WorldWideScience

Sample records for sandy soil physical

  1. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  2. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  3. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  4. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  5. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    Ilorin on a sandy loam soil to evaluate the effect of the imposition of different .... of the blade is 10.5cm. ... arranged in an inverted cone shape with ... replicates were taken for each speed run. The ..... Thakur, T. C; A. Yadav; B. P. Varshney and.

  6. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  7. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  8. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  9. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  10. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  11. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  12. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  13. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  14. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  15. EFFECT OF IRRIGATION INTERVAL AND SOIL AMENDMENTS ON SOIL ORGANIC C, NITROGEN AND POTASSIUM OF SANDY SOIL AND GROWTH OF Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Djajadi

    2013-06-01

    Full Text Available Inherently, sandy soil is the unfertile soil with low in all aspects of soil fertility and has a low capacity to retain water applied nutrients. To improve the fertility of sandy soil as media growth of Jatropha curcas, clay and organic matter may have important role when they are incorporated to the sandy soil. This study investigated the effect of irrigation interval and incorporation of clay together with organic matter to sandy soil on soil organic C, N, and K and growth of J. curcas. The rates of clay and organic matter incorporated to top sandy soil were 5% clay + 0.8% organic matter and 10% clay + 1.6% organic matter. Two irrigation intervals tested were 10 day and 20 day. The results found that incorporation of 10% clay + 1.6% organic matter to sandy soil increased soil C organic, N total and exchangeable K which in turn increased number of leaves and number of lateral branches of J curcas. Irrigation intervals had no effect on all parameters observed.

  16. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  17. Effects of Pisha sandstone content on solute transport in a sandy soil.

    Science.gov (United States)

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  19. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  20. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  1. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    improving N, P, Ca and Mg content in sandy soils, and consequently support crop growth and yield. ... stress, soil moisture conservation, soil fertility management ... water many times its own weight. ... improves the productivity of degraded,.

  2. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  3. Geotechnical response of pipelines shallowly embedded in clayey and sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S. [Military Institute of Engineering (IME), Rio de Janeiro, RJ (Brazil); Borges, Ricardo G. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil); Feitoza, Jaquelline; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2009-07-01

    Offshore and onshore pipelines used for oil and gas transportation are often buried to avoid eventual damages and also to provide movement constraint. The soil cover supply resistance against upward and lateral displacements of the pipe caused by thermally-induced axial loading, which can lead to structural buckling. The clear understanding of this behavior is critical for the development of new analysis tools and new design criteria which could minimize future accidents. In this way, research on pipe-soil interaction behavior has been undertaken using both clayey and sandy soils through physical and numerical simulations. This paper is part of a research effort to provide a pipe-soil interaction guideline suitable for application in pipeline design along the Brazilian coast. This work presents a comprehensive set of lateral buckling simulation tests using the COPPE-UFRJ geotechnical centrifuge. The chosen soils are typical of the Brazilian coast and therefore very representative of tropical regions. Physical and numerical results are compared and other research works are considered in order to assess the overall uplift resistance. In flight T-bar and cone penetration tests were undertaken to provide a soil resistance profile which was used to trace dimensionless curves that could be adopted in similar design situations. (author)

  4. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  5. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Results indicate significant differences in soil physical conditions arising from different levels of tractor forward speed. A forward speed of approximately 7km/h resulted in appreciable amelioration of soil structure as reflected in improvements in the soil strength properties and maximum reduction in clod mean weight ...

  6. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    Chen, G.C.; He, Z.L.; Stoffella, P.J.; Yang, X.E.; Yu, S.; Calvert, D.

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  7. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...

  8. Interaction Among Machine Traffic, Soil Physical Properties and Loblolly Pine Root Prolifereation in a Piedmont Soil

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald

    1997-01-01

    The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...

  9. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  10. CONTRIBUTIONS TO IMPROVING CULTURE TEHNOLOGIES OF PEACHES GROWN ON SANDY SOILS THE SOUTH OF OLTENIA

    Directory of Open Access Journals (Sweden)

    Anica Durau

    2013-12-01

    Full Text Available Technological factors with major implications in obtaining high yields and quality in peaches grown on sandy soils are planting row distance and shape of the crown, soil maintenance system, chemical, organic and foliar fertilzation. A smal size combined with the flatening of the crowns of the tres alows a dense planting, also ensure proper mechanization of work and easy penetration of light to the leaves and fruits. Crown form vertical belt proved to be suitable for al planting distances studied, easily made and maintained, having fruit production ranged betwen 15.9 t / ha at a distance of 2 m, 10.3 t / ha at a distance of 2.5 m and 7.9 t / ha at a distance of 3 m. The state of soil nutrient supply influence sucesful peach crop on sandy soils. The fertilzer dose of technology to N10 P80 K10 kg s.a / ha production was 34.9 t / ha. Organic fertilzation also contributes to obtaining high yields of peach. In sandy soil conditions most fruit production of 9.6 t / ha was obtained by fertilzation with organic manure 60t/ha. Besides fertilzation, soil maintenance system is one important link in the technology peach crop on sandy soils. The results found that the biggest peach fruit production was obtained from field maintenance system black-8,2t/ha. Using technology in foliar peaches culture on sandy soils, is an important means of providing nutrients that lead to improved proceses of growth and fructification. The best way is with foliar fertilzation Folibor in dose 5l/ha, the production obtained was 12.4 t /ha.

  11. Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain

    Science.gov (United States)

    Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung

    2015-01-01

    We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...

  12. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  13. Organic Carbon and Physical Properties in Sandy Soil after Conversion from Degraded Pasture to Eucalyptus in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Karla Nascimento Sena

    Full Text Available ABSTRACT Soil is currently seen as the most relevant carbon sink and the most effective carbon stabilizer. In contrast, agriculture is the second largest C emitter, after burning of fossil fuels. This organic carbon (OC introduced into the soil, mainly via organic matter (OM, is essential for several soil properties and plays an extremely important role in sandy soils. The objective of this study was to describe the changes in the amounts and pools of OC and the influence thereof on some physical soil properties in areas converted from pasture to eucalyptus. The following areas were analyzed: a degraded pasture (PAST, two areas of pasture-eucalyptus conversion after 2 and 15 years (EU02 and EU15, respectively and a preserved Cerrado area (CER in the east of the state of Mato Grosso do Sul. Soil samples were taken from the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m layers. The OC was measured and analyzed, the carbon pool (CP calculated, aggregate stability, bulk density (BD, and macro- and microporosity determined, and total porosity (TP calculated to analyze the influence of land use on soil properties. The experimental design was completely randomized, and four clusters per area were established, with nine subsampling points, for a total of 36 subsamples per area, organized in 20 × 20 m grids, The soil under natural vegetation (preserved Cerrado was used as a control. The change from CER to commercial cultivation accelerates the process of OC loss (reductions of 25-35 % and reductions in soil physical quality. In the PAST area, OC was reduced by 30 % in the 0.00-0.05 m layer. Cumulative OC and CP were highest in the 0.00-0.05 m layer and decreased in the deeper layers in all land use treatments. Organic C in the 0.10-0.30 m layer was not influenced by land use, indicating the possibility of OC persistence in the soil for longer periods. Macroporosity and total porosity may be considered appropriate in CER and EU15, whereas the conditions for plant

  14. Effect of Irrigation Water Type on Infiltration Rates of Sandy Soil

    International Nuclear Information System (INIS)

    Al-Omran, A.M.; Al-Matrood, S.M.; Choudhary, M.I.

    2004-01-01

    A laboratory experiment was conducted to test the effect of three water types (tap water, well water and sewage water) on the infiltration rate of three soils varying in texture (sand. loamy sand and sandy loam). A stationary rainfall simulator dispensing water at a rate of 45 mm h-1, connected to the different sources of water, was used to measure the infiltration rates. A total of 5 runs were carried out using each water quality. The volume of runoff against the time was recorded at each 5 minute interval. The infiltration rate was calculated as the difference between the water applied and the excesses water measured as surface runoff. Infiltration rate at first run were rapid in all the three soils and then progressively declined as the number of runs increased. The same trend was observed for each water quality tested. The reduction in infiltration rate with increasing number of runs for prewetted surface than for the initial dry surface was attributed to break down and settling of fine particles that took place earlier during prewetting. The infiltration curves for all the three soils when irrigared with different qualities of water was not distinguishable. The relationship between infiltration rate as function of time for the treatments applied were tested using Kostiakov equation I=bt-n. The infiltration data gave a coefficient of determination R2 >0.90 for all the treatments. The infiltration parameters B, and n varied strongly with respect to soil texture. Values of B decreased with changing soil textures, being highest for the sandy soil, and lowest for the sandy loamy soil, whereas n values showed the opposite trend. It was concluded that effect of soil texture on the infiltration rate was very pronounced while water qualities showed a little effect. (author)

  15. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    Science.gov (United States)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  16. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  17. ACHIEVEMENTS AND PERSPECTIVES ON STONE FRUIT GROWING ON SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Anica Durău

    2012-01-01

    Full Text Available Climatic conditions in the sandy soils of southern Oltenia encourage cultivation of tree species in terms of applying specific technologies. Possibility of poor sandy soils fertile capitalization, earliness in 7- 10 days of fruit ripening , high yields and quality are the main factors supporting the development of fruit growing in the sandy soils of southern Oltenia. The main objectives of the research were to CCDCPN Dăbuleni. Establish and improve stone fruit species assortment, adapted to the stress of the sandy soils, establishment and evaluation of the influence of stress on trees and their influence on the size and quality of production, development of technological links (planting distances, forms management, fertilization, getting high and consistent annual production of high quality, containing low as pesticide residues, to establish a integrated health control program of the trees with emphasis on biotechnical. Research has shown good stone species behavior, and their recommended proportion is 75% of all fruit trees (peach 36%, 14% apricot, plum15%, sweet and sour cherry fruit growing 10% of the total area. Results on peach varieties revealed: ’Redhaven’, ’Suncrest’, ’Loring’ with yields ranging from (24.8 t / ha to 29.0 t/ha with maturation period from July to August, and varieties ’NJ 244’, ’Fayette’, ’Flacara’ with productions ranging from (19.7 t / ha to 23.0 t/ha with maturation period from August to September. The sweet cherry varieties ’Van’, ’Rainier’, ’Stella’, with yields ranging from 17. 2 to 24.4 t / ha. In the range studied sour cherry were found ’Oblacinska’ varieties of 11.0 t / ha, ’Cernokaia’ with 10.5 t / ha, ’Schatten Morelle’ with 9.1 t / ha. Optimum planting density and shape of the peach crown found that the highest yields of fruit are produced in the form of vertical cordon crown, with values ranging from 15.9 t / ha at a distance of 2 m, 10.3 t / ha at a distance

  18. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  19. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    Soil moisture shortage is a major limiting factor to agricultural production in eastern Africa, in view of increased drought incidences and seasonal rainfall variability. This study evaluated the potential for Ca-bentonite (a 2:1 clay mineral) as a possible amendment for increased moisture retention by sandy soils in drought ...

  20. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  1. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  2. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  3. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  4. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  5. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    The sorption of salinomycin to the sandy soil marginally increased as the pH decreased, while the sorption to the two .... plastic containers at room temperature for further analysis. ... The pH was adjusted eight times over 20 days to stabilize at.

  6. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  7. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    Science.gov (United States)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  8. Study of sandy soil grain-size distribution on its deformation properties

    Science.gov (United States)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  9. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  10. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  11. Soil microbial and physical properties and their relations along a steep copper gradient

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    2012-01-01

    years; from background concentrations up to 3837 mg Cu kg–1) on soil microbial enzyme activity, physical properties and resilience to compression. Soil samples and cores were taken from a fallow sandy loam field in Denmark. Microbial activity was quantified using fluorescein diacetate (FDA...

  12. Sorption and Migration Mechanisms of 237 Np through Sandy Soil

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Tanaka, Tadao

    2003-06-01

    In order to evaluate migration behavior of radioactive nuclides in the disposal of low-level radioactive waste into a shallow land burial, the sorption characteristic and migration behavior of 237 Np through sandy soil was studied. Two experimental methods were performed by using batch and column systems. The distribution coefficients (K d ) obtained from the adsorption and desorption process are rather small about 16 and 21 cm 3 /g respectively. Size distribution of 237 Np species in the influent solution was measured by ultra-filtration technique. Migration mechanism of 237 Np was studied by column experiments. The experimental condition was the influence of volume of eluting solution; 100, 300, 500, 1000 and 2000 ml respectively. The result from five column experiments confirm that the sorption characteristics of 237 Np are mainly controlled by a reversible ion-exchange reaction and the migration of 237 Np in the sandy soil can be estimated by using the K d concept

  13. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  14. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  15. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  16. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils

    NARCIS (Netherlands)

    Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F.

    2002-01-01

    The kinetics of nitrogen immobilization/mineralization for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: aloamy sand, intensively cropped horticultural

  17. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  18. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  19. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Utilization of Sandy Soil as the Primary Raw Material in Production of Unfired Bricks

    Directory of Open Access Journals (Sweden)

    Guilan Tao

    2018-01-01

    Full Text Available In this study, attempts were made to use sandy soil as the main raw material in making unfired bricks. The sprayed-cured brick specimens were tested for compressive and flexural strength, rate of water absorption, percentage of voids, bulk density, freezing/thawing, and water immersion resistance. In addition, the microstructures of the specimens were also studied using scanning electron microscope (SEM and X-ray diffraction (XRD technique. The test results show that unfired brick specimens with the addition of ground-granulated blast-furnace slag (GGBS tend to achieve better mechanical properties when compared with the specimens that added cement alone, with GGBS correcting particle size distribution and contributing to the pozzolanic reactions and the pore-filling effects. The test specimens with the appropriate addition of cement, GGBS, quicklime, and gypsum are dense and show a low water absorption rate, a low percentage of voids, and an excellent freezing/thawing and water immersion resistance. The SEM observation and XRD analysis verify the formation of hydrate products C–S–H and ettringite, providing a better explanation of the mechanical and physical behavior and durability of the derived unfired bricks. The results obtained suggest that there is a technical approach for the high-efficient comprehensive utilization of sandy soil and provide increased economic and environmental benefits.

  1. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  2. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  3. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  4. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  5. Evaluation of the 137Cs technique for estimating wind erosion losses for some sandy Western Australian soils

    International Nuclear Information System (INIS)

    Harper, R.J.; Gilkes, R.J.

    1994-01-01

    The utility of the caesium-137 technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P 137 Cs values between eroded and non-eroded sandy soils, with mean values of 243±17 and 386±13 Bq m -2 respectively. Non-eroded soils, with larger clay contents, had a mean 137 Cs content of 421±26 Bq m -2 , however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137 Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137 Cs loss. The occurrence of around 18% of the total 137 Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137 Cs occurs in the sandy soils, although there was no relationship between clay content and 137 Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137 Cs content. This relationship suggests that both organic carbon and 137 Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137 Cs content, rather than selectively winnowing fine material. 71 refs., 6 tabs., 2 fig

  6. Effects of a novel poly (AA-co-AAm)/AlZnFe₂O₄/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-10-25

    A novel poly(acrylic acid-co-acrylamide)AlZnFe₂O₄/potassium humate( )superabsorbent hydrogel nanocomposite (PHNC) was synthesized and its physical properties characterized using SEM, Energy Dispersive X-ray (EDX) and FTIR spectroscopic techniques. Air dried sandy loam soil was amended with 0.1 to 0.4 w/w% of PHNC to evaluate its soil moisture retention attributes. Effect of PHNC amendment on pH, electrical conductivity (EC), porosity, bulk density and hydraulic conductivity of sandy loam soil was also studied. The soil amendment with 0.1 to 0.4 w/w% of PHNC remarkably enhanced the moisture retention at field capacity as compared to the un-amended soils. Seed germination and seedling growth of wheat (Triticum aestivum L.) was considerably increased and a delay by 6-9 days in wilting of seedlings was observed in the soil amended with PHNC, resulting in improved wheat plant establishment and growth.

  7. Transport of water and solutes in wettable and water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    The research yielded the following conclusions and results: preferential flow can be expected in recently deposited, loosely packed, wettable dune sands; preferential flow is common in most water-repellent sandy soils; distribution flow in topsoils isa process of major importance, resulting in a

  8. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  9. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  10. Enhancing crude oil degradation in a sandy soil: Effects of addition ...

    African Journals Online (AJOL)

    This study investigated the effects of the addition of poultry manure alone and in combination with surfactant (Goldcrew or Corexit) and/or alternate carbon substrate (glucose or starch) on crude oil degradation in a sandy soil. With poultry manure alone, optimal crude oil degradation was obtained at a concentration of 4.0% ...

  11. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  12. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and fractions to the total C0 reserve are 14-21%; the contributions of each of the other fractions are 4-12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  13. [Soil moisture dynamics of artificial Caragana microphylla shrubs at different topographical sites in Horqin sandy land].

    Science.gov (United States)

    Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui

    2009-03-01

    Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.

  14. Groundwater chemistry of Al under Dutch sandy soils: Effects of land use and depth

    NARCIS (Netherlands)

    Fest, E.P.M.J.; Temminghoff, E.J.M.; Griffioen, J.; Grift, B. van der; Riemsdijk, W.H. van

    2007-01-01

    Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been

  15. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  16. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters

    Science.gov (United States)

    Wang, Ji-Peng; Hu, Nian; François, Bertrand; Lambert, Pierre

    2017-07-01

    This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.

  17. Garlic mustard and its effects on soil microbial communities in a sandy pine forest in central Illinois

    Science.gov (United States)

    Alexander B. Faulkner; Brittany E. Pham; Truc-Quynh D. Nguyen; Kenneth E. Kitchell; Daniel S. O' Keefe; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    This study evaluated the impacts of garlic mustard (Alliaria petiolata), an invasive species, on soil microbial community dynamics in a pine plantation on sandy soils in central Illinois. In situ soil carbon dioxide efflux was significantly greater in invaded sites. Similarly, in vitro carbon mineralization was significantly greater for soils...

