water of the hydrothermal reaction medium solvent and the magnetic properties of the hematite α-Fe2O3 crystals express regular change with the shape evolution from uniform oblique hexagonal microdisks to drum-like particles, spindles and irregular particles. - Highlights: • Different morphology of hematite α-Fe2O3 was synthesized by a hydrothermal route. • The volume ratio of EG and distilled water is designed as 40:0–0:40. • The EG affects the morphology of the hematite α-Fe2O3 crystals. • A possible formation mechanism of hematite α-Fe2O3 has been proposed. • The magnetism performance has a significant change. - Abstract: Magnetite Fe3O4 nanoparticles and uniform hematite (α-Fe2O3) oblique hexagonal microdisks, drum-like particles, and spindles have been synthesized via a facile hydrothermal reaction route, in which the mixture solvents of ethylene glycol (EG) and water are used as reaction medium. The phase, size, shape and growth orientation of the synthesized iron oxide crystals were characterized by powder X-ray diffraction and electron microscopy. When the reaction medium is almost composed of EG, a lot of Fe3+ ions reduce to Fe2+ ions due to the effect of EG, resulting in the magnetite Fe3O4 nanoparticles. As the volume ratio of EG/water in the reaction medium is lower than 30:10, the reductive ability of EG is too low to reduce the Fe3+ ions to Fe2+ ions, leading to the hematite α-Fe2O3 crystals. Moreover, since the adsorption of EG on the crystals, the shape of the obtained hematite α-Fe2O3 crystals evolves from oblique hexagonal microdisks to drum-like particles, and spindles due to the decrease of EG in the mixture reaction medium solvent. The magnetic properties of the magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform microcrystals were also investigated by measuring the magnetic hysteresis loops

  5. Antibacterial surfaces based on functionally graded photocatalytic Fe3O4@TiO2 core-shell nanoparticle/epoxy composites

    Nardi, Tommaso; Rtimi, Sami; Pulgarin, Cesar; Leterrier, Yves

    2015-01-01

    Functionally graded epoxy composites with various concentration profiles of Fe3O4@TiO2 core-shell nanoparticles (NPs) were synthetized and characterized, with focus on their antibacterial properties. The NPs consisted of rutile, anatase, magnetite and hematite. Graded composites were produced starting with homogeneous 2 vol% to 12 vol% NPs suspensions using a magnetophorese process, leading to an enrichment of TiO2 at the surface of the composite up to 16 vol% from an initial 4 vol%. Homogene...

  6. Adsorption of acidic, basic, and neutral proteins from aqueous samples using Fe3O4 magnetic nanoparticles modified with an ionic liquid

    We have prepared and characterized Fe3O4 nanoparticles and their binary mixtures (IL-Fe3O4) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05-2.0 mg mL-1) were 4.0 mg mL-1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L mg-1, in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled. (author)

  7. Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging

    Chen Zhongping

    2010-10-01

    Full Text Available Abstract Background In recent years, near-infrared fluorescence (NIRF-labeled iron nanoparticles have been synthesized and applied in a number of applications, including the labeling of human cells for monitoring the engraftment process, imaging tumors, sensoring the in vivo molecular environment surrounding nanoparticles and tracing their in vivo biodistribution. These studies demonstrate that NIRF-labeled iron nanoparticles provide an efficient probe for cell labeling. Furthermore, the in vivo imaging studies show excellent performance of the NIR fluorophores. However, there is a limited selection of NIRF-labeled iron nanoparticles with an optimal wavelength for imaging around 800 nm, where tissue autofluorescence is minimal. Therefore, it is necessary to develop additional alternative NIRF-labeled iron nanoparticles for application in this area. Results This study manufactured 12-nm DMSA-coated Fe3O4 nanoparticles labeled with a near-infrared fluorophore, IRDye800CW (excitation/emission, 774/789 nm, to investigate their applicability in cell labeling and in vivo imaging. The mouse macrophage RAW264.7 was labeled with IRDye800CW-labeled Fe3O4 nanoparticles at concentrations of 20, 30, 40, 50, 60, 80 and 100 μg/ml for 24 h. The results revealed that the cells were efficiently labeled by the nanoparticles, without any significant effect on cell viability. The nanoparticles were injected into the mouse via the tail vein, at dosages of 2 or 5 mg/kg body weight, and the mouse was discontinuously imaged for 24 h. The results demonstrated that the nanoparticles gradually accumulated in liver and kidney regions following injection, reaching maximum concentrations at 6 h post-injection, following which they were gradually removed from these regions. After tracing the nanoparticles throughout the body it was revealed that they mainly distributed in three organs, the liver, spleen and kidney. Real-time live-body imaging effectively reported the dynamic process of the biodistribution and clearance of the nanoparticles in vivo. Conclusion IRDye800CW-labeled Fe3O4 nanoparticles provide an effective probe for cell-labeling and in vivo imaging.

  8. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties

  9. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery

    Ding W

    2013-12-01

    Full Text Available Wence Ding, Lin GuoKey Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of ChinaAbstract: Transferrin (Tf was immobilized onto Fe3O4@SiO2 nanoparticles with high doxorubicin (DOX loading (TfDMP, for dual targeting of cancer, by chemically coupling both Tf and DOX with dual-function magnetic nanoparticles (DMPs using a multi-armed crosslinker, poly-L-glutamic acid. With high trapping efficiency for magnetic targeting, TfDMP exhibits a Tf receptor-targeting function. Moreover, the DOX loading percentage of TfDMP is high, and can be controlled by adjusting the reactant ratio. TfDMP presents a narrow size distribution, and is sensitive to pH for drug release. Compared with DOX-coupled DMP without Tf modification (DDMP, TfDMP exhibits enhanced uptake by Tf receptor-expressing tumor cells, and displays stronger cancer cell cytotoxicity. This study provides an efficient method for the dual-targeted delivery of therapeutic agents to tumors, with controlled low carrier toxicity and high efficiency.Keywords: transferrin, Fe3O4@SiO2, nanoparticle, doxorubicin, targeted tumor

  10. The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption

    Zhang, Lili; Dai, Peng; Yu, Xinxin; Li, Yang; Bao, Zhiwei; Zhu, Jin; Zhu, Kerong; Wu, Mingzai; Liu, Xiansong; Li, Guang; Bi, Hong

    2015-12-01

    Cube-like Fe3O4 nanoparticles with size between 60 nm and 80 nm were reduced via ethanol using α-Fe2O3 nanocubes as precursors at 350 °C. The possible mechanism for the CH3CH2OH reduction of α-Fe2O3 into Fe3O4 was discussed. Electromagnetic wave absorption test showed that these Fe3O4 nanoparticles possessed excellent microwave absorption performance due to its complementary effect of dielectric loss and magnetic loss. The minimum absorption reflection loss value is -47.8 dB for Fe3O4 nanoparticles/paraffin wax composite sample with thickness of 4 mm, much higher than that of the commercial microwave absorber [Fe, Ni].

  11. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik-Fields multicomponent reaction

    Rostamnia, Sadegh; Doustkhah, Esmail

    2015-07-01

    Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.

  12. Fe3O4-ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples

    A new method for Cr(III) speciation in seven kinds of environmental and biological samples by Fe3O4-ZrO2 nanoparticles magnetic solid phase extraction (MSPE) and flame atomic absorption spectrometry (FAAS) has been developed. Fe3O4-ZrO2 nanoparticles were simply prepared by sol-gel method, and the adsorptive behaviors of Cr(III) and Cr(VI) on Fe3O4-ZrO2 nanoparticles were assessed. At pH 8.0-9.0, Fe3O4-ZrO2 nanoparticles were selective towards Cr(III) but hardly Cr(VI). The retained Cr(III) was subsequently eluted with 3.0 mL of 0.5 mol L-1 HNO3 followed by magnetic decantation. Total chromium was determined after reduction of Cr(VI) to Cr(III) by ascorbic acid. Various parameters affecting Fe3O4-ZrO2 nanoparticles MSPE were optimized systematically. Under the optimum conditions, the adsorption capacity of Fe3O4-ZrO2 nanoparticles for Cr(III) is 24.5 mg g-1. With an enrichment factor (EF) of 25, detection limit of Cr(III) was 0.69 ng mL-1, and the proposed method has been successfully applied for Cr(III) speciation in seven kinds of environmental and biological samples with satisfactory results.

  13. Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples

    Wu, Yi-Wei; Zhang, Jing; Liu, Jun-Feng; Chen, Lin; Deng, Zhen-Li; Han, Mu-Xian; Wei, Xiao-Shu; Yu, Ai-Min; Zhang, Hai-Li

    2012-07-01

    A new method for Cr(III) speciation in seven kinds of environmental and biological samples by Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction (MSPE) and flame atomic absorption spectrometry (FAAS) has been developed. Fe3O4@ZrO2 nanoparticles were simply prepared by sol-gel method, and the adsorptive behaviors of Cr(III) and Cr(VI) on Fe3O4@ZrO2 nanoparticles were assessed. At pH 8.0-9.0, Fe3O4@ZrO2 nanoparticles were selective towards Cr(III) but hardly Cr(VI). The retained Cr(III) was subsequently eluted with 3.0 mL of 0.5 mol L-1 HNO3 followed by magnetic decantation. Total chromium was determined after reduction of Cr(VI) to Cr(III) by ascorbic acid. Various parameters affecting Fe3O4@ZrO2 nanoparticles MSPE were optimized systematically. Under the optimum conditions, the adsorption capacity of Fe3O4@ZrO2 nanoparticles for Cr(III) is 24.5 mg g-1. With an enrichment factor (EF) of 25, detection limit of Cr(III) was 0.69 ng mL-1, and the proposed method has been successfully applied for Cr(III) speciation in seven kinds of environmental and biological samples with satisfactory results.

  14. Magnetically assisted solid phase extraction using Fe3O4 nanoparticles combined with enhanced spectrofluorimetric detection for aflatoxin M1 determination in milk samples.

    Taherimaslak, Zohreh; Amoli-Diva, Mitra; Allahyary, Mehdi; Pourghazi, Kamyar

    2014-09-01

    A novel, facile and inexpensive solid phase extraction (SPE) method using ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol grafted Fe(3)O(4) nanoparticles coupled with spectrofluorimetric detection was proposed for determination of aflatoxin M1 (AFM1) in liquid milk samples. The method uses the advantage fluorescence enhancement by β-cyclodexterin complexation of AFM1 in 12% (v/v) acetonitrile-water and the remarkable properties of Fe(3)O(4) nanoparticles namely high surface area and strong magnetization were utilized to achieve high enrichment factor (57) and satisfactory extraction recoveries (91-102%) using only 100 mg of magnetic adsorbent. Furthermore, fast separation time of about 15 min avoids many time-consuming column-passing procedures of conventional SPE. The main factors affecting extraction efficiency including pH value, desorption conditions, extraction/desorption time, sample volume, and adsorbent amount were evaluated and optimized. Under the optimal conditions, a wide linear range of 0.04-8 ng mL(-1) with a low detection limit of 0.015 ng mL(-1) was obtained. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. PMID:25127653

  15. A facile "turn-on" fluorescent method with high sensitivity for Hg(2+) detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions.

    Lv, Xiaoxiao; Wu, Wenchen; Niu, Chenggang; Huang, Dawei; Wang, Xiaoyu; Zhang, Xuegang

    2016-05-01

    In this manuscript, the authors molecularly engineered a hybridization chain reactions (HCRs) based probe on magnetic Fe3O4 nanoparticles for the sensitive detection of Hg(2+). The sensing system comprised three probes: capture probe H1, report probe H2, and report probe H3. The capture probe was modified on the surface of magnetic Fe3O4 nanoparticles. The report probes were labeled with fluorescein isothiocyanate (FITC). Without Hg(2+), the report probes were stable as molecular beacons in solution. In the presence of Hg(2+), the T-rich capture probes and report probes will hybridize into double-helical DNA domains with the aid of T-Hg(2+)-T coordination chemistry. Trigged by this reaction, more molecular beacons open and form a super tandem structure. Herein, the fluorescence signal was magnified by capturing more report probes. Separating the target and captured report probes from reaction solution was benefit to decrease the background signal and interference from other metal ions. The detection limit of this method was about 0.36nM, which is much lower than the regulations of World Health Organization and U.S. Environmental Protection Agency on Hg(2+) in drink water. This proposed sensing strategy also showed favorable selectivity over other common metal ions. In addition, it has good practicability in real water samples. PMID:26946010

  16. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  17. Fe3O4 and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol.

