WorldWideScience

Sample records for scanning fuel

  1. Gamma scanning of the irradiated HANARO fuels

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  2. Magnetic scanning of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Fiarman, S.; Moodenbaugh, A.

    1980-01-01

    Nondestructive assay (NDA) techniques are available both for fresh and spent fuel, but generally are too time consuming and do not uniquely identify an assembly. A new method is reported to obtain a signature from a magnetic scan of each assembly. This scan is an NDA technique that detects magnetic inclusions. It is potentially fast (5 min/assembly), and may provide a unique signature from the magnetic properties of each fuel assembly

  3. Gamma scanning of mixed carbide and oxide fuel pins irradiated in FBTR

    International Nuclear Information System (INIS)

    Jayaraj, V.V.; Padalakshmi, M.; Ulaganathan, T.; Venkiteswaran, C.N.; Divakar, R.; Joseph, Jojo; Bhaduri, A.K.

    2016-01-01

    Fission in nuclear fuels results in a number of fission products that are gamma emitters in the energy range of 100 keV to 3 MeV. The gamma emitting fission products are therefore amenable for detection by gamma detectors. Assessment of the fission product distribution and their migration behavior through gamma scanning is important for characterizing the in reactor behavior of the fuel. Gamma scanning is an important non destructive technique used to evaluate the behavior of irradiated fuels. As a part of Post Irradiation Examinations (PIE), axial gamma scanning has been carried out on selected fuel pins of the FBTR Mark I mixed carbide fuel sub-assemblies and PFBR MOX test fuel sub-assembly irradiated in FBTR. This paper covers the results of gamma scanning and correlation of gamma scanning results with other PIE techniques

  4. Rapid scanning system for fuel drawers

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert

  5. Measuring the plutonium distribution in fuel elements by the gamma scanning method

    International Nuclear Information System (INIS)

    Gorobets, A.K.; Leshchenko, Yu.I.; Semenov, A.L.

    1982-01-01

    An on-line system designed for measuring Pu distribution in the length of fresh fuel elements with vibrocompacted UO 2 -PuO 2 fuel rods by the γ-scanning method is described. An algorithm for measurement result processing and the procedure of determination of calibration parameters necessary for the valid signal separat.ion by means of a two-channel analyzer and for evaluation of the self-absorption effect are considered. The device scanning unit consists of two NaI(Tl) detectors simultaneously detecting γ-radiation from the opposite sides of a measured fuel rod section. The cesium source with Esub(γ)=660 keV is used for fuel scanning. On the base of the analysis of the results obtained when studying the BOR-60 experimental fuel elements with fuel rods of 400 mm long by means of the described device clusion is made that fuel element scanning during 20 min (scanning step is 4 mm, measuring time at each step is 10 s) makes it possible to determine Pu distribution with the error less than +-4% at the confidence probability of 0.68

  6. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  7. Fuel assembly identification by magnetic scanning

    International Nuclear Information System (INIS)

    Badurek, G.

    1986-09-01

    In order to identify individual fuel assemblies by a magnetic fingerprint, investigations were made on iron inclusions in fuel elements and a method was developed to measure these by magnetically scanning the element. The fuel assembly is drawn with constant speed through a homogeneous magnetic field to magnetize iron inclusions. Resulting inhomogeneous magnetic dipole fields induce a voltage difference in pick up coils which is proportional to the mass of the inclusion. Using lock-in technique 3 mg pieces of steel wire on the surface of the fuel element were detected while the lower limit for the center of an assembly for ferromagnetic spheres was 50 mg. In single rods ferromagnetic samples of 1 mg were detected regardless of geometric form or location. With minor modifications of the measuring procedure the sensitivity limit can be improved to about 10 mg at the center of an assembly. In the KWU-fuel at Zwentendorf no iron inclusions were found

  8. Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels

    International Nuclear Information System (INIS)

    Hilton, Bruce A.; McGrath, Christopher A.

    2008-01-01

    The U. S. Global Nuclear Energy Partnership / Advanced Fuel Cycle Initiative (GNEP/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. A micro-gamma scan system is being developed to analyze the radial distribution of fission products, such as Cs-137, Cs-134, Ru-106, and Zr-95, in irradiated fuel cross-sections. The micro-gamma scan system consists of a precision linear stage with integrated sample holder and a tungsten alloy collimator, which interfaces with the Idaho National Laboratory (INL) Analytical Laboratory Hot Cell (ALHC) Gamma Scan System high purity germanium detector, multichannel analyzer, and removable collimators. A simplified model of the micro-gamma scan system was developed in MCNP (Monte-Carlo N-Particle Transport Code) and used to investigate the system performance and to interpret data from the scoping studies. Preliminary measurements of the micro-gamma scan system are discussed. (authors)

  9. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sihm Kvenangen, Karen

    2007-06-15

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation.

  10. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Sihm Kvenangen, Karen

    2007-06-01

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation

  11. Automatic Gamma-Scanning System for Measurement of Residual Heat in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Osifo, Otasowie

    2007-03-01

    In Sweden, spent nuclear fuel will be encapsulated and placed in a deep geological repository. In this procedure, reliable and accurate spent fuel data such as discharge burnup, cooling time and residual heat must be available. The gamma scanning method was proposed in earlier work as a fast and reliable method for the experimental determination of such spent fuel data. This thesis is focused on the recent achievements in the development of a pilot gamma scanning system and its application in measuring spent fuel residual heat. The achievements include the development of dedicated spectroscopic data-acquisition and analysis software and the use of a specially designed calorimeter for calibrating the gamma scanning system. The pilot system is described, including an evaluation of the performance of the spectrum analysis software. Also described are the gamma-scanning measurements on 31 spent PWR fuel assemblies performed using the pilot system. The results obtained for the determination of residual heat are presented, showing an agreement of (2-3) % with both calorimetric and calculated data. In addition, the ability to verify declared data such as discharge burnup and cooling time is demonstrated

  12. Some elaborating methods of gamma scanning results on irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Sternini, E.

    1979-01-01

    Gamma scanning, as a post-irradiation examination, is a technique which provides a large number of informations on irradiated nuclear fuels. Power profile, fission products distribution, average and local burn-up of single elements structural and nuclear behaviour of fuel materials are examples of the obtained informations. In the present work experimental methods and theoretical calculations used at the CNEN hot cell laboratory for the mentioned purposes are described. Errors arising from the application of the gamma scanning technique are also discussed

  13. The Study on Radioactive Nuclide Distributions within a Fuel Rod by Tomographic Gamma Scanning Method

    International Nuclear Information System (INIS)

    Quanhu, Zhang; Lee, H. K.; Hong, K. P.; Choo, Y. S.; Kim, D. S.

    2005-06-01

    Based on the specified need of the IMEF, the feasibility of Tomographic Gamma Scanning (TGS) technique has been investigated for its potential for non-destructive gamma scanning measurements of irradiated fuel rods. TGS technique has been developed for determining some radioactive isotopes' distributions of a fuel rod in hot cell. The results obtained from the simulation model extracting from real gamma scanning experimental condition in this work by new developed computer simulation codes confirmed that the gamma emission TGS technique has potential for determination of radioactive isotopes' distributions of a fuel rod. In order to verify the simulation codes, we have designed several computation schemes for both 3 by 3 and 10 by 10 fuel rod model under present situation at M1 hot cell in IMEF. The results which relative errors are less than 10% show that we have simulated and implemented determination of radioactive isotopes' distributions on simulated fuel rod by TGS technique successfully

  14. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Harrison, T.A.; Simpson, J.A.H.; Nabielek, H.

    1983-04-01

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  15. Technical Development of Gamma Scanning for Irradiated Fuel Rod after Upgrade of System in Hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, Hee Moon; Baik, Seung Je; Yoo, Byung Ok; Choo, Yong Sun

    2007-06-15

    Non-destructive test system was installed at hot-cell(M1) in IMEF(Irradiated Materials Examination Facility) more than 10 years ago for the diametric measurement and gamma scanning of fuel rod. But this system must be needed to be remodeled for the effective operations. In 2006, the system was upgraded for 3 months. The collimator bench can be movable with horizontal direction(x-direction) by motorized system for sectional gamma scanning and 3-dimensional tomography of fuel rod. So, gamma scanning for fuel rod can be detectable by x, y and rotation directions. It may be possible to obtain the radioactivities with radial and axial directions of pellet. This system is good for the series experiments with several positions. Operation of fuel bench and gamma detection program were linked each other by new program tools. It can control detection and bench moving automatically when gamma inspection of fuel rod is carried out with axial or radial positions. Some of electronic parts were added in PLC panel, and operating panel was re-designed for the remote control. To operate the fuel bench by computer, AD converter and some I/O cards were installed in computer. All of software were developed in Windows-XP system instead of DOS system. Control programs were made by visual-C language. After upgrade of system, DUPIC fuel which was irradiated in HANARO research reactor was detected by gamma scanning. The results were good and operation of gamma scanning showed reduced inspection time and easy control of data on series of detection with axial positions. With consideration of ECT(Eddy Current Test) installation, the computer program and hardware were set up as well. But ECT is not installed yet, so we have to check abnormal situation of program and hardware system. It is planned to install ECT in 2007.

  16. Deriving Fuel Mass by Size Class in Douglas-fir (Pseudotsuga menziesii Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Lloyd Queen

    2011-08-01

    Full Text Available Requirements for describing coniferous forests are changing in response to wildfire concerns, bio-energy needs, and climate change interests. At the same time, technology advancements are transforming how forest properties can be measured. Terrestrial Laser Scanning (TLS is yielding promising results for measuring tree biomass parameters that, historically, have required costly destructive sampling and resulted in small sample sizes. Here we investigate whether TLS intensity data can be used to distinguish foliage and small branches (≤0.635 cm diameter; coincident with the one-hour timelag fuel size class from larger branchwood (>0.635 cm in Douglas-fir (Pseudotsuga menziesii branch specimens. We also consider the use of laser density for predicting biomass by size class. Measurements are addressed across multiple ranges and scan angles. Results show TLS capable of distinguishing fine fuels from branches at a threshold of one standard deviation above mean intensity. Additionally, the relationship between return density and biomass is linear by fuel type for fine fuels (r2 = 0.898; SE 22.7% and branchwood (r2 = 0.937; SE 28.9%, as well as for total mass (r2 = 0.940; SE 25.5%. Intensity decays predictably as scan distances increase; however, the range-intensity relationship is best described by an exponential model rather than 1/d2. Scan angle appears to have no systematic effect on fine fuel discrimination, while some differences are observed in density-mass relationships with changing angles due to shadowing.

  17. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  18. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  19. Spent fuel scanning using the gamma spectrometry bench at Osiris. Power and burnup determination

    International Nuclear Information System (INIS)

    Cerles, J.-M.; Simonet, Genevieve.

    1976-01-01

    The Saclay Nuclear Research Center is provided with an original gamma spectrometry facility located inside the pool of the Osiris reactor. It is intended for the gamma scanning of fuel elements irradiated in Osiris or elements of any other origin. The principal characteristics of this facility are given. Special emphasis is put on its [fr

  20. Measurement of the relative power density distribution of the IPEN/MB-01 reactor, using a fuel rod gamma scanning technique

    International Nuclear Information System (INIS)

    Carneiro, Alvaro Luiz Guimaraes

    1996-01-01

    This work presents a measurement methodology for determination of radial and axial relative power density distribution of the IPEN/MB-01 Reactor core by means of the fuel rod gamma scanning. The methodology is based on the proportionality between gamma activity emitted by the radioactive decay of the fission products and power density. The scanning technique consists of counting gamma radiation above 0,6 MeV along the active area of the fuel rod, getting a distribution profile. The experimental results will be used as a benchmark for qualification and to establish possible deviations for the calculational methodology currently used at IPEN. The comparison of the calculated and measured results showed good agreement. (author)

  1. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  2. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  3. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  4. Scanning electron microscopy analysis of fuel/matrix interaction layers in highly-irradiated U-Mo dispersion fuel plates with Al and Al-Si alloy matrices

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D. Jr; Jue, Jan Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adom B.; Medvedev, Pavel; Madden, James; Wachs, Dan; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory (United States)

    2014-04-15

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifically, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (-4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

  5. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  6. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  7. Estimation of burnup with cesium isotopes based on gamma-scanning of a instrumented fuel capsule(02F-11K) in hot-cell

    International Nuclear Information System (INIS)

    Song, Ung Sup; Kim, Hee Moon; Park, Dae Gyu; Paik, Seung Je; Lee, Hong Gi; Choo, Yong Sun; Hong Kwon Pyo

    2004-01-01

    Many experimental inspection have been performed to obtain the burnup of fuel. In the case, chemical analysis were popular with high reliability. High radioactivity of fuel was severe problem during destructive procedure. Afterward, many researchers have studied calculation of burnup using gamma detector as the non-destructive method. methodologies of gamma-scanning test have been developed as well as higher accuracy of detector. Generally, Cs-137 and Cs-134 are standard isotopes for long-term cooling spent fuel to estimate burnup, because atomic ratio of them follows the linearity with burnup

  8. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  9. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  10. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  11. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  12. Gamma scanning equipment for nuclear safeguards

    International Nuclear Information System (INIS)

    De Grandi, G.; Stanchi, L.

    1975-01-01

    Many reasons justify the use of gamma techniques in the field of nuclear safeguards. The paper describes electronic equipment for gamma-scanning of non-irradiated fuel elements. The control of the operation is completely digital and driven by a minicomputer and gives more accurate results in respect of an analog chain which has been successfully used in fuel element manufacturing plants

  13. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  14. Data acquisition and control for gamma scanning

    International Nuclear Information System (INIS)

    Barnes, B.K.; Murray, A.S.; Quintana, J.N.

    1980-01-01

    A new computer-based data acquisition and control unit has been installed in the Los Alamos Scientific Laboratory (LASL) system for scanning irradiated reactor fuel pins. The scanning mechanism is controlled by a commercial multichannel analyzer via a CAMAC link with an intelligent crate controller. The scanning and control unit consists of three linked LSI-11 computers. The multitasking capability of the commercial operation system allows control decisions to be based upon currently acquiring data

  15. Magnetic signature surveillance of nuclear fuel

    International Nuclear Information System (INIS)

    Bernatowicz, H.; Schoenig, F.C.

    1981-01-01

    Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its non-magnetic container is scanned along its length by magnetic susceptibility detecting apparatus whereby susceptibility changes along its length are obtained and provide a unique signal waveform of the container of fuel material as a signature thereof. The output signature is stored. At subsequent times in its life the container is again scanned and respective signatures obtained which are compared with the initially obtained signature, any differences indicating alteration or tampering with the fuel material. If the fuel material includes a paramagnetic additive by taking two measurements along the container the effects thereof can be cancelled out. (author)

  16. Advanced HEDL gamma scan system

    International Nuclear Information System (INIS)

    Smith, F.C.; Olson, R.N.

    1983-01-01

    The design of an advanced state-of-the-art gamma scan system built for the purpose of measuring the point-by-point gamma activity of irradiated fuel rods is described. The emphasis of the system design was to achieve the highest rate of throughput with the minimum per rod cost while maintaining system accuracy and reliability. Preliminary tests demonstrate that all system requirements were met or exceeded. The system provides improved throughput, precision, automation, flexibility, and data processing capability over previous gamma scan systems

  17. Interpretation of gamma-scanning data from the ORR demonstration elements

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.; Hobbs, R.W.

    1989-01-01

    The HEU and LEU fuel elements used in the ORR whole-core demonstration were gamma-scanned to determine the axial distribution of the 140 La and 137 Cs activities. Analysis of this data is now complete. From the 140 La activity distributions cycle-averaged powers were determined while the 137 Cs data provided a measure of the final 235 U burnup in the fuel elements. A method for calculating correction factors for activity gradients transverse to the fuel element axis is presented and is applied to the first mixed core used in the demonstration during the gradual transition to an all LEU core. Results based on the gamma-scanning of the LEU fuel followers are also presented. Improved burnup calculations against which the experimental results are to be compared are now in progress. 7 refs., 21 figs., 3 tabs

  18. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  19. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  20. Fuel element gamma scanning at the Oak Ridge Research Reactor

    International Nuclear Information System (INIS)

    Hobbs, R.W.

    1987-01-01

    In January 1986, a demonstration program was begun at the Oak Ridge Research Reactor (ORR) to convert operations from high-enrichment uranium fuel to the newly developed U 3 Si 2 low-enrichment fuel. A primary program objective is to validate neutronics calculations conducted by the Reduced Enrichment in Research and Test Reactors Program at Argonne National Laboratory. Accordingly, a new method for determining core-power distribution has been developed. The method is based on gamma-ray spectroscopy measurements to determine the relative levels of 140 La in the fuel elements after each operating cycle. The measurement and data analyses are described and a comparison of measured and diffusion theory calculated values of the core-power distribution is presented in this paper

  1. Gamma spectrometrical examination of irradiated fuel

    International Nuclear Information System (INIS)

    Kristof, Edvard; Pregl, Gvido

    1988-01-01

    Gamma scanning is the only non-destructive technique for quantitative measuring of fission or activation products in spent fuel. The negligence of local variation of the linear attenuation coefficient of gamma rays in the irradiated fuel remains the main source of systematic error. To eliminate it we combine the (single) emission gamma ray scanning technique with a transmission measurement. Mathematical procedure joined with the experiment is particularly convenient for fuel elements of circular cross-section. In such a manner good results are obtainable even for relatively small number of measuring data. Accomplished routines enable to esteem the finite width of the collimation slit. The experiment has been partially automated. Trial measurements were carried out, and the measured data were successfully processed

  2. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  3. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  4. Stand for visual ultrasonic testing of spent fuel

    International Nuclear Information System (INIS)

    Czajkowski, W.; Borek-Kruszewska, E.

    2001-01-01

    A stand for visual and ultrasonic testing of spent fuel, constructed under Strategic Governmental Programme for management of spent fuel and radioactive waste, is presented in the paper. The stand, named 'STEND-1', built up at the Institute of Atomic Energy in Swjerk, is appointed for underwater visual testing of spent fuel elements type MR6 and WWR by means of TV-CCD camera and image processing system and for ultrasonic scanning of external surface of these elements by means of video scan immersion transducer and straight UHT connector. 'STEND-1' is built using flexible in use, high-tensile, anodized aluminum profiles. All the profiles feature longitudinal grooves to accommodate connecting elements and for the attachment of accessories at any position. They are also characterised by straight-through core bores for use with standard fastening elements and to accommodate accessory components. Stand, equipped with automatic control and processing system based on personal computer, may be manually or automatically controlled. Control system of movements of the camera in the vertical axis and rotational movement of spent fuel element permits to fix chosen location of fuel element with accuracy better than 0.1 mm. High resolution of ultrasonic method allows to record damages of outer surface of order 0.1 mm. The results of visual testing of spent fuel are recorded on video tape and then may be stored on the hard disc of the personal computer and presented in shape of photo or picture. Only selected damage surfaces of spent fuel elements are tested by means of ultrasonic scanning. All possibilities of the stand and results of visual testing of spent fuel type WWR are presented in the paper. (author)

  5. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  6. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    Nakajima, Tsuyoshi; Iwamoto, Tatsuya; Kumanomido, Hironori

    1996-01-01

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140 La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  7. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    Science.gov (United States)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  8. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  9. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  10. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  11. Economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-01-01

    The economics of the DT, DD, and DHe fusion fuel cycles are evaluated by comparison on a consistent basis. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeding material for the DT fuel cycle. The reactors are pulsed, superconducting tokamaks, producing 1200 MW of electric power. The DT and DD designs scan a range of values of plasma beta, assuming first stability scaling laws. The results indicate that on a purely economic basis, the DT fuel cycle is superior to both of the advanced fuel cycles. Geometric factors, materials limitations, and plasma beta were seen to have an impact on the Cost of Electricity (COE). The economics for the DD fuel cycle are more strongly affected by these parameters than is the DT fuel cycle. Fuel costs are a major factor in determining the COE for the DHe fuel cycle. Based on costs directly attributable to the fuel cycle, the DT fuel cycle appears most attractive. Technological advances, improved understanding of physics, or strides in advanced energy conversion schemes may result in altering the economic ranking of the fuel cycles indicated here. 7 refs., 6 figs., 2 tabs

  12. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes. Copyright © 2010

  13. Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang, Min; Liu, Qi; Zhao, Hongsheng; Li, Ziqiang; Liu, Bing; Li, Xingdong; Meng, Fanyong

    2014-01-01

    As a core unit of HTGRs (high-temperature gas-cooled reactors), the quality of spherical fuel elements is directly related to the safety and reliability of HTGRs. In line with the design and performance requirements of the spherical fuel elements, no coated fuel particles are permitted to enter the fuel-free zone of a spherical fuel element. For fast and accurate detection of escaped coated fuel particles, X-ray DR (digital radiography) imaging with a step-by-step circular scanning trajectory was adopted for Chinese 10 MW HTGRs. The scanning parameters dominating the volume of the blind zones were optimized to ensure the missing detection of the escaped coated fuel particles is as low as possible. We proposed a dynamic calibration method for tracking the projection of the fuel-free zone accurately, instead of using a fuel-free zone mask of fixed size and position. After the projection data in the fuel-free zone were extracted, image and graphic processing methods were combined for automatic recognition of escaped coated fuel particles, and some practical inspection results were presented. - Highlights: • An X-ray DR imaging system for quality inspection of spherical fuel elements was introduced. • A method for optimizing the blind-zone-related scanning parameter was proposed. • A dynamic calibration method for tracking the fuel-free zone accurately was proposed. • Some inspection results of the disqualified spherical fuel elements with escaped coated fuel particles were presented

  14. Pulsed eddy current inspection system for nondestructive examination of irradiated fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1979-01-01

    An inspection system has been developed for nondestructive examination of irradiated fuel rods utilizing pulsed eddy current techniques. The system employs an encircling type pulsed eddy current transducer capable of sensing small defects located on both the inner and outer diameter fuel rod surfaces during a single scan. Pulsed eddy current point probes are used to provide fuel rod wall thikness data and an indication of radial defect location. Two linear variable differential transformers are used to provide information on fuel rod diameter variation. A microprocessor based control system is used to automatically scan fuel rods up to 4.06 meters in length at predetermined radial locations. Defects as small as 0.005 cm deep by 0.254 cm long by 0.005 cm wide have been detected on outside diameter surfaces of a 1.43 cm outside diameter fuel rod cladding with a 0.094 cm wall thickness and 0.010 cm deep by 0.254 cm long by 0.005 cm wide on the inside diameter surface

  15. Construction and tests of a gamma device for experimental measurements of burnup of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Brandao Junior, F.A.