  18. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  19. Designing a Physical Model for the Interaction between Displacement Piles and Soil

    Directory of Open Access Journals (Sweden)

    Arūnas Jankauskas

    2011-04-01

    Full Text Available The article deals with the interaction between piles installed in dusty sandy clay and the base. The paper reviews experimental and theoretical work, presents a geological litological structure of soil and looks at the methods of composing a model. The article also describes the model of the carried out experiment and analyzes directions towards soil movement. Field and laboratory studies as well as soil analysis, including its distribution scheme are provided. Ground elevation around the piles has been calculated. A new physical model has been created on the basis of the before examined physical model and its reasoning.Article in Lithuanian

  20. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  1. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  2. EXPERIMENTAL DETERMINATION OF VARIABILITY IN PERMEABILITY OF SANDY SILT SOIL MIXED WITH FLY ASH IN PROPORTIONATE

    OpenAIRE

    Rasna Sharma*, Dr. M.K. Trivedi

    2016-01-01

    This paper presents the experimental determination of variability in permeability of sandy silt soil by blending with fly ash. The grain size, porosity, structure of the soil, specific gravity of the soil, viscosity and temperature are important factors in varying the permeability of the soil. Permeability is the flow conduction property of the soil. The void ratio with in the soil plays a vital role in varying the permeability. By blending with finer grains like fly ash in the soil with sand...

  3. Estimating water retention curves for sandy soils at the Doñana National Park, SW Spain

    Science.gov (United States)

    The determination of soil water retention curves (SWRC) in the laboratory is a slow and tedious task, which is especially challenging for sandy soils due to their low water retention capacity and large water content changes for small pressure head differences. Due to spatial variability within larg...

  4. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  5. Use of neutron scattering meter to detect soil moisture distribution under trickle irrigation system in sandy soil of inshas, Egypt

    International Nuclear Information System (INIS)

    Abd El-moniem, M.; El-gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to investigate the soil moisture distribution under different quantities of irrigation water in cultivated sandy soil with squash, using drip irrigation system. This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Three rates of applied irrigation water (100, 75 and 50 % ETc) were used. Three sites (0, 12.5 and 25 cm distances from the emitter between drippers and laterals lines) were chosen to measure soil moisture contents (horizontal and vertical directions within the soil depths). The obtained data pointed out that the maximum width, in onion shape of water distribution under drip irrigation system, was at 45 cm depth at 0 site. From the study of soil moisture distribution, the overlapping between each two neighbor drippers played a good role in increasing soil moisture content at the 25 site rather than the rest sites. Water distribution was affected with plant location within the wet area as well as the used irrigation water quantities. Water distribution between drippers and laterals did not differ much approximately. The highest soil moisture depletion was at 12.5 site (between drippers) for 100 and 75 % ETc rather than the rest treatments. 100 % ETc treatment introduced the highest soil moisture depletion in the first stage of plant growth season for the three sites (between drippers and laterals). In the last stage of plant growth season, water re-distribution phenomena resulted from the changeable total hydraulic potential, which played important role for interpretation of results

  6. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Beibei Zhou

    2017-10-01

    Full Text Available The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1% and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs, residual water content (θr and empirical parameter (α increased with increasing nano carbon content, while the pore-size distribution parameter (n decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.

  7. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  8. Effects of acacia senegal (L.,Willd.) on sandy soils: A case study of El damokeya forest, Northern Kordofan State

    International Nuclear Information System (INIS)

    Ahmed, D. M; Nimer, A. M.

    2002-01-01

    Soil properties were studied in El Damokeya forest, located at 30 km east of Elobeid town, Northern Kordofan State, during the rainy season of 1998. The aim was to characterize the soils of the area and to examine the effects of Acacia senegal plantations on the soils physical and chemical properties. The results showed that the soils were sandy, weakly structured, yellowish-red, neutral and poor in nutrient content, and that Acacia senegal plantations had induced considerable changes in the soil morphological, physical and chemical properties. The soil became more differentiated, with a third layer clearly discernible. No change had occurred in the soil texture. But, it became well structured with stable aggregates. Its organic matter content had been augmented to about one and half times, deeply incorporated and stained the whole profile with darker hues. The soil reaction became slightly acidic (ph 6.3). The exchange capacity was improved qualitatively and quantitatively. Thus, cation exchange capacity values increased from 2.8 in the bare land to 4.0 meq/100g soil under the forest, and the soil was saturated to 98% with base cations. The major nutrient elements (N,P, K, Ca, Mg, Fe) had generally increased with various proportions ranging from 10% to more than 130%, but only Ca showed significant difference at P=0.05. Among the trace elements, Cu and Co had significantly decreased in the forest soil, but Zn and Mn had increased to about 100%.(Author)

  9. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  10. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Comparative effects of application of coated and non-coated urea in clayey and sandy paddy soil microcosms examined by the 15N tracer technique. 2. Effects on soil microbial biomass N and microbial 15N immobilization

    International Nuclear Information System (INIS)

    Acquaye, Solomon; Inubushi, Kazuyuki

    2004-01-01

    Nitrogen fertilizer and soil types exert an impact on plant and soil microbial biomass (SMB). A 15 N tracer experiment was conducted to compare the effects of the application of controlled-release coated urea (CRCU) and urea on SMB in gley (clayey) and sandy paddy soils. The fertilizers were applied at the rate of 8 g N m -2 for CRCU as deep-side placement and 10 g N m -2 for urea mixed into soil or applied into floodwater. The soil type and soil layer (surface: few millimeter depth of surface soil to include benthic algae; subsurface: 1 to 20 cm depth), but not the fertilizer type, affected the amount of microbial biomass N (B N ). On an area basis, subsurface soil layers contained about 2-3 times the amount of B N in the surface layers. The seasonal average B N amount i.e. at 1 to 20 cm depth, in the gley soil was 1.67 g N m -2 , compared to 1.20 g N m -2 for the sandy soil. The proportion of B N in total soil N was significantly influenced by the soil type and soil layer, and was higher for the surface layers of both soils and subsurface layer of the sandy soil than for the subsurface layer of gley soil. Soil type, soil layer, and fertilizer type significantly influenced the amount of microbial biomass 15 N (B 15N ). Unlike B N , the amount of B 15N was significantly higher in the surface (11.9-177.3 mg N m -2 ) than in the subsurface soil layers (4.8-83.6 mg N m -2 ), especially with urea application between 60 and 120 DAT (days after transplanting). At 30 DAT, the subsurface layer of the sandy soil showed a higher B 15N (218 mg N m -2 ) amount than the surface layer (133.4 mg N m -2 ). Sandy soil (4.8-218 mg N m -2 ) and urea (6.2-218 mg N m -2 ) induced a larger increase of the amount of B 15 N than the gley soil (6.2-83.6 mg N m -2 ) and CRCU (4.8-40 mg Nm -2 ). Again, the sandy soil, surface soil layers, and urea induced a higher proportion (%) of B 15N in B N than the gley soil, subsurface soil layers, and CRCU, respectively. The soil type affected B N

  12. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  13. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Orfánus, T.; Czachor, H.; Rajkai, K.; Šír, Miloslav; Tesař, Miroslav

    2010-01-01

    Roč. 3, č. 4 (2010), s. 413-420 ISSN 1936-0584 R&D Projects: GA MŠk MEB0808114 Institutional research plan: CEZ:AV0Z20600510 Keywords : sandy soil * water repellency * plant cover * sorptivity * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.835, year: 2010

  14. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  16. [Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land].

    Science.gov (United States)

    An, Hui; An, Yu

    2011-09-01

    Taking the artificial sand-fixing Salix psammophila shrubs with different plant density (0.2, 0.6, and 0.8 plants x m(-2)) in Mu Us Sandy Land as test objects, this paper studied the soil moisture dynamics and evapotranspiration during growth season. There existed obvious differences in the soil moisture dynamics and evapotranspiration among the shrubs. The soil moisture content changed in single-hump-shape with the increase of plant density, and in "S" shape during growth season, being closely correlated with precipitation. The evapotranspiration was the highest (114.5 mm) in the shrubs with a density 0.8 plants x m(-1), accounting for 90.8% of the total precipitation during growth season, and the lowest (109.7 mm) in the shrubs with a density 0.6 plants x m(-2) Based on the soil moisture dynamics and water balance characteristics, the appropriate planting density of S. psammophila shrubs in Mu Us Sandy Land could be 0.6 plants x m(-2).

  17. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  18. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Sanad, W.; Flex, H.; Abdel-Haleem, A.S.; Zohny, E.

    1996-01-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs

  19. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Sabour, M F [Soil Pollution Unit, Soil and Water Department. Nuclear Research Center, Atomic energy Authority, Cairo, (Egypt); Sanad, W; Flex, H; Abdel-Haleem, A S [Hot Lab. Center, Atomic Energy Authority, Cairo (Egypt); Zohny, E [Physics Department, Faculty of Science, Cairo Univ., Beni-Sweif Branch, Cairo, (Egypt)

    1996-03-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs.

  20. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  1. The soil structure investigation for the interpreting radiocaesium behaviour in upper horizons of Chernobyl contaminated sandy soils

    International Nuclear Information System (INIS)

    Vazhinskij, A.G.

    2002-01-01

    The soil-composing particles in natural environment form aggregates of different stability. For soils (topsoil) of contrasting type from Chernobyl NPP area the particle size and microaggregate analyses have been performed and the distribution of Cs 137 in the obtained fractions has been studied. Results of long-term investigation of Cs 137 vertical migration in sandy soils of 50-km zone around Chernobyl NPP have been compared with data on radiocaesium distribution among water-stable aggregates and particles of various size in studied soils. On the basis of particle size analysis and aggregate soil composition the size of soil components with vertical migration potential, and the amount of Cs 137 potentially tending to migrate with the soil components along soil profile have been assessed. Based on findings showing Cs 137 partitioning among water-stable soil aggregates of diverse size and pattern of the radionuclide vertical distribution in top 0-10 cm soil layer, it was assumed that neither shift of peak radiocaesium level from upper soil layer downwards nor the so-called slow constituent of Cs 137 vertical migration (in terms of quasi diffusion description of Cs 137 profile in soil) could not be explained by self-motion of soil aggregates and particles with associated radiocaesium. Hypothesis of root intermixing as principal mechanism responsible for Cs 137 vertical transport in top 0-10 cm soil layer was postulated

  2. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  3. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  4. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  5. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  6. Estimation of Nitrogen Pools in Irrigated Potato Production on Sandy Soil Using the Model SUBSTOR

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J.; Boote, Kenneth J.

    2015-01-01

    Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations- a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha-1 N) of the total input N (310 to 349 kg ha-1 N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha-1N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses. PMID:25635904

  7. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  8. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  9. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    International Nuclear Information System (INIS)

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  10. The Use of Ionizing Radiation to Prepare Polymeric Agro-waste Composite for Sandy Soil Application

    International Nuclear Information System (INIS)

    Elhady, M.A.; Elnahas, H.H.; Meligi, G.A.; Ammar, A.H.

    2015-01-01

    Super absorbent hydrogel composite (SHC) by radiation induced crosslinking of polyacrylamide (PAAM)/ rice straw (RS) composite and hydrophilic membrane system based on polyvinyl alcohol (PVA) for possible applications in agricultural field of sandy soil was studied. The factors affecting the quick and capacity for retaining irrigated water of swelling behaviour of prepared hydrogel composite through hydrophilic membrane system and increasing foaming/ porosity of the SHC were studied. The mechanism for this is most likely a prevention of irrigated water to pass through sandy particles for a time ranged from 20 to 40 min for the fluid uptake capacity and swelling of the SHC to take and swelling place without almost any loss of irrigated water. Effect of acid/ alkalinity (PH) and salt concentration were investigation.

  11. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  12. Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and #Acacia mangium# plantation on a sandy tropical soil

    OpenAIRE

    Tchichelle, Sogni Viviane; Epron, Daniel; Mialoundama, Fidèle; Koutika, Lydie-Stella; Harmand, Jean-Michel; Bouillet, Jean-Pierre; Mareschal, Louis

    2017-01-01

    Sustainable wood production requires appropriate management of commercial forest plantations. Establishment of industrial eucalypt plantations on poor sandy soils leads to a high loss of nutrients including nitrogen (N) after wood harvesting. An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the eucalypt monoculture to sustain soil fertility through enhancement of the N biological cycle. ...

  13. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  14. Evaluation of physical quality indices of a soil under a seasonal semideciduous forest

    Directory of Open Access Journals (Sweden)

    Thalita Campos Oliveira

    2014-04-01

    Full Text Available The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt, and water storage capacity (FC/Pt of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035. The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

  15. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  16. Volatilization of tri-allate, ethoprophos and parathion measured with four methods after spraying on a sandy soil

    NARCIS (Netherlands)

    Bor, G.; Berg, van den F.; Smelt, J.H.; Smidt, R.A.; Peppel-Groen, van de A.E.; Leistra, M.

    1995-01-01

    At about eleven times after application of tri-allate, ethoprophos and parathion to a sandy soil, their rates of volatilization were determined by the aerodynamic method (AD), the Bowen-ratio method (BR), the theoretical-profile method (TP) and the Box method. The volatilization was highest for

  17. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  18. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  19. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  20. The integration of innovative technologies into a physical-separation-based soil washing system

    International Nuclear Information System (INIS)

    Krstich, M.A.

    1995-01-01

    An innovative system's approach to the treatment of soils at the Fernald Environmental Management Project (FEMP) has been proposed to effectively and cost competitively treat a significant mass of soil. The use of an integrated soil treatment system to decontaminate FEMP soils is a unique application of the soil washing technology. Due to the unfavorable soil particle size distribution and the ubiquitous distribution of uranium among these particle size fractions, conventional soil washing processes commonly used on predominantly sandy soils alone may not achieve the desirable waste minimization level without the inclusion of innovative technologies. This objective of this paper is to briefly describe the physical separation and chemical extraction process commonly used in soil washing operation and to present the baseline soil washing approach used on FEMP soils. Noting the successful and not-so-successful processes within the soil washing operation at the FEMP, a proposed innovative system's approach to treating FEMP soils will be described. This system's approach will integrate a conventional soil washing operation with proposed innovative technologies

  1. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  2. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  3. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil

    OpenAIRE

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduc...

  4. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  5. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A. K.

    2010-04-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Draa), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO - 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO - 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO - 3 content in the solution in porous cups occurred within 8 days. (author)

  6. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A.

    2010-01-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Dra'a), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO 3 content in the solution in porous cups occurred within 8 days. (author)

  7. Geochemical and physical properties, distribution coefficients of soils and sediments at the Olkiluoto Island and in the reference area in 2010-2011

    International Nuclear Information System (INIS)

    Lahdenperae, A.-M.

    2014-04-01

    The report summarises the chemical, physical and mineralogical data and the calculated 'in situ' distribution coefficients (K d ) values of the indigenous elements from the different types of soil and sediment samples at the Olkiluoto Island and in the Reference area that were taken in 2010-2011. The data has been collected in order to extend the understanding of the site evolution and for radionuclide transport analyses and modelling. 'In situ' distribution coefficients, K d values are used to indicate the relevant mobility of elements and radionuclides. This report is part of the entirety of soil and sediment data from different soil types, soil layers and environmental conditions collected earlier for the biosphere site description and development. Soil and sediment samples were taken at various depths of humus, peat, gyttja, sandy/fine sandy till and cropland soils. The analyses procedure varied to some extent between the samples. In all samples were analysed pH, LOI, C, N, and the total concentrations of the elements using HNO 3 -HF extraction. The 'in situ' K d values were calculated using the formula by Sheppard et al.. For selected samples the easily leachable fraction was analysed by NH 4 Ac (pH 4.5). Bulk density and mineralogy was determined for a few samples. Grain size distribution was measured only from till samples. The results are discussed and the physical-chemical data and distribution coefficients of the results are presented. The cation exchange capacity and base saturation are calculated for the sandy/fine sandy till samples from Olkiluoto. The K d values of the important indigenous elements Ag, Cl, Cs, I, Mo, Ni, Se and Sr are of main interest in biosphere development due to the longest half-lives of the associated radionuclides, thus having long interaction times. The K d data are inherently extremely variable due to nature of practical quantity in question, aggregating a number of processes into a single value, but the data also vary

  8. Geochemical and physical properties, distribution coefficients of soils and sediments at the Olkiluoto Island and in the reference area in 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Lahdenperae, A.-M. [Saanio and Riekkola Oy, Helsinki (Finland)

    2014-04-15

    The report summarises the chemical, physical and mineralogical data and the calculated 'in situ' distribution coefficients (K{sub d}) values of the indigenous elements from the different types of soil and sediment samples at the Olkiluoto Island and in the Reference area that were taken in 2010-2011. The data has been collected in order to extend the understanding of the site evolution and for radionuclide transport analyses and modelling. 'In situ' distribution coefficients, K{sub d} values are used to indicate the relevant mobility of elements and radionuclides. This report is part of the entirety of soil and sediment data from different soil types, soil layers and environmental conditions collected earlier for the biosphere site description and development. Soil and sediment samples were taken at various depths of humus, peat, gyttja, sandy/fine sandy till and cropland soils. The analyses procedure varied to some extent between the samples. In all samples were analysed pH, LOI, C, N, and the total concentrations of the elements using HNO{sub 3}-HF extraction. The 'in situ' K{sub d} values were calculated using the formula by Sheppard et al.. For selected samples the easily leachable fraction was analysed by NH{sub 4}Ac (pH 4.5). Bulk density and mineralogy was determined for a few samples. Grain size distribution was measured only from till samples. The results are discussed and the physical-chemical data and distribution coefficients of the results are presented. The cation exchange capacity and base saturation are calculated for the sandy/fine sandy till samples from Olkiluoto. The K{sub d} values of the important indigenous elements Ag, Cl, Cs, I, Mo, Ni, Se and Sr are of main interest in biosphere development due to the longest half-lives of the associated radionuclides, thus having long interaction times. The K{sub d} data are inherently extremely variable due to nature of practical quantity in question, aggregating a number of

  9. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this

  10. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  11. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    International Nuclear Information System (INIS)

    Elgubshawi, Abdelmoneim Ahmed Ismail

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author)

  12. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    Energy Technology Data Exchange (ETDEWEB)

    Elgubshawi, Abdelmoneim Ahmed Ismail [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author) 39 refs. , 8 tabs. , 35 figs.

  13. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  14. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  15. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    Science.gov (United States)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  16. Strength properties of sandy soil-cement admixtures

    OpenAIRE

    Sara Rios; António Joaquim Pereira Viana Da Fonseca

    2009-01-01

    This paper will focus on the sensitivity of strength and stiffness properties of silty-sands, from granitic residual soil, which can be converted to a highly improved material if stabilized with cement. The study of soil stabilization with cement demands to quantify the influence of the cement percentage, porosity and water content adopted in the admixing process for different stresses and physical states. Firstly, this influence was quantified in terms of the unconfined strength and maximum ...