    Wang, Yan; Li, Hai; Zhang, Jijun; Yan, Xinyu; Chen, Zexiang

    2016-01-01

    We report a highly efficient and reusable bifunctional nanostructured composite catalyst synthesized by a scalable facile hydrothermal method which enables the precise control of size and morphology of nanoparticles, wherein Au nanoparticles (NPs) and Fe3O4 particles exhibit excellent dispersing ability on the rGO (reduced graphene oxide) sheet surface (designated as rGO/Fe3O4/Au) to avoid adverse agglomeration between the nano particles and overlapping of the rGO sheets concurrently. The resultant bifunctional composite shows a high performance in the catalytic reduction of 4-nitrophenol (4-NP) with a conversion of 97% in 5 min and presents good reusability through highly efficient recovery by using external magnetic fields. In particular, there was no significant loss in catalytic activity of the reused catalysts even after being recycled for 8 cycles, displaying attractive potential in industrial applications where separation and recycling are imperative. The rational design provides an approach to synthesize a graphene-based composite with an interesting structure and multi-functional properties as well. PMID:26620837

  18. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles

    2014-01-01

    The degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous solution of coated ZnO onto magnetite nanoparticale based on an advanced photocatalytic oxidation process. The photocatalysts were synthesized by coating of ZnO onto magnetite using precipitation method. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer (VSM). Besides, specific surface area was also determined by BET method. The four effective factors including pH of the reaction mixture, Fe3O4/ZnO magnetic nanoparticles concentration, initial MTBE concentration and molar ratio of [H2O2]/ [MTBE] were optimized using response surface modeling (RSM). Using the four-factor-three-level BoxBehnken design, 29 runs were designed considering the effective ranges of the influential factors. The optimized values for the operational parameters under the respective constraints were obtained at PH of 7.2, Fe3O4/ZnO concentration of 1.78 g/L, initial MTBE concentration of 89.14 mg/L and [H2O2]/ [MTBE] molar ratio of 2.33. Moreover, kinetics of MTBE degradation was determined under optimum condition. The study about core/shell magnetic nanoparticles (MNPs) recycling were also carried out and after about four times, the percentage of the photocatalytic degradation was about 70%. PMID:24393372

  19. Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity

    Roshanak Khandanlou

    2014-10-01

    Full Text Available Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, Thermogravimetric analysis (TGA and Fourier transform infrared spectroscopy (FT-IR. The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli and Gram-positive bacteria (Staphylococcus aureus by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.

  20. Bare and protein-conjugated Fe3O4 ferromagnetic nanoparticles for utilization in magnetically assisted hemodialysis: biocompatibility with human blood cells

    Stamopoulos, D.; Manios, E.; Gogola, V.; Benaki, D.; Bouziotis, P.; Niarchos, D.; Pissas, M.

    2008-12-01

    Magnetically assisted hemodialysis is a development of conventional hemodialysis and is based on the circulation of ferromagnetic nanoparticle-targeted binding substance conjugates (FN-TBS Cs) in the bloodstream of the patient and their eventual removal by means of a 'magnetic dialyzer'. Presented here is an in vitro investigation on the biocompatibility of bare Fe3O4 FNs and Fe3O4-bovine serum albumin Cs with blood cells, namely red blood cells (RBCs), white blood cells (WBCs) and platelets (Plts). Atomic force microscopy (AFM) and optical microscopy (OM) enabled the examination of blood cells at the nanometer and micrometer level, respectively. The observations made on FN- and C-maturated blood samples are contrasted to those obtained on FN- and C-free reference blood samples subjected to exactly the same maturation procedure. Qualitatively, both AFM and OM revealed no changes in the overall shape of RBCs, WBCs and Plts. Incidents where bare FNs or Cs were bound onto the surface of RBCs or internalized by WBCs were very rare. Detailed examination by means of OM proved that impaired coagulation of Plts is not initiated/promoted either by FNs or Cs. Quantitatively, the statistical analysis of the obtained AFM images from RBC surfaces clearly revealed that the mean surface roughness of RBCs maturated with bare FNs or Cs was identical to the one of reference RBCs.

  1. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir–Blodgett technique

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir–Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP–C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  2. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik–Fields multicomponent reaction

    Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik–Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs. - Highlights: • Fe3O4@β-CD as a nanomagnetically catalyst. • A reusable magnetic nanocatalyst synthesis using commercially available compounds. • Represents advantages, operational simplicity, no waste, higher yield and with easy workup

  3. Facile synthesis of Fe3O4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment

    Li, Yong; Zhang, Ruofang; Tian, Xike; Yang, Chao; Zhou, Zhaoxin

    2016-04-01

    In order to develop efficient and environment benign sorbents for water purification, the macroscopic multifunctional magnetite-reduced graphene oxides aerogels (M-RGOs) with strong interconnected networks were prepared via a one pot solvothermal method of graphene oxide sheets adsorbing iron ions and in situ simultaneous deposition of Fe3O4 nanoparticles in ethylene glycol or triethylene glycol solvents. Such M-RGOs exhibited excellent sorption capacity to different contaminants, including oils, organic solvents, arsenite ions, as well as dyes. In addition, it was demonstrated that the M-RGOs could be used as column packing materials to manufacture column for water purification by filtration. The method proposed was proved to be versatile to induce synergistic assembly of RGO sheets with other functional metal oxides nanoparticles and as a kind of broad-spectrum sorbents for removing different types of contaminants in water purification, simultaneously.

  4. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles.

    Jayakumar, O D; Abdelhamid, Ehab H; Kotari, Vasundhara; Mandal, Balaji P; Rao, Rekha; Jagannath; Naik, Vaman M; Naik, Ratna; Tyagi, A K

    2015-09-28

    Flexible inorganic-organic magneto-electric (ME) nanocomposite films (PVDF, PVDF-GO, PVDF-Fe3O4 and PVDF-GO-Fe3O4), composed of well-dispersed graphene oxide (GO 5 wt%) and magnetic Fe3O4 nanoparticles (5 wt%) embedded into a poly(vinylidene-fluoride) (PVDF) matrix, have been prepared by a solvent casting route. The magnetic, ferroelectric, dielectric, magneto-dielectric (MD) coupling and structural properties of these films have been systematically investigated. Magnetic (Ms = 2.21 emu g(-1)) and ferroelectric (P = 0.065 μC cm(-2)) composite films of PVDF-GO-Fe3O4 (PVDF loaded with 5% GO and 5% Fe3O4) with an MD coupling of 0.02% at room temperature (RT) showed a three times higher dielectric constant than that of the pure PVDF film, with a dielectric loss as low as 0.6. However, the PVDF-Fe3O4 film, which exhibited improved magnetic (Ms = 2.5 emu g(-1)) and MD coupling (0.04%) properties at RT with a lower dielectric loss (0.3), exhibited decreased ferroelectric properties (P = 0.06 μC cm(-2)) and dielectric constant compared to the PVDF-GO-Fe3O4 film. MD coupling measurements carried out as a function of temperature on the multi-functional PVDF-GO-Fe3O4 film showed a systematic increase in MD values up to 100 K and a decrease thereafter. The observed magnetic, ferroelectric, dielectric, MD coupling and structural properties of the nanocomposite films are attributed to the homogeneous dispersion and good alignment of Fe3O4 nanoparticles and GO in the PVDF matrix along with a partial conversion of nonpolar α-phase PVDF to polar β-phase. The above multi-functionality of the composite films of PVDF-Fe3O4 and PVDF-GO-Fe3O4 paves the way for their application in smart multiferroic devices. PMID:26274764

  5. Fe3O4 magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe3O4 core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe3+ was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe3+ chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 °C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  6. Study on synthesis of poly(GMA)-grafted Fe3O4/SiOX magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization

    Functionalized superparamagnetic particles were prepared by atom transfer radical polymerization of glycidyl methacrylate onto the surface of modified Fe3O4/SiOX nanoparticles. The obtained particles were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Candida rugosa lipase was covalently immobilized on the magnetic particles in mild condition via covalent binding with a higher activity recovery. The resulting immobilized lipase had better resistance to pH and temperature inactivation in comparison to free lipase, the adaptive pH and temperature ranges of lipase were widened, and it exhibited good thermal stability and reusability.

  7. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β-cyclodextrin assemblied Fe3O4 nanoparticles

    Wang, Congli; Huang, Lizhen; Song, Shengmei; Saif, Bassam; Zhou, Yehong; Dong, Chuan; Shuang, Shaomin

    2015-12-01

    The β-cyclodextrin assemblied magnetic Fe3O4 nanoparticles (β-CD-MNPs) were successfully fabricated via a layer-by-layer method. Possessing an average size 14 nm, good stability and super-paramagnetic response (Ms 64 emu/g), the resultant nanocomposites could be served as a versatile biocompatible platform for selective loading, targeted delivery and pH-responsive release of stereoisomeric doxorubicin (DOX) and epirubicin (EPI). 1H-nuclear magnetic resonance (1H NMR) and the computer simulation further give the evidence that partial anthracene ring of drug molecule is included by β-CD. In addition, non-toxic β-CD-MNPs have excellent biocompatibility on MCF-7 cells, and cellular uptake indicate that different amounts of DOX or EPI can be transported to targeting site and released from the internalized carriers. The results demonstrate that as-prepared β-CD-MNPs could be a very promising vehicle for DOX and EPI.

  8. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides

    Highlights: ► Constructed AChE biosensor based on AChE/Fe3O4NPs/c-MWCNT/ITO electrode. ► Enzyme electrode was characterized by AFM, FTIR, CV and EIS. ► Detection limit and working range of biosensor were 0.1 nM and 0.1–100 nM. ► Half life of enzyme electrode was 3 months. ► Biosensor measured pesticides in environmental and food samples. - Abstract: A method is described for the construction of a highly sensitive electrochemical biosensor for the detection of malathion, chlorpyrifos, monocrotophos and endosulfan based on covalent immobilization of acetylcholinesterase (AChE) on iron oxide nanoparticles (Fe3O4NPs)-decorated carboxylated multi-walled carbon nanotubes (c-MWCNTs) electrodeposited onto indium tin oxide (ITO)-coated glass plate. Transmission electron microscopic (TEM) and UV analysis of nanocomposite materials demonstrated that Fe3O4NPs were well deposited on the outer walls of c-MWCNTs. The modified electrode was characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The resulting biosensor exhibited a linear response for acetylthiocholine in a concentration range of 0.1–700 μmol L−1 with a remarkable sensitivity of 0.402 mA/μmol L−1. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1–70 nmol L−1, 0.1–50 nmol L−1, 0.1–70 nmol L−1 and 0.1–100 nmol L−1 for malathion, chlorpyrifos, monocrotophos and endosulfan, respectively. The detection limit of the biosensor for all pesticides was 0.1 nmol L−1 at a signal-to-noise ratio of 3. The biosensor showed good reproducibility, no interference by metal ions and long-term stability. The measurement results obtained by the present biosensor were in good agreement with those obtained by the standard gas chromatography–mass spectrometry method. The biosensor was employed for the determination of pesticides in environmental and food samples.

  9. A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles

    This article reports the synthesis of the poly(sodium 4-styrenesulfonate)-grafted Fe3O4/SiO2 particles via two steps. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stoeber method. Second, the modified silica-coated Fe3O4 nanoparticles were covered with the outer shell of anionic polyelectrolyte by surface-initiated atom transfer radical polymerization. The resulted composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). The XRD results indicated that the surface modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. TEM studies revealed nanoparticles remained monodisperse. The detection of sulfur and sodium signals was a convincing evidence that sodium 4-styrenesulfonate was grafted onto the surface of the magnetic silica in XPS analysis. Finally, super-paramagnetic properties of the composite particles, and the ease of modifying the surfaces may make the composites of important use in mild separation, enzyme immobilization, etc. - Graphical abstract: shows TEM images of silica-coated Fe3O4 particles. The magnetic silica particles with well-defined core/shell structures were rather monodisperse, even though silica shells have trapped more than one magnetic core. The Fe3O4/SiO2 particles used in this case for the production of composite particles had an average diameter of 70±10 nm obtained by TEM images

  10. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. PMID:26412451

  11. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System

    Kheiri Manjili, Hamidreza; Ma’mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells. PMID:26982588

  12. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System.

    Kheiri Manjili, Hamidreza; Ma'mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells. PMID:26982588

  13. Synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1

    Highlights: ► Magnetic nanoparticles were synthesized by chemical co-precipitation method. ► Surface was functionalized with amino-silane and used for lipase immobilization. ► Characterized through TEM, SEM, XRD, FT-IR and VSM analysis. ► The functionalization and immobilization did not affect the magnetite properties. ► The immobilized lipase showed greater functional property than free lipase. - Abstract: Superparamagnetic nanoparticles (Fe3O4–magnetite) were prepared by chemical co-precipitation method and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction to obtain amino functionalized magnetic nanoparticles. The purified lipase from Pseudomonas fluorescens Lp1 was immobilized onto functionalized magnetite using glutaraldehyde as the coupling agent. The characterization of the nanoparticles was done by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, vibrating sample magnetometry and Fourier transformed infrared spectroscopy. The size of the magnetite was measured about 10–30 nm. The results of characterization study revealed the successful immobilization of lipase on to functionalized magnetite. The saturation magnetization of magnetic nanoparticles was found to be 28.34 emu/g whereas the immobilized magnetic nanoparticle was 17.074 emu/g. The immobilized lipase had greater activity at 50 °C and thermal stability upto 70 °C. It exhibited excellent reusability for 4 cycles and storage stability upto 15 days by retaining 75% of its initial activity

  14. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide.