    1982-01-01

    The gamma-scanning method is an important tool for the measurement of burnup of nuclear reactor fuel. The adequate knowledge of burnup allows for a better inventory of 'sensitive' fissile materials, better fuel management and provides insight on fuel behaviour and safety margins. This paper is related to the description, construction and operation of a first gamma scanning device, tested by irradiation of prototype PWR fuel pins, 14 cm long, in a Triga Mark-I reactor at very low power. Despite the limitations imposed by the low burnup, the experiment permitted a good checking of the main physical concepts and devices involved in the method. (Author) [pt

  16. Application of laser ablation inductivly coupled plasma mass spectrometry for characterization of U-7Mo/Al-55i dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Park, Jai Il; Youn, Young Sang; Ha, Yeong Keong; Kim, Jong Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-04-15

    This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U–7Mo/Al–5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured {sup 98}Mo/{sup 238}U ratios in fuel particles from spot analysis, and 3.4% RSD for {sup 98}Mo/{sup 238}U ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U–7Mo fuel particles from the Al–5Si matrix. Each mass spectrum peak indicates the presence of U–7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for {sup 98}Mo by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U–Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

  17. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  18. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  19. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  20. Cermet fuel for fast reactor – Fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kutty, P.S.; Kutty, T.R.G. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Shantanu [Uranium Extraction Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    (U, Pu)O{sub 2} ceramic fuel is the well-established fuel for the fast reactors and (U, Pu, Zr) metallic fuel is the future fuel. Both the fuels have their own merits and demerits. Optimal solution may lie in opting for a fuel which combines the favorable features of both fuel systems. The choice may be the use of cermet fuel which can be either (U, PuO{sub 2}) or (Enriched U, UO{sub 2}). In the present study, attempt has been made to fabricate (Natural U, UO{sub 2}) cermet fuel by powder metallurgy route. Characterization of the fuel has been carried out using dilatometer, differential thermal analyzer, X-ray diffractometer, and Scanning Electron Microscope. The results show a high solidus temperature, high thermal expansion, presence of porosities, etc. in the fuel. The thermal conductivity of the fuel has also been measured. X-ray diffraction study on the fuel compact reveals presence of α U and UO{sub 2} phases in the matrix of the fuel.

  1. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  2. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  3. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

    Directory of Open Access Journals (Sweden)

    Kiyoung Kim

    2018-06-01

    Full Text Available High-density spent fuel (SF storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others. Keywords: Blister, Criticality, METAMIC, Neutron Absorber, Neutron Attenuation Test, Scanning Electron Microscope

  4. Setting for technological control of vibropacked uranium-plutonium fuel pins

    International Nuclear Information System (INIS)

    Golushko, V.V.; Semenov, A.L.; Chukhlova, O.P.; Kuznetsov, A.M.; Korchkov, Yu.N.; Kandrashina, T.A.

    1991-01-01

    Scanning set-up providing for control of fuel pins by quality of fuel distribution in them is described. The gamma absorption method of fuel density measurement and the method of its own radiation registration are applied. Scintillation detection blocks are used in the measuring equipment mainly consisting of standard CAMAC blocks. Automation of measurements is performed on the basis of the computer complex MERA-60. A complex of programs for automation of the procedures under way is developed, when the facility operates within the test production line of vibroracked uranium-plutonium fuel pins. 6 refs.; 4 figs.; 1 tabs

  5. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  6. Irradiation of MEU and LEU test fuel elements in DR 3

    International Nuclear Information System (INIS)

    Haack, K.

    1984-01-01

    Irradiation of three MEU and three LEU fuel elements in the Danish reactor DR 3. Thermal and fast neutron flux density scans of the core have been made and the results, related to the U235-content of each fuel element, are compared with the values from HEU fuel elements. The test elements were taken to burn-up percentages of 50-60%. Reactivity values of the test elements at charge and at discharge have been measured and the values are compared with those of HEU fuel elements. (author)

  7. Pre-test nondestructive examination data summary report on Turkey Point spent fuel assemblies D01, D04 and D06 for the climax-spent fuel test

    International Nuclear Information System (INIS)

    Davis, R.B.

    1981-01-01

    Fuel assembly sip testing conducted at Turkey Point and Battelle Columbus Laboratories (BCL) confirmed no leaking rods were among the thirteen fuel assemblies included in the Climax-Spent Fuel Test. A detailed nondestructive examination was conducted on three of the thirteen assemblies. Fuel assembly lengths and widths averaged 153.6 inches and 8.3 inches, respectively. The assemblies weighed 1459 +- 3 lbs. Total neutron flux measured at the fuel column midplane was 1.06 x 10 4 N/cm 2 /s with an average neutron energy of 1.4 MeV. Gamma dose rates were measured axially and vertically to the fuel column with maximum contact dose rate of 9.52 x 10 4 R/h. Twenty rods underwent detailed rod nondestructive examination. Rod lengths and weights averaged 152.5 inches and 6.82 lb, respectively. Spiral profilometry scans showed the maximum ovality for the twenty rods was 0.0105 inch with average rod diameters ranging from 0.4201 inch to 0.4211 inch. Extensive ridging from pellet cladding interaction was evident over most of the length on all rods. Gamma scan results showed no cesium peaking and no unusually large pellet to pellet gaps. Approximate 10% gamma activity depressions were found at the grid spacer locations. Several areas were identified as locations with an internal anomaly using eddy current results. Fifteen rods were reinserted into the three fuel assemblies at the completion of the nondestructive examinations. Five rods remained at BCL for destructive characterization

  8. Results of Microstructural Examinations of Irradiated LEU U-Mo Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organization (Australia)

    2009-06-15

    Introduction: The RERTR program is responsible for converting research reactors that use high-enriched uranium fuels to ones that use low-enriched uranium fuels [1]. As part of the development of LEU fuels, a variety of irradiation experiments are being conducted using the Advanced Test Reactor. Based on the results of initial fuel plate testing, adjustments have been made to the characteristics of fuel plates to improve the stability of the fuel microstructure. One improvement has been to add Si to the matrix of a dispersion fuel. This material is also being added at the fuel/cladding interface of a monolithic fuel. This paper will discuss the irradiation performance of these fuels, in terms of the stability of their microstructures during irradiation. Results and discussion: The post-irradiation examinations of fuel plates are performed at the Idaho National Laboratory. These examinations consist of visual examinations of fuel plates, gamma scanning, thickness measurements, oxide thickness measurements, and optical metallographic examinations of the fuel plate microstructures. Microstructural analysis is also performed using scanning electron microscopy. Overall, U-7Mo and U-10Mo alloy fuels have displayed the best irradiation performance, particularly, when a Si-containing Al alloy is used as the dispersion fuel matrix. The benefit of using this type of matrix is that the commonly observed fuel/cladding interaction that occurs during irradiation is reduced and the interaction layer that forms exhibit stable behavior during irradiation. Monolithic-type fuels, which consist of a U-Mo foil encased in Al alloy cladding, are also being developed. These types of fuels are also showing promise and will continue to be developed. One challenge with this type of fuel is in trying to maximize the bond strength at the foil/cladding interface. Fuel/cladding interactions can affect the quality of the boding at this interface. Si is being added to improve the characteristics

  9. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  10. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  11. Post-irradiation examination of fuel elements of Tarapur Atomic Power Station (Report-I)

    International Nuclear Information System (INIS)

    Bahl, J.K.; Sah, D.N.; Chatterjee, S.; Sivaramkrishnan, K.S.

    1979-01-01

    Detailed post-irradiation examination of three initial load fuel elements of the Tarapur Atomic Power Station (TAPS) has been carried out. The causes of the element failures have been analysed. It was observed that almost 90% of the length of the elements exoerienced nodular corrosion. It has been estimated that nodular corrosion would seriously affect the wall thickness and surface temperature of higher rated elements. Lunar shaped fret marks have also been observed at some spacer grid locations in the elements. The depth of the largest fret mark was measured to be 16.9% clad wall thickness. Detailed metallographic examination of the clad and fuel in the three elements has been done. The temperatures at different structural regions of the fuel cross-sections have been estimated. The change in fuel density during irradiation has been evaluated by comparing the irradiated fuel diameter with the mean pellet design diameter. The performance of the end plug welds and spacer grid sites in the elements has been assessed. The burnup distribution along the length of the elements has been evaluated by gamma scanning. The redistribution of fission products in the fuel has been examined by gamma scanning and beta-gamma autoradiography. Mechanical properties of the irradiated cladding have been examined by ring tensile testing. (auth.)

  12. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  13. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    International Nuclear Information System (INIS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K.B.; Kumar, Arun

    2015-01-01

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U_2Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  14. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S., E-mail: sibasis@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Choudhuri, G. [Atomic Fuels Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Banerjee, J. [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Agarwal, Renu [Product Development Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Khan, K.B.; Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-12-15

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U{sub 2}Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  15. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pereira, Mario M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  16. Characterization of spent fuel approved testing material: ATM-106

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thornhill, C.K.

    1988-10-01

    The characterization data obtained to date are described for Approved Testing Material (ATM)-106 spent fuel from Assembly BT03 of pressurized-water reactor Calvert Cliffs No. 1. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well- characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCWRM) program. ATM-106 consists of 20 full-length irradiated fuel rods with rod-average burnups of about 3700 GJ/kgM (43 MWd/kgM) and expected fission gas release of /approximately/10%. Characterization data include (1) as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) calculated nuclide inventories and radioactivities in the fuel and cladding; and (6) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel rod are being conducted and will be included in planned revisions of this report. 12 refs., 110 figs., 81 tabs

  17. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-03-01

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  18. Development of remote controlled type field-emission type scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Ryo; Nishino, Yasuharu; Mita, Naoaki; Nakata, Masahito; Harada, Katsuya; Nozawa, Yukio; Amano, Hidetoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-10-01

    The extending burn-up of Light Water Reactor Fuels has been promoted to reduce costs of the power generation and amount of waste mass. Information about the fuel behavior under high burn-up operation is needed to assess safety of the high burn-up fuels. Microstructures formed in high burn-up fuel pellets and Zircaloy tubes influence on their integrity. The fundamental information about morphology, sizes, and element compositions in those microstructures is necessary to estimate the formation mechanism and change in the properties of the fuels. The Field Emission type Scanning Electron Microscope (FE-SEM), which is effective for observation of very small area, i.e., nano-size structures, has been hence installed at the Reactor Fuel Examination Facility (RFEF) in JAERI. FE-SEM is designed for the remote handling type to use high radioactive materials and has equipments to keep the safety for operators. The Energy Dispersive Spectrometer (EDS) with a radiation-shielding collimator has been also equipped on FE-SEM to determine element compositions in the structures. Characterization tests were carried out using Zircaloy cladding tubes with oxide films and hydrides of confirm machine performance. In the results of the tests, high-resolution images with a magnification of 30,000 were obtained. Those results show that the apparatus maintains the original high performance with standard type. (author)

  19. Characterization of spent fuel approved testing material---ATM-105

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  20. Measuring element for determining the internal pressure in fuel rods

    International Nuclear Information System (INIS)

    Deckers, H.; Drexler, H.; Reiser, H.

    1983-01-01

    A pressure cell is situated inside the fuel rod, which contains a magnetic core or a core influenced by magnetism, whose position relative to an outer front surface of an end stopper of the fuel rod can vary. The fuel rod contains a pressure cell directly above the lower end stopper or connected to it. This can consist of closed bellows, where if the internal pressure in the fuel rod rises, a ferrite core moves axially. When the pressure drops, this returns to the initial position, which is precisely defined by a stop. To detect a rod defect, the position of the soft iron core relative to the lower edge of the end stopper is scanned by a special measuring device. (orig./HP) [de

  1. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures

  2. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  3. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-09-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, post-irradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  4. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-01-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, postirradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  5. Emission computer tomography on a Dodewaard mixed oxide fuel pin

    International Nuclear Information System (INIS)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  6. Cesium relocation in mixed-oxide fuel pins resulting from increased temperature reirradiation

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Woodley, R.E.; Weber, E.T.

    1976-06-01

    Mixed-oxide fuel pins from EBR-II test subassemblies PNL-3 and PNL-4 were reirradiated in the GETR to study effects of increased fuel and cladding temperatures on chemical and thermomechanical behavior. Radial and axial distributions of cesium were obtained using postirradiation nondestructive precision gamma-scanning techniques. Data presented relate to the dependence of cesium distribution and transport processes on temperature gradients which were altered after substantial steady-state operation

  7. A review of microstructural analysis on U3Si2-Al plate-type fuel

    International Nuclear Information System (INIS)

    Ti Zhongxin; Guo Yibai

    1995-12-01

    The microstructure of U 3 Si 2 -Al plate-type fuel, that is the microstructure of fuel particles, compatibility of the fuel particles and Al matrix, fuel particles distribution, dogbone area morphology, clad and meat thickness, bone quality of clad/frame and clad/fuel core, and the effect of these factors on products quality were comprehensively investigated and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), image processing technique, etc.. The main results are as following: U-7.7%Si alloy contains two phases: primary U 3 Si 2 and small amount of USi (about 12%), free-uranium was not detected in fuel particles; the dogbone area is the key factor affecting fuel plate quality (1 ref., 16 figs., 4 tabs.)

  8. Tests on CANDU fuel elements sheath samples

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Prisecaru, I.

    2016-01-01

    This work is a study of the behavior of CANDU fuel elements after irradiation. The tests are made on ring samples taken from fuel cladding in INR Pitesti. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory. By metallographic and ceramographic examination we determinate that the hydride precipitates are orientated parallel to the cladding surface. A content of hydrogen of about 120 ppm was estimated. After the preliminary tests, ring samples were cut from the fuel rod, and were subject of tensile test on an INSTRON 5569 model machine in order to evaluate the changes of their mechanical properties as consequence of irradiation. Scanning electron microscopy was performed on a microscope model TESCAN MIRA II LMU CS with Schottky FE emitter and variable pressure. The analysis shows that the central zone has deeper dimples, whereas on the outer zone, the dimples are tilted and smaller. (authors)

  9. Fuel design for the U.S. accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Meyer, M. K.; Hayes, S. L.; Crawford, D. C.; Pahl, R. G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed

  10. Fuel Design for the U.S. Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Crawford, D.C.; Pahl, R.G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed. (authors)

  11. Determination of plutonium content in TRR spent fuel by nondestructive neutron counting

    International Nuclear Information System (INIS)

    Chen, Y.-F.; Sheu, R.-J.; Chiao, L.-H.; Yuan, M.-C.; Jiang, S.-H.

    2010-01-01

    For the nuclear safeguard purpose, this work aims to nondestructively determine the plutonium content in the Taiwan Research Reactor (TRR) spent fuel rods in the storage pool before the stabilization process, which transforms the metal spent fuel rods into oxide powder. A SPent-fuel-Neutron-Counter (SPNC) system was designed and constructed to carry out underwater scan measurements of neutrons emitting from the spent fuel rod, from which the 240 Pu mass in the fuel rod will be determined. The SAS2 H control module of the SCALE 5.1 code package was applied to calculate the 240 Pu-to-Pu mass ratio in the TRR spent fuel rod according to the given power history. This paper presents the methodology and design of our detector system as well as the measurements of four TRR spent fuel rods in the storage pool and the comparison of the measured results with the facility declared values.

  12. Improvements in TREAT hodoscope fuel-motion capabilities

    International Nuclear Information System (INIS)

    Fink, C.L.; Boyar, R.E.; Eichholz, J.J.; DeVolpi, A.

    1982-01-01

    The fast-neutron detection system of the hadoscope has been a major ingredient in the success of the hodoscope as a fuel-motion monitoring device. While the original Hornyak-button detector system has met most of the current fuel-motion needs, the more stringent requirements of improved reactor-safety codes, and of new experimental test facilities necessitate improved detection capabilities. Development efforts have centered on three areas: the construction of an array of proton-recoil proportional counters to be used in conjunction with the Hornyak-button detectors, the upgrading of the Hornyak-button detectors to increase linearity and signal-to-background ratio, and the intercalibration of detectors using a modified horizontal and a new vertical scan system

  13. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  14. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  15. Irradiation of a 19 pin subassembly with mixed carbide fuel in KNK II

    Science.gov (United States)

    Geithoff, D.; Mühling, G.; Richter, K.

    1992-06-01

    The presentation deals with the fabrication, irradiation and nondestructive postirradiation examinations of LMR fuel pins with mixed (U, Pu)-carbide fuels. The mixed carbide fuel was fabricated by the European Institute of Transuranium Elements using various fabrication procedures. Fuel composition varied therefore in a wide range of tolerances with respect to oxygen and phase content and microstructure. The 19 carbide pins were irradiated in the fast neutron flux of the KNK II reactor to a burn-up of about 7 at% without any failure in the centre of a KNK "carrier element" at a maximum linear rating of 800 W/cm. After dismantling in the Hot Cells of KfK nondestructive examinations were carried out comprising dimensional controls, radiography, γ-scanning and eddy-current testing. The results indicate differences in fuel behaviour with respect to composition of the fuel.

  16. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  17. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    International Nuclear Information System (INIS)

    Rodriquez, Michael

    2009-01-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the 'Nuclear Renaissance'. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight

  18. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  19. Fuel-cladding interaction. Framatome CEA experiment on pencils preirradiated in nuclear power plants

    International Nuclear Information System (INIS)

    Atabek, Rosemarie; Vignesoult, Nicole

    1979-01-01

    The study of the fuel-cladding interaction is the subject of an important joint research programme between Framatome and the CEA. Tests are performed either on whole fuel rods, not exceeding two metres in length, from BR3 or the CAP (PRISCA experiment) or on fuel rods refabricated in hot cells from fuel rods of power reactors (FABRICE experiment). The first results reveal the two mechanical and chemical aspects of the interaction phenomenon: the permissible power surge of the fuel elements passes through a minimum for an integrated fast dose (E>1MeV) of around 1.5x10 21 n/cm 2 ; a study made with the electronic microprobe and the scanning microscope shows that the Te, I and Cs fission products are the corrosive agents of the cladding [fr

  20. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  1. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  2. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  3. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    International Nuclear Information System (INIS)

    Quey, R.; Suhonen, H.; Laurencin, J.; Cloetens, P.; Bleuet, P.