  17. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  18. THE PROBLEMATIC OF SANDY LANDS IN PARANAVAI MUNICIPALITY –PR

    Directory of Open Access Journals (Sweden)

    Marcelo Eduardo Freres Stipp

    2005-05-01

    Full Text Available The sandy lands are a process of scouring with sand forming a sandy area, which correspondsto a reworking of the sands due its constant mobility, involving the transformation of notsolids deposits is sandy areas. This work tried to establish the characterization of thisphenomenon of scouring with sand in a local level, occurring in arenaceous areas in theNortheast of the state of Paraná, specifically in the urban site of Paranavaí. It was also madean evaluation of the environmental degradation as well as different causes for what provokedthese sandy areas. Being an area with a high level of soil decomposition with the highwaysroutes crossing it, it was necessary, besides bibliographic data that allowed a theoretical basis,a research applied in order to supply subsides for future planning related to the spaceorganization. The evolution of the use and soil occupation in this area has been processedwithin an urban planning which considered by no account neither soil characteristic, thevegetation nor the predominant climate in that region. The mechanisms of region atmospherecirculation were analyzed, the alterations or attributes of the climate as well, aiming toidentify the genesis of the erosion sandy and possible time and space distribution. Initially, themain characteristics of the region were collected, components e processes working on the landmodel. It was observed how it worked and the use and occupation of the soil in past times andcurrently. During 2004, using the Environmental Fragility Letter, the areas of erosion wereidentified, ravines and strong erosion that compounds the first stages of the focused problem.The sandy land is a process that involves erosion, transport, e accumulation, meaning most oftimes the loosing of Biosphere productivity. For monitoring these risk areas some measuringcanes were made to measure the soil loss, which were used in several spots of erosion in theurban area in Paranavaí. The measurement happened in

  19. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  20. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    International Nuclear Information System (INIS)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G.; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH 2 =N-C(=N-NO 2 )-CH=N-CHO or its isomer N(NO 2 )=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil

  1. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    OpenAIRE

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella

    2017-01-01

    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1) were tested. They were split at three different times during the growing season: (i) 50% immediately after sowing, (ii) 25% at 4–5 leaf stage and (iii) 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a so...

  2. SUITABLE LOCATION OF SHEET PILE UNDER DAM RESTING ON SANDY SOIL WITH CAVITY

    Directory of Open Access Journals (Sweden)

    Laith J. Aziz

    2018-05-01

    Full Text Available This research describes the seepage characteristics of experimental model test of dam with cutoff located at different region (at dam heel, at mid floor of dam, and at dam toe. It is resting on sandy soil with cavity at different locations in X and Y directions (such as in Al-Najaf soil city. Thirty three model tests are performed in laboratory by using steel box to estimate the quantity of the seepage and flow lines direction. It was concluded that the best location of the cutoff wall is at the dam toe for model test with cavity ( Xc B = 0 and 0.5, but for model test with cavity ( Xc B ≥1, the best location of the sheet pile wall becomes at the dam heel. For negative location of the cavity, the best location of the sheet pile wall is at the middle of the floor dam.

  3. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  4. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    (D) and harrowing to a depth of 8 to 10 cm (H). Soil sampling and in-field measurements were performed in autumn 2013 and spring 2014. In the field, soil structure was visually evaluated and penetration resistance (PR) measured. Soil C, wet stability (clay dispersion and wet aggregate stability....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  5. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  6. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  7. Field sampling of residual aviation gasoline in sandy soil

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Hinlein, E.S.; Yuefeng, Xie; Leach, L.E.

    1991-01-01

    Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions

  8. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  9. Effect of polyacrylamide on soil physical and hydraulic properties

    Science.gov (United States)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Hamdan, Enas

    2017-04-01

    The effect of polyacrylamide (PAM), as a soil conditioner, on selected soil physical and hydraulic properties (infiltration rate (f(t)), hydraulic conductivity (HC), soil moisture content, aggregate stability (AS), and soil aggregation) was studied. Two types of anionic PAM were used: Low molecular weight (LPAM) (1×105 g/mol) with medium charge density (33-43) and high molecular weight (HPAM) (1-6×106 g/mol) with medium charge density (33-43). Sandy loam soil was packed into plastic columns; PAM solutions at different concentrations (100, 250, 500, and 1000 mg L-1) were used every two weeks in four wetting and drying cycles. The highest infiltration rate value was 0.16 mm s-1 at 1000 mg/L low molecular weight PAM while the highest value of infiltration rate in high PAM molecular weight was 0.11 mm s-1 compared to the control (0.01 mm s-1). Soil HC was about 3.00 cm h-1 for LPAM at 1000 mg L-1 PAM, while the highest value for HPAM was about 2 cm h-1 for the same concentration, compared to the control. The amount of water that can be held by soil increased with the addition of PAM compared to the control. Differences in water content were more pronounced in LPAM compared to HPAM. The addition of LPAM increased aggregate stability proportional to PAM concentration. Moreover, 1000 mg L-1 produced the highest aggregate stability (19{%}) compared to HPAM and control (7{%} and 5{%}), respectively. As PAM concentration increased, the geometric mean diameter (GMD) increased for both PAM molecular weights compared to control (0.4 mm). At 1000 mg L-1 the GMD values were 0.88 mm and 0.79 mm for LPAM and HPAM, respectively. The addition of PAM improved soil physical and hydraulic properties, with an advantage to LPAM owing that to its ability to penetrate soil aggregates and therefore stabilizing them.

  10. Potassium efficiency of different crops grown on a sandy soil under controlled conditions

    International Nuclear Information System (INIS)

    El Dessougi, H. I.; Claassen, N.; Steingrobe, B.

    2010-01-01

    The objective of this work was to study K efficiency of different crops and determine the plant parameters affecting it. The study was carried out using 14 different crops and cultivars grown on a sandy soil rich in humus, with two potassium fertilisation levels under controlled conditions. The studied crops showed different K efficiency reflected in different dry matter yield production in unfertilised relative to fertilised treatments. All crops had , at low K supply, less than optimum K concentration in dry matter, indicating that the soil K concentration did not meet the K requirement of the plants, Thus, the ability to produce high dry matter yield indicated superior adaptability to K deficiency. The efficiency mechanisms employed by the different crops were low shoot growth rate and/or high root length-shoot weigh ratio and a high uptake rate per unit root, i.e. the influx, or low internal K requirement. Crops with high influx had higher calculated concentration gradients, since they caused further decrease of the concentration at the root surface. As such, they were able to create steeper concentration gradients between bulk soil solution and root surface. This resulted in higher diffusive flux to the roots.(Author)

  11. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    Science.gov (United States)

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  12. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  13. Active Distribute Temperature Sensing to Estimate Vertical Water Content Variations in a Loamy-Sandy Soil

    Science.gov (United States)

    Ciocca, F.; Van De Giesen, N.; Assouline, S.; Huwald, H.; Hopmans, J. W.; Lunati, I.; Parlange, M. B.

    2011-12-01

    Optical fibers in combination with Raman scattering measurements (Distributed Temperature Sensor: DTS) have recently become more standard for the measurement of soil temperature. A recently developed technique to measure soil moisture called Active DTS (ADTS) is investigated in this study. ADTS consists of an application of a heat pulse for a fixed duration and power along the metal sheath covering the optical fiber placed in the soil. Soil moisture can be inferred from the increased temperature measured during the heating phase and the subsequent temperature decrease during the cooling phase. We assess this technique for a loamy-sandy soil as part of a field campaign that took place during the 2011 summer at EPFL. The measurements were taken within a weighing lysimeter (2.5 m depth and 1.2 m diameter) using an optical fiber arranged in 15 loops for a total measurement length of 52 m in the top 80 cm of the soil profile. Local soil moistures were simultaneously measured using capacity-based probes. Thermocouples, wrapped around the fiber, are used to account for the effects of the insulating cover surrounding the cable. Heat pulses of various duration and power have been applied for a range of soil moistures. Measurements were taken during periods of drainage and evaporation. The accuracy of the technique for the EPFL 2011 field campaign and the experiment are discussed and the soil moisture measurements are presented.

  14. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact.

    Science.gov (United States)

    Rychter, Piotr; Kawalec, Michał; Sobota, Michał; Kurcok, Piotr; Kowalczuk, Marek

    2010-04-12

    Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.

  15. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of natural attenuation, bioventing, bioaugmentation and bioaugmentation-bioventing techniques, for the biodegradation of diesel in a sandy soil, through column experiments

    International Nuclear Information System (INIS)

    Muskus Morales, Angelica Maria; Santoyo Munoz, Claudia; Plata Quintero, Luijesmarth Silvia

    2013-01-01

    The present study was developed within an inter-institutional agreement between the Universidad Pontificia Bolivariana, UPB-BBGA and the Colombian Petroleum Institute-ICP, in order to provide a solution to an environmental problem that occurs in areas where hydrocarbons are handled and where sandy soils have been found to be contaminated with diesel fuel with concentrations up to 6% at a maximum depth of 80 cm. For this study, the soil samples were artificially contaminated with diesel fuel in order to evaluate Natural Attenuation, Bioventing, Bioaugmentation and Bioaugmentation-Bioventing soil remediation techniques through the use of column experiments. The design parameters, column dimensions, inflow, diesel concentration, dissolved oxygen, bacterial growth, and monitoring was defined. Bioaugmentation was performed inoculating a bacterial consortium produced by the ICP. The experimental setup was assembled in triplicate and was monitored through a period of four months. The experimental results showed that Bioventing technique was the most effective, reaching up to 97% diesel removal from the contaminated soil; with the Bioaugmentation - Bioventing, diesel fuel removal percentage was 75%, and the Natural Attenuation and Bioaugmentation techniques resulted in diesel fuel removal percentages not greater than 48%. This study showed that the microbial consortium evaluated and provided by the Colombian Petroleum Institute proved to be not efficient for potentializing bioremediation processes of sandy soils contaminated with diesel fuel.

  17. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  18. Methodical comparison of neutron depth probes and long-term soil moisture measurements on loess, sandy loess, and boulder clay

    International Nuclear Information System (INIS)

    Neue, H.U.

    1980-01-01

    Three measuring instruments were tested: 0.05 mCi Cf-252, 100 mCi Am-241/Be, 500 mCi Am-241/Be. The advantages - measurement in undisturbed soil profiles, large depths of measurement, reproducibility of measurements in the same place over several years - and the disadvantages - radiation protection, resolution, variations of measured volume in dependence of moisture, background influences etc. - have been critically checked by experiment. In addition, annual soil moisture curves have been measured over two years by parallel use of the free probes on a loess, sandy loess, and boulder clay site. The results were compared and discussed with a view to the soil water dynamics of these sites. (orig./HP) [de

  19. The ecology of sandy beaches in Natal

    African Journals Online (AJOL)

    The ecology of sandy beaches in Natal. A.H. Dye, A. Mclachlan and T. Wooldridge. Department of Zoology, University of Port Elizabeth, Port Elizabeth. Data from an ecological survey of four sandy beaches on the. Natal coast of South Africa are presented. Physical para· meters such as beach profile, particle size, moisture, ...

  20. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    International Nuclear Information System (INIS)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-01-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles ( 200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0–20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: ► PAH concentrations varied largely in different sized fractions. ► The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. ► Soil organic matter (SOM) is an important factor to dominate the distribution of PAHs in this study site.

  1. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  2. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  3. A study on the aseismic safety of the experimental VHTR on the dense sandy layer

    International Nuclear Information System (INIS)

    Fujita, Shigeki; Ito, Yoshio; Baba, Osamu; Suzuki, Hideyuki; Takewaki, Naonobu; Kondo, Tsukasa; Yoshimura, Takashi; Yamada, Hitoshi.

    1986-12-01

    A series of studies has been carried out in 1983 and 1985 for the purpose of confirming the aseismic safety of the Experimental VHTR on the dense sandy layer. In 1983, effect of some of soil properties on seismic responses of the reactor building was estimated by means of parametric survey, and soil properties were estimated by analyzing the obserbed earthquake record. In 1985, literature review, linear, nonlinear parametric analyses and nonlinear simulation analyses were carried to study and compare the analysis method. In addition, seismic response of proposed construction site was estimated with nonlinear analysis method. As a result of these studies, the seismic response of reactor building on the dense sandy layers and wave propagation characteristics of sandy layers are understood. Especially, by means of many parametric studies, the effect of input wave characteristics, soil stiffness, nonlinear characteristics of soil properties and nonlinear analysis method on the reactor building responses were evaluated. (author)

  4. Restoration of Soil Physical and Chemical Properties of Abandoned Tin- Mining in Bangka Belitung Islands

    Directory of Open Access Journals (Sweden)

    Ishak Yuarsah

    2017-01-01

    Full Text Available The practices of tin mining that remove all soil layers on top of the mineral deposit layers have caused serious environmental problems, i.e. degradation of soil physical and chemical properties and disappearance of vegetation, flora and fauna in ecosystems, which further can change the local microclimate. The tailing area of tin mining have unstable soil structure and low organic matter content, so it is vulnerable to land slides and erosion. The characteristics of the soils in the tailing area that are very acidic, low nutrient availability, low water holding capacity and high soil temperature challange the restoration and improvement processes of this area. The aim of the research was to develop appropriate restoration techniques to improve the soil properties of post tin mining land that have been degraded due to mining activities. Appropriate plant species and specific location technology were determined based on the characterization and evaluation of potential land resources. Annual crop cultivation, cultivation of legume cover crops (Mucuna sp., Calopogonium sp., Pueraria javanica and management of top soil and organic matter should be applied in order to improve soil structure, maintain soil moisture, as well as to reduce nutrient loss in coarse sandy soils.

  5. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  6. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  7. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  8. Thermomechanical Behavior of Energy Pile Embedded in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Xu Huang

    2018-01-01

    Full Text Available The traditional energy pile (solid energy pile has been implemented for decades. However, the design of different kinds of energy piles is still not well understood. In this study, a series of model tests were performed on an aluminum pipe energy pile (PEP in dry sandy soil to investigate the thermal effects on the mechanical behaviors of pipe energy pile. The thermal responses of the PEP were also analyzed. Steady temperatures of the PEP under different working conditions were also compared with that of the solid energy pile. Different loading tests were carried out on four pipe energy piles under three different temperatures of 5, 35, and 50°C, respectively. The bearing capacity change can be interpreted through the load-displacement curves. Experiment results were also compared with the solid energy pile to evaluate bearing capacities of the PEP and the solid energy pile under different temperature conditions. The mobilized shaft resistance was also calculated and compared with the solid energy pile data and the results show that the PEP has a similar load transfer mechanism with the solid energy pile. It could also be found that, for PEPs under working load, plastic displacement would appear after a whole heating cycle.

  9. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  10. Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field on sandy soil in Niger.

    NARCIS (Netherlands)

    Gaze, S.R.; Simmonds, L.P.; Brouwer, J.; Bouma, J.

    1997-01-01

    During rain there can be substantial redistribution of water at the surface of sandy soils in the Sudano-Sahelian zone, because of localised runoff and runon. This results in variable infiltration over a field. Measurements of spatial variability in infiltration and crop growth were made in a millet

  11. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    Directory of Open Access Journals (Sweden)

    M.E El-Hadad

    2011-03-01

    Full Text Available In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB Paenibacillus polymyxa (four strains, the phosphate solubilizing bacteria (PSB Bacillus megaterium (three strains and the potassium solubilizing bacteria (KSB B. circulans (three strains were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm, number of leaves / plant, shoot dry weight (g / plant and root dry weight (g / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium and for the biological control of M. incognita.

  12. Quasi 3D modelling of water flow in the sandy soil

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic

  13. Lead and cadmium interactions in Cynodon nlemfuensis and sandy soil subjected to treated wastewater application under greenhouse conditions

    Science.gov (United States)

    Madyiwa, Simon; Chimbari, Moses John; Schutte, Frederik

    Pb and Cd are known to influence each other’s uptake by some plants when the two metals exist in the soil in significant amounts. This influence may be beneficial if it reduces uptake of metal by plants but may be detrimental if it increases uptake of the metal. This study was carried out to investigate the interaction of Pb and Cd in sandy soils and Cynodon nlemfluensis (star grass). Star grass was grown under greenhouse conditions in 33 fertilized pots containing sandy soils. Three weeks after planting the grass the pots were randomly assigned to the following treatments replicated three times; (a) application of three varying concentrations of Pb or Cd in addition to effluent and sludge, (b) application of three varying concentrations of combined Pb and Cd in addition to effluent and sludge, (c) application of water and (d) application of only effluent and sludge. Analysis of grass samples was done 45 and 90 days after addition of Pb and Cd to pots and that of the soil was done 90 days after addition of Pb and Cd to pots. The log normal mean level (in mg/kg) of Pb detected in the soil was 1.75 and that of Cd was 0.057 in mixed treatments while for single treatments the levels were 1.67 for Pb and 0.03 for Cd. The presence of Cd in the soil had no effect on the bio-available level of Pb but Pb significantly ( p < 0.05) increased the bio-available concentration of Cd. The log normal mean levels of Pb in grass re-growth from mixed treatment was 1.68 and that of Cd was 0.57 while the values for single treatments were 1.47 for Pb and 0.31 for Cd. There was no significant change in the level of uptake of Pb between single treatments and mixed treatments. However, Pb significantly increased uptake of Cd in mixed treatments compared to single treatments ( p < 0.05). The results of this study indicate that co-presence of Pb and Cd may have the detrimental effect of increasing uptake of Cd in star grass.

  14. Evaluation Of Onion Production On Sandy Soils By Use Of Reduced Tillage And Controlled Traffic Farming With Wide Span Tractors

    Directory of Open Access Journals (Sweden)

    Pedersen Hans Henrik

    2015-09-01

    Full Text Available Growing of vegetables is often characterised by intensive field traffic and use of heavy machines. By implementing controlled traffic farming (CTF, compaction of the growth zone can be avoided. An experiment was established in an onion field on a coarse sandy loam. Treatments were applied in the field that for five years had been managed by seasonal CTF (SCTF, where harvest is performed by random traffic due to lack of suitable harvest machines. The main treatment was compaction with a fully loaded potato harvester. The split treatment in the crossed split plot design was mechanical loosening. Bulk density, macroporosity, penetration resistance, water retention characteristics and yield were measured. Mechanical loosening caused improvements in the physical soil measurements and more roots were found in the upper soil layers. The highest yield was however found in the CTF simulation plots (19% higher than in the SCTF simulated plots. Using wide span tractors as a harvest platform will enable CTF in vegetable production. Avoidance of compaction will enable reduced tillage intensity and productivity can be improved both through higher yield of the area that is cropped and by a larger percentage of fields can be cropped area as less area will be needed for tracks.