    Lai, Li; Xie, Qiang; Chi, Lina; Gu, Wei; Wu, Deyi

    2016-03-01

    Hydrous lanthanum oxide was loaded onto the surface of Fe3O4@SiO2 core/shell magnetic nanoparticles to obtain an easily separable adsorbent (abbreviated as Fe-Si-La) for efficient separation of phosphate from water. Fe-Si-La was characterized with XRF, XRD, TEM, specific surface area and magnetization and their performance for phosphate removal was investigated. The Fe3O4@SiO2 core/shell structure was confirmed and the hydrous lanthanum oxide was successfully loaded onto its surface. The newly developed adsorbent had magnetization of 51.27emu/g. The Langmuir adsorption capacity of phosphate by Fe-Si-La reached 27.8mg/g by loading only 1mmol lanthanum per gram of magnetite. The adsorption was fast; nearly 99% of phosphate could be removed within 10min. The removal of phosphate was favored within the pH range 5.0-9.0. The adsorption on Fe-Si-La was not significantly influenced by ionic strength and by the coexistence of the anions of chloride and nitrate but sulfate, bicarbonate and humic acid showed slightly greater negative effects. Phosphate removal efficiency of higher than 95% was attained for real effluent of a wastewater treatment plant when the dose of adsorbent was >0.2kg/ton. The results showed that adsorbed phosphate could be nearly completely desorbed with NaOH solution for further use. In conclusion, Fe-Si-La is a promising adsorbent for the removal and recovery of phosphate from water. PMID:26641568

  15. Bifunctional polydopamine@Fe3O4 core–shell nanoparticles for electrochemical determination of lead(II) and cadmium(II)

    Highlights: •The bifunctional nanocomposites were synthesized. •A modified magnetic glassy carbon electrode was fabricated. •The electrode was used for the selective detection of Pb2+ and Cd2+ ions. •The proposed sensor features a wider linear range and higher sensitivity. -- Abstract: The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb2+ and Cd2+ during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb2+ and Cd2+, with the calculated detection limits of 1.4 × 10−11 M and 9.2 × 10−11 M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb2+ (or Cd2+) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb2+ and Cd2+ in aqueous effluent

  16. PLLA- Fe3O4 nanocomposites

    Albano, Carmen; Gonzalez, Gema; Naranjo, Claudio

    2012-07-01

    In the present work magnetite nanoparticules and PLLA- Fe3O4 nanocomposites were prepared by high frequency ultrasound. The influence of pH on nanoparticle size was studied, showing that the particle size decreased as the pH increased. In the composites an interaction between the magnetite nanoparticles and the PLLA matrix was observed by FTIR. Magnetic properties were studied using a VSM, and a superparamegnetic behavior was observed for magnetite nanoparticles, but for the composite a magnetic attenuation was observed due to the polymeric matrix.

  17. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    Tian, Qiwei

    2013-06-12

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  18. A Novel DNA Nanosensor Based on CdSe/ZnS Quantum Dots and Synthesized Fe3O4 Magnetic Nanoparticles

    Roozbeh Hushiarian

    2014-04-01

    Full Text Available Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4 nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  19. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles

    A novel method to synthesize the three phases of iron oxide nanoparticles (hematite, maghemite and magnetite) using the same non-toxic inorganic precursors via a water–organic interface under the low temperature hydrothermal conditions is reported. The synthesized particles are characterized by Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). The Brunauer–Emmett–Teller (BET) results reveal the mesoporous nature of the particles. The magnetic properties of the nanoparticles are studied by Vibrating Sample Magnetometer (VSM) at various low temperatures and also at room temperature. The XRD peaks corresponding to each sample clearly depict the presence of the respective phase of the as-prepared magnetic nanoparticles. The nanoparticles of maghemite and magnetite have saturation magnetization of 58.56 and 40.30 emu/g respectively at room temperature, whereas the particles of hematite possess very low saturation magnetization value of 1.89 emu/g. Further, the magnetization is studied at four different temperatures and the zero field cooled (ZFC) and field cooled (FC) magnetization are reported. - Graphical abstract: Display Omitted - Highlights: • Hematite, maghemite and magnetite are obtained under hydrothermal synthesis. • α-Fe2O3, γ-Fe2O3 and Fe3O4 prepared are mesoporous and nearly monodisperse. • Near superparamagnetism is observed at room temperature for maghemite and magnetite

  20. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    Akbarzadeh A; Mikaeili H; Zarghami N; Mohammad R; Barkhordari A; Davaran S

    2012-01-01

    Abolfazl Akbarzadeh1, Haleh Mikaeili2, Nosratollah Zarghami3, Rahmati Mohammad3, Amin Barkhordari3, Soodabeh Davaran21Drug Applied Research Center, 2Tuberculosis and Lung Disease Research Center of Tabriz, 3Department of Clinical Biochemistry and Laboratory Medicine, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IranBackground: Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for...

  1. Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers. - Highlights: ► The composite nanofibers including the MRF and PET. ► The fabrication of core/sheath structured nanofibers using coaxial electrospinning. ► Superparamagnetic composite nanofibers.

  2. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent

    Jahandar, Marzieh; Zarrabi, Ali; Shokrgozar, Mohammad Ali; Mousavi, Hajar

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with an average size of 10 nm have been successfully synthesized by the polyol method. Then, hyperbranched polyglycerol (HPG) branches have been introduced on the surface of SPIONs through ring opening polymerization of glycidol as a biocompatible surface modifier with a more hydrophilic nature than other biomedical polymers. The as-synthesized SPION-HPGs were analyzed by FT-IR, CHNS and TGA analysis which all exhibited the successful HPG grafting onto the SPION surface. The anticancer herbal drug, curcumin, was loaded on the resultant nanocarrier. The MTT assay demonstrated the non-cytotoxicity effect of SPION-HPGs and the low cytotoxicity effect of curcumin at low concentrations on L929 and MCF-7 cell lines as normal and cancerous cells, respectively. Moreover, these nanoparticles exhibited an improved effect as a contrast agent in magnetic resonance imaging. Thus, it is concluded that SPION-HPG has the potential to be used in theranostics applications due to its simultaneous drug delivery and imaging capabilities.

  3. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, EndoremTM, based on dextran-coated Fe3O4 nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 ± 0.6) min measured by EPR and (12.6 ± 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism

  4. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    Highlights: ? Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ? Magnetically attached TSF electrode shows high photoelectrochemical activity. ? Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ? Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO2/SiO2/Fe3O4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  5. Extraction of Genomic DNA Using Magnetic Nanoparticles (Fe3O4 as a Solid-Phase Support

    Z. M. Saiyed

    2007-01-01

    Full Text Available Magnetic separation technology, using magnetic particles, is quick and easy method for sensitive and reliable captures of specific proteins, genetic material and other biomolecules. The current paper describes a universal genomic DNA extraction method optimized in our laboratory using magnetic nanoparticles as a solid phase adsorbent. The yields of the isolated DNA with magnetic method were higher or equivalent to the conventional procedures in all the samples tested. Additionally, the magnetic method takes less than 15 minutes to extract DNA as against several hours taken by conventional protocols. Furthermore, the isolated DNA was found to function satisfactorily in PCR amplification and restriction endonuclease digestion. The developed procedure is simple, quick, cheap, robust and does not require the use of organic solvents or sophisticated equipments; thereby making it more amenable to automation.

  6. Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Catalayud, M P; Raffa, V; Riggio, C; Ibarra, M R; Goya, G F

    2014-01-01

    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the...

  7. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    This paper demonstrates a fish pathogen reduction procedure that uses TiO2 sol–gel coating Fe3O4@TiO2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe3O4/TiO2 nanoparticles are synthesized and immobilized on glass using TiO2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe3O4@TiO2's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  8. Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT).

    Mahmoud, Khaled A; Zourob, Mohammed

    2013-05-01

    A new lignin modified hybrid microsphere, comprising poly(styrene-co-acrylic acid) core and magnetite (Fe3O4)/Au nanoparticle (NP) shell, was proposed here for the selective and highly sensitive detection and removal of 2,4,6-trinitrotoluene (TNT) explosives based on surface enhanced Raman scattering (SERS) and electrochemical detection methods. The presence of lignin and the highly packed layer of Fe3O4/AuNPs as a magnetic collector and metal enhancer for SERS signals allowed for the detection of TNT below 1 pM. PMID:23515305

  9. Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(II) ions from water.

    Venkateswarlu, Sada; Yoon, Minyoung

    2015-11-14

    Mercury is considered one of the most notorious global pollutants due to its high toxicity and widespread use in industry. Although many materials have been developed for the removal of mercury for water purification, most of these materials are difficult to reuse, which may lead to an increase in the mercury handling expense. Therefore, new sustainable materials that can be easily recycled and are highly efficient for the removal of mercury are required. Herein, we report the surfactant-free green synthesis of Fe3O4 magnetic nanoparticles (MNPs) using a watermelon (Citrullus lanatus) rind extract. The Fe3O4 MNPs were further functionalized with 3,4-dihydroxyphenethylcarbamodithioate (DHPCT) and applied to the removal of Hg(ii). Evaluation of the mercury removal efficiency and the amount adsorbed by DHPCT@Fe3O4 MNPs demonstrated a high Hg(ii) removal efficiency (98%) with a maximum Hg(ii) adsorption capacity of 52.1 mg g(-1). Systematic studies of the adsorption mechanism and selectivity suggest that the soft ligand (DHPCT) can preferentially coordinate with the soft metal ion (Hg(ii)) resulting in selective mercury removal. The developed DHPCT@Fe3O4 MNPs were readily recycled several times using an external magnet by exploiting their ferromagnetic character, without a significant decline in the Hg(ii) removal efficiency. This study provides a new insight into the preparation of a highly efficient adsorbent for Hg(ii) removal by an eco-friendly method. PMID:26436867

  10. Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6-12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50-60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50-60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50-90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.

  11. Modeling and optimization of effective parameters on the size of synthesized Fe3O4 superparamagnetic nanoparticles by coprecipitation technique using response surface methodology

    Ghazanfari, Mohammad Reza; Kashefi, Mehrdad; Jaafari, Mahmoud Reza

    2016-05-01

    Generally, the statistical methods are defined as appropriate techniques to study the processes trends. In current research, the Fe3O4 superparamagnetic nanoparticles were synthesized by coprecipitation method. In order to investigate the size properties of synthesized particles, the experimental design was done using central composite method (CCD) of response surface methodology (RSM) while the temperature, pH, and cation ratio of reaction were selected as influential factors. After particles synthesis based on designed runs, the different responses such as hydrodynamic size of particles (both freeze dried and air dried), size distribution, crystallite size, magnetic size, and zeta potential were evaluated by different techniques i.e. dynamic light scattering (DLS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Based on these results, the quadratic polynomial model was fitted for each response that could predict the response amounts. In following, the study of factors effects was carried out that showed the temperature, pH, and their interactions had higher effectiveness. Finally, by optimizing, it was clear that the minimum amounts of particle size (10.15 nm) and size distribution (13.01 nm) were reached in the minimum temperature (70 °C) and cation ratio (0.5) amounts and maximum pH amount (10.5). Moreover, the characterizations showed the particles size was about 10 nm while the amounts of Ms, Hc, and Mr were equal to 60 (emu/g), 0.2 (Oe) and 0.22 (emu/g), respectively.

  12. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

    Cui, Xianjin; Belo, Salome; Krger, Dirk; Yan, Yong; de Rosales, Rafael T.M.; Jauregui-Osoro, Maite; Ye, Haitao; Su, Shi; Mathe, Domokos; Kovcs, Nomi; Horvth, Ildik; Semjeni, Mariann; Sunassee, Kavitha; Szigeti, Krisztian; Green, Mark A.; Blower, Philip J.

    2014-01-01

    Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. Invivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu. PMID:24768194

  13. Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process.

    Hammouda, Samia Ben; Adhoum, Nafaâ; Monser, Lotfi

    2015-08-30

    A novel magnetic heterogeneous catalyst has been developed by incorporation of iron(II) and magnetic functionalized nanoparticles Fe3O4 in alginate beads with the aim of using them in the advanced Fenton oxidation of a malodorous compound (3 methyl-indole: 3-MI). The effects of significant operational parameters such as initial pH, oxidant concentration and catalyst amount were investigated and optimized for a better removal of 3-MI at initial concentration of 20mgL(-1). Besides, the catalyst stability was evaluated according to the iron leached into the aqueous solution. Results revealed that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimized conditions, the magnetic catalyst exhibited a good catalytic performance. Total removal of 3 methyl indole and a remarkable organic mineralization, without significant leaching of iron, were attained within 120min at pH 3.0 by using 0.4gL(-1) of Fe-MABs and 9.8mmolL(-1) of H2O2. The novel magnetic catalyst would be of potential application due to its high efficiency, easy recovery and good structural stability. PMID:25867585

  14. Magnetic Fe3O4-C nanoparticles modified with 1-(2-thiazolylazo)-2-naphthol as a novel solid-phase extraction sorbent for preconcentration of copper (II)

    We report on a new magnetic nanosorbent for solid phase extraction of Cu(II) before its determination by flame atomic absorption spectrometry. The magnetic sorbent is composed of carbon-coated magnetite nanoparticles (Fe3O4-C) synthesized by a single-step solvothermal reaction and then loaded with the chelator 1-(2-thiazolylazo)-2-naphthol. It was used for the preconcentration of Cu(II) ions from water and food samples. The effects of pH value and volume of sample, of type and volume of eluent, and of interfering ions were investigated. Under the optimum conditions, the calibration graph is linear in the 4.0–400 μg L−1 concentration range, with a detection limit of 1.5 μg L−1. The method was validated by using a certified reference material (NIST 1566b; oyster tissue) and applied to the determination of trace copper in spiked water and food samples. (author)