    2013-01-01

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 μm and overestimate the size of the pores larger than 1.5 μm. - Highlights: ► X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ► A methodology is proposed to compare the nano-CT and SEM data on the same region. ► The spatial resolution of the nano-CT data is assessed from that comparison

  4. Study on Thermal Degradation Characteristics and Regression Rate Measurement of Paraffin-Based Fuel

    Directory of Open Access Journals (Sweden)

    Songqi Hu

    2015-09-01

    Full Text Available Paraffin fuel has been found to have a regression rate that is higher than conventional HTPB (hydroxyl-terminated polybutadiene fuel and, thus, presents itself as an ideal energy source for a hybrid rocket engine. The energy characteristics of paraffin-based fuel and HTPB fuel have been calculated by the method of minimum free energy. The thermal degradation characteristics were measured for paraffin, pretreated paraffin, HTPB and paraffin-based fuel in different working conditions by the using differential scanning calorimetry (DSC and a thermogravimetric analyzer (TGA. The regression rates of paraffin-based fuel and HTPB fuel were tested by a rectangular solid-gas hybrid engine. The research findings showed that: the specific impulse of paraffin-based fuel is almost the same as that of HTPB fuel; the decomposition temperature of pretreated paraffin is higher than that of the unprocessed paraffin, but lower than that of HTPB; with the increase of paraffin, the initial reaction exothermic peak of paraffin-based fuel is reached in advance, and the initial reaction heat release also increases; the regression rate of paraffin-based fuel is higher than the common HTPB fuel under the same conditions; with the increase of oxidizer mass flow rate, the regression rate of solid fuel increases accordingly for the same fuel formulation.

  5. Influence of Fuel Meat Porosity on Heat Capacities of Fuel Element Plate U3Si2-Al

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Supardjo; Sutri Indaryati

    2007-01-01

    Analyze of heat capacities of Al powder, AIMg 2 cladding, U 3 Si 2 powder and PEB U 3 Si 2 -Al with the meat porosity of 4.9; 5.53 ; 6.25 ; 6.95 %; 7.90; 8.66% have been done. Analysis was conducted by using Differential Scanning Calorimeter (DSC) at temperature 30℃ to 450℃ with heating rate 1℃ /minute in Argon gas media. The purpose of analyze is to know the influence of increasing of fuel meat porosity on heat capacities because increasing of percentage of meat porosity will cause degradation the of heat capacities of PEB U 3 Si 2 -Al. Result of analysis showed that the heat capacities of Al powder, AIMg 2 cladding increase by temperature, while heat capacities of U 3 Si 2 powder was stable with increasing of temperature up to 450℃. Analysis of heat capacities toward PEB U 3 Si 2 -Al indicate that increasing of fuel meat porosity of caused degradation of the heat capacities of PEB U 3 Si 2 -Al. Data obtained were expected to serve the purpose of input to fabricator of research reactor fuel in for design of fuel element type silicide with high loading. (author)

  6. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  7. Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods

    Science.gov (United States)

    Jambunathan, Krishnakumar

    Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur

  8. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  9. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  10. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  11. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    International Nuclear Information System (INIS)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon

    2015-01-01

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  12. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  13. SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.

  14. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  15. Radiochemical analyses of several spent fuel Approved Testing Materials

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO 2 and UO 2 plus 3 wt% Gd 2 O 3 commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, 14 C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program

  16. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  17. Corrosion mechanisms of spent fuel under oxidizing conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Finch, R.; Buck, E.; Bates, J.

    1997-01-01

    The release of 99 Tc can be used as a reliable marker for the extent of spent oxide fuel reaction under unsaturated high-drip-rate conditions at 90 degrees C. Evidence from leachate data and from scanning and transmission electron microscopy (SEM and TEM) examination of reacted fuel samples is presented for radionuclide release, potential reaction pathways, and the formation of alteration products. In the ATM-103 fuel, 0.03 of the total inventory of 99 Tc is released in 3.7 years under unsaturated and oxidizing conditions. Two reaction pathways that have been identified from SEM are (1) through-grain dissolution with subsequent formation of uranyl alteration products, and (2) grain-boundary dissolution. The major alteration product identified by x-ray diffraction (XRD) and SEM, is Na-boltwoodite, Na[(UO 2 )(SiO 3 OH)]lg-bullet H 2 O, which is formed from sodium and silicon in the water leachant

  18. Development of non-destructive examination system for irradiated fuel rods

    International Nuclear Information System (INIS)

    Sumerling, R.; Goldsmith, L.A.; Cross, M.T.; McKee, F.

    1978-12-01

    The development of non-destructive examination (NDE) system for irradiated fuel rods is described. The system is used for testing rods within a concrete cave and consists of three parts: a fully-automated fuel rod-drive machine, designed for easy maintenance; a series of plug-in NDE modules which fit into the central space provided in the machine, plus optical/TV viewing devices and gamma-scan equipment lined up on the rod; and on electronic control equipment situated outside the concrete shielding. The equipment is at present routinely used for viewing, eddy-current testing, gamma-scanning and diameter measurement of rods. The system is flexible in that additional modules can be added later as they are developed, since there is room for three modules of standard size (about 10cm x 10 cm x 3cm) in the machine or one large module taking the full space. New developments include the use of dual frequency eddy-current testing, which allows much greater discrimination against unwanted signals, and measurement of oxide thickness using a high frequency eddy-current probe. (author)

  19. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  20. Determination of power density distribution of fuel assemblies for research reactor by directly measuring the strontium-91 activities

    International Nuclear Information System (INIS)

    Yuan, Liq-Ji

    1987-01-01

    This work described the investigations of reactor core power peaking and three dimensional power density distribution of present core configuration of Tsing Hua Open-pool reactor (THOR). An experimental program, based on non-destructive fuel gamma scanning of 91 Sr activities, provides the data of fission density distribution for individual fuel pin of four-rod TRIGA-LEU cluster or for MTR-type fuel assembly. The informations are essentially important for the safety of reactor operation and for fuel management especially for the mixed loading with three different types of fuel at present. The relative power peaking values and the power density distribution for present core are discussed. (author)

  1. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  2. Development and application of PIE apparatuses for high-burnup LWR fuels

    International Nuclear Information System (INIS)

    Harada, Katsuya; Mita, Naoaki; Nishino, Yasuharu; Amano, Hidetoshi

    1999-01-01

    The Reactor Fuel Examination Facility (RFEF) is developing the following post irradiation examination apparatuses: Ion Microprobe mass analyzer (IMA), Pellet Thermal Capacity measuring apparatus (PTC), Micro Density Measuring apparatus MDM, Shield-type Field Emission Scanning Electron Microscope (FE-SEM). The present paper mainly describes several technical topics of these apparatuses. (author)

  3. A 2017 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity.

    Science.gov (United States)

    Sutherland, William J; Barnard, Phoebe; Broad, Steven; Clout, Mick; Connor, Ben; Côté, Isabelle M; Dicks, Lynn V; Doran, Helen; Entwistle, Abigail C; Fleishman, Erica; Fox, Marie; Gaston, Kevin J; Gibbons, David W; Jiang, Zhigang; Keim, Brandon; Lickorish, Fiona A; Markillie, Paul; Monk, Kathryn A; Pearce-Higgins, James W; Peck, Lloyd S; Pretty, Jules; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C; Ockendon, Nancy

    2017-01-01

    We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects. These issues include new developments in energy storage and fuel production, sand extraction, potential solutions to combat coral bleaching and invasive marine species, and blockchain technology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Eddy current testing of PWR fuel pencils in the pool of the Osiris reactor

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1983-12-01

    A nondestructive testing bench is described. It is devoted to examination of high residual power fuel pencils without stress on the cladding nor interference with cooling. Guiding by fluid bearings decrease the background noise. Scanning speed is limited only by safety criteria and data acquisition configuration. Simultaneous control of various parameters is possible. Associated to an irradiation loop, loaded and unloaded in a reactor swinning pool, this bench can follow fuel pencil degradation after each irradiation cycle [fr

  5. Electrocatalysts for fuel cells

    International Nuclear Information System (INIS)

    Garcia C, M. A.; Fernandez V, S. M.; Vargas G, J. R.

    2008-01-01

    It was investigated the oxygen reduction reaction (fundamental reaction in fuel cells) on electrocatalysts of Pt, Co, Ni and their alloys CoNi, PtCo, PtNi, PtCoNi in H 2 SO 4 0.5 M and KOH 0.5 M as electrolyte. The electrocatalysts were synthesized using mechanical alloying processes and chemical vapor deposition. The electrocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray spectroscopy. The evaluation was performed using electrocatalytic technique of rotating disk electrode and kinetic parameters were determined for each electro catalyst. We report the performance of all synthesized electrocatalysts in acid and alkaline means. (Author)

  6. Main examination results of WWER-1000 fuel after its irradiation in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bibiliashvili, Yu [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Dubrovin, K [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Vasilchenko, I [Opytno-Konstruktorskoe Byuro Gidropress, Podol` sk (Russian Federation); Yenin, A; Kushmanov, A [AO Novosibirskij Zavod Khimcontsentratov, Novosibirsk (Russian Federation); Smirnov, A; Smirnov, V [Nauchno-Issledovatel` skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation)

    1994-12-31

    WWER-1000 fuel examination has been undertaken to specify the properties of fuel assembly members by defining the parameters of their materials and their interconnection in power reactor operation conditions. Nine fuel assemblies are examined. The examination program includes: visual inspection, measurement of overall dimensions, eddy-current test, gamma-scanning, X-ray and neutron radiography, analysis of gas pressure and composition inside fuel rods, ceramography/metallography, mass spectrometry, microanalysis and electron microscopy of fuel and fuel claddings. The examination results suggest that WWER-1000 fuel spent at steady-state operation conditions up to 50 Mwd/kg U of burnup is in satisfactory condition. The examination of all types of fuel cladding failures indicates that the reason lies in the interaction of cladding with coolant solid impurities. The nodular cladding corrosion of fuel assembly discharged from the South-Ukrainian NPP is caused by the graphite compounds deposited on the fuel rod. Those deposits are a result of the circulating pump damage and had accidental, non-typical character. Some of the rods were found to have a small cladding `fretting` of the spacer grid cell material. The values of the majority of parameters determining the fuel efficiency allow to assume that there is a potential for further extension of fuel burnup and operation length. 1 tab., 11 figs.

  7. Main examination results of WWER-1000 fuel after its irradiation in power reactors

    International Nuclear Information System (INIS)

    Bibiliashvili, Yu.; Dubrovin, K.; Vasilchenko, I.; Yenin, A.; Kushmanov, A.; Smirnov, A.; Smirnov, V.

    1994-01-01

    WWER-1000 fuel examination has been undertaken to specify the properties of fuel assembly members by defining the parameters of their materials and their interconnection in power reactor operation conditions. Nine fuel assemblies are examined. The examination program includes: visual inspection, measurement of overall dimensions, eddy-current test, gamma-scanning, X-ray and neutron radiography, analysis of gas pressure and composition inside fuel rods, ceramography/metallography, mass spectrometry, microanalysis and electron microscopy of fuel and fuel claddings. The examination results suggest that WWER-1000 fuel spent at steady-state operation conditions up to 50 Mwd/kg U of burnup is in satisfactory condition. The examination of all types of fuel cladding failures indicates that the reason lies in the interaction of cladding with coolant solid impurities. The nodular cladding corrosion of fuel assembly discharged from the South-Ukrainian NPP is caused by the graphite compounds deposited on the fuel rod. Those deposits are a result of the circulating pump damage and had accidental, non-typical character. Some of the rods were found to have a small cladding 'fretting' of the spacer grid cell material. The values of the majority of parameters determining the fuel efficiency allow to assume that there is a potential for further extension of fuel burnup and operation length. 1 tab., 11 figs

  8. SEM characterization of an irradiated monolithic U-10Mo fuel plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.; Finlay, M.R.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/AA6061 cladding interface, particularly the interaction zone that had developed during fabrication and any continued development during irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-7Mo powders of an irradiated dispersion fuel. (author)

  9. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  10. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  11. Improvement of failed fuel detection system of light water reactor

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Cho, S.W.; Lee, K.W.

    1981-01-01

    Multi-task DAAS system by utilizing PDP-11/23 computer was assembled and tested for its performances. By connecting four Ge(Li) detectors to this DAAS, test experiments were done to prove system capability for detection and analysis of any fission gases resolved in four independently sampled primary cooling water from a power reactor. Appropriate computer programs were also introduced for this application and satisfactory results were obtained. Further application of this DAAS to the quality test of fuel pins (uniform distribution of enriched uranium in fresh fuel pellets), a prototype fuel scanner system was designed, constructed and tested. Operational principle of this system is based on the determination of 235 U/ 238 U abundance ratio in pellets by precision spectrometry or gamma-rays which are emitted from a portion of fuel pellets. For the uniform scanning, rotational and traverse motions at pre-selected speeds were applied to a fuel pin under tests. A long lens magnetic beta-spectrometer of Argonne National Laboratory was transferred to KAERI and re-installed for future precision beta-gamma spectroscopic research works on short-lived fission products nuclei

  12. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  13. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  14. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  15. Bone scan and joint scan of hands and feet in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Carpentier, N.; Verbeke, S.; Perdrisot, R.; Grilo, R.M.; Quenesson, E.; Bonnet, C.; Vergne, P.; Treves, R.; Bertin, P.; Boutros-Toni, F.

    2000-01-01

    The aim of this study was to determine the ability of joint scan and bone scan of hands and feet, in patients with rheumatoid arthritis, to localize the altered joints. The sensitivity, the specificity, the positive predictive value (PPV) and the negative predictive value (NPV) of joint scan were determined in comparison with clinical joint assessment. Fifteen patients (780 joints) were clinically examined (pain and synovitis); during the same day, a bone scan and a joint scan were realized by oxidronate 99m Tc intravenous injection. Patients were scanned 5 minutes (tissual time, T t ) and 3 hours 1/4 (bone time, T 0 ) after the administration. The uptake of the bi-phosphonate was evaluated with a qualitative method using a grey scale. The uptake of 99m Tc oxidronate was quantitated using an extra-articular region of interest. The sensitivity, specificity, PPV and NPV of the scan at Tt were 46%, 96%, 85% et 78%. The same parameters were 75%, 66%, 53% and 84% for the scan realized at T 0 . The joint scan has showed 22% of false positive. These false positives could be a consequence of an earlier detection of joint alterations by scan. The joint scan should forecast the evolution of joints in patients with rheumatoid arthritis. (author)

  16. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  17. Ignition capsules with aerogel-supported liquid DT fuel for the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Ho D.D.-M.

    2013-11-01

    Full Text Available For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to β-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65 – 75% at peak velocity. A scan (in ablator and fuel thickness parameter space is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  18. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    Science.gov (United States)

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  19. Metal waste forms from treatment of EBR-II spent fuel

    International Nuclear Information System (INIS)

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  20. Interdiffusion between U-Pu-Zr fuel and HT9 cladding

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Petri, M.C.

    1994-01-01

    As part of systematic interdiffusion studies of fuel-cladding compatibility in the integral Fast Reactor, a solid-solid diffusion couple was assembled with U-22Pu-23 1 Zr fuel and HT9 2 cladding and annealed at 650 degrees C for 100 hours. The couple was examined for diffusion structure development using a scanning electron microscope equipped with an energy dispersive x-ray analyzer (SEM-EDX). Point-by-point and linescan analysis was used to generate composition profiles and diffusion paths. From the composition profiles, average effective interdiffusion coefficients were calculated for individual components on both sides of the Matano plane. Results from this investigation indicate that the same types of phases as would be expected from binary U-Fe, Pu-Fe, and Zr-Fe phase diagrams develop in this couple; and U and Pu are the fastest diffusing fuel components and Fe is the fastest diffusing cladding component. Compared with diffusion couples with binary (U-Zr) fuel, the addition of Pu greatly enhanced the extent of diffusion and affected the types of phases observed

  1. Influence of the fuel in the nanostructure catalyzer oxides synthesis

    International Nuclear Information System (INIS)

    Zampiva, R.Y.S.; Panta, P.C.; Carlos, R.B.; Alves, A.K.; Bergmann, C.P.

    2012-01-01

    Among the techniques used in catalysts production, the solution combustion synthesis (SCS) has been increasingly applied due the possibility of producing, at low cost, highly pure and homogeneous nanostructured powders. The smaller the particle diameter, the greater the activity of the catalyst. In SCS, the size of the particles produced depends on the process variables. In order to formulate the optimal methodology for the preparation of nanostructured oxides for catalysis, it was studied the fuel-oxidant concentration ratio, and the use of glycine and polyethylene glycol with molecular weight 200 (PEG 200) as fuel in the SCS of Iron, Magnesium and Molybdenum based catalysts. The phase identification of the products was performed by x-ray diffraction (XRD). Particle size and surface area analysis were done to characterize the particles size and the samples morphology was obtained by scanning electron microscopy. Results indicated the formation of high purity nanomaterials obtained for low concentrations of fuel, and a wide variation in the nanostructure sizes depending on the concentration and type of fuel used. (author)

  2. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  3. Nondestructive determination of burnup and fissile isotope balance in spent fuel assemblies of water cooled reactors

    International Nuclear Information System (INIS)

    Pinel, J.

    1983-03-01

    Two non-destructive methods for measuring fuel assemblies in storage pools have been developed: a gamma fuel scanning method, using the 134 Cs - 137 Cs and 144 Ce gamma rays, and the measurement of the neutron flux emitted by the fuel assembly. For interpreting the measurement, we have used calculated correlations to establish a connection between the measured phenomena and the parameters to be determined. A measurement campaign involving 58 assemblies from the C.N.A. reactor was conducted in the reprocessing plant of LA HAGUE. The results obtained show that the objectives can be achevied within an industrial environment [fr

  4. Experience with W3Re/W25Re thermocouples in fuel pins of NS Otto Hahn's two cores

    International Nuclear Information System (INIS)

    Kolb, M.

    1976-01-01

    The paper first deals with the installation of 18 and 9 high-temperature sheathed thermocouples in fuel rods of the cores FDR-1 and FDR-2, respectively. The measured fuel rod centerline temperatures could be related to the local linear rod power at any given time by means of the densities of fission products with different half-lives obtained from fuel rod γ-scans. The fuel temperatures show then already an increase with the burn-up of the FDR-1 which becomes steeper when taking into account the decrease of the EMF measured at irradiated thermocouples taken from the fuel rods. Finally, the determination of effective thermocouple time constants and of fuel rod heat transfer time constants is demonstrated by utilizing the reactor noise to measure the transfer function between neutron flux and fuel temperature signal. (orig.) [de

  5. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  6. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  7. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  8. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    Science.gov (United States)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  9. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  10. Burn-up determinations and dimensional measurements of TRIGA-HEU fuel elements from the 14 MW steady-state core

    International Nuclear Information System (INIS)

    Toma, C.; Alexa, Al.; Craciunescu, T.; Pirvan, M.; Dobrin, R.

    2008-01-01

    In this paper there are presented the results of nondestructive examination in Post Irradiation Examination Laboratory for twenty five fuel rods selected from 14 MW steady state core. Gamma scanning and dimensional measurements were carried out in order to determine burn-up and diametric deflection of the fuel rods. Also, some comparisons with SSR Safety Report estimations for the maximum burn-up pin were made. (authors)

  11. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig

    International Nuclear Information System (INIS)

    Xu, Yufu; Wang, Qiongjie; Hu, Xianguo; Li, Chuan; Zhu, Xifeng

    2010-01-01

    The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079-2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.

  12. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  13. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  14. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  15. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  16. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available We present an image postprocessing framework for Scanning Tunneling Microscope (STM to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA. The numerical results on measurement from copper(111 surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  17. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  18. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  19. Application of FE-SEM with elemental analyzer for irradiated fuel materials

    International Nuclear Information System (INIS)

    Sasaki, Shinji; Maeda, Koji; Yamada, A.