  15. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    . The response curve was followed by analyzing the concentration history of Cl-1 in the effluent. Then, the influent was switched back to the background solution to thoroughly elute the tracer. Following the tracer test, a modified magnetite nanoparticles with sodium dodecyl sulfate was introduced into the column and the nanoparticle breakthrough curves were obtained by measuring the concentration history of total Fe in the effluent. Total iron concentration was analyzed with a flame atomic-absorption spectrophotometer. One site and two site kinetic attachment-detachment models in HYDRUS-1D software were used to predict the nanoparticles transport. Also parameters of model efficiency coefficient (E, root mean square error (RMSE, geometric mean error ratio (GMER, and geometric standard deviation of error ratio (GSDER were used to determine the accuracy of the models. Results and Discussion: SEM measurements demonstrated that the particle size of nanoparticles was about 40-60 nm. The hydrodynamic dispersion coefficient (D for each medium was obtained by fitting the classic 1-D convection–dispersion equation (CDE to the experimental breakthrough data using the CXTFIT code (STANMOD software, USDA. The relative concentration of nanoparticles in comparison with chloride in the collected effluent from soil columns were much lower indicating a strong retention of nanoparticles in studied porous media, thereby attachment, deposition and possibly straining of nanoparticles. Modeling results showed that in all sites of both models (one site and two-site kinetic attachment-detachment models, attachment was rapid and detachment was slow. These attachment kinetic sites may be because of consistent charges of minerals with attachment. Therefore, considering to same attachment-detachment behavior in two sites of two-site kinetic model, it is concluded that the one site kinetic model had eligible estimation of nanoparticles breakthrough curve in the studied sandy soil columns lonely

  16. In-situ hydrodynamic characterization of a soil by means of an infiltration experiment. Application to a sandy soil in the central zone of Senegal

    International Nuclear Information System (INIS)

    Haverkamp, R.; Hamon, G.; Vauclin, M.; Vachaud, G.

    1979-01-01

    A new method is presented for predicting the hydraulic conductivity curve of an unsaturated soil from the relation between effective pressure and water content and the law of cumulative infiltration. With this method, which is based on the conceptual model proposed by Mualem (1976), it is possible to determine the parameter n as a function of the type of soil by fitting the cumulative infiltration law obtained numerically by solution of the Richards equation to that obtained experimentally. This approach is tested on experimental results obtained using the internal drainage method on sandy soil in the Central Zone of Senegal. It is shown that the moisture profiles calculated with the aid of the predicted hydraulic conductivity curve are in very good agreement with the measured profiles. This method seems well suited for studying the spatial variability of hydrodynamic characteristics since it is simple to set up and precise, and a large number of experiments can be performed in a short space of time. (author)

  17. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil.

    Science.gov (United States)

    Omouri, Zohra; Hawari, Jalal; Fournier, Michel; Robidoux, Pierre Yves

    2018-01-01

    The present study describes bioavailability and chronic effects of bismuth to earthworms Eisenia andrei using OECD reproduction test. Adult earthworms were exposed to natural sandy soil contaminated artificially by bismuth citrate. Average total concentrations of bismuth in soil recovered by HNO 3 digestion ranged from 75 to 289mg/kg. Results indicate that bismuth decreased significantly all reproduction parameters of Eisenia andrei at concentrations ≥ 116mg/kg. However, number of hatched cocoons and number of juveniles seem to be more sensitive than total number of cocoons, as determined by IC 50 ; i.e., 182, 123 and > 289mg/kg, respectively. Bismuth did not affect Eisenia andrei growth and survival, and had little effect on phagocytic efficiency of coelomocytes. The low immunotoxicity effect might be explained by the involvement of other mechanisms i.e. bismuth sequestered by metal-binding compounds. After 28 days of exposure bismuth concentrations in earthworms tissue increased with increasing bismuth concentrations in soil reaching a stationary state of 21.37mg/kg dry tissue for 243mg Bi/kg dry soil total content. Data indicate also that after 56 days of incubation the average fractions of bismuth available extracted by KNO 3 aqueous solution in soil without earthworms varied from 0.0051 to 0.0229mg/kg, while in soil with earthworms bismuth concentration ranged between 0.310-1.347mg/kg dry soil. We presume that mucus and chelating agents produced by earthworms and by soil or/and earthworm gut microorganisms could explain this enhancement, as well as the role of dermal and ingestion routes of earthworms uptake to soil contaminant. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  19. Physical soil quality indicators for monitoring British soils

    Science.gov (United States)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  20. Physical soil quality indicators for monitoring British soils

    Directory of Open Access Journals (Sweden)

    R. Corstanje

    2017-09-01

    Full Text Available Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  1. Effect of lead on the microbiological activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J P

    1974-01-01

    The production of CO/sub 2/ has been measured after addition of 0, 100, 1000 and 5000 ppm lead (as nitrate) to three Danish soils (two sandy soils and one clay soil). The microbiological activity was inhibited for 10-14 days in the two sandy soils at an addition of 5000 ppm lead, but not in the clay soil. Extraction experiments indicated that the sandy soil has the greatest amount of slight soluble lead, and the content of heavy adsorbed lead was greatest in the clay soil. Determinations (counts) of the effect of lead on the microbial population has shown reduction of the number of microorganisms at addition of 5000 ppm lead. The reduction was greatest in the sandy soil.

  2. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils.

    Science.gov (United States)

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger

    2013-01-01

    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  4. Structural-functional concept of thermophysical condition of the soils of Altai Region

    OpenAIRE

    Makarychev, Sergey; Bolotov, Andrey

    2016-01-01

    The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity) and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems an...

  5. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  6. Effect of potassium fertilizers on 137Cs transfer from sandy soddy-podzolic soil to plants

    International Nuclear Information System (INIS)

    Belova, N.V.; Sanzharova, N.I.; Shishulina, M.V.; Moiseenko, F.V.; Vorob'eva, L.A.

    2009-01-01

    The purpose of the work is to study the behavior of potassium in sandy soddy podzolic soil and its influence on the availability of 137 Cs to plants of winter rye and lupine when applying various doses of potassium fertilizers (PF) and turf-manure compost (TMC). A many-years stationary experiment was established in the Bryansk region in 1986-1988 on soddy podzolic soil contaminated by the accident at the Chernobyl Power Station. The influence of fertilizer was studied in 4-field crop rotation in an experimental plot: seeded fallow (lupine, bird's-foot) – winter rye – potato – spring grains. Potassium and mineral fertilizers were applied. It was shown that the application of potassium fertilizers (from 0 to 180 kg/ha) increased the content of exchangeable potassium in the soil by 1.7-2-7 times and its mobility by 2.5-4.0 times which resulted in a decrease of 137Cs transfer to plants by 5.8-14 times. The inverse proportional relationship was found between the potassium mobility and the content of its mobile form and the accumulation coefficient of 137Cs by lupine and wheat rye plants. A linear relationship was reveled between the accumulation coefficient of 137Cs and the content of exchangeable radionuclide

  7. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl 2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m 2  × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl 2 . Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  8. Study of the effect of the repeated incorporation of millet straw on the availability of nitrogen in a sandy tropical soil using 15N

    International Nuclear Information System (INIS)

    Guiraud, G.; Ganry, F.; Llimous, Gisele.

    1980-01-01

    In order to maintain the level of organic materials in the sandy soils of Senegal, compost was injected in these soils over a period of four consecutive years. The effects of this injection were studied by carrying out tests in pots with a nitrogen 15 labelled fertilizer. The use of compost significantly increased the amount of organic matter in the soil and led to higher yields. The nitrogen present is used by the culture, but appears to be insufficient. A proportion of this nitrogen is lost. Fertilizers still enable high yields to be maintained. The use of compost, however, enables an irreversible drop in the potential fertility of these soils over a longer term period to be avoided [fr

  9. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  10. Water Infiltration and Hydraulic Conductivity in Sandy Cambisols

    DEFF Research Database (Denmark)

    Bens, Oliver; Wahl, Niels Arne; Fischer, Holger

    2006-01-01

    from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any...... of the experimental soils. The results indicate clearly that soils play a crucial role for water retention and therefore, in overland flow prevention. There is a need to have more awareness on the intimate link between the land use and soil properties and their possible effects on flooding.......Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective...

  11. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  12. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico-chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic...... carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S-index’, soil air capacity...... are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils....

  13. Real-Time Monitoring of Water Content in Sandy Soil Using Shear Mode Piezoceramic Transducers and Active Sensing—A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Qingzhao Kong

    2017-10-01

    Full Text Available A quantitative understanding of soil water content or soil water status is of great importance to many applications, such as landslide monitoring, rockfill dam health monitoring, precision agriculture, etc. In this paper, a feasibility study was conducted to monitor the soil water content in real time using permanent embedded piezoceramic-based transducers called smart aggregates (SAs. An active sensing approach using a customized swept acoustic wave with a frequency range between 100 Hz and 300 kHz was used to study the wave attenuation in the soil in correlation to soil moisture levels. Two sandy soil specimens, each embedded with a pair of SAs, were made in the laboratory, and the water percentage of the soil specimens was incrementally decreased from 15% to 3% during the tests. Due to the change of the soil water status, the damping property of the soil correspondingly changes. The change of the damping property results in the variation of the acoustic wave attenuation ratios. A wavelet packet-based energy index was adopted to compute the energy of the signal captured by the SA sensor. Experimental results show a parabolic growth curve of the received signal energy vs. the water percentage of the soil. The feasibility, sensitivity, and reliability of the proposed method for in-situ monitoring of soil water status were discussed.

  14. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  15. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  16. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar

    DEFF Research Database (Denmark)

    Petersen, C. T.; Hansen, E.; Larsen, H. H.

    2016-01-01

    Sustainable agricultural production on coarse sandy soil is constrained by the restricted growth of roots, and poor water and nutrient retention. Amending the soil with biochar can reduce these problems, but the processes involved are not known in detail. We investigated in the laboratory...... the effects of two fine-grained gasification biochars made of straw (LTST) and other materials (LTSN) and of one fast pyrolysis straw biochar (FPST) on pore-size distribution and soil compressibility when added to coarse sandy subsoil. Water retention and therefore pore-size distribution were affected...... systematically. All biochars converted drainable pore space with pore diameters in the range 60–300 µm into water-retaining pores of size 0.2–60 µm, which was taken as an estimate of available water capacity (AWC). Effects were linear over the whole range of biochar (0–4% by mass). The effect of LTST and LTSN...

  17. Residues of Avermectin B1a in rotational crops and soils following soil treatment with [14C]Avermectin B1a

    International Nuclear Information System (INIS)

    Moye, H.A.; Malagodi, M.H.; Yoh, H.; Leibee, G.L.; Ku, C.C.; Wislocki, P.G.

    1987-01-01

    [ 14 C]Avermectin B 1 a was applied twelve times to muck and sandy loam soils and three times to sandy soil at 0.025-0.030 lb/acre per application. These applications simulated the intended use of avermectin B 1 a on celery, vegetables, and cotton, respectively. Following three aging periods in each soil type, sorghum, lettuce, and carrot or turnip seeds were planted and harvested at one-fourth, half, and full size. Analysis of these crops by oxidative combustion demonstrated that crops grown in muck, sandy loam, and sandy soils contained radiolabeled residues ranging from below the limit of quantitation (BLQ) to 7.4 μg/kg of avermectin B 1 a equivalents, BLQ to 11.6 μg/kg, and BLQ to 3.54 μg/kg, respectively. There was a general trend of decreasing residue concentrations with increasing preharvest intervals in crops grown in all soils. The radioactivity present in muck and sandy loam soils disappeared with half-lives ranging from 103 to 267 days and from 102 to 132 days, respectively

  18. Physical fertility of degraded acid sands in South-eastern Nigeria ...

    African Journals Online (AJOL)

    We evaluated the physical fertility of degraded and undegraded acid sands in Akwa Ibom State, South-eastern Nigeria. The soils were similar in texture, being predominantly sandy, averaging 90.1% in degraded and 89.9% in undegraded soil. Bulk density averaged 1.50g/cm3 and 1.45g/cm3, while macropores averaged ...

  19. Characterization and pedogenesis of mangrove soils from Ilhéus-BA, Brazil

    OpenAIRE

    Gomes,Felipe Haenel; Ker,João Carlos; Ferreira,Tiago Osório; Moreau,Ana Maria Souza dos Santos; Moreau,Maurício Santana

    2016-01-01

    ABSTRACT Despite its importance, studies of mangrove soils are scarce, especially from a pedological perspective. The objective of this work was to study the genesis of soils in a mangrove environment in northeastern Brazil (Ilhéus, Bahia) through a morphological, physical, chemical and mineralogical characterization. All soils presented a sandy texture, which is related to the parent material (Quaternary sand deposits). The tidal flooding and resulting hydromorphic conditions is responsible ...

  20. Physical root-soil interactions

    Science.gov (United States)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  1. Study of downward movement of soil water in unsaturated zones using isotopic techniques. Part of a coordinated programme on studying physical and isotopic behaviour of soil moisture in the zones of aeration

    International Nuclear Information System (INIS)

    Sajjad, M.I.

    1984-08-01

    Experiments carried out to study the relative contribution from canal system, precipitation and irrigated fields to water table are described. The normal delta of irrigation water does not seem to have any appreciable effect on the water table through heavy textured soil. The contribution from irrigated fields and rains through sandy soils is significant. However, the groundwater rise (water logging) is mainly due to the infiltration from the canal system. Flow velocities at 1 m depth and 20 vol. % moisture are of the order of 16 m/a and 1.6 m/a for sandy and loamy soils respectively. The contribution from irrigated fields and rains to groundwater recharge is considered to be less than 30%

  2. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  3. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  4. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  5. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  6. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  7. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  8. Sandy soil plantation in semi-arid zones by polyacrylamide gel conditioner prepared by ionizing radiation. Part of a coordinated programme on radiation modified polymers for biomedical and biochemical applications

    International Nuclear Information System (INIS)

    Azzam, R.A.I.

    1983-07-01

    Polyacrylamide gel prepared by ionizing radiation was found to be capable of furnishing adequate conditions for sandy-soil plantation in semi-arid zones. The gel can be tailored for any soil texture under various climatic conditions. The sand-gel combination maintains three cycles of complete destruction and reformation without significant changes in erosion index. Water holding capacity and retention at different suctions in treated sand are increased. This increases water use efficiency. Fertilizers use efficiency is also increased to almost three times that of fertile clayey soil

  9. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...

  10. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  11. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  12. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Directory of Open Access Journals (Sweden)

    Antonio C A Carmeis Filho

    Full Text Available Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively. Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010. Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m. Consequently, both soil amendments applied together increased the mean weight diameter (MWD and geometric mean diameter (GMD in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical

  13. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Science.gov (United States)

    Carmeis Filho, Antonio C A; Crusciol, Carlos A C; Guimarães, Tiara M; Calonego, Juliano C; Mooney, Sacha J

    2016-01-01

    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management

  14. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  15. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Somado, A.E.; Wopereis, M.C.S.; Stroosnijder, L.; Breman, H.

    2005-01-01

    Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam

  16. 77 FR 74891 - Order Granting Exemptions From Certain Rules of Regulation SHO Related to Hurricane Sandy

    Science.gov (United States)

    2012-12-18

    ... Client Update on Superstorm Sandy--Current and Ongoing Operations as Markets Re-Open; Physical.../downloads/legal/imp_notices/2012/dtcc/z0033.pdf ; ``DTCC Client Update on Superstorm Sandy--Physical...://www.dtcc.com/downloads/legal/imp_notices/2012/dtcc/z0035.pdf ; ``DTCC Client Update on Superstorm...

  17. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This

  18. Radiation synthesis of super absorbent PAAm/PAAc-Na hydrogels to enhance sandy soil water retention

    International Nuclear Information System (INIS)

    Abd El-Mohdy, H.L.; Hegazy, E.A.; Farag, S.A.; Abd El-Rasoul, Sh.M.; Ragab, A.M.; Tantawy, E.A.

    2009-01-01

    Preparation of super absorbent hydrogels obtained by radiation induced cross linking of polyacrylamide (PAAm) and poly sodium acrylate (PAAc-Na) was investigated for possible uses in agricultural fields . The swelling of the investigated hydrogels was mainly related to the type of their hydrophilic functional groups and/or the presence of polarized charges. The preparation conditions, such as irradiation dose and hydrogel blend compositions that influence the swelling of PAAm/PAAc-Na copolymers and alter their gel content and cross linking density were investigated. The higher the irradiation dose, the higher the gel content, and the lower the swelling ratio. The effect of some external parameters such as nutrient concentration, ph, and temperature on the swelling behaviour of prepared hydrogels was studied. studies were also made on the applications of such hydrogels to improve the physical and water retention properties of sandy soil for agricultural purposes. The experiments' design was complete randomized block with different doses of hydrogel as 5,10,15,20 and 25 kg/feddan (fed). Hydrogel granules added with peanut seeds during sowing , these plots received irrigation by sprinkle system two times daily during 6 days per week even near harvesting . Whereas control plants were irrigate two times daily during 7 days of the week. The parameters of productivity as morphological characters, NPK uptake and microbiological data were obtained during growth and harvesting . The effect of hydrogel doses on total bacterial counts (TBC) and nitrogen fixing bacteria (NFB) in the rhizosphere plant was studied after 45 days and at harvest

  19. Seasonal variations measured by TDR and GPR on an anthropogenic sandy soil and the implications for utility detection

    Science.gov (United States)

    Curioni, Giulio; Chapman, David N.; Metje, Nicole

    2017-06-01

    The electromagnetic (EM) soil properties are dynamic variables that can change considerably over time, and they fundamentally affect the performance of Ground Penetrating Radar (GPR). However, long-term field studies are remarkably rare and records of the EM soil properties and their seasonal variation are largely absent from the literature. This research explores the extent of the seasonal variation of the apparent permittivity (Ka) and bulk electrical conductivity (BEC) measured by Time Domain Reflectometry (TDR) and their impact on GPR results, with a particularly important application to utility detection. A bespoke TDR field monitoring station was specifically developed and installed in an anthropogenic sandy soil in the UK for 22 months. The relationship between the temporal variation of the EM soil properties and GPR performance has been qualitatively assessed, highlighting notably degradation of the GPR images during wet periods and a few days after significant rainfall events following dry periods. Significantly, it was shown that by assuming arbitrary average values (i.e. not extreme values) of Ka and BEC which do not often reflect the typical conditions of the soil, it can lead to significant inaccuracies in the estimation of the depth of buried targets, with errors potentially up to approximately 30% even over a depth of 0.50 m (where GPR is expected to be most accurate). It is therefore recommended to measure or assess the soil conditions during GPR surveys, and if this is not possible to use typical wet and dry Ka values reported in the literature for the soil expected at the site, to improve confidence in estimations of target depths.