  15. Body distribution of SiO2-Fe3O4 core-shell nanoparticles after intravenous injection and intratracheal instillation.

    Smulders, Stijn; Ketkar-Atre, Ashwini; Luyts, Katrien; Vriens, Hanne; De Sousa Nobre, Sonia; Rivard, Camille; Van Landuyt, Kirsten; Baken, Stijn; Smolders, Erik; Golanski, Luana; Ghosh, Manosij; Vanoirbeek, Jeroen; Himmelreich, Uwe; Hoet, Peter Hm

    2016-06-01

    Nano-silicon dioxide (SiO2) is used nowadays in several biomedical applications such as drug delivery and cancer therapy, and is produced on an industrial scale as additive to paints and coatings, cosmetics and food. Data regarding the long-term biokinetics of SiO2 engineered nanoparticles (ENPs) is lacking. In this study, the whole-body biodistribution of SiO2 core-shell ENPs containing a paramagnetic core of Fe3O4 was investigated after a single exposure via intravenous injection or intratracheal instillation in mice. The distribution and accumulation in different organs was evaluated for a period of 84 days using several techniques, including magnetic resonance imaging, inductively coupled plasma mass spectrometry, X-ray fluorescence and X-ray absorption near edge structure spectroscopy. We demonstrated that intravenously administered SiO2 ENPs mainly accumulate in the liver, and are retained in this tissue for over 84 days. After intratracheal instillation, an almost complete particle clearance from the lung was seen after 84 days with distribution to spleen and kidney. Furthermore, we have strong evidence that the ENPs retain their original core-shell structure during the whole observation period. This work gives an insight into the whole-body biodistribution of SiO2 ENPs and will provide guidance for further toxicity studies. PMID:26525175

  16. Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent

    In this work, a thermo and pH-responsive poly-N-isopropylacrylamide-co-itaconic acid containing thiol side groups were successfully synthesized to prepare Doxorubicin-loaded polymer@Au/Fe3O4 core/shell nanoparticles (DOX-NPs). Copolymer and NPs were fully characterized by FT-IR, HNMR, photo-correlation spectroscopy, SEM, X-ray diffraction, vibrating-sample magnetometer, thermal gravimetric analysis, and UV–Vis spectroscopy. The stimuli-responsive characteristics of NPs were evaluated by in vitro release study in simulated cancerous environment. The biocompatibility and cytotoxic properties of NPs and DOX-NPs are explored by MTT method. The prepared NPs with the size of 50 nm showed paramagnetic characteristics with suitable and stable dispersion at physiological medium and high loading capacity (up to 55 %) of DOX. DOX-NPs yielded a pH- and temperature-triggered release of entrapped drugs at tumor tissue environment (59 % of DOX release) compared to physiological condition (20 % of DOX release) during 48 h. In vitro cytotoxicity studies indicated that the NPs showed no cytotoxicity on A549 cells at different amounts after incubation for 72 h confirming its suitability as a drug carrier. DOX-NPs, on the other hand, caused an efficient anticancer performance as verified by MTT assay test. It was concluded that developed NPs by us in this study may open the possibilities for targeted delivery of DOX to the cancerous tissues

  17. [Solid-phase extraction based on mesoporous Fe3O4 @ mSiO2 @ Cu2+ magnetic nanoparticles coupled with high performance liquid chromatography for the determination of microcystins in water samples].

    Sun, Hong; Lou, Dawei; Lian, Lili; Han, Xue; Guo, Tingxiu; Chen, Tujun

    2015-05-01

    Mesoporous magnetic nanoparticles of Fe3O4 @ mSiO2 @ Cu2+ were synthesized by two methods of hydrothermal synthesis and room temperature synthesis. The synthesized mesoporous Fe3O4 @ mSiO2 @ Cu2+ nanoparticles presented uniform sizes, good magnetic properties and specific selectivity. In this work, a novel magnetic solid-phase extraction (MSPE) method based on mesoporous Fe3O4 @ mSiO2 @ Cu2+ nanoparticles (NPs) coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction of trace amount of microcystin-LR (MC-LR) in water samples. The MSPE extraction conditions and HPLC conditions were optimized. The results showed that good linear relationship (r = 0.999 4) was obtained between peak area and mass concentration of MC-LR in the range of 0.1-15 g/L. The limit of detection was 0.025 g/L, and the limit of quantification was 0.082 g/L. Furthermore, this method was used for the analysis of algal toxins in water samples with the recovery of 78%. The results indicated that Fe3O4 @ mSiO2 @ Cu2+ magnetic nanoparticles were good pretreatment alternatives for the concentration of microcystin-LR in water samples. PMID:26387200

  18. Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons.

    Du, Jingjing; Xu, Jianwei; Sun, Zhenli; Jing, Chuanyong

    2016-04-01

    Several methods and materials have been explored for the sensitive and practicable detection of polycyclic aromatic hydrocarbons (PAHs). However, it is still a challenge to develop simple and cost-effective sensing techniques for PAHs. Herein we report the synthesis and construction of Fe3O4@Au SERS substrate. This magnetic substrate was composed by Fe3O4 microspheres and Au NPs. The size, morphology, and surface composition of Fe3O4@Au were characterized by multiple complimentary techniques including scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The spatial distributions of electro-magnetic field enhancement around Fe3O4@Au was calculated using finite difference time domain (FDTD) simulations. As a result of its remarkable sensitivity, the Fe3O4@Au-based SERS assay has been applied to detect the 16 EPA priority PAHs. The LODs achieved by our method (100-5 nM, 16.6-1.01 μg L(-1)) make it promising for the rapid screening of highly contaminated cases. As a proof-of-concept study, the substrate was applied in SERS sensing of PAHs in river matrix. The 16 PAHs could be differentiated based upon their characteristic SERS peaks. Most importantly, the detection was successfully conducted using a portable Raman spectrometer, which could be used for on-site monitoring of PAHs. PMID:26995643

  19. Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan

    Highlights: ► We have demonstrated a facile method to prepare Fe3O4 nanoparticles and chitosan-coated Fe3O4 nanoparticles. ► α-Fe2O3 sensors prepared from those Fe3O4 materials have been investigated and compared. ► The results show potential application of α-Fe2O3 for CO sensors in environmental monitoring. - Abstract: In this paper, Fe3O4 and chitosan (CS)-coated Fe3O4 nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe3O4 had a cubic spinal structure with irregular shapes and average diameters of 10–20 nm. The surface states and magnetic properties of Fe3O4-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe3O4-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe3O4 and CS-coated Fe3O4 nanoparticles were used in the fabrication of α-Fe2O3 based gas sensors. Gas sensing measurements revealed that the α-Fe2O3 gas sensor prepared from Fe3O4-CS had a better response to H2, CO, C2H5OH, and NH3 compared with the device prepared from pristine Fe3O4. Furthermore, the α-Fe2O3 sensor prepared from Fe3O4-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  20. Study of the intra-arterial distribution of Fe3O4 nanoparticles in a model of colorectal neoplasm induced in rat liver by MRI and spectrometry

    Echevarria-Uraga JJ

    2012-05-01

    Full Text Available Jos J Echevarria-Uraga,1 Ignacio Garca-Alonso,2 Fernando Plazaola,3 Maite Insausti,3 Nstor Etxebarria,3 Alberto Saiz-Lpez,4 Begoa Fernndez-Ruanova51Radiology Department, Hospital de Galdakao-Usnsolo, Bizkaia, Spain; 2Experimental Surgery Laboratory, Medicine Faculty, University of the Basque Country, Bizkaia, Spain; 3Faculty of Science and Technology, University of the Basque Country, Bizkaia, Spain; 4Pathology Department, Hospital de Galdakao-Usnsolo, Bizkaia, Spain; 5Osatek SA Unidad del Hospital de Galdakao-Usnsolo, Bizkaia, SpainPurpose: To evaluate, in an experimental model, the reliability of MRI for determining whether a higher iron concentration was obtained in tumor tissue than in normal liver parenchyma after intra-arterial administration of Fe3O4 lipophilic nanoparticles.Materials and methods: WAG/RijCrl rats were inoculated in the left hepatic lobe with 25,000 syngeneic CC-531 colon adenocarcinoma cells, after which they were randomized into two groups: control (CG and infused (IG. After confirming tumor induction, the IG rats received intra-arterial suspensions of Fe3O4 nanoparticles (2.6 mg in Lipiodol (0.15 mL. To calculate the iron concentration, [Fe], in the tumor and liver tissues of both groups of rats, measurements of signal intensity from the tumors, healthy liver tissue, and paravertebral muscles were made on a 1.5T MRI system in gradient-echo DP* and T2*-weighted sequences. In addition, samples were collected to quantify the [Fe] by inductively coupled plasma-mass spectrometry (ICP-MS, as well as for histological analysis. Statistical analysis was performed with non-parametric tests, and BlandAltman plots were produced; P values <0.05 were considered significant.Results: In the CG rats (n = 23, the mean [Fe] values estimated by MRI and ICP-MS were 13.2 mol g-1 and 5.9 mol g-1, respectively, in the tumors, and 19.0 mol g-1 and 11.7 mol g-1, respectively, in the hepatic tissue. In the IG rats (n = 19, the values obtained by MRI and ICP-MS were 148.9 mol g-1 and 9.4 mol g-1, respectively, in the tumors, and 115.3 mol g-1 and 11.6 mol g-1, respectively, in the healthy liver tissue. The IG results revealed a clear disagreement between MRI and ICP-MS. In the comparative analysis between the groups regarding the [Fe] values obtained by ICP-MS, significant differences were found for the tumor samples (P < 0.001, but not for the hepatic tissue (P = 0.92. Under microscopy, scattered intravascular deposits of nanoparticles were observed, especially in the tumors.Conclusion: ICP-MS demonstrated significant uptake of exogenous iron in tumor tissue. MRI was useful for quantifying the [Fe] in the different tissues in the CG animals, but not in the IG animals. Although the irregular distribution of nanoparticles caused an important bias in the measurements obtained by MRI, the relative increase in iron content inside the tumor was suggested.Keywords: liver neoplasm, hepatic arterial infusion, ferromagnetic particle, iron concentration, MRI, spectrometry

  1. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs.

    Peeters, Kelly; Lespes, Gaëtane; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2016-05-01

    Among the different nanoparticles (NPs) that are used in the remediation of contaminated environmental waters, iron nanoparticles (FeNPs) are the most frequently applied. However, if these FeNPs remain in the waters after the treatment, they can cause a hazard to the environment. In this work the time dependent size distribution of iron particles was investigated in Milli-Q water, forest spring water and landfill leachate after a variety of FeNP treatments. The efficiency of the metal removal by the FeNPs was also examined. The concentrations of the metals in the aqueous samples were determined before and after the nano-remediation by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that the settling and removal of the FeNPs after the treatment of the waters was related to the sample characteristics and the ways of dispersing the NPs. When mixing was used for the dispersion, the nano zero-valent iron (nZVI), FeONPs and Fe3O4NPs settled quickly in the Milli-Q water, the forest spring water and the landfill leachate. Dispersion with tertramethylammonium hydroxide (TMAH) resulted in a slower settling of the iron aggregates. In the Milli-Q and forest spring waters treated with FeONPs and dispersed by TMAH, the nanosized iron remained in solution as long as 24 h after the treatment and could represent a potential threat in environmental waters with a low ionic strength. The removal of the metals strongly depended on the type of FeNPs, the chemical speciation of the elements and the sample matrix. If the FeNPs are contaminated by a particular metal, this contaminant could be, during the NPs treatment, released into the water that is being remediated. PMID:26971807

  2. Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines

    Ju, Huixiang; Cui, Yubao; Chen, Zhiqiang; Fu, Qinping; Sun, Mingzhong; Zhou, Ying

    2016-01-01

    Magnetic Fe3O4 nanoparticles (MNPs) have shown promise as drug carriers for treating lung and liver tumors in vivo. However, little is known about the combined delivery of these MNPs with a second approach, extremely low frequency electro-magnetic field (ELFF) exposure, which has been shown to have value for in vitro treatment of tumor cells. Here, ELFF and MNPs were combined to treat healthy (HL-7702) and cancerous (Bel-7402, HepG2) hepatic cells lines to explore the potential therapeutic effects, bio-mechanisms, and potential toxicity of a combined drug-free treatment in vitro. Flow cytometry for anti-AFP (alpha fetal protein) antibody, which coated the MNPs, indicated that the combined treatment induced Bel-7402 and HepG2 hepatoma cells lines into early apoptosis, without significant effects on healthy hepatic cells. This effect appeared to be mediated through cellular membrane ion metabolism. The presence of AFP-loaded MNPs strengthened the effects of ELFF on tumor cells, inducing a higher frequency of early apoptosis, while having minimal toxic effects on healthy HL-7702 cells. Western blotting revealed that the apoptosis-triggering BCL proteins were up regulated in hepatoma cells compared to healthy cells. Flow cytometry and patch-clamp studies revealed that this resulted from a higher MNP uptake ratio and greater cellular membrane ion exchange current in tumor cells compared to HL-7702 cells. Further, patch-clamp results showed that combining MNPs with ELFF treatment induces cells into early apoptosis through an ion metabolism disturbance in cells, similar to ELFF treatment. In brief, the combination of ELFF and MNPs had beneficial effects on tumor cells without significant toxicity on healthy cells, and these effects were associated with cellular MNP uptake.