    2012-01-01

    It is important to study the irradiation behavior of the uranium-plutonium mixed oxide fuels (MOX fuels) for development of fast reactor fuels. During irradiation in a fast reactor, the changes of microstructures and the changes of element distributions along radial direction occur in the MOX fuels because of a radial temperature gradient. In order to make detailed observations of microstructure and elemental analyses of fuel samples, a field emission scanning electron microscope (FE-SEM) equipped with a wavelength-dispersive X-ray spectrometer (WDX) and an energy-dispersive X-ray spectrometer (EDX) were installed in a hot laboratory. Because fuel samples have high radioactivities and emit α-particles, the instrument was modified correspondingly. The notable modified points were as follows. 1) To prevent leakage of radioactive materials, the instrument was attached to a remote control air-tight sample transfer unit between a shielded hot cell and the FE-SEM. 2) To protect operators and the instruments from radiation, the FE-SEM was installed in a lead shield box and the control unit was separately located outside the box. After the installation, the microscopy and elemental analyses were made on low burnup fuel samples. High resolution images were obtained on the fuel sample surface. The characteristic X-rays (U, Pu) emitted from the fuel sample surface measured along radial direction successfully. Thereby, it was able to grasp the change of U, Pu radial distribution after irradiation. The technique has the great advantage of being able to evaluate the changes of microstructures and the changes of element distributions of MOX fuels due to irradiation. In future work, samples of even higher radioactivity will be observed and analyzed. (author)

  20. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  1. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  2. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  3. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  4. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  5. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Seoung Woo, E-mail: swkuk@kaeri.re.kr [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Youn, Young-Sang [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  6. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  7. Scan path entropy and Arrow plots: Capturing scanning behavior of multiple observers

    Directory of Open Access Journals (Sweden)

    Ignace T C Hooge

    2013-12-01

    Full Text Available Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures 1 scan path entropy to quantify gaze guidance and 2 the arrow plot to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50. The new measures were tested in an eye tracking study (48 observers, 39 advertisements. Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place.

  8. Autoradiographic measurement of Pu distribution in mixed-oxide nuclear fuel

    International Nuclear Information System (INIS)

    Green, D.R.; Rasmussen, D.E.; Gray, W.H.

    1976-09-01

    The autoradiographic method described was developed for rapid, economical determination of the Pu distribution and microhomogeneity in mixed oxide fuel. High Pu concentration regions of any size down to 13 microns in diameter can be reproducibly resolved using this method. The new method uses computerized scanning and analysis, and includes automatic self-calibration to virtually elimate variations resulting from photographic film and processing. The speed of this new method allows analysis of enough data to ensure statistical reliability of occurrence frequencies, even for sparse populations of Pu-rich regions with diameters greater than 60 microns. Determination of these occurrence frequencies is an important factor in controlling fuel quality to ensure safe, efficient operation in a Liquid Metal Fast Breeder Reactor

  9. Development of automatic gamma and neutron monitoring system for PFBR fuel subassemblies at IFSB

    International Nuclear Information System (INIS)

    Krishnakumar, D.N.; Dhanasekaran, A.; Ajoy, K.C.; Jose, M.T.; Baskaran, R.; Sureshkumar, K.V.

    2018-01-01

    Health physics surveillance during PFBR fuel pin assembling operation at Interim Fuel Storage Building (IFSB) mandates scanning of the fuel assembly using Telector and Rem counter to find out the maximum gamma and neutron dose rates respectively. Throughout the process health physicist involved in the operation must hold the survey meter at a constant distance from the subassembly and simultaneously should make a note of dose rate values displayed. This practice might lead to the occupational exposures and also might induce human errors during measurements. To make this process more simple, faultless and effortless, an automatic Gamma Neutron Monitoring System (AGNMS) is designed and developed at RSD to measure, store and visualize instantaneous gamma and neutron dose rates of PFBR fuel subassembly. Development of the system, calibration and deployment of the system at IFSB and preliminary results obtained using the system is depicted in this paper

  10. Full-length high-temperature severe fuel damage test No. 5

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy's Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant (∼50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident

  11. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  12. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  14. Status of the nondestructive examination equipment for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.

    1980-01-01

    The present status of Nondestructive Examination (NDE) Equipment proposed for the Fuels and Materials Examination Facility (FMEF) now under construction at the Hanford Engineering Development Laboratory is discussed. Items discussed include the NDE cell receiving machine, the dismantling machine, the standard examination stage, profilometry, eddy current, wire wrap removal machine, surface examination, gamma scan and general NDE equipment

  15. Drilling-induced borehole-wall damage at spent fuel test-climax

    International Nuclear Information System (INIS)

    Weed, H.C.; Durham, W.B.

    1982-12-01

    Microcracks in a sample of quartz monzonite from the Spent Fuel Test-Climax were measured by means of a scanning electron microscope in order to estimate the background level of damage near the borehole-wall. It appears that the hammer-drilling operation used to create the borehole has caused some microfracturing in a region 10 to 30 mm wide around the borehole. Beyond 30 mm, the level of microfracturing cannot be distinguished from background

  16. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  17. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  18. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  19. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    Science.gov (United States)

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  20. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  1. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  2. Non-destructive assay of leached hulls in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Henderson, B.C.; Gray, J.H.; Huff, G.A.

    1978-01-01

    The hull monitor at the Barnwell Nuclear Fuels Plant (BNFP) will be a remotely controlled, fully automated system designed to quantitatively assay leached hulls for undissolved U and Pu. The hull monitor will assay the hulls from one metric ton of fuel per dissolver basket with the design goal of detecting 0.1% undissolved fuel and yet remain within the framework of the BNFP materials flow of five hull baskets per day. The non-destructive assay will be accomplished using a computer-based gamma-ray pulse height analysis system employing a 5 x 5 inch NaI(Tl) scintillation detector. The intense radiations from the fission product isotopes and the activation product isotopes produced in the reactor prevent direct assay of the undissolved fuel left in the hulls. The measurement will be made indirectly by demonstrating a correlation between the amount of 144 Ce undissolved and the remaining U. The isotope 144 Ce is a direct fission product with high cumulative yield. The daughter isotope 144 Pr has a gamma ray at 2.18 MeV well above other predominant radiations in the spectrum from the major interferences 60 Co, 58 Co, 95 Zr( 95 Nb), 137 Cs and 106 Ru( 106 Rh). Segmented scanning operation of the hull monitor is accomplished by rotation and vertical transversal of the hulls container past the detector station. Proper collimation and absorbers are required to maximize the 144 Ce( 144 Pr) to background ratio. A basket indexer is provided which monitors the scanning rate and ensures repositioning. The leached hull monitor system will be interfaced to a computer-based multichannel analyzer for ease of operation and data handling. A calibration basket has been fabricated to accomodate radioactive sources and inactive Zircaloy hulls

  3. Distribution of fission products in Peach Bottom HTGR fuel element E01-01

    International Nuclear Information System (INIS)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Fairchild, L.L.

    1978-10-01

    The fifth in a projected series of six postirradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements is described. The element analyzed received an equivalent of 897 full-power days of irradiation prior to the scheduled termination of Core 2 operation. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a 137 Cs inventory of 20.3 Ci in the graphite sleeve and 8.1 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides 134 Cs, /sup 110 m/Ag, 60 Co, and 154 Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the beta-emitters 3 H, 14 C, and 90 Sr were obtained at four axial locations of the fueled region of the element sleeve and two axial locations of the element spine. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. In addition to fission product distributions, the appearance of the component parts of the element was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed

  4. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  5. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  6. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  7. Study of charge transfer reactions in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Tartakovsky, B. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2008-07-01

    Electron transfer reactions in a microbial fuel cell (MFC) were evaluated. The MFC was inoculated with anaerobic mesophilic sludge and operated with carbon felt, carbon cloth, and platinum (Pt) coated carbon cloth. The MFC was then fed with either acetate or glucose as a source of fuel and operated at a temperature of 25 degrees C and a pH of 7. Scanning electron microscopy (SEM) micrographs demonstrated that the micro-organisms colonized the anodes. Cyclic voltammetry and polarization tests were conducted using different fractions of the anodophilic biofilm in order to determine charge transfer routes. The study characterized the electron transfer mechanisms used by the exoelectrogenic micro-organisms to produce electricity. It was concluded that further research is needed to characterize reaction transfer routes. 2 refs., 1 fig.

  8. The post irradiation examination of three fuel rods from the IFA 429 experiment irradiated in the Halden Reactor

    International Nuclear Information System (INIS)

    Williams, J.

    1979-11-01

    A series of fuel rod irradiation experiments were performed in the Halden Heavy Boiling Water Reactor in Norway. These were designed to provide a range of fuel property data as a function of burn-up. One of these experiments was the IFA-429. This was designed to study the absorption of helium filling gas by the UO 2 fuel pellets, steady state and transient fission gas release and fuel thermal behaviour to high burn-up. This data was to be obtained as a function of fuel density, fuel grain size, initial fuel/cladding gap, average linear heat rating, burn-up and overpower transients. All the fuel is in the form of pressed and sintered UO 2 pellets enriched to 13 weight percent 235 U. All the rods were clad in Zircaloy 4 tube. The details of the experiment are given. The post irradiation examination included: visual examination, neutron radiography, dimensional measurements, gamma scanning, measurement of gases in fuel rods and internal free volume, burn-up analysis, metallographic examination, measurement of retained gas in UO 2 pellets, measurement of bulk density of UO 2 . The results are given and discussed. (U.K.)

  9. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  10. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  11. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  12. Equipment for nondestructive testing of the PWR and BWR spept fUel elements and assemblies in the NPP storage pools

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1983-01-01

    Design features are considered of units for nondestructive testing of spent fUel elements and fuel assemblies (FA) in the storage pools of NPP with the PWR and BWR reactors. Units for remote viewing control of fuel element cans and FA, for direct measurements of their geometrical dimensions, for FA leak-testing, fuel element can nondestructive testing and gamma scanning, for measuring gaseous fission product pressure and fuel element free volume are described along with units for complex checking of fuel element and FA parameters. The units for nondestructive testing of spent fuel elements and EA are shown to differ both in their designs and a number of checked parameters of fuel elements and FA. The remote viewing and those for measuring the basic FA parameters are most generally employed. Units for complex testing of multiple fuel element parameters, designed in the last few years, are intended for operation with FA disassembled partially or fully and are characteristic of a high degree of computer measuring automation both for the process control and data processing

  13. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  14. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  15. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  16. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  17. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  18. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  19. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  1. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  2. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Proselkov, V.N.; Scheglov, A.S.; Smirnov, A.V.; Smirnov, V.P.

    2001-01-01

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  3. Encapsulation technology of MR6 spent fuel and quality analysis of the EK-10 and WWR-SM spent fuel stored more than 30 years in wet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Borek-Kruszewska, E.; Bykowski, W.; Chwaszczewski, S.; Czajkowski, W.; Madry, M. [Institute of Atomic Energy, Otwock -Swierk (Poland)

    2002-07-01

    was established, that part of analysed fuel assemblies is close to the state specified as damaged one. The visual investigations of outer clad surface of WWR-SM fuel elements were combined with their ultrasonic scanning. The values of the depth of the pit corrosion holes was analysed. (author)

  4. RubiShort: Reducing scan time in 82Rb heart scans to minimize movements artifacts

    DEFF Research Database (Denmark)

    Madsen, Jeppe; Vraa, Kaspar J.; Harms, Hans

    .013x, R2=0.98; %Reversible: y=1.008x, R2=0.95; TPD: y=1.000x, R2=0.99). Conclusion:, Scan time of myocardial perfusion scans using 82Rb can be reduced from 7 min. to 5 min. without loss of quantitative accuracy. Since patient motion is frequent in the last minutes of the scans, scan time reduction...

  5. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  6. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  7. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  8. CT scanning in pediatric head trauma: correlation of clinical features with CT scan diagnosis

    International Nuclear Information System (INIS)

    Arkoncel, Mary Ann P.; Posadas, Ma. Belen A.

    1997-01-01

    A retrospective review was conducted on 205 cases of pediatric head trauma for which cranial computed tomography scans were done at the Makati Medical Center, to determine which clinical features might positively predict an abnormality on CT scan. The clinical findings of loss of consciousness, GCS < 12, vomiting headache, seizures, and focal abnormalities on Neurologic Examination were significantly associated with abnormal findings on CT scan. However, a significant discrepancy does exist as to how accurately clinical findings do in fact predict normal and abnormal CT scan findings. Such a discrepancy allows us to conclude that a more liberal use of CT Scanning in cases of pediatric head trauma must be stressed to insure proper diagnosis. This study shows that when a patient presents with the aforementioned positive signs and symptoms, or with a focal neurologic deficit, or in combination, a 60-100 % positive prediction of abnormal CT Scan can be made. However, prediction of normal CT Scan is only 0-40%. (Author)

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  10. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  11. Industrial use of SPring-8 in fuel cell development

    International Nuclear Information System (INIS)

    Sugiura, Masahiro

    2007-01-01

    The study of fuel cells by using synchrotron radiation from SPring-8 was reviewed for polymer electrolyte fuel cells (PEFCs; also called proton exchange membrane fuel cells), solid oxide fuel cells (SOFCs), and fuel cell-related materials. PEFCs use a solid polymer as an electrolyte and porous carbon electrodes containing a platinum catalyst. Measurements of Pt particles in the cathode catalyst by x-ray absorption near-edge structure (XANES) showed that the decrease of the particle size of Pt particles caused an increased of the number of 5d orbital holes of Pt atoms. Oxidization processes of Pt particles were measured by time-resolved dispersive x-ray absorption fine structure (XAFS). Measurements by time-gating quick scan XAFS together with dispersive XAFS revealed the reduction-oxidation process of Pt nanoparticles under the operation condition of PEFCs. SOFCs use a hard, non-porous ceramic compound as the electrolyte. SOFCs are operated at very high temperatures - around 1,000degC. Oxides having perovskite and fluorite structures are one of the most promising materials for electrolyte of SOFCs operated at reduced temperatures. The local structures of doped ceria and lanthanum gallate compounds were studied by extended XAFS. It was indicated from the measurements of ionic conductivity of these compounds that the local structure seriously affected oxide ionic conduction. Residual thermal stresses in the electrolyte of the anode-supported planar SOFCs were measured by high-energy x-rays. The crystal structure and electron density distribution of hydrogen storage alloys were measured by x-ray diffraction. (Y.K.)

  12. A comparative study to investigate burnup in research reactor fuel using two independent experimental methods

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehmood, T.; Ayazuddin, S.K.; Salahuddin, A.; Pervez, S.

    2001-01-01

    Two independent experimental methods have been used for the comparative study of fuel burnup measurement in low enriched uranium, plate type research reactor. In the first method a gamma ray activity ratio method was employed. An experimental setup was established for gamma ray scanning using prior calibrated high purity germanium detector. The computer software KORIGEN gave the theoretical support. In the second method reactivity difference technique was used. At the same location in the same core configuration the fresh and burned fuel element's reactivity worth was estimated. For theoretical estimated curve, group cross-sections were generated using computer code WIMS-D/4, and three dimensional modeling was made by computer code CITATION. The measured burnup of different fuel elements using these methods were found to be in good agreement

  13. New development in nondestructive measurement and verification of irradiated LWR fuels

    International Nuclear Information System (INIS)

    Lee, D.M.; Phillips, J.R.; Halbig, J.K.; Hsue, S.T.; Lindquist, L.O.; Ortega, E.M.; Caine, J.C.; Swansen, J.; Kaieda, K.; Dermendjiev, E.

    1979-01-01

    Nondestructive techniques for characterizing irradiated LWR fuel assemblies are discussed. This includes detection systems that measure the axial activity profile, neutron yield and gamma yield. A multi-element profile monitor has been developed that offers a significant improvement in speed and complexity over existing mechanical scanning systems. New portable detectors and electronics, applicable to safeguard inspection, are presented and results of gamma-ray and neutron measurements at commercial reactor facilities are given

  14. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  15. Review of tomography technique for 3-dimensional fission product distribution determination in irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pakr, D G; Hong, K P; Joo, Y S; Lee, H K

    2006-04-15

    Tomography algorithm is reviewed in order to determine radial 2-dimensional fission product distribution of irradiated fuel rod and to reconstruct it's image using computer. Main contents are Radon transformation, Fourier central slice theorem, inverse Fourier transform, accompanied FBP(Filtered Back Projection) and BPB(Back Projection Filtering). In addition, another tomography reconstruction algorithm, namely, ART(Algebraic Reconstruction Technique) is reviewed briefly. According to reviewed results, we devise equipment for determining of 2-dimensional distribution of irradiated nuclear fuel using existing gamma scanning apparatus. On results of review, It is necessary to develop computer program of reconstruction algorithm for determining of object function and image reconstruction.

  16. Review of tomography technique for 3-dimensional fission product distribution determination in irradiated fuel

    International Nuclear Information System (INIS)

    Pakr, D. G.; Hong, K. P.; Joo, Y. S.; Lee, H. K.

    2006-04-01

    Tomography algorithm is reviewed in order to determine radial 2-dimensional fission product distribution of irradiated fuel rod and to reconstruct it's image using computer. Main contents are Radon transformation, Fourier central slice theorem, inverse Fourier transform, accompanied FBP(Filtered Back Projection) and BPB(Back Projection Filtering). In addition, another tomography reconstruction algorithm, namely, ART(Algebraic Reconstruction Technique) is reviewed briefly. According to reviewed results, we devise equipment for determining of 2-dimensional distribution of irradiated nuclear fuel using existing gamma scanning apparatus. On results of review, It is necessary to develop computer program of reconstruction algorithm for determining of object function and image reconstruction

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  18. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  19. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  20. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  1. Fuel Supply Defaults for Regional Fuels and Fuel Wizard Tool in MOVES201X

    Science.gov (United States)

    The fuel supply report documents the data and methodology used to derive the default gasoline, diesel and fuel-blend fuel properties, and their respective fuel market share in MOVES. The default market share of the individual fuels varies by calendar year, seasons, and several do...

  2. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  3. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2013-02-21

    ... Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... EPA is announcing a public hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards,'' which was published separately in the Federal Register on...

  4. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  5. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  6. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  7. Performance of Zr as FCCI barrier layer for metallic fuel of fast reactor

    International Nuclear Information System (INIS)

    Kaity, Santu; Bhagat, R.K.; Kutty, T.R.G.; Kumar, Arun; Laik, A.; Kamath, H.S.

    2011-01-01

    Uranium-plutonium (U-Pu) and uranium-plutonium-zirconium (U-Pu-Zr) alloys have been considered as promising advanced fuels for fast reactor in India because of its high breeding potential, high thermal conductivity, high fissile and fertile atom densities, low doubling time and ease of fabrication compared to other ceramic fuels. The chemical compatibility between the fuel and clad material also known as fuel-clad chemical interaction (FCCI) has been recognized as one of the major concerns about the performance of the metallic fuel. Primarily, two design concepts have been proposed for the metallic fuel development programme for FBRs. One of them is based on sodium bonded ternary U-Pu-Zr alloy with T91 grade steel clad, and the other consists of binary U-Pu alloy mechanically bonded to T91 clad with a Zr liner between the fuel and clad. U will be the axial blanket material for U-Pu binary fuel. In the present investigation, the performance of Zr as FCCI barrier layer was studied through diffusion couple experiments of U/Zr/T91. A thin Zr foil (thickness ∼ 200 μm) sandwiched between U and T91 discs was kept inside a fixture made of Inconel 600 alloy. The fixture was encapsulated in quartz tube under Helium atmosphere and then heated at 650, 700 and 750 deg C for upto 1500 h. The extent of reaction and composition of phases formed were analyzed by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and electron probe microanalyser (EPMA) equipped with wavelength dispersive spectrometer (WDS)

  8. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  9. Emission computer tomography on a Dodewaard mixed oxide fuel pin. Comparative PIE work with non-destructive and destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  10. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  11. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  12. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  13. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  14. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  15. Scanning WorldScan. Final report on the presentation and evaluation of WorldScan, a model of the WORLD economy for SCenario ANalysis

    International Nuclear Information System (INIS)

    Geurts, B.; Gielen, A.; Nahuis, R.; Tang, P.; Timmer, H.

    1997-01-01

    An overview is given of the efforts made to present and evaluate WorldScan, a long-term model of the world economy, developed at the Dutch Central Planning Bureau (CPB). One of the pivotal activities was the organisation of a peer review of the model during a two-day workshop. The reviewers were selected both from the academic and the policy field. The main recommendations of that review were (a) not to pursue a formal, full-scale linkage between WorldScan and the RIVM-developed climate model IMAGE. Instead, WorldScan should be used for separate economic analyses, which is input in the climate model; (b) to make more precise choices with respect to the underlying theories the time horizon of the analyses; (c) to improve the empirical base of WorldScan; and (d) to enhance the use of WorldScan for policy analyses on behalf of international policy fora. The review proved to be very beneficial for the evolution of WorldScan. Implementation of some of the recommendations has led to increased use of the model by international institutions. Since the review, WorldScan has been used on behalf of the European Union (EU), the Organisation for Economic Cooperation and Development (OECD), the Energy Modelling Forum (EMF), the Centre for Global Trade Analysis (GTAP), the Chinese Academy of Social Sciences (CASS) and Indian Planning Commission (IPC). 110 refs

  16. Flop casting of nuclear materials for advanced fuel cycle research - 5247

    International Nuclear Information System (INIS)

    Swift, A.J.; Koury, D.J.; Czerwinski, K.R.; Vollmer, J.M.