  20. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  1. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  2. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  3. Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China

    Science.gov (United States)

    Cheng, Y.; Yang, W.; Zhan, H.

    2017-12-01

    Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.

  4. Effects of Tillage Methods on Some Soil Physical Properties, Growth and Yield of Water Melon in a Semi-Arid Region of Nigeria

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available An appropriate tillage method is necessary to create an optimum seed bed condition for optimum crop growth and yield. Two-year field experiment was conducted in 2013 and 2014 to investigate the effects of different tillage methods on the physical properties of sandy loam soil, growth and yield of water melon (Citrullus vulgaris in a semi-arid environment. The Tillage treatments were disc ploughing plus disc harrowing (DP+DH, double disc ploughing (DDP, double disc harrowing (DDH, disc ploughing (DP and disc harrowing (DH as minimum tillage (MT and zero tillage (ZT and direct drilling method (control. The watermelon seeds were Planted manually placing three (3 seeds per hole at an interval of 1.5m along the rows and 50cm between the rows at an average depth of 5cm. The treatments were laid in a randomized complete block design (RCBD with four replications. Results showed that disc ploughing + disc harrowing (DP+DH was found to be more appropriate and profitable tillage method in improving soil physical properties and growth and yield of water melon in a sandy loam soil. Watermelon yield, fruit weight (FW, fruit length (FL, fruit diameter (FD and leaf area index (LAI were significantly influenced (P=0.05, but influence of tillage treatments were not significant on the number of fruit per plant (NFPP. A numerical value of 31.0t/ha, 26.0, 5.4kg, 29.0cm, and 33.8cm were recorded for maximum crop yield, NFPP, FW, FD and FL respectively in DP+DH-treated plots. For zero tillage (ZT treatment, maximum of crop yield and NFPP were 26.5t/ha and 20.0 respectively. Thus for enhanced growth and yield of watermelon, DP/DH would be more preferable. The orthodox method of zero tillage is out rightly discouraged

  5. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  6. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    Science.gov (United States)

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  7. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  8. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  9. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    Science.gov (United States)

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  10. Suitability of soils of the university of Nigeria, Nsukka for the ...

    African Journals Online (AJOL)

    The Nkpologu series of valley bottom, plain and gentle slopes (0-6%) are suitable due to favorable topography, moderately heavy soil textures (sandy clay loam to sandy loam at the topsoil, and sandy clay at the subsoil), and relative soil fertility (with average topsoil % base sat. on the basis of ECEC of 45.08% and O.M. ...

  11. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  12. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  13. The ecology of sandy beaches in Transkei

    African Journals Online (AJOL)

    Data from an ecological survey of three sandy beaches in. Transkei and from Gulu beach on the eastern Cape coast,. South Africa, are presented. Physical parameters such as beach profile, sand particle size, Eh and carbonate content, as well as abundance, composition, biomass and distribution of the macrofauna and ...

  14. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    The effects of bare, two legumes and four grasses cover treatments on the structural stability of a sandy clay loam Ultisol were studied within a two year period. The experiment was of a randomised complete block design with seven treatments. The legume treatments were Centrosema pubescens (Ce) and Pueraria ...

  15. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    with cement injection interval 5 cm and third model is soil with cement injection interval 10 cm. The result is the shear strength (ϕ value) the soil is increase from 32.02° to 47.57°. The increase value of internal friction angle (ϕ) shows that an increase in shear strength of the cement improved soil. While, the value of cohesion (c) is zero indicating there is no cohesion in the soil. This is common for sand soil or sandy soil. The calculation of safety factor with GeoStructural Analysis obtained an increase of safety factor from 0.78 if the soil without cement injection to 1.07 and 1.17 if the soil is injected with cement at a distance of 10 cm and 5 cm.

  17. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  18. Plasticity and density-moisture-resistance relations of soils amended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mapfuno, E.; Chanasyk, D.S. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    1998-06-01

    The objective of this study was to investigate the impact of fly ash amendments on the plasticity, water retention and penetration resistance-density-moisture relationships of three soils of sandy loam, loam and clay loam textures in order to determine the potential compaction of these soil/fly ash mixtures if they were worked at different moisture ranges. For all three soils the addition of fly ash decreased the plasticity index, but slightly increased the Proctor maximum density. This implies that fly ash amendments reduce the range of moisture within which soils are most susceptible to compaction. However, for the sandy loam and loam textured soils amended with fly ash, cultivation must be avoided at moisture contents close to field capacity since maximum densification occurs at these moisture contents. In all three soils the addition of fly ash increased water retention, especially in the sandy loam. Fly ash amendments increased penetration resistance of the clay loam, but increased penetration resistance of the sandy loam.

  19. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  20. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  1. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  2. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    International Nuclear Information System (INIS)

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-01-01

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH) 3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn 2+ and Fe 2+ under suboxic condition and very close to the FeS/Fe 2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  3. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  4. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    Science.gov (United States)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  5. Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime

    Energy Technology Data Exchange (ETDEWEB)

    Behak Katz, L.; Musso Laespiga, M.

    2016-07-01

    Rice husk ash (RHA) is a by-product of rice milling. Its use as soil stabilizer is a way to replace the final disposal with environmental benefit. However, RHA is not cementitious itself but when mixed with lime forms cements which improve the soil properties. A research of performance of a silty sandy soil modified with RHA and lime as wearing course layer of low-volume roads was conducted through two full-scale test sections with different pavements built in Artigas, northern Uruguay. The alkaline reactivity of RHA is low because the husk burning is not controlled. The soil-RHA-lime mix design was conducted according to the Thompson’s Method. The pavement test sections were monitored through deflection measures by Benkelman beam and observations of surface condition. The deflections decreased over time in both test sections due to the development of cementation of the study materials. After one year, the dust emission was reduced, the wet skid resistance of pavement surfaces improved and there was not rutting. The researched pavements have had a good performance under the existing traffic and environmental conditions, demonstrating that wearing course layer of silty sand modified with RHA and lime is an alternative to improve the condition of low-volume roads and to replace the final disposal of RHA, with environmental, social and economic benefits. (Author)

  6. Bringing life to soil physical processes

    Science.gov (United States)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  7. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  8. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  9. Reclamation status of a degraded pasture based on soil health indicators.

    OpenAIRE

    SANTOS, C. A. dos; KRAWULSKI, C. C.; BINI, D.; GOULART FILHO, T.; KNOB, A.; MEDINA, C. C.; ANDRADE FILHO, G.; NOGUEIRA, M. A.

    2015-01-01

    Pasture degradation is a concern, especially in susceptible sandy soils for which strategies to recover them must be developed. Microbiological and biochemical soil health indicators are useful in the guindace of soil management practices and sustainable soil use. We assessed the success of threePanicum maximum Jacq. cultivars in the reclamation of a pasture in a sandy Typic Acrudox in the northwest of the state of Paraná, Brazil, based on soil health indicators. On a formerly degraded p...

  10. Soil physics and agriculture

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  11. IMPACT OF A USED STABILISER ON THE CALIFORNIA BEARING RATIO OF THE CLAYEY-SANDY SILT

    Directory of Open Access Journals (Sweden)

    Katarzyna Kamińska

    2017-01-01

    Full Text Available The paper aimed at the determination of the California Bearing Ratio of a stabilised and unstabilised fine-grained mineral soil. A clayey-sandy silt with the addition of 3, 6 and 10% of road stabilisers Solidex and Solidex A was used for the tests. The tests were carried out in the press Tritech 50 at the loading of 22 and 44 N. The stabilised samples were subjected to 7-days treatment, whereas unstabilised 4-days treatment. Stabilization with the applied road binders brought positive effects, there occurred a significant improvement in the mechanical properties of the clayey-sandy silt. The better binder, which significantly increased the value of the CBR ratio, was Solidex A. The use of hydraulic binders is of a great importance in road building, because their addition improves the mechanical properties of weaker mineral soils.

  12. [Effects of desertification on C and N storages in grassland ecosystem on Horqin sandy land].

    Science.gov (United States)

    Zhao, Ha-lin; Li, Yu-qiang; Zhou, Rui-lian

    2007-11-01

    Sandy grassland is widespread in northern China, where desertification is very common because of overgrazing and estrepement. However, little is known about the effects of desertification on grassland C and N storages in this region. A field survey was conducted on Horqin sandy grassland, and desertification gradients were established to evaluate the effects of desertification on C and N storages in soil, plant, and litter. The results showed that desertification had deep effects on the contents and storages of grassland C and N. The C and N contents and storages in the grassland decreased significantly with increasing desertification degree. Comparing with those in un-desertified grassland, the C and N contents in lightly, moderately, heavily, and severely desertified grasslands decreased by 56.06% and 48.72%, 78.43% and 74.36%, 88.95% and 84.62%, and 91.64% and 84.62% in 0-100 cm soil layer, and by 8.61% and 6.43%, 0.05% and 25.71%, 2.58% and 27.14%, and 8. 61% and 27. 86% in plant components, respectively. Relevantly, the C and N storages decreased by 50.95% and 43.38%, 75.19% and 71.04%, 86.76% and 81.48%, and 91.17% and 83.17% in plant underground components in 0-100 cm soil layer, and by 25.08% and 27.62%, 30.90% and 46.55%, 73.84% and 80.62%, and 90.89% and 87.31% in plant aboveground components, respectively. In 2000, the total area of desertified grassland in Horqin sandy land was 30152. 7 km2, and the C and N loss via desertification reached up to 107.53 and 9.97 Mt, respectively. Correlation analysis indicated that the decrease of soil C and N contents was mainly come from the decreased soil fine particles caused by wind erosion in the process of desertification, and the degradation of soil texture- and nutrient status led finally to the rapid decrease of C and N storages in plant biomass and litter.

  13. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...... was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils....... Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA...

  14. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  15. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen

    2012-01-01

    -term mean. The experiment was initiated in a 4-yr-old grass-clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm......Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long...... depth using ceramic suction cups. Because of considerable variation in measured nitrate concentrations, the 32 installed suction cups per treatment were insufficient to reveal differences between treatments. However, weighted nitrate leaching estimations for G, CG and CGC showed estimated mean nitrate N...

  16. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    Nigeria is located in the tropical zone, with a vast area having savanna vegetation. This is a region that is itself diverse, necessitating a classification into derived savanna, southern Guinea savanna and northern Guinea savanna. These classifications reflect environmental characteristics such as length of growing period, which for instance is 151-180 days for the northern Guinea savanna, 181-210 days for the southern Guinea savanna and 211-270 days for the derived savanna/coastal savanna. The major soils found in the various agro-ecological zones have coarse-textured surface soil, and are low in organic matter and chemical fertility. Although, yields can be improved by addition of inorganic and organic fertilizer, this can only be sustained and assured with high soil physical qualities. Soil physical qualities can be sustained at a high level with conservation tillage and soil conservation measures. Tillage is physical manipulation of the soil. Thus, the most profound effect of tillage is in relation to soil physical properties. For socio-economic and cultural reasons, manual tillage is still widely practiced in Africa as farming is largely at subsistence level. However, there are now a number of commercial farms especially for cash crop production in many parts of Africa. Many of these are located in locations which were hitherto reserved as forest and a need for sustainable production in pertinent to maintain ecological balance. Soils with coarse texture are not often sensitive to some physical parameters while some physical parameters are more relevant in a given study than others. Sustainable crop production researches in the tropics have focused on the role of planted fallows and their spatial arrangement (e.g., as in alley cropping) for many decades. Application of soil physics in the area of food production and environmental management still lags behind other sub-disciplines of soil science, particularly soil fertility in the tropics. A great challenge is

  17. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  18. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

    Science.gov (United States)

    Fa, Ke-Yu; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Liu, Zhen; She, Wei-Wei

    2016-02-15

    It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (Psoil CO2 flux demonstrated remarkable negative correlation with soil air pressure (Psoil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  20. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  1. Soil Fertility Gradient in the Restinga Ecosystem

    Science.gov (United States)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  2. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    Science.gov (United States)

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil

  3. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    Science.gov (United States)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    physical and chemical erosion in this region. The main types of clay are: hematite, kaolin, bohemite (the most abundant) gibbsite and calcite. Textures range from sandy-silty to clayey. Sand and clay fractions seem more abundant than silt ones. Soil pHs are generally in the basic range with infrequent acid soils. OM and total Nitrogen levels are not low, especially OM in the dry forest and N in the latifoliated forest. Available K contents are low in mountain forests and high in dry forests. Available P contents are generally low to very low. The topsoil layers (0-20 cm) of different types of wet and dry tropical forests and agroecosystems were assessed in terms of several physical factors related to erosion. These factors were: particle size, aggregate structural instability index (Is), and soil physical degradation index, erodibility index and erosionability index. This study reports also fertility loss, OM and heavy metal data obtained in the topsoil samples from both natural ecosystems and agroecosystems. Soil fertility also needs to be assessed since has been severely compromised by changes in the physical and chemical properties of the soil induced by the felling and burning of trees to make way for crops. Acknowledgements: Projects CTM2005-02165/TECNO (MEC) & CTM2008-04827/TECNO (MceI). Program EIADES S-0505/AMB/0296 (CAM) and Project "Promoción de la calidad educativa y el desarrollo local en la provincia de Pedernales, R. Dominicana" (CAM & Centro Cultural Poveda of Sto. Domingo, Dominican Republic).

  4. Peculiarities of pulse crops mineral feeding on sod-podzolic sandy soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Sedukova, G.V.; Demidovich, S.A.

    2010-01-01

    In the conditions of the Republic of Belarus there was analyzed the influence of mineral fertilizers of leguminius crops (blue lupine (Lupinus angustifolius) of Gelena variety and field pea (Pisum arvense) of Alex variety) on yielding capacity, grain and green mass quality, and parameters transit of 137Cs and 90Sr radionuclides into leguminous products. In course of the experiment there were analyzed six variants of mineral fertilizer application P30K30; P30K90; P30K120; P60K60; P60K90; and P60K120. Variant without any fertilizers was as control. Double superphosphate (46% of P2O5) and potash chloride (60% of K2O) were applied as mineral fertilizers. Research results showed that application of phosphate-potassium fertilizers on sod-podzolic sandy soils moderately supplied with phosphate and potassium made it possible to increase pea and lupine yield. The highest efficiency of application of phosphate-potassium fertilizers was in the ratio of 1 (ðá2ð×5) : 2 (ðÜ2ð×) provided. Fertilizer system did not render substantial influence on indexes of nutritive value of green mass of pea and lupine. There was marked a tendency of increasing of phosphorous in lupine grain after its application in dose of P60. Mineral fertilizer application made it possible to lower 137Cs transit from soil into lupine green mass in 2 times and seeds ÔÇô in 1,5 times. Application of potassium fertilizer in dose of 120 kg/ha proved to be the most efficient for the lowering of 137Cs accumulation in products of the analyzed crops

  5. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  6. Microseisms from Superstorm Sandy

    Science.gov (United States)

    Sufri, Oner; Koper, Keith D.; Burlacu, Relu; de Foy, Benjamin

    2014-09-01

    We analyzed and visualized the microseisms generated by Superstorm Sandy as recorded by the Earthscope Transportable Array (TA) during late October through early November of 2012. We applied continuous, frequency-dependent polarization analysis to the data and were able to track the course of Sandy as it approached the Florida coastline and, later, the northeastern coast of the U.S. The energy level of Sandy was roughly comparable to the background microseism level generated by wave-wave interactions in the North Atlantic and North Pacific oceans. The maximum microseismic power and degree of polarization were observed across the TA when Sandy sharply changed its direction to the west-northwest (specifically, towards Long Island, New York) on October 29. The westward turn also briefly changed the dominant microseism period from 5 s to 8 s. We identified three other microseismic source regions during the 18 day observation period. In particular, peak-splitting in the double frequency band and the orientation of the 5 s and 8 s polarization vectors revealed two contemporaneous microseism sources, one in the North Atlantic and one in the Northeast Pacific, for the dates of November 3-4. Predictions of microseismic excitation based on ocean wave models showed consistency with the observed microseismic energy generated by Sandy and other storms.

  7. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  8. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    Quinoa (Chenopodium quinoa Willd.) is believed to be tolerant to abiotic stress including salinity, drought and poor soil quality. To investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (cv. Titicaca) was grown...... in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation....... This lead to higher interception of photosynthetic active radiation and higher seed yield on sandy clay loam (3.3 Mg ha−1) and sandy loam (3.0 Mg ha−1) than on sand (2.3 Mg ha−1). The soil with higher clay content had also the highest transpiration, crop evapotranspiration and yield due to the higher uptake...

  9. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  10. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  11. Soil physics with Python transport in the soil-plant-atmosphere system

    CERN Document Server

    Bittelli, Marco; Tomei, Fausto

    2015-01-01

    This volume presents numerical methods to solve soil physics problems using computers. It starts with the theory and then shows how to use Python code to solve the problems. Most soil physics books focus on deriving rather than solving the differential equations for mass and energy transport in the soil-plant-atmosphere continuum. The focus of this book is on solutions. Agricultural and biological scientists usually have a good working knowledge of algebra and calculus, but not of differential equations. Here numerical procedures are used to solve differential equations.

  12. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  13. Impact of Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content in a Brazilian Cerrado Arenosol

    Directory of Open Access Journals (Sweden)

    Alicia B. Speratti

    2017-07-01

    Full Text Available Arenosols in the Brazilian Cerrado are increasingly being used for agricultural production, particularly maize. These sandy soils are characterized by low soil organic matter, low available nutrients, and poor water-holding capacity. For this reason, adding biochar as a soil amendment could lead to improved water and nutrient retention. A greenhouse experiment was carried out using twelve biochars derived from four feedstocks (cotton husks, swine manure, eucalyptus sawmill residue, sugarcane filtercake pyrolized at 400, 500 and 600 °C and applied at 5% w/w. The biochars’ effect on maize biomass was examined, along with their contribution to soil physical properties including water retention, electrical conductivity (EC, and grain size distribution. After six weeks, maize plants in soils with eucalyptus and particularly filtercake biochar had higher biomass compared to those in soils with cotton and swine manure biochars. The latter’s low biomass was likely related to excessive salinity. In general, our biochars showed potential for increasing θ in sandy soils compared to the soil alone. Filtercake and eucalyptus biochars may improve soil aeration and water infiltration, while applying cotton and swine manure biochars at levels <5% to avoid high salinity could contribute to improved soil water retention in Cerrado Arenosols.