  3. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe3O4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138−CD34− cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138−CD34− cells were evaluated by a variety of assays in vitro. The results showed that the CD138−CD34− cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138−CD34− cells. PTX-NPs significantly inhibited CD138− CD34− cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138−CD34− phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138−CD34− CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation

  4. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. PMID:27207044

  5. Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: A magnetically recoverable and reusable catalyst for the reduction of nitroarenes.

    Sajadi, S Mohammad; Nasrollahzadeh, Mahmoud; Maham, Mehdi

    2016-05-01

    In this paper, we report the green synthesis of the Cu/Fe3O4 nanoparticles using Silybum marianum L. seeds extract and their application as magnetically separable nanocatalyst for the reduction of nitroarenes. Our method is clean, nontoxic and environment friendly. The synthesized nanocatalyst is characterized by XRD, TEM, EDS and UV-visible techniques. UV-visible spectroscopy is used to monitor the kinetics of the Cu/Fe3O4 nanoparticles formation. The results from Fourier transform infrared spectroscopy showed that the CO and CO groups in the plant seeds extract played a critical role in capping the nanoparticles. The expected reaction mechanism in the formation of nanoparticles is also reported. The catalyst is recoverable by magnetic decantation and could be reused several times without significant loss in catalytic activity. PMID:26874271

  6. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples

    Highlights: ? A new sorbent based on functionalized magnetite nanoparticles with quercetin is reported. ? The quercetin based magnetic nanoparticles could be used as a sorbent to remove toxic uranyl ions from water samples. ? The sorbent provides a rapidly and easy separation of uranyl ions only by using a permanent magnet. ? This technique is considered more efficient separation compared to conventional filtering or centrifuging methods for the removing of the sorbent. - Abstract: In this study, silica-coated magnetic nanoparticles modified with quercetin were synthesized by a solgel method. These magnetic nanoparticles were assessed as a new solid phase sorbent for extraction of uranyl ions from aqueous solutions. The crystal and chemical structures and magnetic property of the new sorbent were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FT-IR), and vibration sample magnetometer (VSM). The experimental parameters affecting the extraction efficiency of uranyl ions from aqueous solutions using the synthesized sorbent were optimized by means of the response surface methodology. The adsorption equilibrium of uranyl ions onto the sorbent was explained by Langmuir isotherm and maximum monolayer adsorption capacity was found 12.33 mg/g. The synthesized sorbent was applied to extraction of uranyl ions from different water samples.

  7. Bio and Nanomaterials Based on Fe3O4

    Jia-Kun Xu

    2014-12-01

    Full Text Available During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.

  8. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment

    In this study magnetic fluids were manufactured by the adsorption of chitosan (CS) and O-carboxymethyl chitosan (OCMCS) on Fe3O4 nanoparticles to be used as hyperthermic thermoseeds. Fe3O4 particles were characterized by physico-chemical methods such as: thermogravimetry analysis (TGA), x-ray diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The SEM images and XRD patterns showed that the synthesized Fe3O4 nanoparticles were of single phase and spherical shape with 10–15 nm in diameter. The VSM measurements showed that Fe3O4 particles were superparamagnetic with saturation magnetization of 70 emu g−1. The adsorbed layers of CS and OCMCS on the magnetite surface (Fe3O4/CS) and (Fe3O4/OCMCS) were confirmed by FTIR, Raman spectra and SEM. In the ac magnetic field of 80 Oe and 236 kHz, the saturation heating temperatures of the sample Fe3O4/CS and Fe3O4/OCMCS were 100 and 98 °C, respectively. At the same concentration of Fe3O4 nanoparticles in suspension, the two magnetic fluids exhibited quite high heating capacity, with different behaviors of concentration dependence. The Fe3O4/CS and Fe3O4/OCMCS nanoparticles would serve as good thermoseeds for localized hyperthermia treatment of cancers

  9. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

    The functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2–SO3H) that can be applied as an organic–inorganic hybrid heterogeneous catalyst. The used Fe3O4 magnetic nanoparticles are 18–30 nm sized that was rapidly functionalized and can be used as catalyst in organic synthesis. The prepared nanoparticles were characterized by X-ray diffraction analysis, magnetization curve, scanning electron microscope, dynamic laser scattering, and FT-IR measurements. The resulting immobilized catalysts have been successfully used in the synthesis of 1,8‐dioxo-octahydroxanthene derivatives under solvent free condition. This procedure has many advantages such as; a much milder method, a shorter reaction time, a wide range of functional group tolerance, and absence of any tedious workup or purification. Other remarkable features include the catalyst can be reused at least five times without any obvious change in its catalytic activity. This procedure also avoids hazardous reagents/solvents, and thus can be an eco-friendly alternative to the existing methods.Graphical AbstractA highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

  10. Preparation of Fe3O4@PPy magnetic nanoparticles as solid-phase extraction sorbents for preconcentration and separation of phthalic acid esters in water by gas chromatography-mass spectrometry.

    Zhao, Hongyan; Huang, Manyan; Wu, Jianrong; Wang, Li; He, Hua

    2016-02-01

    The purpose of this paper is to introduce a solid-phase extraction method of separating and determining of phthalic acid esters (PAEs) by PPy-coated Fe3O4 magnetic nanoparticles (Fe3O4@PPy MNPs). In the process, nanoparticles were served as sorbents and the optimal conditions of the extraction have been explored. The composite was synthesized through the chemical oxidation method, combining pyrrole monomer with Fe3O4 magnetic ball in the form of aggregation state and the coated nanoparticles possessed core-shell construction. The PPy-coated Fe3O4 magnetic microspheres have been extensively characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The optimum conditions were investigated by orthogonal experimental design, which was used to testing the influence of main factors and the interactions among them. The orthoplan is famous for the merit that it can study the whole experiments comprehensively through minimal tests. Under the optimal extraction conditions: 20mg of modified magnetite nanoparticles, eluting with acetic ester of 2mL, 40min of MSPE, eluting in 1h and 20mL of sample volume, good linearity (r(2)>0.9912) of all calibration curves was obtained in validation experiments. And the limits of detection (LODs) were from 0.006 to 0.021ng/mL. The recoveries in different sample matrices were in the range from 80.4% to 108.2% with relative standard deviations less than 12.8%. The present work demonstrates the applicability of the developed method for the determination of PAEs in water sample and the results justified that it can be applied successfully to the selective isolation and enrichment of PAEs in real water samples. PMID:26751591

  11. Silica-coated iron-oxide nanoparticles synthesized as a T2 contrast agent for magnetic resonance imaging by using the reverse micelle method

    We synthesized iron-oxide (Fe3O4) nanoparticles by using the reverse micelle method and coated them with biocompatible silica. The coated nanoparticles were found to be spherical in the TEM images and showed a uniform size distribution with an average diameter of 10 nm. The T1 and the T2 relaxation times of hydrogen protons in aqueous solutions with various concentrations of silica-coated nanoparticles were determined by using a magnetic resonance (MR) scanner. We found that the T2 relaxivity was much larger than the T1 relaxivity for the nanoparticle contrast agent, which reflected the fact that the T2 relaxation was mainly influenced by outer sphere processes. The T2 relaxivity was found to be 15 times larger than that for the commercial Gd-DTPA-BMA contrast agent. This result demonstrates that silica-coated iron oxide nanoparticles are applicable as a T2 agent in magnetic resonance imaging.

  12. Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation

    Synthetic sodium type A zeolite bearing Fe2O3 and Fe3O4 nanoparticles composites have been prepared by means of a coprecipitation method with two different activation methodologies, one using Sn and the other using Sn/Pd nanoparticles as activators. Sn activation generates hematite nanoparticles while Sn/Pd produces magnetite nanoparticles. Amount of HCl used during the activation of the zeolite with SnCl2 showed a correlation between the stannous activating species and the particle size. Both Sn and SnPd activated nanocomposites show nearly narrow size distributions but only those iron oxides obtained with SnPd showed supermagnetism.

  13. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20–80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  14. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles

    Rao, Ashit; Bankar, Ashok; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-03-01

    The removal of hexavalent chromium [Cr (VI)], an important ground water pollutant by phyto-inspired Fe0/Fe3O4 nanocomposite-modified cells of Yarrowia lipolytica (NCIM 3589 and NCIM 3590), was investigated. Electron microscopy and magnetometer studies indicated an effective modification of yeast cell surfaces by the nanocomposites. The effect of pH, temperature, agitation speed, contact time and initial metal ion concentration on the removal of Cr (VI) was determined. The specific uptake values at pH 2.0 were 186.32 ± 3.17 and 137.31 ± 4.53 mg g- 1 for NCIM 3589 and NCIM 3590, respectively, when 1000 mg L- 1 of metal ion concentrations were used. The equilibrium data fitted to Scatchard, Langmuir and linearized Freundlich models suggesting that adsorption played a role in the removal of Cr (VI) ions. The surface modified yeast cells displayed higher values of Langmuir and Scatchard coefficients than the unmodified cells indicating that the former were more efficient in Cr (VI) removal. The enhanced detoxification of Cr (VI) ions by this composite material could be attributed to the reductive power of the Fe0/Fe3O4 nanocomposites as well the yeast cell surface functional groups.

  15. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate

    Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of 'smart' soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA.Fe3O4). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe3O4). Deswelling kinetic studies that were carried out at ∼60 oC in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future exploitation in the biomedical field. - Research Highlights: → Fabrication of novel, dual stimuli-responsive conetworks based on hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive), 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) and oleic-acid-coated magnetite nanoparticles (OA.Fe3O4). → Tuneable superparamagnetic behavior. → Thermoresponsive properties.

  16. Enhanced electroactivity with Li in Fe3O4/MWCNT nanocomposite electrodes

    Highlights: • Facile one-pot colloidal synthesis of Fe3O4/MWCNT composites. • Favorable utilization of the high surface area by the nanoparticles and in the Li electrochemical reactions. • Enhanced electrochemical performance (large reversible capacity, cycle life, and rate capability) of Fe3O4/MWCNT composites. - Abstract: We demonstrate a facile synthetic procedure to obtain Fe3O4/MWCNT (MWCNT = multiwalled carbon nanotube) composite electrode via the one-pot colloidal preparation method at 180 °C with a surface functionalized MWCNT. Fe3O4 nanoparticles were successfully precipitated on the surface of MWCNT with uniform size of approximately 10 nm. Fe3O4/MWCNT composite electrode exhibits a better reversible capacity, cycle life, and rate capability compared with the Fe3O4 powder electrode by higher electronic conductivity and stable structural properties with the support of MWCNT

  17. Actinides selective extractants coated Fe3O4 for analytical preconcentration

    N,N,N',N'-tetraoctyl diglycolamide (TODGA) and bis(2-ethylhexy)phosphoric acid (HDEHP) were anchored on Fe3O4 nanoparticles under different chemical conditions. TODGA coated on magnetic nanoparticles Fe3O4 (Fe3O4 at the rate TODGA) captured representative actinides Am(III) and Pu(IV) at 3 M HNO3 with a very high efficiency. Contrary to this, Fe3O4 at the rate HDEHP sorbed Pu(IV) only. The quantification of Am(III) preconcentrated in Fe3O4 at the rate TODGA was carried out by subjecting directly to γ-spectrometry. The quantification of Pu(IV) sorbed in Fe3O4 at the rate HDEHP was carried out after removal of coating in dioxane based scintillator followed by liquid scintillation counting. (author)

  18. Bio and Nanomaterials Based on Fe3O4

    Jia-Kun Xu; Fang-Fang Zhang; Jing-Jing Sun; Jun Sheng; Fang Wang; Mi Sun

    2014-01-01

    During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispers...

  19. Morphology and magnetic properties of Fe3O4-alginic acid nanocomposites: Morfologija in magnetne lastnosti nanokompozitov Fe3O4-alginska kislina:

    Andrzejewski, Bartłomiej; Czajka, Ryszard; Hilczer, Andrzej; Jurga, Stefan; Kaźmierczak, Małgorzata; Kępiński, Leszek; Łęska, Bogusława; Majchrzycki, Łukasz; Matelski, Filip; NOWICKI, Marek; Pankiewicz, Radosław; Pogorzelec-Glaser, Katarzyna

    2014-01-01

    The morphology, structure and magnetic properties of the nanocomposites of magnetite (Fe3O4) nanoparticles and alginic acid (AA) are studied. Magnetite Fe3O4 nanoparticles and the nanoparticles capped with alginic acid exhibit very distinct properties. The chemical bonding between alginic acid and the surface of magnetite nanoparticles results in the recovery of surface magnetization. On the other hand, it also leads to the enhanced surface spin disorder and unconventional behavior of the mag...