    2015-01-01

    Full text of publication follows. Next generation fast reactor designs of nuclear reactors utilizing metallic fuel are being developed as an alternative fuel cycle option in an effort to reduce carbon emissions. Metallic fuel systems are attractive because of their high thermal conductivity, fissile atom density, and inherent safety. Metallic fuel systems are also being investigated because of their potential to reach high burnups. The increased targeted burnups for metallic fuels lead to higher concentrations of actinides, lanthanides, and other fission products, which alter the fuel properties and impact the performance of the fuel. Before designs can be implemented, the fission product concentrations must be studied at variable fuel geometries and stages of fuel burnup. Arc flop casting serves as a viable option for casting alloys as the molds can be tailored to fit design specific requirements while cutting costs in time-consuming machining. Arc casting is done as the final preparation step in a small arc furnace with an argon or 5% hydrogen-argon atmosphere after the sample has been subsequently melted, overturned, and re-melted. The flop casting mold is then fitted to the chamber as needed and the previously prepared sample is quickly hit with a high current arc causing the molten metal to fill the copper mold. The U-Zr-Pu system will serve as the basis for this research as it has been extensively studied since the 1950 years, although flop casting can be adapted to any metallic fuel system. Multiple U-Zr-Pu with varying fission product concentrations alloys, Technetium metal, and Plutonium alloys have been flop cast based on burnup calculations. Prepared samples were cast using different molds and dimensions, then characterized by Scanning Electron Microscopy, X-ray diffraction, and Thermogravimetric Analysis. The goal of this research is to test and develop flop casting techniques for the production of metallic fuel alloys applicable for various stages and

  17. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  18. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  19. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    Science.gov (United States)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  20. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  1. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  2. Apparatus for loading fuel pellets in fuel rods

    International Nuclear Information System (INIS)

    Tedesco, R.J.

    1976-01-01

    An apparatus is disclosed for loading fuel pellets into fuel rods for a nuclear reactor including a base supporting a table having grooves therein for holding a multiplicity of pellets. Multiple fuel rods are placed in alignment with grooves in the pellet table and a guide member channels pellets from the table into the corresponding fuel rods. To effect movement of pellets inside the fuel rods without jamming, a number of electromechanical devices mounted on the base have arms connected to the lower surface of the fuel rod table which cyclically imparts a reciprocating arc motion to the table for moving the fuel pellets longitudinally of and inside the fuel rods. These electromechanical devices include a solenoid having a plunger therein connected to a leaf type spring, the arrangement being such that upon energization of the solenoid coil, the leaf spring moves the fuel rod table rearwardly and downwardly, and upon deenergization of the coil, the spring imparts an upward-forward movement to the table which results in physical displacement of fuel pellets in the fuel rods clamped to the table surface. 8 claims, 6 drawing figures

  3. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  4. In-plant test and evaluation of the neutron collar for verification of PWR fuel assemblies at Resende, Brazil

    International Nuclear Information System (INIS)

    Menlove, H.O.; Marzo, M.A.S.; de Almeida, S.G.; de Almeida, M.C.; Moitta, L.P.M.; Conti, L.F.; de Paiva, J.R.T.

    1985-11-01

    The neutron-coincidence collar has been evaluated for the measurement of pressurized-water reactor (PWR) fuel assemblies at the Fabrica de Elementos Combustiveis plant in Resende, Brazil. This evaluation was part of the cooperative-bilateral-safeguards technical-exchange program between the United States and Brazil. The neutron collar measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron-interrogation source. The extended evaluation took place over a period of 6 months with both scanning and single-zone measurements. The results of the tests gave a coincidence-response standard deviation of 0.7% (sigma = 1.49% for mass) for the active case and 2.5% for the passive case in 1000-s measurement times. The length measurement in the scanning mode was accurate to 0.77%. The accuracies of different calibration methods were evaluated and compared

  5. Evaluation of sulphonated polycarbonate membranes for fuel cells; Avaliacao de membranas de policarbonato sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Isabela M.M.; Gomes, Ana C.; Pessan, Luiz A. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais], e-mail: isabelamuglia@gmail.com; Paranhos, Caio [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2011-07-01

    Fuel cells based on ion conducting polymer membranes offer an alternative for the conventional energetic matrices. Among many advantages of this system, we can mention the reduction on the emission of pollutants, high efficiency and simplicity. This work presents the modification of polycarbonate by sulfonation reaction using acetyl sulfate, in order to increase the conductor ionic character of the membranes used as electrolytes for hydrogen fuel cells. The sulfonated polycarbonate membranes were obtained by casting and then characterized by Fourier transform infrared spectroscopy, water vapor transmission, differential scanning calorimetry, thermogravimetric analysis and viscosimetry. (author)

  6. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  7. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.

  8. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  9. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  10. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  11. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  12. Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2017-01-01

    Full Text Available Biodiesels are a renewable energy source, and they have the potential to be used as alternatives to diesel fuel. The aim of this study is to investigate the wear and friction characteristics of Australian native first generation and second generation biodiesels using a four-ball tribo tester. The biodiesel was produced through a two-step transesterification process and characterized according to the American Society for Testing and Materials (ASTM standards. The tribological experiment was carried out at a constant 1800 rpm and different loads and temperatures. In addition, the surface morphology of the ball was tested by scanning electron microscope (SEM/energy dispersive X-ray spectroscopy (EDX analysis. The test results indicated that biodiesel fuels have a lower coefficient of frictions (COF and lower wear scar diameter (WSD up to 83.50% and 41.28%, respectively, compared to conventional diesel fuel. The worn surface area results showed that biodiesel fuel has a minimum percentage of C and O, except Fe, compared to diesel. In addition, the worn surface area for diesel was found (2.20%–27.92% to be higher than biodiesel. The findings of this study indicated that both first and second generation biodiesel fuels have better tribological performance than diesel fuel, and between the biodiesel fuels, macadamia biodiesel showed better lubrication performance.

  13. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  14. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  15. Preoperative bone scans

    International Nuclear Information System (INIS)

    Charkes, N.D.; Malmud, L.S.; Caswell, T.; Goldman, L.; Hall, J.; Lauby, V.; Lightfoot, W.; Maier, W.; Rosemond, G.

    1975-01-01

    Strontium nitrate Sr-87m bone scans were made preoperatively in a group of women with suspected breast cancer, 35 of whom subsequently underwent radical mastectomy. In 3 of the 35 (9 percent), the scans were abnormal despite the absence of clinical or roentgenographic evidence of metastatic disease. All three patients had extensive axillary lymph node involvement by tumor, and went on to have additional bone metastases, from which one died. Roentgenograms failed to detect the metastases in all three. Occult bone metastases account in part for the failure of radical mastectomy to cure some patients with breast cancer. It is recommended that all candidates for radical mastectomy have a preoperative bone scan. (U.S.)

  16. Development and testing of metallic fuels with high minor actinide content

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Kennedy, J.R.; Keiser, D.D.; Hilton, B.A.; Frank, S.M.; Kim, Y.-S.; Chang, G.; Ambrosek, R.G.

    2003-01-01

    Metallic alloys are promising candidates for use as fuels for transmutation and in advanced closed nuclear cycles. Metallic alloys have high heavy metal atom density, relatively high thermal conductivity, favorable gas release behavior, and lend themselves to remote recycle processes. Both non-fertile and uranium-bearing metal fuels containing minor actinide are under consideration for use as transmutation fuels by the U.S. Advanced Fuel Cycle (AFC) program, however, little irradiation performance data exists for fuel forms containing significant fractions of minor actinides. The first irradiation tests of non-fertile high-actinide-content fuels are scheduled to begin in early 2003 in the Advanced Test Reactor (ATR). The irradiation test matrix was designed to provide basic information on the irradiation behavior of binary Pu-Zr alloy fuel and the effect of the minor actinides americium and neptunium on alloy fuel behavior, together and separately. Five variants of transuranic containing zirconium-based alloy fuels are included in the AFC-1 irradiation test matrix. These are (in wt.%) Pu-40Zr, Pu-60Zr, Pu-12Am-40Zr, Pu-10Np-40Zr and Pu-10Np-10Am-40Zr. PuN-ZrN based fuels containing Am and Np are also included. All five of the fuel alloys have been fabricated in the form of cylindrical fuel slugs by arc-casting. Short melt times, on the order or 5-20 seconds, prevent the volatilization of significant quantities of americium metal, despite the high melt temperatures characteristic of the arc-melting process. Alloy microstructure have been characterized by x-ray diffraction and scanning electron microscopy. Thermal analysis has also been performed. The AFC-1 irradiation experiment configuration consists of twenty-four sodium bonded fuel specimens sealed in helium filled secondary capsules. The first capsule has a design burnup to 7 at.% 239 Pu; goal peak burnup of the second capsule is ∼18 at%. Capsule assemblies are placed within an aluminum flow-through basket

  17. Determination of fuel irradiation parameters. Required accuracies and available methods

    International Nuclear Information System (INIS)

    Mas, P.

    1977-01-01

    This paper reports on the present point of some main methods to determine the nuclear parameters of fuel irradiation in testing reactors (nuclear power, burn up, ...) The different methods (theoretical or experimental) are reviewed: neutron measurements and calculations, gamma scanning, heat balance, ... . The required accuracies are reviewed: they are of 3-5 % on flux, fluences, nuclear power, burn-up, conversion factor. These required accuracies are compared with the real accuracies available which are the present time of order of 5-20 % on these parameters

  18. Checklist for transition to new highway fuel(s).

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C.; Santini, D.J. (Energy Systems)

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  19. 75 FR 37733 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-06-30

    ... Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... direct final rule to amend the Renewable Fuel Standard program requirements on May 10, 2010. Because EPA... Fuel Standard program requirements, published on May 10, 2010. We stated in that direct final rule that...

  20. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  1. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  2. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  3. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  4. The utility of repeat sestamibi scans in patients with primary hyperparathyroidism after an initial negative scan.

    Science.gov (United States)

    Krishnamurthy, Vikram D; Sound, Sara; Okoh, Alexis K; Yazici, Pinar; Yigitbas, Hakan; Neumann, Donald; Doshi, Krupa; Berber, Eren

    2017-06-01

    We analyzed the utility of repeated sestambi scans in patients with primary hyperparathyroidism and its effects on operative referral. We carried out a retrospective review of patients with primary hyperparathyroidism who underwent repeated sestambi scans exclusively within our health system between 1996-2015. Patient demographic, presentation, laboratory, imaging, operative, and pathologic data were reviewed. Univariate analysis with JMP Pro v12 was used to identify factors associated with conversion from an initial negative to a subsequent positive scan. After exclusion criteria (including reoperations), we identified 49 patients in whom 59% (n = 29) of subsequent scans remained negative and 41% (n = 20) converted to positive. Factors associated with an initial negative to a subsequent positive scan included classic presentation and second scans with iodine subtraction (P = .04). Nonsurgeons were less likely to order an iodine-subtraction scan (P < .05). Fewer patients with negative imaging were referred to surgery (33% vs 100%, P = .005), and median time to operation after the first negative scan was 25 months (range 1.4-119). Surgeon-performed ultrasonography had greater sensitivity and positive predictive value than repeated sestamibi scans. Negative sestambi scans decreased and delayed operative referral. Consequently, we identified several process improvement initiatives, including education regarding superior institutional imaging. Combining all findings, we created an algorithm for evaluating patients with primary hyperparathyroidism after initially negative sestamibi scans, which incorporates surgeon-performed ultrasonography. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bone scan and red blood cell scan in a patient with epidermal naevus syndrome

    International Nuclear Information System (INIS)

    Becker, W.; Wolf, F.; Stosiek, N.; Peters, K.P.

    1990-01-01

    A bone scan and red blood cell scan in the rare epidermal naevus syndrome, associated with multiple haemangiomes of the bone and hypophosphataemic osteomalacia in a 20-year-old man are reported. The typical pattern of osteomalacia on the bone scan was associated with lesions of increased bone metabolism in the peripheral bones. The haemangiomas did not pool labelled red blood cells. Thus, the bone scan seems to be suited for diagnosing the complete extent of haemangiomas in bone, but they could not be specifically proven by red blood cell pooling. (orig.)

  6. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  7. Near-Infrared Spectroscopy Analysis of Heavy Fuel Oils Using a New Diffusing Support.

    Science.gov (United States)

    Dupuy, Nathalie; Brahem, Zeineb; Amat, Sandrine; Kister, Jacky

    2015-10-01

    The characterization of heavy fuel oils (HFOs), used as fuel for boats, requires the analysis of various properties that are essential for engine optimization and pollution control. For some time, near-infrared (NIR) spectroscopy combined with chemometric treatment of the spectra was used for on-line analysis. This preliminary study included 61 heavy fuels from Europe, America, and Asia with different specifications according to their geographical origin; their refining process; and their physicochemical properties, including density, flash point, viscosity, and sulfur content. We have developed a new method for sampling heavy fuels on a fiberglass cell support. This support offers the advantages of speed, easy implementation, repeatable results, and freedom from problems associated with tank cleaning. Two sample presentations, an integrating sphere and an optical fiber, were used to collect the NIR spectra. A theoretical study of the choice of the value of resolution, scan number, and spectral region was conducted. The best conditions were chosen as a function of the quality of quantitative analysis results on viscosity, sulfur content, flash point, and density. The two collecting methods were compared on the same criteria.

  8. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  9. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  10. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  11. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2013-10-22

    ... renewable fuel is defined as fuel produced from renewable biomass that is used to replace or reduce the quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel... of ``home heating oil.'' EPA determined that this term was ambiguous, and defined it by incorporating...

  12. Mouse manipulation through single-switch scanning.

    Science.gov (United States)

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  13. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    Science.gov (United States)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean Squares (RMS) in terms of their

  14. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  15. Factors influencing bone scan quality

    International Nuclear Information System (INIS)

    Adams, F.G.; Shirley, A.W.

    1983-01-01

    A reliable subjective method of assessing bone scan quality is described. A large number of variables which theoretically could influence scan quality were submitted to regression and factor analysis. Obesity, age, sex and abnormality of scan were found to be significant but weak variables. (orig.)

  16. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  17. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  18. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  19. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  20. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  1. Hibiscus fiber carbon for fuel cell device material

    International Nuclear Information System (INIS)

    Nanik Indayaningsih; Anne Zulfia; Dedi Priadi; Suprapedi

    2010-01-01

    The objective of this research is carbon of hibiscus fibers for the application as basic material of fuel cell device. The carbon is made using a pyrolysis process in inert gas (nitrogen) for 1 hour at temperature of 500 °C, 700 °C and 900 °C. The X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Impedance-Capacitance-Resistance-meter are used to find out the microstructure, morphology and electrical properties respectively. The results of the experiment showed that the carbon had a structure of amorphous, and as the semiconductor material the electrical conductivity was 5 x 10"-"5 S.cm"-"1 to 4.9 x 10"-"5 S.cm"-"1 increasing in accordance with the pyrolysis temperature. The morphology resembled to plaited mats constructed by porous fibers having width of 50 µm to 300 µm, thickness of 25 µm to 35 µm, and the porous size of 0.5 µm to 5 µm. This morphology enables carbon to be applied as a candidate for a basic material of the Proton Exchange Membrane Fuel Cell. (author)

  2. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  3. Fuel cracking in relation to fuel oxidation in support of an out-reactor instrumented defected fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.; Thiriet, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Lewis, B., E-mail: brent.lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada); Corcoran, E., E-mail: emily.corcoran@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    An experimental program funded by the CANDU Owners Group (COG) is studying an out-reactor instrumented defected fuel experiment in Stern Laboratories (Hamilton, Ontario) with guidance from Atomic Energy of Canada Limited (AECL). The objective of this test is to provide experimental data for validation of a mechanistic fuel oxidation model. In this experiment a defected fuel element with UO{sub 2} pellets will be internally heated with an electrical heater element, causing the fuel to crack. By defecting the sheath in-situ the fuel will be exposed to light water coolant near normal reactor operating conditions (pressure 10 MPa and temperature 265-310{sup o}C) causing fuel oxidation, especially near the hotter regions of the fuel in the cracks. The fuel thermal conductivity will change, resulting in a change in the temperature distribution of the fuel element. This paper provides 2D r-θ plane strain solid mechanics models to simulate fuel thermal expansion, where conditions for fuel crack propagation are investigated with the thermal J integral to predict fuel crack stress intensity factors. Finally since fuel crack geometry can affect fuel oxidation this paper shows that the solid mechanics model with pre-set radial cracks can be coupled to a 2D r-θ fuel oxidation model. (author)

  4. Fuel characteristics pertinent to the design of aircraft fuel systems

    Science.gov (United States)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  5. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2017-08-01

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC] 2 body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  6. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  7. An experiment to examine the mechanistic behaviour of irradiated CANDU fuel stored under dry conditions

    International Nuclear Information System (INIS)

    Oldaker, I.E.; Crosthwaite, J.L.; Keltie, R.J.; Truss, K.J.

    1979-01-01

    A program has begun to use the Whiteshell Nuclear Research Establishment dry-storage canisters to store some selected CANDU irradiated fuel bundles in an 'easily retrievable basket.' The object of the experimental program is to study the long-term stability of the Zircaloy-sheathed UO 2 and UC fuel elements when stored in air. Bundles were loaded into a canister in October 1979 following detailed examination and removal of up to three complete elements from most bundles. These elements are currently being subjected to detailed destructive examinations, including metallography and scanning electron micrography, to fully characterize their pre-storage condition. After four years, and every five years thereafter, further elements will be examined similarly to study the effects of the storage environment on the stability of the Zircaloy sheathing, and on its continued ability to contain the fuel safely in an interim storage facility. (author)

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  10. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  11. Fuel R and D to improve fuel reliability

    International Nuclear Information System (INIS)

    Yang, Rosa; Cheng, Bo; Deshon, Jeff; Edsinger, Kurt; Ozer, Odelli

    2006-01-01

    Light water reactor fuel is operating in an increasingly challenging environment. Fuel burnup extension and cycle length increase both can increase the local duty. Reactor water chemistry modifications for the purpose of protection the plant system materials have the potential of increasing fuel surface deposition and cladding corrosion and hydriding. The status of fuel performance in US reactors is summarized and an update of the Fuel Reliability Program' established by the utility industry to ensure reliability is provided. (author)

  12. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  13. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  14. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  15. The boundary-scan handbook

    CERN Document Server

    Parker, Kenneth P

    2016-01-01

    Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers;   Explains the new IEEE 1149.8.1 subsidiary standard and applications;   Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1                      Digital Boundary-Scan IEEE Std 1149.4                      Analog Boundary-Scan IEEE Std 1149.6                      Advanced I/O Testing IEEE Std 1149.8.1           �...

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  18. Intercomparison of two dynamic treatment techniques, ring scan and spot scan, for head and neck tumors with the Piotron

    International Nuclear Information System (INIS)

    Takai, M.; Blattmann, H.; Pedroni, E.

    1988-01-01

    An evaluation of the ring scan and the spot scan was made for the pion irradiation of head and neck tumors with the Piotron. For the geometry of the Piotron, with its 60 radially converging beams, two scanning techniques have been developed, ring scan and spot scan. They have different characteristics concerning achievable dose distributions and sensitivity to tissue inhomogenities. The optimized 3-dimensional dose distributions for the treatment with ring scan and spot scan techniques were calculated for two examples of the target volume. The comparison of the dose distributions has shown that the ring scan is better in sparing normal tissues than the spot scan for a simple shape target volume but not for an irregular shape target volume with the present status of the technique. The irradiation time needed for the ring scan is longer, for the present examples three times, than for the spot scan. From the practical view point the spot scan is preferable to the ring scan for the treatment of head and neck tumors with the Piotron

  19. Multiple myeloma: radiology or bone scanning

    International Nuclear Information System (INIS)

    Leonard, R.C.F.; Owen, J.P.; Proctor, S.J.; Hamilton, P.J.