  14. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  15. Effect of oil pollution on function of sandy soils in protected deserts and investigation of their improvement guidelines (case study: Kalmand area, Iran).

    Science.gov (United States)

    Saberian, Mohammad; Khabiri, Mohammad Mehdi

    2018-02-01

    Soil pollution is one of the most dangerous sorts of environmental pollutions because of waste materials, fossil fuels, etc. Unfortunately in developing countries, there are very few arrangements to prevent soil pollution due to the fossil fuels and to improve polluted soil. In this research, influences of gas oil on properties of Kalmand protected area's sandy soil near Yazd, Iran, were studied. It was found that gas oil constituted 5.25% of soil weight in the refueling station in the region. Therefore, cleaning and strengthening of the soil by adding cement rather than expensive and complicated methods were the most important goals of this research. First, the influence of gas oil on soil properties was studied, and to improve the soil, different percentages of ordinary portland cement were added to the polluted sand to study the improved soil properties using laboratory tests. It was found that unconfined compressive strength, cohesion, and angle of internal friction of sample with 16% cement and 8% gas oil after 28 days of curing were higher than those of the specimen of 6% cement and 14% gas oil, at 4.6, 5.4, and 1.3 times, respectively. Moreover, based on falling head tests it was observed that permeability of the stabilized specimens decreased substantially. From SEM tests, fewer voids were observed in the stabilized samples, which led to less pollutant penetration into the soil. According to EDX, although dangerous elements in the contaminated specimen made up 3.99% of the specimen total weight, addition of cement introduced considerable amounts of elements that are vital for pozzolanic reactions. Therefore, it can be concluded that addition of cement to the gas oil-polluted soil not only can improve geotechnical properties of the soil and reduce its permeability, but also is very efficient for environmental issues.

  16. Soils in an agricultural landscape of Jokioinen, south-western Finland

    Directory of Open Access Journals (Sweden)

    M. YLI-HALLA

    2008-12-01

    Full Text Available Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO, and the World Reference Base for Soil Resources system (WRB. The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy, Podzols - Regosols - Cambisols - Histosols (FAO-Unesco, and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB.;

  17. Biochar Effects on Soil Aggregate Properties Under No-Till Maize

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Naveed, Muhammad; Heckrath, Goswin Johann

    2014-01-01

    of biochar particles had higher TS and SRE probably because of bonding effects. Based on the improved soil aggregate properties, we suggest that biochar can be effective for increasing and sustaining overall soil quality, for example, related to minimizing the soil erosion potential.......Soil aggregates are useful indicators of soil structure and stability, and the impact on physical and mechanical aggregate properties is critical for the sustainable use of organic amendments in agricultural soil. In this work, we evaluated the short-term soil quality effects of applying biochar (0......–10 kg m−2), in combination with swine manure (2.1 and 4.2 kg m−2), to a no-till maize (Zea mays L.) cropping system on a sandy loam soil in Denmark. Topsoil (0–20 cm) aggregates were analyzed for clay dispersibility, aggregate stability, tensile strength (TS), and specific rupture energy (SRE) using end...

  18. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    Science.gov (United States)

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loamsoils are revealed to be responsible for the higher adsorption of Diuron when compared with Terbuthylazine, Clomazone and MCPA. Desorption of the herbicides was highly inhibited in the soils treated with mucilage; only Terbuthylazine showed a slight desorption in the case of loam and clay loam-soils. This study leads to the conclusion that mucilage from Chia seeds used as soil conditioner can reduce the mobility of herbicides tested in agricultural soils with different physico-chemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  20. Behaviour of normal reinforced concrete columns exposed to different soils

    Directory of Open Access Journals (Sweden)

    Rasheed Laith

    2018-01-01

    Full Text Available Concrete resistance to sulfate attack is one of the most important characteristics for maintaining the durability of concrete. In this study, the effect of the attack of sulfate salts on normal reinforced concrete column was investigated by burying these columns in two types of soils (sandy and clayey in two pits at a depth of 3 m in one of the agricultural areas in the holy city of Karbala, one containing sandy soil (SO3 = 10.609% and the other containing clayey soil with (SO3 = 2.61%. The tests were used (pure axial compression test of reinforced concrete columns, compressive strength test, and splitting tensile strength test, absorption, voids ratio and finally density. It`s found that the strength of RC columns decreasing by (12.51% for age (240 days, for columns buried in clayey soil, where the strength increased by (11.71% for the same period, for columns buried in sandy soils, with respect to the reference column.

  1. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    Science.gov (United States)

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  2. Incorporated Woodchips as a Novel Intervention to Support Plant Growth through Increased Water Holding Capacity and Nutrient Retention in Sandy Degraded Soils

    Science.gov (United States)

    Menzies, E.; Schneider, R.; Walter, T.

    2017-12-01

    According to the World Wildlife Federation's most recent Plow Print report 53 million acres of temperate, water limited, grasslands across the Great Plains have been converted to agriculture since 2009. This conversion very often begins the process of soil degradation which can lead to desertification and the necessity to convert more land to agriculture. The most common solution to this problem is improved crop efficiency to reduce conversion of grasslands to agriculture while still producing enough food for us all. We suggest that while that may be the beginning of the solution, degraded soils need to be rehabilitated and brought back into production to adequately provide food crops for the increasing population of the globe. Incorporated woodchips can be used to improve the soils' water holding capacity and nutrient (N and P) retention. In a previous study we observed an increase in the gravimetric water content and a decrease in soluble N and P losses when fertilizers were applied in liquid form in soil columns with incorporated woodchips (see attached figure). In this study we examine the availability of the retained water and nutrients to grasses to determine the extent to which this intervention might be used to reestablish plant growth in degraded sandy soils. We also begin examining the quantity of woodchips necessary to retain sufficient water and nutrients to sustain the growth of grasses over the course of a growing season. A laboratory soil column study is currently underway to examine these questions; the results of this study will be presented at the Fall Meeting.

  3. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  4. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  5. Reclamation status of a degraded pasture based on soil health indicators

    Directory of Open Access Journals (Sweden)

    Cristiane Alcantara dos Santos

    2015-06-01

    Full Text Available Pasture degradation is a concern, especially in susceptible sandy soils for which strategies to recover them must be developed. Microbiological and biochemical soil health indicators are useful in the guindace of soil management practices and sustainable soil use. We assessed the success of threePanicum maximum Jacq. cultivars in the reclamation of a pasture in a sandy Typic Acrudox in the northwest of the state of Paraná, Brazil, based on soil health indicators. On a formerly degraded pasture withUrochloa brizantha (Hochst. ex A. Rich. R.D. Webster, a trial with threeP. maximum (cv. Massai, Tanzânia, or Mombaça was conducted. Lime and phosphate were applied at set-up, and mineral N and K as topdressing. A remnant of degraded pasture adjacent to the trial was used as control. Twenty-three chemical, physical, microbiological and biochemical attributes were assessed for the 0-10 cm topsoil. The procedures for reclamation improved most of the indicators of soil health in relation to the degraded pasture, such as soil P, mineral N, microbial biomass C, ammonification rate, dehydrogenase activity and acid phosphatase. CO2 evolution decreased, whereas microbial biomass C increased in the pasture under reclamation, resulting in a lower metabolic quotient (qCO2 that points to a decrease in metabolic stress of the microbial community. The reclamation of the pasture withP. maximum, especially cv. Mombaça, were evidenced by improvements in the microbiological and biochemical soil health indicators, showing a recovery of processes related to C, N and P cycling in the soil.

  6. Physical properties of organic soils. Chapter 5.

    Science.gov (United States)

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  7. Evaluation of soil conservation technologies from the perspective of selected physical soil properties and infiltration capacity of the soil

    Directory of Open Access Journals (Sweden)

    Miroslav Dumbrovský

    2011-01-01

    Full Text Available This paper evaluates different technologies of soil cultivation (conventional and minimization in terms of physical properties and water regime of soils, where infiltration of surface water is a major component of subsurface water. Soil physical properties (the current humidity, reduced bulk density, porosity, water retention capacity of soil, pore distribution and soil aeration is determined from soil samples taken from the organic horizon according to standard methodology. To observe the infiltration characteristics of surface layers of topsoil, the drench method (double ring infiltrometers was used. For the evaluation of field measurements of infiltration, empirical and physically derived equations by Kostiakov and Philip and the three-parameter Philip-type equation were used. The Philip three-parameter equation provides physical based parameters near the theoretical values, a good estimation of saturated hydraulic conductivity Ks and sorptivity C1. The parameter S of Philip’s equation describes the real value of the sorptivity of the soil. Experimental research work on the experimental plots H. Meziříčko proceeded in the years 2005–2008.

  8. EFFECTS OF MIXED ORGANIC AND INORGANIC FERTILIZERS APPLICATION ON SOIL PROPERTIES AND THE GROWTH OF KENAF (HIBISCUS CANNABINUS L.) CULTIVATED ON BRIS SOILS

    OpenAIRE

    Mohd Hadi Akbar Basri; Arifin Abdu; Shamshuddin Jusop; Osumanu Haruna Ahmed; Hazandy Abdul-Hamid; Mohd-Ashadie Kusno; Baharom Zainal; Abdul Latib Senin; Nasima Junejo

    2013-01-01

    The demand for kenaf in the world increases rapidly by the years. Cultivation of the crop in Malaysia is a challenging task, especially when kenaf is grown on sandy soils with low fertility, such as the BRIS Soils (Beach Ridges Interspersed with Swales). A pot study was conducted in a glasshouse at Universiti Putra Malaysia to evaluate the potential of inorganic and organic fertilizers or their combination for growing kenaf on very sandy BRIS Soils, using variety V36. There were altogether si...

  9. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K s ) by more than two orders of magnitude to 7.6 x 10- 8 cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K s , vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover

  10. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  11. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens

    NARCIS (Netherlands)

    Shin, Keumchul; Diepen, van G.; Blok, W.; Bruggen, van A.H.C.

    2017-01-01

    The microbial inoculant ‘Effective Microorganisms’ (EM) has been used to promote soil fertility and plant growth in agriculture. We tested effects of commercial EM products on suppression of soil-borne diseases, microbial activity and bacterial composition in organically managed sandy soils. EM was

  12. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  13. Invited presentations. College on soil physics 2003

    International Nuclear Information System (INIS)

    Gabriels, D.M.; Ghirardi, G.; Nielsen, D.R.; Pla Sentis, I.; Skidmore, E.L.

    2004-01-01

    The present book is a partial compilation of contributions from selected former participants of the College on Soil Physics invited to make presentations related to their achievements as a result of attending the College. It also serves as a testimony of the existing links between soil physicists throughout the world strengthened by the support and programs of the International Centre for Theoretical Physics originally envisioned by Abdus Salam to foster the growth of advanced studies and physics research in developing countries

  14. Invited presentations. College on soil physics 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gabriels, D M [Univ. Ghent (Belgium); Ghirardi, G [Univ. Trieste (Italy); Nielsen, D R [Univ. California (United States); Pla Sentis, I [Univ. Lleida (Spain); Skidmore, E L [Kansas State Univ. (United States)

    2004-05-15

    The present book is a partial compilation of contributions from selected former participants of the College on Soil Physics invited to make presentations related to their achievements as a result of attending the College. It also serves as a testimony of the existing links between soil physicists throughout the world strengthened by the support and programs of the International Centre for Theoretical Physics originally envisioned by Abdus Salam to foster the growth of advanced studies and physics research in developing countries.

  15. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  16. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Moore, J.; Shaw, G.

    2008-01-01

    Understanding the processes that determine the solid-liquid partitioning (K d value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K d values for 75 Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K d values were generally in the range 50-500 L kg -1 , with mean soil K d increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in 75 Se K d value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on 75 Se K d value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled 75 Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment

  17. Use of radioactive 32P technique to study phosphate rock dissolution in acid soils

    International Nuclear Information System (INIS)

    Mahisarakul, J.; Mullins, G.L.; Chien, S.H.

    2002-01-01

    A laboratory experiment was conducted to evaluate the dissolution of six sources of phosphate rock in two acid soils (Ultisols): a sandy soil and a red clay soil. Labile P was determined using the radioactive 32 P technique for Pi extractable P and resin extractable P. Incubations were conducted for 0, 1, 2, 3, 4 and 5 weeks for 32 P exchangeable technique, 0 and 5 weeks for Pi technique and 5 weeks for resin technique. Rates of PR were 0 and 400 mgP/ha. The results showed that labile P in the sandy soil decreased from 0-1 weeks for all the PRs except Hahotoe PR and Hazara PR's. Between 1 and 5 weeks labile P remained relatively constant. The ranking of labile P from PRs was: North Carolina = Kouribga > Matam > Hahotoe = Hazara> Patos de Minas. In the red soil, labile P from all PRs appeared to be relatively unchanged during the 0-5 week incubation. Pi extractable P in sandy soil showed no significant differences due to incubation time. In the red clay soil, there was a significant decrease in Pi-P extracted from soil mixtures with PRs after 5 weeks as compared to 0 weeks. Results of the Resin-extractable P in both sandy and red soils were in agreement with labile P as measured by 32 P exchange technique. (author)

  18. Leaching of 14 C-endosulfan insecticide in soils from Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Tornisielo, V.L.; Costa, M.A.; Furlan, G.R.; Pinho, R.S.

    1995-01-01

    Leaching of 14 C-endosulfan insecticide was studied in soil columns for three soils of Sao Paulo State with different physical-chemical properties. A water flux of 0.41 ml/min., was established, simulating a pluviometric precipitation of 200 mm in 48 h. For all soils, an average of 78% of the total applied was retained in the first centimeters of the soil profile. As expected, the soil with the lowest soil organic matter and clay contents (sandy soil), was the soil with the largest amount of the insecticide leached. The higher the organic matter and the organic matter content of a soil, the higher its sorption and consequently there is less available in soil solution to be leached. In all soils, however, the amount of endosulfan found in the leachate was low, being 0.17% the maximum radioactivity measured. (author). 5 refs, 3 tabs

  19. CHANGE OF CHOSEN SOIL PHYSICAL PROPERTIES OF CHERNOZEM AFTER SEVEN YEARS OF NO-TILL SOIL CULTIVATION

    Directory of Open Access Journals (Sweden)

    Katarna Hrckov

    2014-09-01

    Full Text Available Soil physical properties were investigated in two types of growing systems - integrated no-till system and conventional system with ploughing, in 1999 2005 on chernozem in maize growing region. Bulk density decreased and total porosity increased during 7 years in both growing systems. In integrated system the improvement of soil physical properties could be explained by remaining of plant residues on soil surface. In conventional system the plant residues were incorporated into soil by ploughing. This led to the higher proportion of organic matter in soil. Soil cultivated conventionally had significantly higher value of reduced bulk density, significantly lower porosity and significantly higher values of soil moisture compared to soil in integrated no-till system. Maximum capillary water capacity was not significantly influenced by soil cultivation. Values of investigated soil physical properties in both systems were not markedly different from the typical values of cultivated chernozem.

  20. Biochar amendment of fluvio-glacial temperate sandy subsoil: Effects on maize water uptake, growth and physiology

    DEFF Research Database (Denmark)

    Ahmed, Fauziatu; Arthur, Emmanuel; Plauborg, Finn

    2018-01-01

    Coarse sandy soils have poor water retention capacity, which may constrain crop growth during drought. We investigated the effect of biochar amendment to subsoil on crop physiological processes and maize yield, comparing irrigated and drought conditions. A two-year greenhouse experiment was condu......Coarse sandy soils have poor water retention capacity, which may constrain crop growth during drought. We investigated the effect of biochar amendment to subsoil on crop physiological processes and maize yield, comparing irrigated and drought conditions. A two-year greenhouse experiment...... was conducted with one-time application of straw biochar at concentrations of 0%, 1%, 2% and 3% (B0, B1, B2 and B3). Maize was planted twice in the same large pots one week and again 12 months after biochar application. Plants were fully irrigated until flowering; thereafter, half of them were subjected...... to drought. Our results indicate B2 and B3 increased soil water content at field capacity. Leaf water potential, stomatal conductance, photosynthesis and transpiration were maintained in B2 and B3 during the drying cycle in year one and in all biochar levels in year two. In the first year, B3 induced...

  1. Iron forms in some egyptian soils

    International Nuclear Information System (INIS)

    EL Kholi, A.F.; Massoud, M.A.; EL-Naggar, H.A.; Gadallah, A.

    1990-01-01

    The present study is an attempt to find out the available forms of iron (Fe 2+ and Fe 3+ ) in five egyptian soils samples, representing alluvial, calcareous and sandy soils. Concerning the iron content of soil either Fe 2+ or Fe 3+ , the tested soil types were relatively arranged in the order alluvial> calcareous> sandy soil. In spite of the considerable variations in the soil content of iron cations, the Fe 2+ /Fe 3+ ratio was almost kept constant around 0.83. The uniformity of the ferrous : ferric ratio in the different tested soil types indicates their similarity in their redox-potential, pH and their environmental conditions, particularly, the aeration and partial O 2 - pressure degree. Fe 2+ /Fe 3+ being less than unity suggests that the Fe 2+ Fe 3+ reaction tends towards the forward direction, i.e., to the Fe 3+ formation. As a result of the pot experiment, significant correlations have been found between the laboratory determined soil Fe 2+ and both of the plant Fe-uptake and the plant dry matter weight

  2. Wind erosion on Deliblato (the largest European continental sandy terrain) studied using 210Pbex and 137Cs measurements

    International Nuclear Information System (INIS)

    Krmar, M.; Hansman, J.; Todorovic, N.; Mihailovic, A.; Vucinic-Vasic, M.; Savic, R.