  20. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode

    A disposable biosensor for determination of hydrogen peroxide (H2O2) based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase (HRP) and graphene sheets (GS)–Nafion film modified screen-printed carbon electrode (SPCE) was fabricated. To construct the H2O2 biosensor, GS–Nafion solution was first dropped onto the surface of SPCE. Subsequently, the biocomposites of Fe3O4–Au magnetic nanoparticles coated HRP were adsorbed on the surface with the aid of an external magnetic field to fabricate the SPCE|GS–Nafion/Fe3O4–Au-HRP electrode. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry(i–t curve) were employed to study the synthesis of GS, the construction processes and electrochemical properties of the biosensor. Under optimized experimental conditions, CV demonstrated that the direct electron transfer (DET) of HRP was realized. The biosensor had an excellent performance in terms of electrocatalytic reduction toward H2O2. The linear response of the biosensor to H2O2 was in the concentration range of 2.0 × 10−5 mol/L to 2.5 × 10−3 mol/L (R = 0.9994) with a detection limit of 1.2 × 10−5 mol/L (S/N = 3). The proposed electrochemical biosensor was sensitive, rapid, disposable with low cost, fewer sample volume, easy preparation and strong anti-interference, which showed great promise for screen-determination of trace H2O2 in real samples

  1. An Ultrasensitive Electrochemiluminescence Immunoassay for Carbohydrate Antigen 19-9 in Serum Based on Antibody Labeled Fe3O4 Nanoparticles as Capture Probes and Graphene/CdTe Quantum Dot Bionanoconjugates as Signal Amplifiers

    Gan, Ning; Zhou, Jing; Xiong, Ping; Li, Tianhua; Jiang, Shan; Cao, Yuting; Jiang, Qianli

    2013-01-01

    The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran–Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9’s first antibody (CA 19-9 Ab1) on magnetic nanoparticles (dextran-Fe3O4). Secondly, the signal probes (CA 19-9 Ab2/CdTe-G), which can emit an ECL signal, were formed by attaching the secondary CA 19-9 antibody (CA 19-9 Ab2) to the surface of the CdTe-G. Thirdly, the above two probes were used for conjugating with a serial of CA 19-9 concentrations. Graphene can immobilize dozens of CdTe QDs on their surface, which can emit stronger ECL intensity than CdTe QDs. Based on the amplified signal, ultrasensitive antigen detection can be realized. Under the optimal conditions, the ECL signal depended linearly on the logarithm of CA 19-9 concentration from 0.005 to 100 pg/mL, and the detection limit was 0.002 pg/mL. Finally, five samples of human serum were tested, and the results were compared with a time-resolved fluorescence assay (TRFA). The novel immunoassay provides a stable, specific and highly sensitive immunoassay protocol for tumor marker detection at very low levels, which can be applied in early diagnosis of tumor. PMID:23685872

  2. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV–vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt > Au > Ag > CuO > Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles

  3. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    Padil, Vinod Vellora Thekkae; ?ernk, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. PMID:25636139

  4. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution

    Silica-coated magnetite nanoparticles have been synthesized successfully using a one-step electrochemical method. In this method, pure iron in a dilute aqueous sodium silicate solution that served as a silica precursor was electrooxidized. We show that the presence of silicate can significantly enhance the purity of the magnetite formed. Impurities in the form of FeOOH (found in the magnetite prepared in water) are not found. The magnetite nanoparticles produced by this method are nearly spherical with a mean size ranging from 6 to 10 nm, which is lower than the size of particles prepared in water, and this size range depends on the applied voltage and the sodium silicate concentration. The magnetite nanoparticles exhibit superparamagnetic properties with saturation magnetization ranging from 15 to 22 emu g−1, which is lower than the saturation magnetization of the Fe3O4 bulk materials (Ms = 92 emu g−1). This facile method appears to be promising as a synthetic route for producing silica-coated magnetite nanoparticles.

  5. Preparation and characterization of a magneto-polymeric nanocomposite: Fe3O4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) 'plastic films' and (2) magnetic plastic films 'magneto-polymeric nanocomposites' were prepared. Precursor solutions or 'plastisols' used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe3O4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis

  6. Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV fenton-like digestion and solid phase extraction.

    Ai, Xi; Wu, Li; Zhang, Mengni; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2014-08-27

    A UV Fenton-like digestion method was developed first time for a complete digestion of milk samples by using 1.6 g L(-1) Fe3O4 magnetic nanoparticles, 0.2% (v/v) nitric acid, and 6% (w/w) H2O2. During the digestion, the liberated As-, Sb-, and Bi-containing species were preconcentrated onto the surface of Fe3O4 magnetic nanoparticles, which were conveniently separated with a hand-held magnet and subsequently dissolved in hydrochloric acid prior to hydride generation atomic fluorescence spectrometric detection. Owing to the integration of UV Fenton-like digestion, solid phase extraction, and magnetic separation into a single step, the developed method significantly simplifies sample preparation steps and reduces chemical consumption and hazardous waste. Limits of detection of 0.0015, 0.0022, and 0.0025 ?g L(-1) were obtained for As, Sb, and Bi, respectively, using a 50 mL milk sample. The method was applied to the determination of these elements in a Certified Reference Material and milk samples. PMID:25072530

  7. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    Highlights: • Silicon was covered with carbon by thermal vapor deposition. • Carbon layer prevent exposure of silicon to reactive electrolyte. • Fe3O4 contents in the composites optimized for electrochemical performance. • Fe3O4/carbon coated Si exhibits higher electrochemical performance than raw Si. - Abstract: In this study, Fe3O4/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe3O4. Fe3O4 nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe3O4 and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe3O4 particles were homogeneously deposited on the carbon-coated Si particles. The Fe3O4/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe3O4. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes

  8. Vanillin-molecularly targeted extraction of stir bar based on magnetic field induced self-assembly of multifunctional Fe3O4@Polyaniline nanoparticles for detection of vanilla-flavor enhancers in infant milk powders.

    Wu, Jinhua; Yang, Zaiyue; Chen, Ning; Zhu, Wanying; Hong, Junli; Huang, Changgao; Zhou, Xuemin

    2015-03-15

    A molecularly imprinted stir bar was constructed based on Fe3O4@Polyaniline nanoparticles with magnetic field-induced self-assembly process. The monomer, methacrylic acid, was pre-assembled into the pre-polymers with vanillin as template by the formation of hydrogen bonds. After that, the magnetic complexes were generated by the hydrogen bonding, the hydrophobic and π-π interaction between the pre-polymers and Fe3O4@Polyaniline. The complexes were adsorbed on the surface of magnetic stir bar under the magnetic induction, and the coating of vanillin-molecularly imprinted polymers was generated by the one-step copolymerization basing on the cross linking of ethylene glycol dimethacrylate. The molecular imprinting stir bar showed superior selectivity and fast binding kinetics for vanillin, and was used for the enrichment of vanilla-flavor enhancers (vanillin, ethyl maltol and methyl vanillin) in infant milk powders. The results measured by HPLC-UV exhibited good linear ranges of 0.01-100, 0.02-100 and 0.03-100μgmL(-1) with the limit of detection of 2.5-10.0ngmL(-1), and the recoveries were 94.7-98.9%, 82.1-96.7% and 84.5-93.2% with RSD<7.2% for the three enhancers, respectively. PMID:25514645

  9. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles: Characterization and application

    Graphical abstract: Self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles and application of it for solid phase extraction of PAHs. Highlights: ► A novel sorbent for magnetic solid-phase extraction of PAHs was introduced. ► Silver was coated on Fe3O4 nanoparticles (MNPs) by reduction of AgNO3 with NaBH4. ► Bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid self-assembled on silver coated MNPs. ► Size, morphology, composition and properties of the nanoparticles were characterized. ► Extraction efficiency of the sorbent was investigated by extraction of five PAHs. - Abstract: A novel sorbent for magnetic solid-phase extraction by self-assembling of organosulfur compound, (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid), onto the silver-coated Fe3O4 nanoparticles was introduced. Due to the formation of covalent bond of S-Ag, the new coating on the silver surface was very stable and showed high thermal stability (up to 320 °C). The size, morphology, composition, and properties of the prepared nanoparticles have also been characterized and determined using scanning electron microscopy (SEM), energy-dispersive X-ray analyzer (EDX), dynamic light scattering (DLS), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). Extraction efficiency of the new sorbent was investigated by extraction of five polycyclic aromatic hydrocarbons (PAHs) as model compounds. The optimum extraction conditions for PAHs were obtained as of extraction time, 20 min; 50 mg sorbent from 100 mL of the sample solution, and elution with 100 μL of 1-propanol under fierce vortex for 2 min. Under the optimal conditions, the calibration curves were obtained in the range of 0.05–100 μg L−1 (R2 > 0.9980) and the LODs (S/N = 3) were obtained in the range of 0.02–0.10 μg L−1. Relative standard deviations (RSDs) for intra- and inter-day precision were 2.6–4.2% and 3.6–8.3%, respectively. In addition, feasibility of the method was demonstrated with extraction and determination of PAHs from some real samples containing tap water, hookah water as well as soil samples with relative recovery of 82.4–109.0% and RSDs of 3.5–11.6%.

  10. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe3O4/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe3O4 nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe3O4 nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe3O4/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe3O4, CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe3O4 loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe3O4 nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe3O4 nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe3O4 nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  11. Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-κ-carrageenan nanoparticles.

    Long, Jie; Xu, Enbo; Li, Xingfei; Wu, Zhengzong; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan; Zhan, Xiaobei

    2016-07-01

    The interactions between pullulanase and chitosans of different molecular weights (Mw) were comprehensively studied, and their applications in pullulanase immobilization onto Fe3O4-κ-carrageenan nanoparticles upon chitosan-pullulanase complexation were also evaluated. Chitosan (CS) complexation with pullulanase was found to be dependent on pH and chitosan Mw. The critical pH of structure-forming events during complexation shifted significantly (pchitosan (50kDa) compared to other chitosan types. Binding constants for the chitosan-pullulanase interaction increased in the following order: CS-500chitosan Mw. This study presents a technique for the production of immobilized pullulanase upon complexation that exhibits potential for applications in continuous syrup production. PMID:26920265

  12. Reliable methods for silica coating of Au nanoparticles.

    Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2013-01-01

    The inherent properties of silica, such as optical transparency, high biocompatibility, chemical and colloidal stability, controllable porosity, and easy surface modification, provide silica materials with a tremendous potential in biomedicine. Therefore, the coating of Au nanoparticles with silica largely contributes to enhance the important applications of metal nanoparticles in biomedicine. We describe in this chapter a number of reliable strategies that have been reported for silica coating of different types of Au nanoparticles. All descriptions are based on tested protocols and are expected to provide a reference for scientists with an interest in this field. PMID:23918330

  13. NOVEL SYNTHESIS OF PEG COATED IRON NANOPARTICLES (Fe3O4 AND IT’S EVALUATION OF CONTROLLED RELEASE KINETICS IN DRUG DELIVERY SYSTEM

    Doppalapudi Swathi

    2014-06-01

    Full Text Available Magnetic Nanoparticles (MNPs because of their high magnetic responsiveness, biodegradability, high delivery efficiency and potential targeting function is a possible material as drug delivery system, since drug –loaded MNPs can be directly injected in to solid tumors and are expected to be held in place by an external magnetic field and to release the drug in a controlled manner. In the present research study Synthesis, Characterization and in vitro rate studies of super paramagnetic Iron Nanoparticles coated with PEG has been carried out. The nanoparticle synthesized in the present study had an average particle size of ~ 30 nm. starch-based polysaccharide nanocarrier encapsulated with the drug i.e. THC and MNPs as anticancer drug delivery was constructed. This efficiently reduces tumor growth thus providing a proof of concept for the utilization of this formulation in cannabinoid-based anti-cancer therapies. Evaluation of THC loaded magnetic nanoparticles was successfully carried out and correlation coefficient (R2 value 0.999 and drug released was found to be 97% for 48hrs at pH7.0. The entrapment efficiency and drug loading of THC-MNPs in the starch based nanoparticles was found to be high.

  14. A survey of approaches for morphological, optical, and transport characterization of Fe3O4 and γ-Fe2O3 nanoparticles

    Nanoparticles’ structure, size, morphology, and surface conditions have significant influence on their performance and considerable impact on their application in biosystems. In this study some methods of nanoparticle analysis including structural x-ray diffraction, scanning electron and transmission electron microscopy size distribution and morphology characterization, superconducting quantum interference device and Faraday method magnetic and temperature dependence of specific resistance measurements, infrared spectroscopy, and laser light scattering based estimation of particle size distribution are surveyed. These methods illustrate the importance of a versatile approach to nanoparticle characterization, as the basis for their selection for particular applications. Since the methods of synthesis crucially affect the nanoparticle characteristics, the presented characterization techniques could also help to choose the most appropriate one. (paper)

  15. Electrostatic vs steric stabilization of Fe3O4 and Co0.5Fe2.5O4 nanoparticles

    Puscasu, E.; Domocos, A.; Leostean, C.; Turcu, R.; Brinza, F.; Nadejde, C.; Iacomi, F.; Creanga, D.

    2015-12-01

    Magnetic nanoparticles of magnetite/maghemite and cobalt ferrite Co0.5Fe2.5O4 were stabilized in deionized water with perchloric acid and, respectively, sodium oleate in order to prevent agglomeration and sedimentation tendency aiming further biomedical applications. Results obtained through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Nanoparticle Tracking Analysis (NTA), and Vibrating Sample Magnetometry (VSM) were discussed comparatively for the four suspensions highlighting specific microstructural and magnetic features of each type of soft magnetic colloidal nanomaterial on the background of coprecipitation method adjusting. The results entitled us to plan in the next research stage biological tests focused on such nanoparticle suspensions impact on cell cultures.