    1981-01-01

    A comparative study of radionuclide bone scanning and skeletal radiology in patients with multiple myeloma revealed four principal findings: (i) There were no cases of negative bone scans with positive skeletal radiographs. (ii) Lytic bone lesions were seriously underestimated by bone scans. (iii) Bone scans tended to pick up lesions in ribs missed on the skeletal surveys. (iv) Patients with bone pain were more likely to have positive bone scans and skeletal radiographs than asymptomatic patients. (author)

  20. Are environmental scanning units effective?

    Science.gov (United States)

    Stubbart, C

    1982-06-01

    Many authorities have urged companies to set up environmental scanning to assist corporate planning. Some advocates have recommended a unit at corporate level. This would give breadth of view and penetration into the future. It would arm decision makers with accurate forecasts. The information would be broad in scope and future directed. It could provide also assumptions for long-range planning. The Fahey and King study produced a model of corporate scanning types. The data showed that environmental information was built into the plan. Though the political environment was important, scanning was inadequate. The best location for scanning was not at corporate level and most firms used irregular methods. The Thomas study concluded that effective environmental scanning was permanent and multi level and that 'best practice' was continuous scanning. In 1978 the sample organizations were revisited. Five of the twelve have not changed their practice. The factors which encouraged a continuous model were the attitudes of academics and business media, demonstrated success of the units, the right kind of personnel. Contrary influences were changes in top management, decentralization moves, resource cuts, defining the environment and its significance, the availability of scanning competent personnel, surprise itself, and the availability of alternatives e.g. external forecasts.

  1. Contribution to the study and realization of a gamma scanning examination method for irradiation devices analysis in a research nuclear reactor

    International Nuclear Information System (INIS)

    Michel, Francois.

    1979-01-01

    To meet the requirements of the experimenters in research nuclear reactors, a fast quantitative, non destructive method of irradiation devices examination was conceived and applied in the CEN.G SILOE reactor as far back as 1972. The object is the analysis of the fuel sample evolution and the continuous study of the possible coolant contamination. This report describes and justifies the choices taken for the measurements installation conception (two dimensional scanning bench, collimation, detector, automatic operation), and explains the analysis and calibration methods, the work on the whole being adjusted to obtain absolute results (present atomic concentrations). Different results interpretations are presented which concern the axial and radial fission products migration in the fuel, their release in case of cladding rupture, and the fission power measurement [fr

  2. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  3. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  4. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  5. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  6. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  7. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  9. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvements are needed to meet chemical durability requirements.

  10. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  11. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... transportation fuels, including gasoline and diesel fuel, or renewable fuels such as ethanol and biodiesel, as... that which arose under RFS1 for certain renewable fuels (in particular biodiesel) that were produced...

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  13. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-03-26

    ... RINs from producers of the renewable fuel. The obligated parties do not need lead time for construction... fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that... advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways...

  14. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  15. Characterization of fuel swelling in helium-bonded carbide fuel pins

    International Nuclear Information System (INIS)

    Louie, D.L.Y.

    1987-08-01

    This work is not only the first attempt at characterizing the swelling of (U,Pu)C fuel pellets, but it also represents the only detailed examinations on carbide fuel swelling at high fuel burnups (4 to 16 at. %). This characterization includes the contributions of fission gases, cracks and solid fission products to fuel swelling. Significantly, the contributions of fission gases and cracks were determined by using the image analysis technique (IAT) which allows researchers to take areal measurements of the irradiated fuel porosity and cracks from the photographs of metallographic fuel samples. However, because areal measurements for varying depths in the fuel pellet could not be obtained, the crack areal measurements could not be converted into volumetric quantities. Consequently, in this situation, an areal fuel swelling analysis was used. The macroscopic fission-gas induced fuel swelling (MAS) caused by fission-gas bubbles and pores > 1 μm was determined using the measured irradiated fuel porosity because the measuring range of IAT is limited to bubbles and pores >1 μm. Conversely, for fuel swelling induced by fission-gas bubbles < 1 μm, the microscopic fission-gas induced fuel swelling (MIS) was estimated using an areal fuel swelling model

  16. KMRR fuel design

    International Nuclear Information System (INIS)

    Son, D.S.; Sim, B.S.; Kim, T.R.; Hwang, W.; Kim, B.G.; Ku, Y.H.; Lee, C.B.; Lim, I.C.

    1992-06-01

    KMRR fuel rod design criteria on fuel swelling, blistering and oxide spallation have been reexamined. Fuel centerline temperature limit of 250deg C in normal operation condition and fuel swelling limit of 12 % at the end of life have been proposed to prevent fuel failure due to excessive fuel swelling. Fuel temperature limit of 485deg C has been proposed to exclude the possibility of fuel failures during transients or under accident condition. Further analyses are needed to decide the fuel cladding temperature limit to preclude the oxide spallation. Design changes in fuel assembly structure and their effects on related systems have been reviewed from a structural integrity viewpoint. The remained works in fuel mechanical design area have been identified and further efforts of fuel design group will be focused on these aspects. (Author)

  17. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  18. Qualification of the neutronic evolution of LWR fuels in MELUSINE

    International Nuclear Information System (INIS)

    Beretz, D.; Garcin, J.; Ducros, G.; Vanhumbeeck, D.; Chaucheprat, P.

    1984-09-01

    MELUSINE, a swimming pool type reactor, in Grenoble, for research and technological irradiations is well fitted to the neutronic evolution qualification of the LWR fuel. Thus, with an adjustment of the lattice pitch, representative neutron spectrum locations are available. The re-leading management and the regulation mode flexibility of MELUSINE lead to reproductible neutronic parameters configurations without restricting the reactor to this purpose only. Under these conditions, simple calculations can be carried out for interpretation, without taking into account the whole core. An instrumentation by Self Power Neutron Detectors (collectrons) gives on-line information on the fluxes at the periphery of the device. When required by the neutronicians, experimental pins can be unloaded during the irradiation process and scanned on a gammametry bench immersed in the reactor-pool itself, before their isotopic composition analysis. Thus, within the framework of neutronic evolution qualification, are studied fuel pins for advanced assemblies for the light water reactors or their derivatives, with large advantages over irradiations in power reactors [fr

  19. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  20. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  1. 76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Science.gov (United States)

    2011-04-01

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program CFR Correction In Title 40 of the Code of Federal Regulations, Parts 72 to...-generating foreign producers and importers of renewable fuels for which RINs have been generated by the...

  2. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  3. Synthesis of Poly(3,4-Ethylenedioxy thiophene)-Poly(Styrene-4-Sulfonate) Composites for Support Fuel Cell Catalyst Layer

    International Nuclear Information System (INIS)

    Eko Sulistiyono; Murni Handayani

    2009-01-01

    Synthesis of poly(3,4-ethylenedioxy thiophene)-poly(styrene-4-sulfonate) composites for support fuel cell catalyst layer are synthesis composites which become fuel cell catalyst support so that catalyst has optimal performance. Main function of composites is support platinum particle for application in fuel cell. This article explains the result of composites production process from ( 3,4 Ethylenedioxy thiophene) and Sodium poly( styrene - 4-sulfonate) using two methods Jingning Shan method (method 1) and Zhigang Qi and Peter G.Pickup method (method 2). Analysis of the synthesis results used Scanning Electron Microscopic –Electron Dispersive X – Ray Spectrophotometer (SEM-EDS ). The analysis result show that both methods produce polymer agglomerate into a sponge-like morphology. Composite from method 1 has morphology, pores and proton transport better than composite produced by method 2. (author)

  4. Bone scanning as a routine examination of patients with mammary carcinoma; a critical consideration. [Preoperative scanning

    Energy Technology Data Exchange (ETDEWEB)

    Heslinga, J M; Pauwels, E K.J.; Zwaveling, A [Rijksuniversiteit Leiden (Netherlands). Academisch Ziekenhuis

    1982-06-05

    The usefulness of bone scanning as a routine examination was evaluated in 136 female patients with mammary carcinoma of whom 81 were staged as Columbia A and 55 as Columbia B/C. The preoperative bone scanning was positive in only 4 patients (2.9%). Consequently, bone scanning is no longer performed in the authors clinic for the preoperative detection of skeletal metastases. Bone scanning as a routine examination at 6-month intervals does not appear to be useful for the first 4 years of the follow-up, either. Most of the patients with a positive bone scan displayed other signs of skeletal metastases at the same time, such as ostealgia and a raised serum alkaline phosphatase level. Further increase of the frequency of bone scanning during the follow-up period would increase the costs considerably, almost prohibitively, even apart from the question whether such a measure might indeed significantly influence the patient's prognosis. The authors conclude that bone scanning should only be performed on the basis of the anamnesis, physical and laboratory findings, both prior to operation and during the follow-up period.

  5. Bone scanning in severe external otitis

    International Nuclear Information System (INIS)

    Levin, W.J.; Shary, J.H. III; Nichols, L.T.; Lucente, F.E.

    1986-01-01

    Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans with many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis

  6. Increasing TRIGA fuel lifetime with 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, W F; Cenko, M J; Levine, S H; Witzig, W F [Pennsylvania State University (United States)

    1974-07-01

    In-core fuel management studies have been performed for the Penn State Breazeale Reactor (PSBR) wherein 12 wt % U fuel elements are used to replace the standard 8.5 wt % U TRIGA fuel. The core configuration used to develop a calculational model was a 90-element hexagonal array, which is representative of the PSBR core, and consists of five hexagonal rings surrounding a central thimble containing water. The technique employed for refueling the core fully loaded with 8.5 wt % U fuel involves replacing 8.5 wt % U fuel with 12 wt % U fuel using an in-out reloading scheme. A batch reload consists of 6 new 12 wt % U fuel elements. Placing the 12 wt % U fuel in the B ring produces fuel temperatures ({approx}450 {sup o}C) that are well below the 800{sup o}C maximum limitation when the PSBR is operating at its maximum allowed power of 1 Megawatt. The advantages of using new 12 wt % U fuel to replace the burned up 8.5 wt % U fuel in the B ring over refueling strictly with 8.5 wt % U-Zr TRIGA fuel are clearly delineated in Table 1 where cost calculations used the General Atomic pre-1972 prices for TRIGA fuel, i.e., $1500 and $1650 for an 8.5 and 12 wt % U fuel element, respectively. Experimental results obtained to date utilizing the 12 wt % U fuel elements agree with the computed results. (author)

  7. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  8. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  9. Handbook of optical and laser scanning

    CERN Document Server

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  10. Fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors

  11. Effects of Optimizing the Scan-Path on Scanning Keyboards with QWERTY-Layout for English Text.

    Science.gov (United States)

    Sandnes, Frode Eika; Medola, Fausto Orsi

    2017-01-01

    Scanning keyboards can be essential tools for individuals with reduced motor function. However, most research addresses layout optimization. Learning new layouts is time-consuming. This study explores the familiar QWERTY layout with alternative scanning paths intended for English text. The results show that carefully designed scan-paths can help QWERTY nearly match optimized layouts in performance.

  12. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  13. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  14. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  15. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  16. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ait Chaou, Abdelouahed, E-mail: aitchaou@subatech.in2p3.fr; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO{sub 2} and a clay-like Mg–silicate, while under reducing conditions (H{sub 2}/N{sub 2} atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  17. Preoperative nuclear scans in patients with melanoma

    International Nuclear Information System (INIS)

    Au, F.C.; Maier, W.P.; Malmud, L.S.; Goldman, L.I.; Clark, W.H. Jr.

    1984-01-01

    One hundred forty-one liver scans, 137 brain scans, and 112 bone scans were performed in 192 patients with clinical Stage 1 melanoma. One liver scan was interpreted as abnormal; liver biopsy of that patient showed no metastasis. There were 11 suggestive liver scans; three of the patients with suggestive liver scans had negative liver biopsies. The remaining eight patients were followed from 4 to 6 years and none of those patients developed clinical evidence of hepatic metastases. All of the brain scans were normal. Five patients had suggestive bone scans and none of those patients had manifested symptoms of osseous metastases with a follow-up of 2 to 4.5 years. This study demonstrates that the use of preoperative liver, brain and bone scan in the evaluation of patients with clinical Stage 1 melanoma is virtually unproductive

  18. Gallium scans in myasthenia gravis

    International Nuclear Information System (INIS)

    Swick, H.M.; Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether 67 Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on 67 Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis

  19. Gallium scans in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Swick, H.M. (Univ. of Kentucky, Lexington); Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether /sup 67/Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on /sup 67/Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis. (HLW)

  20. Nuclear fuel management via fuel quality factor averaging

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1978-01-01

    The numerical procedure of prime number averaging is applied to the fuel quality factor distribution of once and twice-burned fuel in order to evolve a fuel management scheme. The resulting fuel shuffling arrangement produces a near optimal flat power profile both under beginning-of-life and end-of-life conditions. The procedure is easily applied requiring only the solution of linear algebraic equations. (author)

  1. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  2. Obstacles to Industrial Implementation of Scanning Systems

    Science.gov (United States)

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  3. SCANS (Shipping Cask ANalysis System) a microcomputer-based analysis system for shipping cask design review: User's manual to Version 3a. Volume 1, Revision 2

    International Nuclear Information System (INIS)

    Mok, G.C.; Thomas, G.R.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.

    1998-03-01

    SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees. SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations 10 CFR 71 and Regulatory Guides published by the US Nuclear Regulatory Commission in 1977 and 1978

  4. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  5. Interesting bone scans - unusual findings

    International Nuclear Information System (INIS)

    Dobson, M.; Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.

    1997-01-01

    A 59-year-old female with carcinoma of the colon and known liver metastatic disease was referred for bone scan to evaluate for bone metastases. Although no bone metastases were found, there was abnormal uptake noted in the liver corresponding to a metastatic calcified lesion. The only other findings were of degenerative disease in the cervical spine, right shoulder and small joints of the hands. A 69-year-old male with carcinoma of the prostate and right side low back pain was referred for bone scan. No focal abnormalities to suggest metastatic disease were identified; findings within the cervical spine, lumber spine and knees were presumed secondary to degenerative disease. Intermittent pain persisted and the patient was referred for a repeat bone scan six months later. Previous scan findings of degenerative disease and no metastatic disease were confirmed; however, closer inspection revealed an enlarged right kidney with significant retention of tracer in the pelvicalyceal system suggesting possible obstruction. A Retrograde pyelogram was performed, and no obvious obstruction demonstrated. As bone scan findings were very suggestive of obstruction, a DTPA scan with lasix was performed showing a dilated right collecting system with no functional obstruction. Given the degree of dilation, it is possible that the patient experiences intermittent PUJ obstruction causing his symptoms. A 33-year-old male with insulin dependent diabetes mellitus and viral arthritis was referred for a bone scan. A three phase revealed increased uptake in the region of the knee and leR proximal tibia. Delayed whole body images revealed multiple focal areas of osteoblastic activity in the leR tibia. Abnormal uptake was also seen in the upper third of the leR femur. The remainder of the skeletal survey was normal. X-ray correlation of the leR tibia and femoral findings was undertaken. Combinating unilateral changes on bone scan and X-ray although very suggestive of sclerotic polyostotic

  6. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  7. The utility of bone scans in rheumatology

    International Nuclear Information System (INIS)

    Duncan, I.; Dorai-Raj, A.; Khoo, K.; Tymans, K.; Brook, A.

    1997-01-01

    Full text: Introduction: Bone scans are the commonest diagnostic imaging services requested by Australian rheumatologists. Medicare figures suggest that an average rheumatologist orders about $50 000 (AUS) of bone scans annually. Aims: To ascertain the reasons why rheumatologists request bone scans and how it affects their patient management. Methods: A two-part prospective survey was administered before and after every bone scan ordered by four rheumatologists over a six-month period in 1996. Results: A total of 136 bone scans were requested (66.2% whole body; 33.8% regional; 6% SPECT). The primary indications for scanning were (1) to confirm a clinical diagnosis (38%); (2) to exclude a diagnosis (34%); (3) to localize site of pain (17%); and (4) to assist in management (6%). The common diseases that rheumatologists were attempting to confirm/exclude with bone scanning were inflammatory arthritis, malignancy, and fracture. However, the commonest provisional and final diagnosis was soft tissue rheumatism (18%) followed by inflammatory arthritis (15%) and osteoarthritis (11%). In 24% of patients with a provisional diagnosis of soft tissue rheumatism the diagnosis was changed by the bone scan. The scan was successful in excluding a diagnosis in 88 per cent where this was the primary indication for the test. It was successful in confirming a diagnosis in 79 per cent where this was the primary indication. In 32 per cent the bone scan altered the clinical diagnosis and in 43 per cent it altered management. The bone scan result prevented further investigations in 60 per cent. Conclusions: The commonest pre-scan and post-scan diagnosis is soft tissue rheumatism. Rheumatologists predominantly request bone scanning to confirm or exclude their clinical suspicion of inflammatory arthritis, malignancy, and fracture. Bone scans were successful in achieving these objectives in at least 79 per cent of cases

  8. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  9. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  10. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  11. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  12. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  13. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Jue, Jan-Fong, E-mail: dennis.keiser@inl.gov; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U–Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U–10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: • A typical Zr diffusion barrier with a thickness of 25 μm. • A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. • Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt.%. • Decomposed areas containing plate-shaped low-Mo phase. • A typical Zr/cladding interaction layer with a thickness of 1–2 μm. • A visible UZr{sub 2} bearing layer with a thickness of 1–2 μm. • Mo-rich precipitates (mainly Mo{sub 2}Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr{sub 2}-bearing layer and the U–Mo matrix. • No excessive interaction between cladding and the uncoated fuel edge. • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O

  14. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  15. CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells

    Science.gov (United States)

    2008-10-27

    Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC

  16. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  17. Improving the scanning speed of atomic force microscopy at the scanning range of several tens of micrometers

    International Nuclear Information System (INIS)

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan; Hu, Xiaotang

    2013-01-01

    The atomic force microscope (AFM) is a powerful instrument which can measure the surface of samples at the nanoscale. The resonance of the scanner in xy directions, and the feedback control in the z direction are two major sources of image distortion at high scan speed. In order to improve the scanning speed of the AFM, a low-cost and easy method, which includes sinusoidal scans in the fast scan direction, and an intelligent fuzzy controller in the z direction, is proposed in this paper. The use of a single-frequency driving signal in the fast scan direction allows the scanner to move at a higher speed without exciting its mechanical resonance. The intelligent fuzzy controller automatically selects appropriate PI parameters through the analysis of the tracking errors, thus improving the dynamic tracking performance of the z scanner. The development and functioning of the sinusoidal fast scans and the intelligent fuzzy controller are demonstrated, as well as how this approach significantly achieves faster scans and a higher resolution AFM imaging. -- Highlights: ► The sinusoidal scan and the intelligent controller are used to improve AFM's rate. ► A new method is raised to overcome the nonlinearity caused by the sinusoidal scan. ► A new controller is proposed to improve the performance of the vertical direction.

  18. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  19. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Science.gov (United States)

    2010-07-01

    ... EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures... equivalent petroleum-based fuel economy value exists for an electric vehicle configuration, all values for... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  20. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  1. Experience with Pu-recycle fuel for large light water reactors in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Stehle, H.; Spierling, H.; Eickelpasch, N.; Stoll, W.

    1977-01-01

    In general, design and operational performance of Pu-bearing recycle fuel are quite similar to those of Uranium fuel. Up to Nov. 1976 153 Pu-bearing fuel assemblies with altogether 8000 fuel rods, fabricated by ALKEM, have been or are in operation in German power reactors. Their performance is very satisfactory. In the Obrigheim and in the Gundremmingen plant up to 20% of the core are made up of Pu-fuel. In either case all-Pu fuel assemblies are used, graded in their Pu-content for compatibility with the surrounding U-fuel. The physics calculations are accomplished with basically the same methods as applied for U-fuel. Theoretical investigations and physics measurements have shown that differences in reactivity balance can be minimized by proper loading patterns. In additional experiments at elevated temperature (KRITZ) the neutron physics methods were verified in greater detail. The main feature of fabrication of mixed oxide pellets is mechanical blending of natural UO 2 - and PuO 2 -powder before pressing green pellets, and a rather high degree of mechanisation in all fabrication steps including sintering, wet grinding, and rod filling operations. The Zircaloy cladding know-how, welding techniques, final surface treatment etc. were all taken from the large experience of KWU in the LWR fuel area. Several fuel assemblies have been examined in the spent fuel pools and in hot cell laboratories after a maximum burn-up of 30 GWd/t. The examinations revealed no significant differences compared to U-fuel. Fission gas release is somewhat higher, attributed to the inhomogeneous fissioning on the microscopic scale in the mechanically mixed oxide. For the same reason the rate of densification is reduced. No Pu-redistribution has been observed. β-scans ( 140 La) and isotopic analyses confirmed the adequate accuracy of the calculation methods. In order to investigate the thermo-mechanical behaviour especially under power ramping conditions in greater depth mixed oxide test

  2. Security scanning at 35 GHz

    Science.gov (United States)

    Anderton, Rupert N.; Appleby, Roger; Coward, Peter R.; Kent, P. J.; Price, Sean; Sinclair, Gordon N.; Wasley, Matthew R. M.