    2015-01-01

    The objective of this paper is to estimate the difference in wind erosion between two extreme situations: sandy soil permanently covered by grass and the nearby frequently ploughed area highly susceptible to wind erosion. The spatial pattern of soil erosion rate was investigated using 137 Cs and 210 Pb ex tracing technique. The spatial pattern of erosion rate obtained within the studied area reveal influence of topography as well as direction of prevailing winds on mobilization and transport of the soil particles. (author)

  3. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, Liesje; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  4. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Lin, Q.; Mendelssohn, I.A.; Henry, C.B. Jr.; Roberts, P.O.; Walsh, M.M.; Overton, E.B.; Portier, R.J.

    1999-01-01

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m -2 . Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  5. Bio fertilization of soybean in sandy soils of egypt using N-15 tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S; Galal, Y G.M.; Elghandour, I [Soil and Water Dept, Atomic Energy Authority, P.O.Box 13756 (Egypt)

    1995-10-01

    The effect of inoculation of soybeans with B. Japonicum and A. brasilense either solely or in mixture, and N fertilizer levels had been studied in pot experiment Nodulation of soybean grown in sandy soil was enhanced by inoculation. The highest values of nodules number and fresh weight were recorded at rate of 20 Kg N ha-1, and decreased with increasing N rate up to 40 kg N ha-1. In contrast, the dry weight of the above ground parts, as well as the N uptake was increased with increasing N fertilizer level. Similar effect was observed for inoculation as compared with the un inoculated treatment. Despite the nodulating and nonnodulating soybeans has almost the same dry weight, the nodulating isoline accumulated more N than the non-nodulating. Percentages of nitrogen derived from air (%Ndfa) was depressed with increasing N rates from 10 to 40 kg N ha-1 either estimated by isotope dilution (I D) or N difference method (D M). Dual inoculation resulted in high percent of N 2-fixed (42.5%) at rate of 10 kg N ha-1. Correlation between I D and D M methods was found to be dependent on inoculation treatments. However, nitrogen utilized by nodulating soybean (FUE%) was enhanced as a function of inoculation with B. Japonicum. 2 figs., 3 tabs.

  6. bio fertilization of soybean in sandy soils of egypt using N-15 tracer technique

    International Nuclear Information System (INIS)

    Soliman, S.; Galal, Y.G.M.; Elghandour, I.

    1995-01-01

    The effect of inoculation of soybeans with B. Japonicum and A. brasilense either solely or in mixture, and N fertilizer levels had been studied in pot experiment Nodulation of soybean grown in sandy soil was enhanced by inoculation. The highest values of nodules number and fresh weight were recorded at rate of 20 Kg N ha-1, and decreased with increasing N rate up to 40 kg N ha-1. In contrast, the dry weight of the above ground parts, as well as the N uptake was increased with increasing N fertilizer level. Similar effect was observed for inoculation as compared with the un inoculated treatment. Despite the nodulating and nonnodulating soybeans has almost the same dry weight, the nodulating isoline accumulated more N than the non-nodulating. Percentages of nitrogen derived from air (%Ndfa) was depressed with increasing N rates from 10 to 40 kg N ha-1 either estimated by isotope dilution (I D) or N difference method (D M). Dual inoculation resulted in high percent of N 2-fixed (42.5%) at rate of 10 kg N ha-1. Correlation between I D and D M methods was found to be dependent on inoculation treatments. However, nitrogen utilized by nodulating soybean (FUE%) was enhanced as a function of inoculation with B. Japonicum. 2 figs., 3 tabs

  7. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    had three layers: the upper layer (Clay texture, the middle layer (clay loam and the bottom layer (sandy clay loam. After beds preparation, basil (Ocimum Basilicum was planted in them. Due to the lack of an active wastewater treatment plant in the region, raw and treated wastewaters were transported from Kermanshah, the nearest city to Hamedan. Also, municipal compost was prepared from Kermanshah Compost Company.At the end of cultivation period, the soil samples (from 0-15 cm were collected and the amount of physical (hydraulic conductivity, bulk and particle density and porosityand chemical (nitrogen, phosphorus and potassium properties were measured. Results and Discussion: The results showed that the water quality has a significant effect on all parameters and the amount of compost has significant effect on all parameters except bulk density. But, the amount of all parameters (except hydraulic conductivity was not influenced by interaction between water quality and compost levels. In all treatments, the range of hydraulic conductivity, bulk density, particle density and total porosity were varied between 23.82 to 35.61 mmh-1, 1.41 to 1.43 grcm-3, 2.51 to 2.57 grcm-3 and 42.88 to 45.19 %, respectively. Also the range of nitrogen, phosphorus, and potassium were varied between 0.06 to0.08 %, 14.64 to232.28mgkg-1,and 393.22 to519.84mgkg-1,respectively.Overall, the results indicated that using compost and wastewater increased hydraulic conductivity, porosity, nitrogen, phosphorus, and potassium of the soil in comparison to the control. Whereasbulk and particle density of soil decresed by using compost and wastewater (as a mixed material. Conclusion: In this study, we investigated the effect of wastewater and compost on some of soil physical properties (hydraulic conductivity, bulk density, particle density and total porosity and also some of chemical properties of soil nitrogen, phosphorus and potassium.The results showed that the use of wastewater and compost on soil

  8. IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA

    Directory of Open Access Journals (Sweden)

    JJ Siang

    2002-01-01

    Full Text Available Hill's code is one of text encoding technique. In this research, Hill's code is extended to image encoding. The image used is BMP 24 bit format. 2x2 and 3x3 matrices is used as a key. The results show that Hill's code is suitable for image whose RGB values vary highly. On the contrary, it is not suitable for less varied RGB images since its original pattern is still persisted in encrypted image. Hill's code for image encoding has also disadvantage in the case that the key matrix is not unique. However, for daily application, with good key matrix, Hill's code can be applied to encode image since it's process only deals with simple matrix operation so it become fast. Abstract in Bahasa Indonesia : Sandi Hill merupakan salah satu teknik penyandian teks. Dalam penelitian ini, pemakaian sandi Hill diperluas dari teks ke citra bertipe BMP 24 bit. Matriks yang dipakai berordo 2x2 dan 3x3. Hasil percobaan menunjukkan bahwa sandi Hill cocok untuk enkripsi citra dengan variasi nilai RGB antar piksel berdekatan yang tinggi (seperti foto, tapi tidak cocok untuk citra dengan variasi nilai RGB yang rendah (seperti gambar kartun karena pola citra asli masih tampak dalam citra sandi. Sandi Hill juga memiliki kelemahan dalam hal tidak tunggalnya matriks kunci yang dapat dipakai. Akan tetapi untuk pemakaian biasa, dengan pemilihan matriks kunci yang baik, sandi Hill dapat dipakai untuk penyandian karena hanya melibatkan operasi matriks biasa sehingga prosesnya relatif cepat. Kata kunci: Sandi Hill, Citra, Relatif Prima.

  9. Spatial Variability of Physical Soil Quality Index of an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Sheikh M. Fazle Rabbi

    2014-01-01

    Full Text Available A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP map. Surface soil samples were collected using 10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS, and aggregate stability (measured as mean weight diameter, MWD were determined. The spatial structures of sand, clay, and KS were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”

  10. SOILS AND GEOENVIRONMENTS OF THE NATIONAL PARK OF VIRUÁ AND SURROUNDING, RORAIMA: INTEGRATED VISION OF THE LANDSCAPE AND ENVIRONMENTAL SERVICE

    Directory of Open Access Journals (Sweden)

    Bruno Araujo Furtado de Mendonça

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989287The Viruá National Park (PARNA Viruá occupies 227.011ha, in the region of the low ‘Branco’ river, in Roraima state. This area includes an extensive mosaic of complex seasonally flooded forested and non-forested environments. The present work had as general objective to characterize the pedology aspects and the geo-environmental units of the Park and surroundings, in an integrated vision of the landscape and, additionally, estimate the carbon stocks in the soils and geo-environments. We described and collected 29 soil profiles in the main vegetation types of Campinaranas and Forests of PARNA Viruá and surroundings. The main soil classes are: Espodossolo Humilúvico, Neossolo Quartzarênico, Neossolo Flúvico, Neossolo Litólicos, Latossolo Vermelho-Amarelo, Latossolo Vermelho, Cambissolo Háplico, Cambissolo Flúvico, Gleissolo Háplico and Plintossolo Háplico. The soils present spatial distribution marked by abrupt limits and close association with the vegetation type. We identified three pedo-environments: (1 sandy soils of the Campinaranas; (2 soils associated with the inselbergs and adjacencies; and (3 alluvial soils. We mapped and described 18 geoenvironmental units in PARNA Viruá National Park. The main geo-environments are: i Sandy plains and Paleodunes with grassy and arborous Campinarana on ‘Neossolos Quartzarênicos hidromórficos’ and ‘Espodossolos’; and Floodplains and; ii Terraces with Igapó Forest on sandy hydromorphic soils, occupying 24.6% and 20.1% of the studied area, respectively. In terms of total soil carbon stocks, the geo-environments of the sandy complexes of Campinaranas and associations stand out, with 9450.9 Gg C. The great extension and representativeness of the sandy areas of Campinaranas characterize PARNA Viruá PArk as an important conservation unit for protection Amazonian sandy soil systems. The areas under the domain of ‘Espodossolos’ possess the

  11. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-02

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  12. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    B. Felderer

    2013-03-01

    Full Text Available Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  13. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    Science.gov (United States)

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  15. Effect of Three Types of Exogenous Organic Carbon on Soil Organic Matter and Physical Properties of a Sandy Technosol

    Directory of Open Access Journals (Sweden)

    Paul Robin

    2018-04-01

    Full Text Available Technosols made by covering agricultural soils with coastal sediments need additional organic matter (OM to be suitable for agricultural use. Climate change will likely increase the frequency and intensity of droughts in several areas. The choice of the nature and quantity of OM to add depends on dose-response curves for soil quality. This study quantifies the influence of three contrasting organic materials (vermicompost (VF, green waste compost (GWC and dairy manure (DM on four soil properties: soil organic carbon, evaporation rate, bulk density and structural stability. Soil was sampled in April and May 2014 in an artificial crop field of the vegetable production basin of Mont Saint-Michel (France made with sediments from the bay of Mont Saint-Michel in 2013. Increasing the dose of OM increased soil organic carbon from 10 to 45 g C kg−1 dry soil and increased the porosity and the structural stability, thus decreasing compaction. Increasing the dose of OM also decreased the evaporation rate. VF and DM had similar effects, while those of GWC were weaker. Compared to DM, VF had greater biological stability. Therefore, high OM inputs along with soil decompaction can increase drought resistance by increasing rooting depth and water retention.

  16. Soil physical property estimation from soil strength and apparent electrical conductivity sensor data

    Science.gov (United States)

    Quantification of soil physical properties through soil sampling and laboratory analyses is time-, cost-, and labor-consuming, making it difficult to obtain the spatially-dense data required for precision agriculture. Proximal soil sensing is an attractive alternative, but many currently available s...

  17. Harvest traffic monitoring and soil physical response in a pine plantation

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald; John L. Torbert

    2000-01-01

    Mechanized forest harvest operations induce changes in soil physical properties, which have the potential to impact soil sustainability and forest productivity. The assessment of soil compaction and its spatial variability has been determined previously through the identification and tabulation of visual soil disturbance classes and soil physical changes associated...

  18. Movement of 14 C-trifluralin labelled herbicide premerlin 600 CE in several soils

    International Nuclear Information System (INIS)

    Storino, Moises.

    1993-12-01

    The mobility behavior of the herbicide premerlin 600 CE (trifluralin was studied by using two different methodologies, i.e., soil thin layer chromatography and soil leaching columns. In the study soil thin layer chromatography were used six different Brazilian oxysols, being two sandy soils and four clayer soils. In the soil leaching columns study were used one sandy and one clayey soil. The distribution of 14 C-premerlin in the different granulometric soil fractions was determined after carried out columns experiments. Under all conditions imposed by these experiment, the herbicide 14 C-premerlin shown to be immobile being located on the surface of the soils columns. No effects of pH, concentration, metabolites or soil type were observed. (author). 46 refs., 25 figs., 3 tabs

  19. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  20. Urease activity in different soils of Egypt.

    Science.gov (United States)

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  1. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  2. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    Science.gov (United States)

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  4. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  5. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  6. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2014-02-01

    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  7. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  8. Critical assessment of the available technologies for sanitation of contaminated soil and their limits of application

    International Nuclear Information System (INIS)

    Nussbaumer, M.; Glaeser, E.

    1993-01-01

    Sanitation of polluted land comprises safety measures and soil purification measures. Soil purification can take place either in situ, or on-site or off-site after digging up the contaminated soil. In-situ processes are soil deaeration, groundwater purification and biological methods. Soil deaeration is suited for volatile pollutants in the unsaturated zone of loose soils, while groundwater purification is commonly applied for water-soluble pollutants in the saturated zone of soils with a high k f value. On-site or off-site purification of contaminated soils can take place by thermal processes, by soil washing, by microorganisms, or by physical processes. Thermal processes have the widest range of applications; they are suited for most soils polluted with mostly organic pollutants, and the residual contamination is lowest. Soil washing is limited to sandy and noncohesive soils and for emulsifiable or elutable pollutants. Biological on-site and off-line methods are limited to biodegradable pollutants which are not in phase. Loosening agents may be added in order to overcome geotechnical limitations. Physical purification of soils is limited to specific applications e.g. removal of volatile hydrocarbons. (orig.) [de

  9. Long-term phytoavailability of soil-applied organo-borates

    International Nuclear Information System (INIS)

    Adriano, D.C.; Kaplan, D.I.; Burkman, W.G.; Mills, G.L.

    1988-01-01

    Sodium tetraphenylboron (NaTPB) is expected to be used in large quantities to separate radiocesium from high-level nuclear wastes. Greenhouse experiments were conducted to determine the long-term effects of NaTPB, diphenylboric acid (DPBA, a major degradation by-product of NaTPB) and boric acid (BA) on the extractability of soil B and plant B nutrition. Sorgrass (Sorghum vulgare sudanense Hitchc. Dub-L-Graze) was planted in sandy and loamy sandy soils in two separate 2-yr studies. Results indicate that initial differences between effects of the B sources on biomass, plant B concentration, plant B uptake and hot-water extractable B disappeared after the first harvest, while differences among these parameters due to soil type and application rate remained throughout the experiments. Extractable soil and plant B concentrations tended to decrease more gradually in the loamy sand than in the sandy soil. Plant toxicity from organic sources was noted only during the first harvest while BA had no adverse effects. Both NaTPB and DPBA reduced biomass, the former more than the latter. Initially, plant B concentrations were higher in NaTPB than BA treatments. The cumulative percentage of soil-applied B removal after 2 yr by sorgrass remained fairly similar, 20.0 +/- 1.7% (1SD) among B sources and application rates. This suggests that a large fraction of B applied to the soil was not taken up by the plant, presumably due to soil fixation. Biphenyl, another major breakdown product of NaTPB, had no effect on sorgrass growth, tissue B concentration, and soil B concentration

  10. Degradation kinetics of ptaquiloside in soil and soil solution.

    Science.gov (United States)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  11. A Technical Design Approach to Soil Moisture Content Measurement

    African Journals Online (AJOL)

    Soil moisture is an important type of data in many fields; ranging from agriculture to environmental monitoring. Three soil samples were collected at definite proportions to represent the three basic soil types (sandy, loamy and clay soils). The moisture contents of these soil samples were analyzed using the thermogravimetric ...

  12. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  13. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  14. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  15. Effects of the soil pore network architecture on the soil's physical functionalities

    Science.gov (United States)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured

  16. The structure of the radiation balance on a sandy surface: case the Błędów desert, Silesian Upland

    Directory of Open Access Journals (Sweden)

    Caputa Zbigniew

    2016-06-01

    Full Text Available Comprehensive environmental studies taking under consideration the structure of the radiation balance during the vegetation growing seasons of 2001 and 2002 were carried out on the open sandy surface of the area called the Błędów ‘desert’ located on Silesian Upland. The research in each site covered the composition of plant species, their age and height, the condition of the substratum, the composition and structure of the soil and the meteorological conditions with elements of the radiation balance. The article presents some part of the research on meteorological elements and their impact on ecosystem. Special attention was devoted to radiation conditions on the open sandy surface in the context of the formation of BSC (biological soil crust. Having presumed that the values obtained on the grassy surface constituted 100%, the values of radiation reflection measured on the open sandy surface were 185% higher and the values of net longwave radiation were 105% higher in day time and 137% in night time. Values of net radiation of about 63% lower were observed on the sandy surface during a typical sunny summer day. It was found that a strong irradiation of the sandy surface (26 MJ·m–2d–1 creates extremely difficult conditions for the initiation of the process of ecosystem formation (including BSC or plant succession. The elements of the radiation balance, net radiation, albedo and temperature of the open sandy surface were represented quantitatively. The test surfaces were classified based on the value of the albedo: group I with low albedo values, up to 0.15 (spore-bearing plants on a dark surface, including BSC; group II with mean values of the albedo from 0.16 to 0.24 (spore-bearing plants and seed on a dark grey surface; and group III with high albedo values, above 0.25 (plants growing on bare or loose sands.

  17. Growth, Yield and WUE of Drip and Sprinkler Irrigated Okra Grown On Sandy Soil Under Semi-Arid Conditions in Southeast Ghana

    DEFF Research Database (Denmark)

    Plauborg, Finn

    Vegetable production systems at the Keta sand spit, Southeast Ghana, are typically managed with excessive amounts of irrigation water and fertilizers on sandy soils with low inherent water and nutrient retention capacities. The shallow groundwater which is the primary irrigation water resource...... is prone to salinization from the Keta lagoon, the Atlantic Ocean and brackish water underneath (Kortatsi and Agyeku, 1999). To ensure the sustainability of vegetable production at the Keta spit, introduction of water saving irrigation systems and improved irrigation management schemes are important. Thus......, the main aim of our study was to explore the water sa ving potential of drip irrigation in order to save the shallow groundwater from over exploitation. A two season study (minor dry season, 2011 and major dry season, 2012) were carried out to determine the okra crop response to the following treatments: 1...

  18. Chemical and Physical Soil Restoration in Mining Areas

    Science.gov (United States)

    Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique

    2017-04-01

    The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.