  16. Acute Phase Pulmonary Responses to a Single Intratracheal Spray Instillation of Magnetite (Fe3O4) Nanoparticles in Fischer 344 Rats

    Tada, Yukie; Yano, Norio; TAKAHASHI, Hiroshi; Yuzawa, Katsuhiro; ANDO, Hiroshi; Kubo, Yoshikazu; Nagasawa, Akemichi; Ogata, Akio; Nakae, Dai

    2012-01-01

    Iron nanomaterials are of considerable interest for application to nanotechnology-related fields including environmental catalysis, biomedical imaging, drug delivery and hyperthermia, because of their superparamagnetic characteristics and high catalytic abilities. However, information about potential risks of iron nanomaterials is limited. The present study assessed pulmonary responses to a single intratracheal spray instillation of triiron tetraoxide nanoparticles (magnetite) ...

  17. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  18. Photodegradation of Methylene Blue by TiO2-Fe3O4-Bentonite Magnetic Nanocomposite

    Wei Chen; Hongyao Xiao; Hang Xu; Tonggang Ding; Yanmei Gu

    2015-01-01

    Fe3O4-bentonite nanoparticles have been prepared by a coprecipitation technique under a nitrogen atmosphere. An aqueous suspension of bentonite was first modified with FeCl2 and FeCl3. TiO2 was then loaded onto the surface of the Fe3O4-bentonite by a sol-gel method. After sufficient drying, the colloidal solution was placed in a muffle furnace at 773 K to obtain the TiO2-Fe3O4-bentonite composite. The material has been characterized by scanning electron microscopy (SEM), X-ray diffraction (XR...

  19. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g−1) and high efficiency in lysozyme adsorption. (paper)

  20. Phase stabilization of magnetite (Fe3O4) nanoparticles with B2O3 addition: A significant enhancement on the phase transition temperature

    Topal, Uğur; Aksan, Mehmet Ali

    2016-05-01

    Magnetite nanoparticles (MNPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as drug delivery agent and heat mediators for cancer therapy. Tuning the magnetic properties of the magnetite nanoparticles with doping of foreign atoms has a crucial importance for determining the application areas of these materials and so attracts much interests. On the other hand the doping with foreign atoms requires high temperature annealing, and it causes a phase transition to the hematite phase above 400 °C. In this work the phase transition temperature from the magnetite to the hematite phase has been increased by 200 °C, which is the highest enhancement reported in literature. It was achieved by addition of the appropriate amounts of B2O3. Our experiments indicates that the 5.0 wt% of B2O3 addition stabilizes and keeps the existence of single phase magnetite up to 600 °C.

  1. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

    Patsula, Vitalii; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzic, L.; Rabyk, Mariia; Konefal, Rafal; Paruzel, Aleksandra; Šlouf, Miroslav; Herynek, V.; Gajović, S.; Horák, Daniel

    2016-01-01

    Roč. 8, č. 11 (2016), s. 7238-7247. ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LH14318; GA MŠk(CZ) LO1507; GA MŠk(CZ) ED1.1.00/02.0109 EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.723, year: 2014

  2. Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties

    The purpose of this study was to prepare human serum albumin (HSA) microspheres with Fe3O4 magnetic nanoparticles for tumor target therapy. Fe3O4 was obtained by liquid-phase coprecipitation; HSA-coated magnetic particles were attained by solidification at high temperature. The result was that nanosized Fe3O4 is a cubic crystal by XRD and the average size is 18.7 nm; the average size of HSA-coated magnetic particles is 341 nm. Fe3O4 magnetic nanoparticles coated with HSA can be used for targeted-drug carriers with target-orientation and sustained-release properties

  3. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2μgFe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed. PMID:26674701

  4. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier.

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380 mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10-2000 nM and 2-720 μM for MO with a detection limit of 3 nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained. PMID:26478286

  5. Microwave absorption property of aligned MWCNT/Fe3O4

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe3O4 nanoparticles using the wet chemical method and the resulting MWCNT/Fe3O4 was then used as a filler in a MWCNT/Fe3O4/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe3O4 was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe3O4 to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe3O4 aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10–11 GHz range. The 5 wt% parallel aligned MWCNT/Fe3O4 showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz. - Highlights: • Multiwall carbon nanotube decorated with Fe3O4 nanoparticles (MWCNT/Fe3O4) using the wet chemical method. • MWCNT/Fe3O4 aligned in an epoxy resin matrix by being exposed to a weak magnetic field. • Aligned magnetic carbon nanotubes were parallel and perpendicular to the electric field of incident electromagnetic wave. • The effect of nanotubes orientation with respect to the electric field on the microwave absorption property of MWCNT/Fe3O4/epoxy resin composite was investigated. • We obtained that alignment of MWCNT/Fe3O4, parallel to incident electric field leads to a strong improvement in absorption property of composite

  6. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO2. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  7. Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  8. The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite

    Highlights: •Electrochemical characteristics on nanoparticles and nanocomposites were compared. •The reasons for superior electrochemical activity of Fe3O4@Pt were discussed. •We report an excellent nitrite biosensor based on Fe3O4@Pt. •Electro-analytical parameters of nitrite at Fe3O4@Pt were evaluated in detail. -- Abstract: The electrochemical differences (such as charge transfer resistivity, electroactive surface, standard electron transfer rate constant, adsorption amount and analytical performance of nitrite sensor) between Fe3O4@Pt nanocomposites with two elements and core–shell structure and NPs (Fe3O4 nanoparticles and Pt nanoparticles) with single component and simple structure were investigated in detail. Above those investigations, it is believed that for the Fe3O4@Pt core–shell nanocomposites, Pt shell could provide more electro-catalytic activity while magnetic Fe3O4 core could provide larger surface area and facilitate the purification of nanocomposites. After that, Fe3O4@Pt nanocomposites modified GCE served as a nitrite sensor. Electrochemical parameters of nitrite at Fe3O4@Pt nanocomposites such as electron transfer number, electron transfer coefficient, standard heterogeneous rate constant and electron diffusion coefficient were evaluated. With the proposed electrochemical sensors, nitrite in tap water and orange juice could be detected. This investigation suggested that core–shell nanocomposites were superior for the fabrication of electrochemical sensors

  9. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering

    Malvindi, Maria Ada; De Matteis, Valeria; Galeone, Antonio; Brunetti, Virgilio; Anyfantis, George C.; Athanassiou, Athanassia; Cingolani, Roberto; Pompa, Pier Paolo

    2014-01-01

    We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surfac...

  10. Removal of Cr(VIin water by Fe3O4/IP6

    CHEN Lu

    2014-12-01

    Full Text Available The preparation of functional ferroferric oxide (Fe3O4 magnetic nanoparticles is widely concerned.However,during their preparation,it is difficult to control the morphology of Fe3O4 nanoparticles and also a serious agglomeration exists,greatly restricting their applications.In present paper,an economical and ′green′ reagent-phytic acid (IP6 can form micelle in the water and then the nanoparticles can grow in a soft template.The as-prepared Fe3O4/IP6 exhibited a good stability and high dispersion.Fe3O4/IP6 can chelate with Cr (VI due to its phosphate structure.The Fe3O4/IP6 chelated with Cr (VI can be removed conveniently from water using an external magnet.Fe3O4/IP6 nanocomposites have a good adsorption capacity to Cr (VI within a short time (10 min.Additionally,the effect of pH on adsorption efficiency was studied.

  11. [Detection of Ethoprophos Using SERS Coupled with Magnetic Fe3O4/Ag Composite Materials].

    Yuan, Rong-hui; Liu, Wen-han; Teng, Yuan-jie; Nie, Jing; Ma, Su-zhen

    2015-05-01

    The magnetic Fe3O4/Ag composite materials were synthesized by reducing AgNO3 with sodium citrate in the presence of Fe3O4 which were prepared by co-precipitation firstly. The enrichment and extraction of ethoprophos assembled on Fe3O4/Ag were achieved with the applied magnetic field. The different concentrations of ethoprophos adsorbed on Fe3O4/Ag were analyzed by SERS and it was showed that the trace analysis of ethoprophos had been established, while the enhancement factor of probe molecules on Fe3O4/Ag was 1. 48 X 10(5). The structure and morphology of Fe3O4/Ag were characterized by UV-Vis, EDX and TEM. Compared with Ag, the UV-Vis absorption peak of Fe3O4/Ag shifted from 417 to 369 nm, and the UV-Vis of Fe3O4 almost had no characteristic absorption peak in this region. At the same time, it was showed that the surface properties of Fe3O4/Ag changed with Raman enhancement effect during the aggregation process of Ag around the surface of Fe3O4. Further EDX images of micro area element analysis suggested that the chemical composition of products were Ag, Fe and O while the Cu peak was from the copper mesh. In addition, TEM images indicated that the average particle size of Fe3O4 was between 30 and 60 nm with shape tended to be spherical. And the silver nanoparticles were attached to the Fe3O4 particles and agglomeration occured. Density functional theory calculations which can be applied to qualitative judgment of molecule was carried out to obtain the molecular optimization structure and theoretical Raman spectra. It was found that the stabilized SERS signals were detected under the saturated adsorption equilibrium after 15 min. Finally, Raman response of ethoprophos was achieved with lower than 2 X 10(-8) mol . L-1 , indicatint that the established method had reached the requirements of ethoprophos residues detection and could be used for analysis of sulfur-containing organophosphorus pesticide. PMID:26415443

  12. Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite

    Graphical abstract: We successfully developed an easier and more effective method to prepare a magnetic polymer nanocomposite by in situ radical polymerization of 2-hydroxyethyl methacrylate in the presence of the surface-modified Fe3O4 nanoparticles with a coupling agent in supercritical CO2. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal. Highlights: → A magnetic polymer nanocomposite (Fe3O4-g-PHEMA) was successfully synthesized via in-situ dispersion polymerization in supercritical carbon dioxide. → The Fe3O4 nanoparticles were well dispersed in the polymer matrix. → The resulting nanocomposites have an excellent superparamagnetic property, which is favorable for their bio-applications. → This new environmentally benign green synthetic route offers advantages of avoiding the use of organic solvents as well as easy separation of solvent. - Abstract: Poly(2-hydroxyethyl methacrylate) (PHEMA) and magnetic nanoparticle (Fe3O4) hybrid nanocomposite was synthesized by dispersion polymerization in supercritical carbon dioxide (scCO2) using a copolymeric stabilizer, poly[(2-dimethylamino)ethyl methacrylate-co-1H,1H-perfluorooctyl methacrylate] (PDMAEMA-co-PFOMA). Fe3O4 nanoparticles were first surface-modified with a silane coupling agent methacryloxypropyltrimethoxysilane (MPTMS), which provides a reactive C=C bond and can copolymerize with 2-hydroxyethyl methacrylate (HEMA). After immobilization of the silane coupling agent, polymer chains were successfully grafted onto the surface of Fe3O4, resulting in the formation of core-shell nanostructure. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal.

  13. Adsorption and desorption studies of lysozyme by Fe3O4-polymer nanocomposite via fluorescence spectroscopy

    Koc, Kenan; Alveroglu, Esra

    2015-06-01

    The work have been undertaken in this study is to synthesis and characterize Fe3O4-polymer nanocomposites which are having different morphological properties. Also, investigation of the adsorption and desorption behaviour of lysozyme onto Fe3O4-polymer nanocomposites have been studied. Fe3O4 nanoparticles, synthesized by in situ in polyacrylamide hydrogels, show super-paramagnetic behaviour and saturation magnetization of composite material have been tuned by changing the hydrogel conformation. Adsorption and desorption studies of lysozyme were followed by using pure water at room temperature via fluorescence measurements. Fluorescence measurements showed that, the composite materials adsorbed lysozyme molecules less than 20 s and higher monomer concentration of composite materials cause faster adsorption. Besides, structure of lysozyme molecules were not changed during the adsorption and desorption. As a result Fe3O4-polymer nanocomposites could be used for drug delivery, protein separation and PAAm gels could be used for synthesis of magnetic composites with varying magnetic properties.

  14. Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4-ZrO2-N- cetylpyridinium, and their subsequent determination by HPLC with UV detection

    The solid phase extraction (SPE) is described for preconcentration of the antidepressant drugs amitriptyline and nortriptyline prior to their determination by HPLC with UV detection. It is based on the use of water-dispersible core-shell nanoparticles (NPs) of the Fe3O4-ZrO2-N-cetylpyridinium type. The positively charged surfactant N-cetylpyridinium forms mixed aggregates with the drugs on the surface of the core-shell and thereby improves the adsorption of amitriptyline and nortriptyline through hydrophobic and/or ionic interactions. Their extraction depends on the type and amount of surfactant, sample pH, extraction time, desorption conditions, sample volume and amount of NPs that were optimized by application of experimental design. The enrichment factors are 220 and 250, respectively, for amitriptyline and nortriptyline, and the detection limits are 0.04 and 0.08 ng·mL-1. This protocol enables accurate and precise quantification of the two drugs in complex and low content samples. It was applied to the determination of the two drugs in plasma samples with relative recoveries in the range from 89 to 105 % and RSDs less than 4 %. (author)

  15. Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles.