    2001-08-01

    It has been known for some time that millimeter waves can pas through clothing. In short range applications such as in the scanning of people for security purposes, operating at Ka band can be an advantage. The penetration through clothing is increased and the cost of the equipment when compared to operation at W band. In this paper a Ka band mechanically scanned imager designed for security scanning is discussed. This imager is based on the folded conical scan technology previously reported. It is constructed from low cost materials such as polystyrene and printed circuit board. The trade off between image spatial resolution and the number of receivers will be described and solutions, which minimize this number discussed.

  3. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  4. Fuel Cycle Concept with Advanced METMET and Composite Fuel in LWRs

    International Nuclear Information System (INIS)

    Savchenko, A.; Skupov, M.; Vatulin, A.; Glushenkov, A.; Kulakov, G.; Lipkina, K.

    2014-01-01

    The basic factor that limits the serviceability of fuel elements developing in the framework of RERTR Program (transition from HEU to LEU fuel of research reactors) is interaction between U10Mo fuel and aluminium matrix . Interaction results in extra swelling of fuels, disappearance of a heat conducting matrix, a temperature rise in the fuel centre, penetration porosity, etc. Several methods exist to prevent fuel-matrix interaction. In terms of simplifying fuel element fabrication technology and reducing interaction, doping of fuel is the most optimal version

  5. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  6. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  7. Proceedings of fuel strategies for conventional and unconventional fuels

    International Nuclear Information System (INIS)

    Mahr, D.; Nechvatal, T.T.

    1991-01-01

    Fuel selection is a major decision for a power engineer. It is the single largest item in the power plant operating budget and has a major effect on power plant economics. Fuel determines plant design requirements and the types of systems that are provided. As a result, it affects capital budgets and financing requirements. In the last few decades, we have seen different fuels of choice at any one time. Coal has always been a staple for power generation. During the 1950s and 1960s, oil became an attractive alternative. Nuclear fuel became a popular choice due to its very low energy cost. After Three-Mile-Island, however, capital budgets went through the roof, resulting in severe financial constraints. Natural gas, which was rationed in some regions a few years ago, is now a popular choice. Some sources predict that its cost will increase faster than other fuels. To mitigate the relative variations in energy cost for different fuels, a balanced energy plan is required. A balanced power generation plan with fuel options provides the flexibility to react to unpredictable changes. The papers in this book are a continuation of the Fuel Strategies theme. Three technical topics are covered: Converting to Orimulsion, A Replacement Fuel for Heavy Oil; Innovations in Handling Conventional and Unconventional Fuels for Power Plants; and Pacific Rim Experience With Coal

  8. Comparison of thallium-201 scan and Tc-99m sestamibi scan in the differential diagnosis of breast mass

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ihn Ho; Won, Kyu Jang; Lee, Hyung Woo; Lee, Soon Jung [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    1999-02-01

    We performed this study to compare Tl-201 and Tc-99m MIBI scans for the differentiation of malignant from benign breast mass. Thirty-eight female patients underwent Tl-201 breast scan and thirty-two of them also underwent Tc-99m MIBI scan of the breast. After intravenous injection of 74-111 MBq of Tl-201, early (10 minutes) and delayed (3 hours) images were obtained. Then, 555-740 MBq of Tc-99m MIBI was injected and images after 30 minutes were obtained. We compared Tl-201 and Tc-99m MIBI scans with pathologic results. Twenty-three patients were confirmed to have infiltrating duct carcinoma and fifteen patients to have benign breast mass by excisonal biopsy. The sensitivity of early and delayed Tl-201 scan and Tc-99m MIBI scan in the detection of malignant breast lesion were 100% (23/23), 82% (18/22), and 90% (18/20), respectively. The sensitivity of early Tl-201 scan was significantly higher than that of delayed Tl-201 scan, (p<0.05). The specificity of early and delayed Tl-201 scan and Tc-99m MIBI scan were 73% (11/15), 73% (11/15) and 83% (10/12), respectively (p: not significant). Three patients out of nine with fibroadenoma and one patient with atypical duct hyperplasia were false positive in both early and delayed Tl-201 scans. The size of fibroadenoma with false positive in early and delayed Tl-201 scan (4 cases) was larger than that of 11 fibroadenoma with true negative scan (p<0.01). Metastatic axillary lymph node involvement was present in fifteen patients. The sensitivity to detect metastatic nodes was 38% (5/13) for early Tl-201 images, 15% (2/13) for delayed Tl-201 images, 58% (7/12) for Tc-99m MIBI planar images and 67% (4/6) for Tc-99m MIBI SPECT. The sensitivity of Tc-99m MIBI planar or SPECT was significantly higher than that of delayed Tl-201 images (p<0.05). Early Tl-201 and Tc-99m MIBI scan are useful noninvasive methods to differentiate malignant from benign mass of breast. Tc-99m MIBI scan was sensitive in detecting axillary lymph node

  9. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  10. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  11. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  12. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  13. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  14. Three phase bone scan , Ga-67 and Tc-99m nanocoll scan in detection of osteomyelitis caused by war injuries

    International Nuclear Information System (INIS)

    Banek, T.; Reljica-Kostic, Z.; Kurnik, G.

    1994-01-01

    Thirty three injured soldiers were surgically treated because of pierce wounds of extremities. Treatment was either osteosynthesis or external fixation. Two to four weeks post treatment clinical signs of osteomyelitis appeared. X-ray was negative in all patients. Three-phase bone scan was performed in order to establish diagnosis. Bone scan was positive in all patients. For 11 patients only bone scan was sufficient for decision of further treatment. In 22 patients Ga-67 or Tc-99m- nanocoll or both examinations were performed on surgeon's request. In 2 patients out of 5 with additional Ga-67 scan, Ga-67 scan showed more lesions than it was seen on bone scan. In 3 patients out of 5 with additional Tc-99m-nanocoll scan, Tc-99m-nanocoll scan showed more lesions than it was seen on bone scan. In 12 patients with positive bone scan and negative or unclear Ga-67, Tc-99m-nanocoll scan was performed. In 5 out of 12 patients Tc-99m- nanocoll scan established diagnosis in others confirmed finding on bone and Ga-67 scan. Our results showed that in one third of our causes bone scan was sufficient for diagnosing of osteomyelitis caused by war injuries. In selected cases where bone scan was not sufficient for diagnosis and decision for treatment Tc-99m-nanocoll was more sensitive than Ga-67. In our experience three-phase bone scan is more sensitive than Ga-67. In our opinion three-phase bone scan is the method of choice for diagnosing osteomyelitis in war situation with a lot of casualties. (author)

  15. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  16. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  17. LPG fuel

    International Nuclear Information System (INIS)

    Dagnas, F.X.; Jeuland, N.; Fouquet, J.P.; Lauraire, S.; Coroller, P.

    2005-01-01

    LPG fuel has become frequently used through a distribution network with 2 000 service stations over the French territory. LPG fuel ranks number 3 world-wide given that it can be used on individual vehicles, professional fleets, or public transport. What is the environmental benefit of LPG fuel? What is the technology used for these engines? What is the current regulation? Government commitment and dedication on support to promote LPG fuel? Car makers projects? Actions to favour the use of LPG fuel? This article gathers 5 presentations about this topic given at the gas conference

  18. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  19. Electrocatalysts for fuel cells; Electrocatalizadores para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M. A.; Fernandez V, S. M. [ININ, Depto. de Quimica, Apdo. Postal 18-1027, Col. Escandon, Mexico 11801, D. F. (Mexico); Vargas G, J. R. [IPN, Depto. de Ingenieria Metalurgica, Mexico 07300, D. F. (Mexico)

    2008-07-01

    It was investigated the oxygen reduction reaction (fundamental reaction in fuel cells) on electrocatalysts of Pt, Co, Ni and their alloys CoNi, PtCo, PtNi, PtCoNi in H{sub 2}SO{sub 4} 0.5 M and KOH 0.5 M as electrolyte. The electrocatalysts were synthesized using mechanical alloying processes and chemical vapor deposition. The electrocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray spectroscopy. The evaluation was performed using electrocatalytic technique of rotating disk electrode and kinetic parameters were determined for each electro catalyst. We report the performance of all synthesized electrocatalysts in acid and alkaline means. (Author)

  20. Characterization of internal surface finishing of tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Loureiro, N.V; Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    One of the factors that ensure the good behavior of the fuel claddings of the nuclear power reactors is the internal surface quality. In the present work has been carried out a study of the internal surface of the tube after a cold rolling process developed in the Departamento de Tecnologia de Aleaciones de Circonio and applied by FAE-SA and PPFAE-CNEA in each rolling stage to obtain the fuel claddings for the reactor CAREM 25. The inner surface has been observed by scanning electron microscopy, SEM, being the objective of this study to verify not only the good internal surface but also infer about how starting from tubes of different initial diameter reduction the quality of the final product will be affected. The manufacturing process of the tubes for this new fuel went through modifications during the development, adding intermediate chemical pickling stages in order to improve the internal surface quality of the final product. From determinations made with ultrasound, the defects charts obtained made it possible to compare the observed signals more relevant and the micrographs in these areas in order to characterize possible defects (author)

  1. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  2. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  3. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  4. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  5. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.; Roberts, E.

    1978-05-01

    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  6. Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency

    OpenAIRE

    Kurani, Ken; Turrentine, Thomas

    2004-01-01

    Much prior research into consumer automotive and fuel purchase behaviors and fuel economy has been shaped by the normative assumptions of economics. Among these assumptions are that consumers should pay attention to costs of fuel and that they are aware of their options to save on fuel over long periods of time, i.e., the life of a vehicle or at least their period of ownership. For example, researchers have analyzed in some depth consumer choices for more fuel economical vehicles in the 1980s...

  7. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  8. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  9. Thermodynamic characterization of salt components for the Molten Salt Reactor Fuel - 15573

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, A.

    2015-01-01

    Molten fluoride salts are considered as primary candidates for nuclear fuel in the Molten Salt Reactor (MSR), one of the 6 generation IV nuclear reactor designs. In order to determine the safety limits and to access the properties of the potential fuel mixtures, thermodynamic studies are very important. This study is a combination of experimental work and thermodynamic modelling and focusses on the fluoride systems with alkaline and alkaline earth fluorides as matrix and ThF 4 , UF 4 and PuF 3 as fertile and fissile materials. The purification of the single components was considered as essential first step for the study of more complex systems and ternary phase diagrams were described using Differential Scanning Calorimetry (DSC) and drop calorimetry, which are used to measure phase transitions, enthalpy of mixing and heat capacity. In addition to the calorimetric techniques, Knudsen Effusion Mass Spectrometry (KEMS) and X-ray Diffraction (XRD) were used to collect data on vapour pressure and crystal structure of fluorides. The results are then coupled with thermodynamic modelling using the Calphad method for the assessment of the phase diagrams. A thermodynamic database describing the most important systems for MSR application has been developed and it has been used to optimize the fuel composition in view of the relevant properties such as melting temperature. A reliable database of thermodynamic properties of fluoride salts has been generated. It includes the key systems for the MSR fuel and it is very useful to predict the properties of the fuel

  10. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  11. Rapid line scan MR angiography

    International Nuclear Information System (INIS)

    Frahm, J.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.

    1987-01-01

    Direct MR angiography may be performed using line scan imaging techniques combined with presaturation of stationary spins. Thus, a single line scan echo yields a projection of vessels due to the signal from reflowing unsaturated spins. Reconstruction of an angiographic image is performed line by line at slightly incremented positions. In particular, line scan angiography is direct and fast without a sensitivity to artifacts even for high flow rates. Image resolution and field of view may be chosen without restrictions, and zoom images using enhanced gradients may be recorded without aliasing artifacts. The method is robust with respect to eddy currents and pulsatile flow. Line scan MR angiograms of phantoms, animals, and human volunteers have been recorded using 90 0 radio frequency pulses and gradient-recalled echoes

  12. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  13. Fuel charging machine

    International Nuclear Information System (INIS)

    Uchikawa, Sadao.

    1978-01-01

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 180 0 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  14. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  15. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  16. Elongated fuel road

    International Nuclear Information System (INIS)

    Williams, A.E.; Linkison, W.S.

    1977-01-01

    A fuel rod is proposed where a reorientation of the fuel in case of a considerable temperature increase, causing the melting of the densified fuel powder, will be avoided. For this purpose, in longitudinal direction of the fuel rod, a number of diameter reductions of the can are applied of certain distances. In the reduction zone the cross-sectional area of the fuel is reduced, as compared to the one of the remaining fuel material in the regions without diameter reduction, but not the density of the fuel. The recess is chosen to that in case of melting of the fuel in the center of the not contracted zone the fuel in the center of the narrowed area will remain solid and keep the molten material in position. (HR) [de

  17. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  18. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  19. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  20. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  1. Safe handling of renewable fuels and fuel mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A [VTT Energy, Espoo (Finland)

    1997-12-01

    VTT Energy has for several years carried out co-operation with many European research institutes on contractional basis on safety issues of fuels handling. A two-year co-operational project between VTT Energy and these research institutes was started in EU`s JOULE 3 programme in 1996, the total budget of which is 6.9 million FIM. Dust explosion testing method for `difficult` fuels, and for tests at elevated pressures and temperatures, will be developed in the task `Safe handling of renewable fuels and fuel mixtures`. Self- ignition and dust-explosion characteristics will be generated for wood and agro-biomass based biomasses and for the mixtures of them and coal. Inertization requirements will be studied, and the quenching method, combined with partial inertization, will be tested in 1.0 m{sup 3} test equipment. The ignition properties of the fuels under normal and elevated pressures will be characterised with thermobalances. The self-ignition tests with wood and forest residue dusts at 25 bar pressure have been carried out as scheduled. In addition to this, several fuels have undergone thermobalance tests, sieve analyses and microscopic studies for the characterisation of the fuels

  2. Leak testing fuel stored in the ICPP fuel storage basin

    International Nuclear Information System (INIS)

    Lee, J.L.; Rhodes, D.W.

    1977-06-01

    Irradiated fuel to be processed at the Idaho Chemical Processing Plant is stored under water at the CPP-603 Fuel Storage Facility. Leakage of radionuclides through breaks in the cladding of some of the stored fuels contaminates the water with radionuclides resulting in radiation exposure to personnel during fuel handling operations and contamination of the shipping casks. A leak test vessel was fabricated to test individual fuel assemblies which were suspected to be leaking. The test equipment and procedures are described. Test results demonstrated that a leaking fuel element could be identified by this method; of the eleven fuel assemblies tested, six were estimated to be releasing greater than 0.5 Ci total radionuclides/day to the basin water

  3. Nonlinear analyses of spent-fuel racks for consolidated fuel loading

    International Nuclear Information System (INIS)

    Kabir, A.F.; Godha, P.C.; Malik, L.E.; Bolourchi, S.

    1987-01-01

    Storage racks for spent-fuel assemblies in nuclear power plants are designed to withstand various combinations of loads generated by gravity, seismic, thermal, and accidental fuel drops. Due to the need for storing increased amounts of spent fuel in the existing fuel pools, many nuclear power utilities are evaluating existing fuel racks to safely carry the additional loads. The current study presents the seismic analyses of existing fuel racks of Northeast Utility Company's Millstone Unit Number 1 (BWR Mark I) nuclear plant to accommodate a 2:1 fuel consolidation. This objective requires rigorous nonlinear analyses to establish the full available capacities of the racks and thereby avoid expensive modifications or minimize any needed upgrades

  4. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  5. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  6. Modified gas diffusion layer for fuel cells synthesized by pulsed laser ablation

    International Nuclear Information System (INIS)

    Ebrasu, Daniela; Stefanescu, Ioan; Dorcioman, Gabriela; Serban, Nicolae; Axente, Emil; Sima, Felix; Ristoscu, Carmen; Mihailescu, Ioan N.; Enculescu, Ionut

    2010-01-01

    Full text; In this paper there are presented the first results regarding the development of a modified gas diffusion layer for fuel cells consisting of a simple or teflonized carbon cloth deposited by pulsed laser with metal oxide nanostructures. These are designed to operate both as co-catalyst, and oxidic support for other electrochemically active catalysts. We selected TiO 2 , ZnO and Al 2 O 3 doped (2 wt.%) ZnO which were uniformly distributed over the surface of gas diffusion layers in order to improve the catalytic activity, stability and lifetime, and reduce the production costs of proton exchange membrane fuel cells. We evidenced by scanning electron microscopy and energy dispersive spectroscopy that our depositions consisted of TiO 2 nanoparticles while in the case of ZnO and Al 2 O 3 doped (2 wt.%) ZnO transparent quasicontinuous films were synthesized. (authors)

  7. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  8. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    Energy Technology Data Exchange (ETDEWEB)

    Uctug, Fehmi Goerkem, E-mail: gorkem.uctug@bahcesehir.edu.t [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom); Holmes, Stuart M. [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom)

    2011-10-01

    Highlights: > We investigated the availability of PVA-mordenite membranes for DMFC use. > We measured the methanol permeability of PVA-mordenite membranes via pervaporation. > We did the fuel cell testing of these membranes, which had not been done before. > We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. > Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117{sup TM} whereas their methanol permeability was at least two orders of magnitude lower than Nafion117{sup TM}. DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  9. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    International Nuclear Information System (INIS)

    Uctug, Fehmi Goerkem; Holmes, Stuart M.

    2011-01-01

    Highlights: → We investigated the availability of PVA-mordenite membranes for DMFC use. → We measured the methanol permeability of PVA-mordenite membranes via pervaporation. → We did the fuel cell testing of these membranes, which had not been done before. → We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. → Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117 TM whereas their methanol permeability was at least two orders of magnitude lower than Nafion117 TM . DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  10. A fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  11. A fuel cycle cost study with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    Fuel cycle costs are compared for a range of {sup 235}U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  12. HTGR fuel development: investigations of breakages of uranium-loaded weak acid resin microspheres

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.

    1977-11-01

    During the HTGR fuel development program, a high percentage of uranium-loaded weak acid resin microspheres broke during pneumatic transfer, carbonization, and conversion. One batch had been loaded by the UO 3 method; the other by the ammonia neutralization method. To determine the causes of failure, samples of the two failed batches were investigated by optical microscopy, scanning electron microscopy, electron beam microprobe, and other techniques. Causes of failure are postulated and methods are suggested to prevent recurrence of this kind of failure

  13. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  14. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  15. The sensitivity of computed tomography (CT) scans in detecting trauma: are CT scans reliable enough for courtroom testimony?

    Science.gov (United States)

    Molina, D Kimberley; Nichols, Joanna J; Dimaio, Vincent J M

    2007-09-01

    Rapid and accurate recognition of traumatic injuries is extremely important in emergency room and surgical settings. Emergency departments depend on computed tomography (CT) scans to provide rapid, accurate injury assessment. We conducted an analysis of all traumatic deaths autopsied at the Bexar County Medical Examiner's Office in which perimortem medical imaging (CT scan) was performed to assess the reliability of the CT scan in detecting trauma with sufficient accuracy for courtroom testimony. Cases were included in the study if an autopsy was conducted, a CT scan was performed within 24 hours before death, and there was no surgical intervention. Analysis was performed to assess the correlation between the autopsy and CT scan results. Sensitivity, specificity, positive predictive value, and negative predictive value were defined for the CT scan based on the autopsy results. The sensitivity of the CT scan ranged from 0% for cerebral lacerations, cervical vertebral body fractures, cardiac injury, and hollow viscus injury to 75% for liver injury. This study reveals that CT scans are an inadequate detection tool for forensic pathologists, where a definitive diagnosis is required, because they have a low level of accuracy in detecting traumatic injuries. CT scans may be adequate for clinicians in the emergency room setting, but are inadequate for courtroom testimony. If the evidence of trauma is based solely on CT scan reports, there is a high possibility of erroneous accusations, indictments, and convictions.

  16. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  17. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  18. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  19. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  1. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  2. Scanning fiber microdisplay: design, implementation, and comparison to MEMS mirror-based scanning displays.

    Science.gov (United States)

    Khayatzadeh, Ramin; Civitci, Fehmi; Ferhanoglu, Onur; Urey, Hakan

    2018-03-05

    In this study, we propose a compact, lightweight scanning fiber microdisplay towards virtual and augmented reality applications. Our design that is tailored as a head-worn-display simply consists of a four-quadrant piezoelectric tube actuator through which a fiber optics cable is extended and actuated, and a reflective (or semi-reflective) ellipsoidal surface that relays the moving tip of the fiber onto the viewer's retina. The proposed display, offers significant advantages in terms of architectural simplicity, form-factor, fabrication complexity and cost over other fiber scanner and MEMS mirror counterparts towards practical realization. We demonstrate the display of various patterns with ∼VGA resolution and further provide analytical formulas for mechanical and optical constraints to compare the performance of the proposed scanning fiber microdisplay with that of MEMS mirror-based microdisplays. Also we discuss the road steps towards improving the performance of the proposed scanning fiber microdisplay to high-definition video formats (such as HD1440), which is beyond what has been achieved by MEMS mirror based laser scanning displays.

  3. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  4. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.

    2016-11-01

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retention to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows

  5. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  6. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  7. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  8. Metallic fuel development

    International Nuclear Information System (INIS)

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising

  9. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  10. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  11. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Suk, Hochum; Sim, Kiseob; Kim, Bongghi; Inch, W.W.; Page, R.

    1998-01-01

    Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO 2 , lower sensitivity to 234 U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU

  12. Fuel cells 101

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, B.

    2003-06-01

    A capsule history of fuel cells is given, beginning with the first discovery in 1839 by William Grove, a Welsh judge who, when experimenting with electrolysis discovered that by re-combining the two components of electrolysis (water and oxygen) an electric charge was produced. A century later, in 1958, Francis Thomas Bacon, a British scientist demonstrated the first working fuel cell stack, a technology which was licensed and used in the Apollo spacecraft. In Canada, early research on the development of fuel cells was carried out at the University of Toronto, the Defence Research Establishment and the National Research Council. Most of the early work concentrated on alkaline and phosphoric acid fuel cells. In 1983, Ballard Research began the development of the electrolyte membrane fuel cell, which marked the beginning of Canada becoming a world leader in fuel cell technology development. The paper provides a brief account of how fuel cells work, describes the distinguishing characteristics of the various types of fuel cells (alkaline, phosphoric acid, molten-carbonate, solid oxide, and proton exchange membrane types) and their principal benefits. The emphasis is on proton exchange membrane fuel cells because they are the only fuel cell technology that is appropriate for providing primary propulsion power onboard a vehicle. Since vehicles are by far the greatest consumers of fossil fuels, it follows that proton exchange membrane fuel cells will have the greatest potential impact on both environmental matters and on our reliance on oil as our primary fuel. Various on-going and planned fuel cell demonstration projects are also described. 1 fig.

  13. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  14. Comparison of MRI fast SPGR single slice scan and continuous dynamic scan in patients with obstructive sleep apnea-hypopnea syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinyu [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: myginny2@sina.com; Yang Xue [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: yangxueqyfy@126.com; Hua Hui [Department of Otorhinolaryngology-Head and Neck Surgery, Medical School Hospital of Qingdao University, Qingdao (China)], E-mail: huahuisky@163.com; Chen Jingjing [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: chenjingjingsky@126.com

    2009-07-15

    Objective: To evaluate the application value of MRI fast SPGR single slice scan in patients with obstructive sleep apnea-hypopnea syndrome when comparing the images between fast SPGR single slice scan and continuous dynamic scan. Methods: Eighteen patients with obstructive sleep apnea-hypopnea syndrome were examined by fast SPGR single slice scan and continuous dynamic scan in turn. Fast SPGR single slice scans were conducted when the phases of apnea, inspiration and expiration appeared on the respiratory wave of the subjects. Fast SPGR continuous dynamic scans were conducted when the patients were awake and apneic. The scan planes were median sagittal plane and axial planes (the slice of middle part of palate, the slice of inferior part of palate, the slice of middle part of lingual root and the slice of 0.5 cm beneath the free margin of epiglottis). The obstructed sites and the cross-sectional areas of upper airway were compared between the two scan methods. Results: Seven cases showed complete obstruction at the narrowest sites of upper airway when apnea appeared; eleven cases showed marked decrease in cross-sectional areas at the narrowest sites compared with the areas when the patients were awake; two cases manifested multiple narrowness. The obstructed sites showed by the two scan methods were same. The difference of the cross-sectional areas of upper airway between the two scan methods was insignificant (P > 0.05). Conclusion: Fast SPGR single slice scan can accurately reflect the obstructed sites of upper airway when the breath breaks off and is the complementary method of continuous dynamic scan. Sometimes, single slice scan can replace continuous dynamic scan.

  15. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  16. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  17. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  18. Transverse scan-field imaging apparatus

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    A description is given of an array of opposed pairs of radiation detectors which could be used in tomography or scintiscanning. The opposed detectors scan in opposite tangential directions in a pre-programmed fashion. The associated control system receives the detector outputs into a buffer store and also provides an address for each element of information detected. The addresses are such that information from one buffer store is read into the RAM of a central processing unit in the opposite direction to that from the store associated with the opposite detector, thus effectively reversing the scan direction of one detector of each pair. Also described are the detectors themselves with focussed collimators, the scan drive mechanism, and the method of calculating radioactive emission intensity at discrete points throughout the scan-field. (author)

  19. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and...

  20. Software requirements definition Shipping Cask Analysis System (SCANS)

    International Nuclear Information System (INIS)

    Johnson, G.L.; Serbin, R.

    1985-01-01

    The US Nuclear Regulatory Commission (NRC) staff reviews the technical adequacy of applications for certification of designs of shipping casks for spent nuclear fuel. In order to confirm an acceptable design, the NRC staff may perform independent calculations. The current NRC procedure for confirming cask design analyses is laborious and tedious. Most of the work is currently done by hand or through the use of a remote computer network. The time required to certify a cask can be long. The review process may vary somewhat with the engineer doing the reviewing. Similarly, the documentation on the results of the review can also vary with the reviewer. To increase the efficiency of this certification process, LLNL was requested to design and write an integrated set of user-oriented, interactive computer programs for a personal microcomputer. The system is known as the NRC Shipping Cask Analysis System (SCANS). The computer codes and the software system supporting these codes are being developed and maintained for the NRC by LLNL. The objective of this system is generally to lessen the time and effort needed to review an application. Additionally, an objective of the system is to assure standardized methods and documentation of the confirmatory analyses used in the review of these cask designs. A software system should be designed based on NRC-defined requirements contained in a requirements document. The requirements document is a statement of a project's wants and needs as the users and implementers jointly understand them. The requirements document states the desired end products (i.e. WHAT's) of the project, not HOW the project provides them. This document describes the wants and needs for the SCANS system. 1 fig., 3 tabs

  1. Fuel loads and fuel type mapping

    Science.gov (United States)

    Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio

    2003-01-01

    Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.

  2. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  3. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Fissile fuel doubling time characteristics for reactor lifetime fuel logistics

    International Nuclear Information System (INIS)

    Heindler, M.; Harms, A.A.

    1978-01-01

    The establishment of nuclear fuel requirements and their efficient utilization requires a detailed knowledge of some aspects of fuel dynamics and processing during the reactor lifetime. It is shown here that the use of the fuel stockpile inventory concept can serve effectively for this fuel management purpose. The temporal variation of the fissile fuel doubling time as well as nonequilibrium core conditions are among the characteristics which thus become more evident. These characteristics - rather than a single figure-of-merit - clearly provide an improved description of the expansion capacity and/or fuel requirements of a nuclear reactor energy system

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  6. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  8. Accelerated fuel depreciation as an economic incentive for low-leakage fuel management

    International Nuclear Information System (INIS)

    Downar, T.J.

    1986-01-01

    An analysis is presented which evaluates the tax depreciation advantage which results from the increased rate of fuel depletion achieved in the current low-leakage fuel-management LWR core reload designs. An analytical fuel-cycle cost model is used to examine the important cost parameters which are then validated using the fuel-cycle cost code CINCAS and data from the Maine Yankee PWR. Results show that low-leakage fuel management, through the tax depreciation advantage from accelerated fuel depletion, provides an improvement of several percent in fuel-cycle costs compared to traditional out-in fuel management and a constant fuel depletion rate. (author)

  9. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  10. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    International Nuclear Information System (INIS)

    2009-06-01

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing facilities. - 3. Advances in Water

  11. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  12. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  13. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  14. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  15. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities

  16. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  17. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  18. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  19. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  20. Fuel mechanical design as a boundary condition for fuel management optimization

    International Nuclear Information System (INIS)

    Wunderlich, F.; Aisch, F.W.; Heins, L.

    1988-01-01

    The incentive to reduce fuel cycle costs as well as the amount of active waste requires, among others, measures to optimize fuel management. Improved fuel management in this sense calls, e.g., for reduction of parasitic neutron absorption, for reduction of neutron leakage, and particularly for burnup extension. Such measures result in increased demands for fuel mechanical design. In the first part of this paper their impact on fuel mechanical behaviour is described. In the second part, some examples of practical importance for the interaction between fuel management optimization and fuel mechanical design are discussed. (orig.) [de

  1. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  2. Hepatobiliary scan in neonatal Jaundice

    International Nuclear Information System (INIS)

    Nahar, Nurun; Hasan, Mizanul; Karim, M.A.

    2002-01-01

    Jaundice is more or less common in newborn babies. Through physiological jaundice is most common cause of neonatal jaundice, possibility of obstructive jaundice especially biliary atresia should be kept in mind. Early diagnosis of biliary atresia followed by surgical treatment can save baby's life. Otherwise death is inevitable due to liver failure. Hepatobiliary scan is the imaging study of choice in neonatal jaundice especially when there is persistent conjugated hyperbilirubinaemia. Total 27 newborn babies of suspected biliary atresia, aged 14 days to 4 months were referred to Institute of Nuclear Medicine for Hepatobiliary scan. All of them had high serum bilirubin ranged from 6.0 mg/dl with an average of 9.35 ng/dl serum bilirubin level. Ultrasonography of hepatobiliary system was performed in 14 cases showing normal sized liver in 4 cases and hepatomegaly in 10 cases. Hepatobiliary scan was done with 99m Tc-Mebrofenin (Br IDA) after preparing the baby with phenobarbitone for 3-5 days. 20 (67%) cases were scan positive suggesting biliary atresia (BA) and 7(27%) cases were scan negative. In BA there will be increased hepatic uptake of the radionuclide without any significant excretion even in 24 hours delayed images. Presence of radiotracer in the bowel exclude the diagnosis of BA. Early diagnosis of biliary atresia is very important because in this condition surgery should be performed early (within 60 days of life). Studies suggest that hepatobiliary scan after hepatic stimulation with phenobarbitone for a period of 3-5 days is highly accurate for differentiating biliary atresia from other causes of neonatal jaundice. It is very important to perform hepatobiliary scan in a case of neonatal jaundice to exclude biliary atresia for the sake of baby's life.(author)

  3. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  4. Proceedings of the 2006 International Meeting on LWR fuel performance 'Nuclear Fuel: Addressing the future' - TopFuel 2006 Transactions

    International Nuclear Information System (INIS)

    2006-01-01

    From 22-26 October, 340 researchers, nuclear engineers and scientists from across Europe and beyond congregated in the ancient university city of Salamanca, Spain, to discuss the challenges facing the developers and manufacturers of new high-performance nuclear fuels-fuels that will help meet current and future energy demand and reduce man's over dependence upon CO 2 -emitting fossil fuels. TopFuel is an annual topical meeting organised by ENS, the American Nuclear Society and the Atomic Energy Society of Japan. This year it was co-sponsored by the IAEA, the OECD/NEA and the Spanish Nuclear Society (SNE). TopFuel's primary objective was to bring together leading specialists in the field from around the world to analyse advances in nuclear fuel management technology and to use the findings of the latest cutting-edge research to help manufacture the high performance nuclear fuels of today and tomorrow. The TopFuel 2006 agenda revolved around ten technical sessions dedicated to priority issues such as security of supply, new fuel and reactor core designs, fuel cycle strategies and spent fuel management. Among the many topics under discussion were new developments in fuel performance modelling, advanced fuel assembly design and the improved conditioning and processing of spent fuel. During the week, a poster exhibition also gave delegates the opportunity to display and discuss the results of their latest work and to network with fellow professionals. One important statement to emerge from TopFuel 2006 was that the world has enough reserves of uranium to support the large-scale and long-term production of nuclear energy. The OECD/NEA and the IAEA recently published a report entitled Uranium 2005: Resources, Production and Demand (the Red Book). The report, which makes a comprehensive assessment of uranium supplies and projected demand up until the year 2025, concludes by saying 'the uranium resource base is adequate to meet projected future requirements'. With the

  5. Grain-boundary oxidation of used CANDU fuel exposed to dry air at 150 degrees C for a prolonged period

    International Nuclear Information System (INIS)

    Hocking, W.H.; Behnke, R.; Duclos, A.M.

    1995-01-01

    The grain-boundary chemistry of used CANDU fuel exposed to dry air at 150 degrees C for a prolonged period has been investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). High degrees of surface oxidation have been determined using the chemical-shift effects for the uranium photoelectron emission, but these must be largely restricted to thin films. The observed distribution of segregated fission products implies an absence of major fuel restructuring and SEM examinations revealed mainly subtle changes in the UO 2 grain structure. These findings are consistent with metallographic evidence of pervasive grain-boundary attack, despite only slight bulk alteration of the fluorite-lattice structure. (author)

  6. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  7. Security scanning of Web sites at CERN

    CERN Multimedia

    IT Department

    2010-01-01

    As of early 2010, the CERN Computer Security Team will start regular scanning of all Web sites and Web applications at CERN, visible on the Internet, or on the General Purpose Network (office network). The goal of this scanning is to improve the quality of CERN Web sites. All deficits found will be reported by e-mail to the relevant Web site owners, and must be fixed in a timely manner. Web site owners may also request one-off scans of their Web site or Web application, by sending an e-mail to Computer.Security@cern.ch. These Web scans are designed to limit the impact on the scanned Web sites. Nevertheless, in very rare cases scans may cause undesired side-effects, e.g. generate a large number of log entries, or cause particularly badly designed or less robust Web applications to crash. If a Web site is affected by these security scans, it will also be susceptible to any more aggressive scan that can be performed any time by a malicious attacker. Such Web applications should be fixed, and also additionally...

  8. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  9. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  10. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  11. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  12. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Science.gov (United States)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  13. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    Technetium-99m methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan intake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the ''extended pattern of uptake'' beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogenous uptake on the scan

  14. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    /sup 99m/Tc methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan uptake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the extended pattern of uptake beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogeneous uptake on the scan

  15. Fabrication, irradiation and post-irradiation examinations of MO2 and UO2 sphere-pac and UO2 pellet fuel pins irradiated in a PWR loop

    International Nuclear Information System (INIS)

    Linde, A. van der; Lucas Luijckx, H.J.B.; Verheugen, J.H.N.

    1982-01-01

    The document reports in detail the fuel pin fabrication data and describes the irradiation conditions and history. All the relevant results of the non-destructive and destructive post-irradiation examinations are reported. They include: visual inspection and chemical analysis of crud; length and diameter measurements; neutron radiography and gamma scanning; juncture tests and fission gas analysis (including residual gas in fuel samples); microscopy and alpha + beta/gamma autoradiography; microprobe investigations; burn-up and isotopic analysis; and hydrogen analysis in clad. The data and observations obtained are discussed in detail and conclusions are given. The irradiation and post-irradiation examinations of the R-109 pins have shown the safe, pre-calculable performance of LWR fuel pins containing mixed-oxide sphere-pac fuel with the fissile material mainly present in the large spheres

  16. Well-to-wheels analysis of fuel-cell vehicle/fuel systems

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H(sub 2)) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H(sub 2) off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H(sub 2) via fuel processors. Direct H(sub 2) FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO(sub 2)) emissions. However, production of H(sub 2) can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels-a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur[S] content) is the baseline fuel pathway for GVs

  17. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  18. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  19. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  20. Metrological evaluation of characterization methods applied to nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho, E-mail: kellyfisica@gmail.co, E-mail: fernando.lameiras@pq.cnpq.b, E-mail: dmc@cdtn.b, E-mail: ranf@cdtn.b, E-mail: flmigliorini@hotmail.co, E-mail: lucsc@hotmail.co, E-mail: egonn@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO{sub 2} that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO{sub 2} samples were focused. The thermal characterization of UO{sub 2} samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of

  1. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    International Nuclear Information System (INIS)

    TEDESCHI, D.J.

    2000-01-01

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports

  2. Microstructure of irradiated Inconel 706 fuel pin cladding

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Makenas, B.J.

    1983-08-01

    A fuel pin from the HEDL-P-60 experiment with a cladding of solution-annealed Inconel 706 breached in an apparently brittle manner at a position 12.7 cm above the bottom of the fuel column with a crack of 5.72 cm in length after 5.0 atomic percent burnup in EBR-II. Temperatures (time-averaged midwall) and fast fluences for the fractured area range from 447 0 C and 5.5 x 10 22 n/cm 2 to 526 0 C and 6.1 x 10 22 n/cm 2 (E > 0.1 MeV). Specimens of the fractured fuel pin section were successfully prepared and examined in both a scanning electron microscope and a transmission electron microscope. The fracture surfaces of the breached section showed brittle intergranular fracture characteristics for both the axial and circumferential cracks. Formation of γ' in the matrix near the breach confirmed that the irradiation temperature at the breached area was below 500 0 C, in agreement with other estimates of the temperature for the area, 447 to 526 0 C. A hexagonal eta-phase, Ni 3 (Ti,Nb), precipitated at boundaries near the breach. A more extensive eta-phase coating at grain boundaries was found in a section irradiated at 650 0 C. The eta-phase plates at grain boundaries are expected to have a detrimental effect on alloy ductility. A plane of weakness in this region along the (111) slip planes will develop in Inconel 706 because the eta-plates have a (111) habit relationship with the matrix

  3. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  4. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  5. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  6. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  7. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  8. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  9. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  10. Anthropometric data collection of Portuguese children using 3D body scanning: considerations about the scanning booth

    Science.gov (United States)

    de Campos, R.; Carvalho, M. A.; Lopes, H. P.; Xu, B.

    2017-10-01

    This paper presents some considerations regarding the scanning booth used in an anthropometric study done with a 3D body scanning technology. The data collected is part of a Ph.D. study conducted in Textile Engineering at University of Minho in Portugal, which aims to develop clothing for overweight and obese Portuguese children aged 2-11 years, of both genders. The challenges faced during data collection are described, and modifications of the scanning booth are proposed. It is possible to conclude that the importance of the scanning booth is key to an efficient anthropometric data collection, including the growth of this technology in the garment industry, Universities Research Institutes involved with anthropometric studies.

  11. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    Science.gov (United States)

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  12. Measurement of fuel importance distribution in non-uniformly distributed fuel systems

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.

    1995-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)

  13. Taxation on vehicle fuels: its impacts on switching to cleaner fuels

    International Nuclear Information System (INIS)

    Hung, W.-T.

    2006-01-01

    Vehicular consumption of fossil fuel contributes over 90% of air pollution in Hong Kong. A key strategy to improve Hong Kong's air quality is to discourage dirty fuels (e.g., leaded petrol and high-sulphur diesel) and to promote the use of clean fuels (e.g., low-sulphur diesel and liquefied petroleum gas (LPG)). This paper presents the empirical evidence on the effectiveness of the Government's clean fuel programs that offer tax subsidy to lower the consumption cost of such fuels. For the cases of unleaded petrol and ultra-low-sulphur diesel, lower fuel duties were offered so that the prices of these fuels were below those of leaded petrol and conventional diesel. Conventional petrol and diesel were phased out. In order to decide on the level of fuel duty concessions required to introduce LPG for taxis and bio-diesel for other vehicles, various Government-run trial programs were introduced to obtain cost estimates of using these alternative cleaner fuels. LPG using vehicles were subsequently exempted from the fuel duty in order to attract taxi and light bus operators to switch to LPG. It is apparent that the higher the subsidy, the faster is the rate at which switching to cleaner fuels takes place

  14. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  15. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  17. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  18. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  19. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Clark, Evan; Su, Lusheng [Department of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Zhang, Lihua [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2012-09-15

    Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  20. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    Science.gov (United States)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.