    Mashhadizadeh, Mohammad Hossein; Amoli-Diva, Mitra; Shapouri, Mahmoud Reza; Afruzi, Hossein

    2014-05-15

    Extraction, pre-concentration, and determination of trace amounts of silver, cadmium, copper, mercury, and lead from some food samples were investigated by magnetic solid phase extraction using Fe3O4 nanoparticles coated with 3-(trimethoxysilyl)-1-propanethiol and modified with ethylene glycol bis-mercaptoacetate as a new adsorbent. SEM, X-ray diffraction, and FT-IR were used to characterise the adsorbent. Metal ions were measured using ICP-OES, except for mercury, which was determined by CV-AAS method. Various factors affecting the extraction and desorption of target metal ions were investigated. 1 mL of 1 mol/L HCl and 5% thiourea was used as eluent. The detection limits of 0.07, 0.06, 0.09, 0.01, and 0.08 ng/mL were obtained for silver, cadmium, copper, mercury, and lead with enrichment factors of 240, 294, 297, 291, and 236, respectively. The method was used for determination of target metal ions in rice, canned tuna fish, and tea leaves. PMID:24423536

  16. Solid phase extraction of Cd(II) and Pb(II) ions based on a novel functionalized Fe3O4@ SiO2 core-shell nanoparticles with the aid of multivariate optimization methodology.

    Tadjarodi, Azadeh; Abbaszadeh, Abolfazl; Taghizadeh, Mohsen; Shekari, Nafiseh; Asgharinezhad, Ali Akbar

    2015-04-01

    This work describes novel Fe3O4@SiO2 core-shell nanoparticles functionalized with phenyl isothiocyanate and its application in the preconcentration of Cd(II) and Pb(II) ions. The parameters affecting the preconcentration procedure were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting the sorption step, while four variables (type, volume and concentration of the eluent; and elution time) were selected as effective factors of elution step in the optimization study. Following the sorption and elution, the ions were quantified by FAAS. The limits of detection were 0.05 and 0.9ngmL(-1) for Cd(II) and Pb(II) ions, respectively. The relative standard deviations were less than 6.4%. The sorption capacity (in mg g(-1)) of this new sorbent is 179 for Cd(II) and 156 for Pb(II). Finally, this nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions from fish, sediment, soil, and water samples and satisfactory results were obtained. PMID:25686967

  17. Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II)

    We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L−1 concentration range (R2 > 0.998), limits of detection in the range from 0.2 to 2.0 μg L−1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water. (author)

  18. Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content

    Grau-Atienza, A.; Serrano, E.; Linares, N.; Svedlindh, P.; Seisenbaeva, G.; García-Martínez, J.

    2016-05-01

    Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.

  19. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  20. Synthesis and characterization of Fe3O4 magnetic nanofluid

    Javier A Lopez

    2010-06-01

    Full Text Available Ferrofluids are colloidal systems composed of single domain of magnetic nanoparticles dispersed in a liquid carrier. In the present work, Fe3O4 magnetic ferrite nanoparticles were synthesized by chemical coprecipitation method, and were coated with oleic acid as surfactant agent. Magnetic properties of nanoparticles in ferrofluids were investigated with the aid of a vibrating sample magnetometer (VSM at room temperature. Superparamagnetic behavior, characteristic of magnetic nanoparticles, was determined from the hysteresis loop of M vs. H measurements. The sample as powder was characterized by means of X-ray diffraction. XRD pattern result shows the presence of the most intense peak corresponds to the (311 crystallographic orientation of the spinel phase of Fe3O4 magnetic nanoparticles. The mean size of the nanoparticles was determined from the X-ray diffraction pattern by using the Scherrer approximation. The particle size was calculated to be 9.64 nm. Atomic Force Microscopy was used to visualize the morphology of nanoparticles and to measure their diameter. The AFM method showed an average nanoparticles diameter of D N = 15.3 nm. FTIR absorption spectroscopy was used to confirm the formation of Fe-O bonds, allowing to identify the inverse ferrites spinel structure, as well as, the presence of other chemical substances adsorbed on the surface of particles.Los ferrofluidos son sistemas coloidales compuestos de nanopartculas magnticas con mono-dominios magnticos, dispersas en un lquido portador. En el presente trabajo, nanopartculas magnticas de ferrita (Fe3O4 se sintetizaron por el mtodo de co-precipitacin qumica, y se recubrieron con cido oleico como agente surfactante. Las propiedades magnticas de las nanopartculas en el ferrofluido fueron investigadas por medio de un magnetmetro de muestra vibrante (VSM a temperatura ambiente, mostrando un comportamiento superparamagntico, caracterstico de estas nanopartculas magnticas. Esto se determin a partir de la curva de histresis de M vs H. La muestra en polvo se caracteriz por medio de Difraccin de Rayos X. El patrn DRX resultante muestra la presencia del pico ms intenso correspondiente a la orientacin cristalogrfica (311 de la fase espinel para las nanopartculas magnticas de Fe3O4. El tamao medio de las nanopartculas se determin a partir del patrn de difraccin de rayos X utilizando la aproximacin de Scherrer, siendo este tamao medio de 9,64 nm. La microscopa de fuerza atmica, se utiliz para visualizar la morfologa de las nanopartculas y para determinar su dimetro. Las medidas de AFM muestran un dimetro promedio para las nanopartculas de D N = 15,3 nm La espectroscopia de absorcin FTIR se utiliz para confirmar la formacin de los enlaces Fe-O, permitiendo identificar la estructura tipo espinela de la ferrita, as como la presencia de otras sustancias qumicas adsorbidas en la superficie de las partculas.

  1. Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries

    Highlights: ? Fe3O4 nanoparticles dispersed homogeneously on graphene nanosheets were synthesized by hydrothermal route. ? The Fe3O4/graphene nanocomposite as the anode material for lithium ion batteries showed a high reversible specific capacity of 771 mAh g-1 during up to 50 cycles and good rate capability. ? The simple and low-cost method provides a potential approach for fabricating other graphene based materials. - Abstract: Using hydrothermal method, Fe3O4/graphene nanocomposite is prepared by synthesizing Fe3O4 particles in graphene. The synthesized Fe3O4 is nano-sized sphere particles (100-200 nm) and uniformly distributed on the planes of graphene. Fe3O4/graphene nanocomposite as anode material for lithium ion batteries shows high reversible specific capacity of 771 mAh g-1 at 50th cycle and good rate capability. The excellent electrochemical performance of the nanocomposite can be attributed to the high surface area and good electronic conductivity of graphene. Due to the high surface area, graphene can prevent Fe3O4 nanoparticles from aggregating and provide enough space to buffer the volume change during the Li insertion/extraction processes in Fe3O4 nanoparticles.

  2. Magnetic composite nanofibers fabricated by electrospinning of Fe3O4/gelatin aqueous solutions

    Graphical abstract: Superparamagnetic Fe3O4/GE composite nanofibers with saturation magnetization of 12.87 em? g?1 were prepared from gelatin aqueous solution at an elevated temperature by electrospinning. - Highlights: Electrospinning GE aqueous solution at higher temperature. Presenting a simple and effective technique, combining wet blending with high temperature electrospinning to prepare magnetic composite nanofibers. Developing composite nanofibers with higher superparamagnetic properties is expected to be useful in application for the biomedical field. - Abstract: We have fabricated magnetic composite nanofibers containing superparamagnetic Fe3O4 nanoparticles by the electrospinning method. Highly dispersed Fe3O4 magnetic nanoparticles were synthesized by one-step co-precipitation of Fe2+/Fe3+ under an alkaline condition with 4 wt% poly(vinyl alcohol) (PVA) aqueous solution as the stabilizer. Gelatin (GE) was used as a polymeric matrix for fabricating the nanocomposites. The prepared Fe3O4/GE composite nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. These composite nanofibers show uniform and continuous morphology with the Fe3O4 nanoparticles embedded in the nanofibers. By studying the magnetic properties of the Fe3O4/GE composite nanofibers, we confirm that the composite nanofibers possess superparamagnetic properties with a high saturated magnetization (Ms = 12.87 em? g?1) at room temperature. The features of this approach for getting one-dimensional magnetic nanostructure are its simplicity, effectiveness and safety. The Fe3O4/GE nanofibers with superparamagnetic properties would be potentially applied in biomedical field

  3. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  4. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method.

    Kalantari, Katayoon; Bin Ahmad, Mansor; Shameli, Kamyar; Khandanlou, Roshanak

    2013-01-01

    The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94-0.93 nm); therefore, Fe(3)O(4) nanoparticles formed on the exterior surface of talc, with an average size of 1.95-2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe(3)O(4) nanocomposites may have potential applications in the chemical and biological industries. PMID:23696700

  5. Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions

    Wu, Han-Chun; Coilein, Cormac .; Abid, Mourad; Mauit, Ozhet; Syrlybekov, Askar; Khalid, Abbas; Xu, Hongjun; Gatensby, Riley; Jing Wang, Jing; Liu, Huajun; Yang, Li; Duesberg, Georg S.; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2015-11-01

    Magnetite is a half-metal with a high Curie temperature of 858?K, making it a promising candidate for magnetic tunnel junctions (MTJs). Yet, initial efforts to exploit its half metallic nature in Fe3O4/MgO/Fe3O4 MTJ structures have been far from promising. Finding suitable barrier layer materials, which keep the half metallic nature of Fe3O4 at the interface between Fe3O4 layers and barrier layer, is one of main challenges in this field. Two-dimensional (2D) materials may be good candidates for this purpose. Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMD) semiconductor with distinctive electronic, optical, and catalytic properties. Here, we show based on the first principle calculations that Fe3O4 keeps a nearly fully spin polarized electron band at the interface between MoS2 and Fe3O4. We also present the first attempt to fabricate the Fe3O4/MoS2/Fe3O4 MTJs. A clear tunneling magnetoresistance (TMR) signal was observed below 200?K. Thus, our experimental and theoretical studies indicate that MoS2 can be a good barrier material for Fe3O4 based MTJs. Our calculations also indicate that junctions incorporating monolayer or bilayer MoS2 are metallic.

  6. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

    Tran, Minh Thi; Nguyen, Thi Huyen Trang; Vu, Quoc Trung; Nguyen, Minh Vuong

    2016-03-01

    The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25-30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption-desorption isotherm of samples at 77 K at a relative pressure P/ P 0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH = 7. In the solution with pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  7. Mössbauer study of stability and growth confinement of magnetic Fe3O4 drug carrier

    Bare Fe3O4 and Fe3O4/zeolite composites have been investigated by Mössbauer spectroscopy. A confined growth of the nanoparticles has been observed after introduction of zeolite in the process of precipitation. Increase in the concentration of zeolite further decrease the particle size. A comparative study on the synthesis with zeolites 13x and ZSM5 has been done. Annealing on these nanoparticles shows that apart from the confinement of nanoparticles, zeolite enhances stability on the nanoparticles

  8. Core-Shell Nanostructure of α-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl Orange

    Yang Tian

    2011-01-01

    Full Text Available Fe3O4 nanoparticle was synthesized in the solution involving water and ethanol. Then, α-Fe2O3 shell was produced in situ on the surface of the Fe3O4 nanoparticle by surface oxidation in molten salts, forming α-Fe2O3/Fe3O4 core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe3O4 nanoparticles were oxidized. Furthermore, the obtained α-Fe2O3/Fe3O4 core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed that α-Fe2O3/Fe3O4 nanoparticles were more efficient than the self-prepared α-Fe2O3 nanoparticles. At the same time, the photocatalyzer was recyclable by applying an appropriate magnetic field.

  9. Polymide/Fe3O4-carbonized Membranes for Gas Separation

    ZHAO Xuan-Ying,WANG Tong-Hua,LI Lin,LIU Ying,CAO Yi-Ming

    2010-07-01

    Full Text Available Novel functional carbon membranes for gas separation were designed and prepared by incorporating Fe3O4 nanoparticles into carbon membranes precursor polyimide. The assynthesized membranes were characterized by TEM, XRD and VSM. The effects of Fe3O4 addition and the final pyrolysis temperature on the gas permeability were investigated. The results show that Fe3O4 nanoparticles transformed into other phase morphologies are helpful to form the graphite-like layers during the pyrolysis process, which make the membrane with two types of carbon structure : amorphous carbon and graphite-like layers. All the functional carbon membranes exhibit magnetism. Single gas permeation test results show that the assynthesized membranes exhibit an outstanding molecular sieving capability together with high gas permeability. The gas permeability of H2 is 61 times higher than the pure carbon membrane and the H2/CO2 selectivity is also improved. Fe3O4 addition and the final pyrolysis temperature siginificantly impair the gas permeability. When the Fe3O4 content is 20wt%, the permeabilities of pure gas H2, CO2, O2, N2, CH4 in the functional carbon membrane are 15476, 4385, 1565, 193 and 114 Barrers (1Barrer=110-10 cm3 (STP cm/(cm2scmHg, respecticvely. The final pyrolysis temperature also has a remarkable effect on the gas separation performance.

  10. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08624h

  11. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability.

    Shiomi, Shohei; Kawamori, Makoto; Yagi, Shunsuke; Matsubara, Eiichiro

    2015-12-15

    With the recent development of nanotechnology, enhancement of the stability of nanomaterials is becoming ever more important for their practical applications. We studied the silica-coating of Cu nanoparticles and the enhanced stability of silica-coated Cu nanoparticles to oxidation. The metallic nanoparticles are easily oxidized and agglomerated compared with the bulk metals because the nanoparticles possess large specific surfaces. The Cu nanoparticle is one of the most difficult nanoparticles to be handled due to its absence of the oxidation stability. In the synthesis of silica-coated Cu nanoparticles via a sol-gel process using tetraethyl orthosilicate, the addition of NH3 as a catalyst of sol-gel reaction yielded homogeneous silica-coating. However, a large amount of Cu nanoparticles is instantly dissolved by forming