  19. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    Science.gov (United States)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  20. Time-dependent transfer of 54Mn, 60Co, 85Sr and 137Cs from a sandy soil to soybean plants

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee

    2011-01-01

    Greenhouse experiments were performed to investigate the dependence of 54 Mn, 60 Co, 85 Sr and 137 Cs transfer from sandy soil to soybean plants on the growth stage when a radioactive deposition occurs. A solution containing 54 Mn, 60 Co, 85 Sr and 137 Cs was applied onto the soil surfaces in the lysimeters at six different times -2 d before sowing and 13, 40, 61, 82 and 96 d after sowing. Soil-to-plant transfer was quantified with a transfer factor (m 2 kg -1 -dry) specified for the deposition time. The transfer factor values of 54 Mn, 60 Co, 85 Sr and 137 Cs for the seeds were in the range of 1.5×10 -3 -1.0×10 -2 , 4.7×10 -4 -3.2×10 -3 , 5.7×10 -4 -1.0×10 -2 and 3.0×10 -5 -2.7×10 -4 , respectively, for different deposition times. The corresponding values for the leaves were 6.4×10 -3 -3.2×10 -2 , 4.3×10 -4 -2.0×10 -3 , 5.1×10 -3 -5.3×10 -2 and 9.2×10 -5 -1.9×10 -4 , respectively. The values for the seeds were on the whole highest following the middle-growth-stage deposition. After the pre-sowing deposition, the transfer factor values of 54 Mn, 60 Co and 137 Cs for the seeds decreased annually so those in the fourth year were 53%, 75% and 34% of those in the first year, respectively. The present results may be useful for predicting the radionuclide concentrations in soybean plants due to their root uptake following an acute soil-deposition during the vegetation period, and for validating a relevant model. (author)

  1. Soil physical criteria for evaluating irrigation suitability of Okija ...

    African Journals Online (AJOL)

    Suitability of upland soils of Anigbo Okija for irrigation was assessed using soil physical criteria of texture, depth, pore type, slope percent colour and soil structure for the purpose of estimating season farming and rainy season drought. Soils were classified using Soil Taxonomy and FAO/UNESCO legend. Mapping was ...

  2. Effect of biochar amendment on soil's retention capacity for estrogenic hormones from poultry manure treatment

    Institute of Scientific and Technical Information of China (English)

    Sukhjot MANN; Zhiming QI; Shiv O.PRASHER; Lanhai LI; Dongwei GUI; Qianjing JIANG

    2017-01-01

    Most animals,including humans,produce natural sex hormones such as estrogens:17β-estradiol (E2) and estrone (El).These compounds are able to disrupt the reproductive systems of living organisms at trace concentrations (ng.L-1).This experiment tests the hypothesis that 1% slow pyrolysis biochar-amended sandy soil could retain significant amount of estrogens (El,E2) from poultry manure in its second year of application.The experiment was conducted over 46 days and consisted of a series of lysimeters containing sandy soil with biocharamended topsoil.The application rate of poultry manure was kept at 2.47 kg.m-2.The biochar held a significant concentration of hormone during the first year of its application.However,in the following year (current study),there was no significant retention of hormones in the biochar-amended soil.During the first year after application,the biochar was fresh,so its pores were available for hydrophobic interactions and held significant concentration of hormones.As time passed there were several biotic and abiotic changes on the surface of the biochar so that after some physical fragmentation,pores on the surface were no longer available for hydrophobic interactions.The biochar started releasing dissolved organic carbon,which facilitated greater mobility of hormones from poultry manure down the soil profile.

  3. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  4. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  5. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  6. [Introduction of upland rice cultivars to eastern Keerqin sandy land and their biological characteristics].

    Science.gov (United States)

    Zeng, Dehui; Zhang, Chunxing; Wang, Guirong; Fan, Zhiping

    2004-10-01

    Developing water-saving rice cultivation is one important strategy for food security in China. This paper reported the experimental results of introducing six upland rice cultivars to eastern Keerqin sandy land. The field experiment results showed that under the condition of 60% water-saving, the yield of cultivars XH 95-13 and XH 95-13-6 was 10.2% and 5.5% higher than the control, respectively, while other four cultivars decreased by 6.7%-18.6%. Economically, all the cultivars except JP 121 had a higher income than the control, and the profitability of cultivars XH 95-13 and XH 95-13-6 reached 24.0% and 19.3%, respectively. The water productivity of all the six cultivars was over 0.566 kg x m(-3), increased by 59.89%-116.38%. Pot experiment showed that 12.1%-16.3% of soil moisture in 0-15 cm layer was beneficial to the growth of upland rice. In eastern Keerqin sandy land, effective tillers occurred before July 18. In brief, upland rice production could be extensively applicable in eastern Keerqin sandy land to gradually alternate the traditional lowland rice cultivation with continuous flooding, and save much underground water.

  7. Cooperation possibilities and priorities for research and education in Soil Physics

    International Nuclear Information System (INIS)

    Gabriels, D.; Ruiz, M E.

    2008-01-01

    Full text: Decision and agreements for cooperation in the field of Soil Physics, and between the Department of Management and Soil Care Ghent University (UGENT), Belgium; Agrophysics Research Group at the Agrarian University of Havana (UNAH) and the International Centre for Theoretical Physics 'Abdum Salam' in Trieste, Italy (ICTP) . This cooperation is manifested through various projects. UGent and UNAH are already cooperating through a project funded by the Inter-University Council of Flanders (VLIR), Belgium entitled 'Increased cognitive and techniques UNAH (Agrarian University of Havana) and CENHICA capabilities (Center hydrology and water Quality ) in view of a program of soil conservation and water Cuyaguateje River Basin area in Western Cuba'. The Department of Soil Management and Care of UGENT is associated with ICTP Centre and Professor Dr. Donald Gabriels (UGent ) is founder and co-director of the College of Soil Physics that had its beginnings in 1983 and is organized every two years in Trieste , Italy. He is also co - organizer of the ELAFIS (Latin American School of Soil Physics), which was organized by the UNAH in Havana, Cuba under the direction of Dr Maria Elena Ruiz as senior associate at ICTP. The Department of Management and Soil Care (UGENT) directs and coordinates the International Center Eremologia (ICE ) and Prof. Dr. Donald Gabriels was recently named as president of the UNESCO Chair in Eremologia . ICE organized and coordinated by the International Training Center UGENT and the Faculty of Applied, Free University of Brussels (UB) a Master's program in two years entitled 'Physical Land Resources' Science. The UNESCO Chair in Eremologia supports 'Desertification Research priorities' announced in the Declaration of Tunes in 2006. As desertification in arid and land degradation in general under different weather conditions provide for the deterioration of the physical and soil quality, cooperation between the three institutions: UGENT , UNAH

  8. Revamping of entisol soil physical characteristics with compost treatment

    Science.gov (United States)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  9. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  10. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone

    International Nuclear Information System (INIS)

    Doerr, H.; Muennich, K.O.

    1990-01-01

    Measurements of the 222 Rn activity concentration profile in the soil and the 222 Rn flux in West-Germany are presented. The spatial pattern of the 222 Rn flux depends more on soil type than on the 226 Ra activity of the soil material. The average 222 Rn flux from sandy soils is 1000-2000 dpm m -2 h -1 and 4000-6000 dpm m -2 h -1 froam loamy and clayey soils. Weekly 222 Rn flux measurements during a period of 1 year at a sandy site show no significant temporal variations. At a clayey site, the 222 Rn flux tends to be higher in summer than in winter. The permeability coefficient P Rn , obtained from simultaneous 222 Rn flux and concentration profile measurements in various soils, can be expressed as a function of the soil parameters total porosity ε 0 , soil moisture F, tortuosity k and the molecular diffusion coefficient D 0 of 222 Rn in air: P = D 0 ((ε 0 -F)/k-const.). The flux of any other gas into or out of the soil can thus be calculated from its measured concentration profile in the soil and from the 222 Rn permeability coefficient, replacing the molecular diffusion coefficient of 222 Rn by that of the specific gas under consideration. As an example, this method of flux determination is demonstrated for the soil CO 2 flux to the atmosphere and for the flux of atmospheric CH 4 into the soil. (author) 14 refs

  11. Soil strength and forest operations

    OpenAIRE

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed. The study is largely restricted to sandy and loamy soils because of their importance for Dutch forestry.

    Soil strength, defined as the resistance of soil structure against the impa...

  12. Effect of biosurfactant[0] on the sorption of phenanthrene onto original and H2O2-treated soils

    Institute of Scientific and Technical Information of China (English)

    PEI Xiaohong; ZHAN Xinhua; ZHOU Lixiang

    2009-01-01

    The objective of this study was to examine the effect of biosurfactant on sorption of phenanthrene (PHE) onto the original or H2O2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.

  13. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    Science.gov (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  14. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    International Nuclear Information System (INIS)

    Rigby, H.; Smith, S.R.

    2013-01-01

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH 4 Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  15. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  16. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leafs of Wheat Plant

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Abdel Fattah, A.T.; Eissa, H.S.; Abdel Sabour, M.F.

    2009-01-01

    Transfer factors (TFs) of long lived radionuclide such as 137 Cs and 90 Sr from three different Egyptian soils type to wheat plant have been studied by radiotracer experiments. Most typical Egyptian soils (sandy, sandy loam and clayey) from three different locations (Al -Oboor, Abu- Zaabal and Shebeen cities) were selected for the experiments carried out under outdoor conditions. The plant selected was wheat because the high consumption of wheat in Egypt. In the present study radioactive strontium and caesium uptake from different types of soil was investigated .These radionuclide showed a considerable difference in their distribution within the plant .The results showed that soil type influences the transfer factors. Sandy soil resulted in the highest transfer factor for both (Cs and Sr) from soil to wheat. TFs for leafs were higher than those for roots in case of 90 Sr (for all types of soil). However, TFs of ( 137 Cs) for roots were higher than those for leafs for all soils. Grains of the wheat showed the lowest transfer factor for the Cs and Sr (for all types of soil)

  17. Influence of Height Waterlogging on Soil Physical Properties of Potential and Actual Acid Sulphate Soils

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2014-06-01

    Full Text Available Water management is main factor that determines the successful of rice cultivation in acid sulphate soil. Soil waterlogging determines the direction and rate of chemical, geochemical and biological reaction in the soil, indirectly these reactions may influence to the changes of soil psycal properties during soil waterlogging process. The experiment was aimed to study the changes of two type of acid sulphate soils physical properties during rice straw decomposition processes. The research was conducted in the greenhouse consisting of the three treatment factors using the completely randomized design with three replications. The first factor was soil type: potential acid sulphate soil (PASS and actual acid sulphate soil (AASS. The second factor was height of water waterlogging: 0.5-1.0 cm (muddy water–level condition and 4.0 cm from above the soil surface (waterlogged. The third factor was organic matter type: rice straw (RS, purun tikus (Eleocharis dulcis (PT and mixed of RS and PT (MX. Soil physical properties such as aggregate stability, total soil porosity, soil permeability, soil particle density and bulk density were observed at the end of experiment (vegetative maximum stage. The results showed that acid sulphate soil type had large effect on soil physicl properties, soil waterlogging decreased aggregate stability, soil particle density and bulk density both of soil type.

  18. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  19. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste.

    Science.gov (United States)

    Cabrera, A; Cox, Lucia; Velarde, P; Koskinen, William C; Cornejo, Juan

    2007-06-13

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.

  20. [Effects of litter and root exclusion on soil microbial community composition and function of four plantations in subtropical sandy coastal plain area, China].

    Science.gov (United States)

    Sang, Chang Peng; Wan, Xiao Hua; Yu, Zai Peng; Wang, Min Huang; Lin, Yu; Huang, Zhi Qun

    2017-04-18

    We conducted detritus input and removal treatment (DIRT) to examine the effects of shifting above- and belowground carbon (C) inputs on soil microbial biomass, community composition and function in subtropical Pinus elliottii, Eucalyptus urophylla × Eucalyptus grandis, Acacia aulacocarpa and Casuarina equisetifolia coastal sandy plain forests, and the treatments included: root trenching, litter removal and control. Up to September 2015, one year after the experiment began, we collected the 0-10 cm soil samples from each plot. Phospholipid fatty acid (PLFA) analysis was used to characterize the microbial community composition, and micro-hole enzymatic detection technology was utilized to determine the activity of six kinds of soil enzymes. Results showed that changes in microbial biomass induced by the C input manipulations differed among tree species, and mainly affected by litter and root qualily. In E. urophylla × E. grandis stands, root trenching significantly decreased the contents of total PLFAs, Gram-positive bacteria, Gram-negative bacteria, fungi and actinomycetes by 31%, 30%, 32%, 36% and 26%, respectively. Litter removal reduced the contents of Gram-positive bacteria, fungi and actinomycetes by 24%, 27% and 24%, respectively. However, C input manipulations had no significant effect on soil microbial biomassunder other three plantations. According to the effect of C input manipulations on soil microbial community structure, litter and root exclusion decreased fungi abundance and increased actinomycetes abundance. Different treatments under different plantations resulted in various soil enzyme activities. Litter removal significantly decreased the activities of cellobiohydrolase, β-glucosidase, acid phosphatase and N-acetyl-β-d-glucosaminidase of P. elliottii, A. aulacocarpa and C. equisetifolia, root exclusion only decreased and increased the activities of β-glucosidase in P. elliottii and A. aulacocarpa forest soils, respectively. Litter removal also

  1. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  2. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.

    Science.gov (United States)

    Tang, Xia; Dong, Shunwen; Shi, Wenjin; Gao, Ni; Zuo, Lei; Xu, Heng

    2016-11-01

    This study focused on the bioremediation role of Pleurotus eryngii in different characteristics soils contaminated with nickel (Ni) and fluoranthene. The results of bioremediation experiments showed that fluoranthene had a positive effect on the growth of P. eryngii, whereas Ni exerted a negative influence. The concentration of fluoranthene significantly decreased in inoculated soil accounting for 86.39-91.95% of initial concentration in soils and 71.46-81.76% in non-inoculated soils, which showed that the dissipation of fluoranthene was enhanced by mushroom inoculating. The highest removal rates of fluoranthene in sandy loam, loamy clay, and sandy soils reached to 87.81, 86.39, and 91.95%, respectively, which demonstrated that P. eryngii was more suitable for the bioremediation of sandy soil contaminated with fluoranthene. In addition, the presence of Ni tended to decrease the dissipation of fluoranthene in inoculated soil. Higher ligninolytic enzymes activities were detected in inoculated soils, resulting in the enhanced dissipation of fluoranthene in inoculated soils. Furthermore, P. eryngii had the ability to uptake Ni (4.88-39.53 mg kg -1 ) in co-contamination soil. In conclusion, the inoculating of P. eryngii was effective in remediating of Ni-fluoranthene co-contaminated soils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    Science.gov (United States)

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Physical separations soil washing system cold test results

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J.P.

    1993-07-28

    This test summary describes the objectives, methodology, and results of a physical separations soil-washing system setup and shakedown test using uncontaminated soil. The test is being conducted in preparation for a treatability test to be conducted in the North Pond of the 300-FF-1 Operable Unit. It will be used to assess the feasibility of using a physical separations process to reduce the volume of contaminated soils in the 300-FF-1 Operable Unit. The test is described in DOE-RL (1993). The setup test was conducted at an uncontrolled area located approximately 3.2 km northwest of the 300-FF-1 Operable Unit. The material processed was free of contamination. The physical separation equipment to be used in the test was transferred to the US Department of Energy (DOE) by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory. On May 13, 1993, soil-washing equipment was moved to the cold test location. Design assistance and recommendation for operation was provided by the EPA.

  5. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  6. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    Science.gov (United States)

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study.

  7. Response of corn silage (Zea mays L. to zinc fertilization on a sandy soil under field and

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2017-04-01

    Full Text Available The purpose of the experiments was to evaluate zinc (Zn fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1 were tested. They were split at three different times during the growing season: (i 50% immediately after sowing, (ii 25% at 4–5 leaf stage and (iii 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a solution of Zn sulfate (ZnSO4·7H2O. Zn deficiency symptoms appeared at an earlier stage (4–5 leaf stage as white stripes between the midrib and the margin of leaves for a Zn rate below or equal to 5 mg kg−1. Severity of these symptoms manifested more in container than in field. For both experiments, Zn supply induced a significant increase in stem height and leaf area. Furthermore, in both experiments, control plants showed a notable delay in achieving anthesis, silking, pollination and kernels maturity. The maximum shoot dry weight at harvest was recorded with Zn supply of 5 mg kg−1 in field experiment and 10 mg kg−1 in containers experiment. The shoot dry weight was especially linked to kernels dry weight. This latter was mainly enhanced through two compounds: 1000 kernels dry weight and pollination rate. On the other hand, outdoor container results can be used to help predict field plant responses to Zn except for control treatment.

  8. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    DEFF Research Database (Denmark)

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.

    2006-01-01

    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...... content of silt. Experiments with unplanted soil and pots planted with barley were included. Soil samples were withdrawn during a period of 225 days and analysed for the content of OTA and ZON. The degradation of both toxins consisted of an initial fast degradation followed by a slower transformation step......, whereas the half-lives for OTA were about 0.2-1 day. The slowest degradation was measured in soil rich in clay. After 225 days, neither OTA nor ZON was detected in any of the soil types. Generally, the degradation of ZON and OTA was faster in planted soil than in unplanted soil, probably due to higher...

  9. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  10. Superstorm Sandy and the academic achievement of university students.

    Science.gov (United States)

    Doyle, Matthew D; Lockwood, Brian; Comiskey, John G

    2017-10-01

    Much of the literature on the consequences of natural disasters has focused on their physical and psychological ramifications. Few researchers have considered how the impacts of a natural disaster can influence academic achievement. This study analyses data collected from nearly 300 students at a mid-sized, private university in the northeast United States to determine if the effects of Cyclone Sandy in 2012 are associated with measures of academic achievement. The findings reveal that experiencing headaches after the event resulted in a higher likelihood of students suffering a loss of academic motivation. In addition, experiencing headaches and a loss of academic motivation were correlated with a lower grade point average (GPA) during the semester in which Sandy made landfall. However, the more direct effects of the superstorm, including displacement and a loss of power, did not have a significant bearing on academic achievement. Lastly, the paper examines the implications for higher education policy and future research. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  11. The behavior and bioactivity of imazaquin in soils

    International Nuclear Information System (INIS)

    McKinnon, E.J.

    1989-01-01

    Laboratory studies were conducted to determine the adsorption and relative mobility of 14 C-labelled imazaquin (2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imadazol-2-yl]-3-quinolinecarboxylic acid) and 14 C labelled metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) on Norfolk sand loan (Typic Paleudult), Rion sandy clay loam (Typic Hapludult), Cape Fear sandy clay loam (Typic Umbraquult) and Webster clay loam (Typic Hapluquoll). Imazaquin was more mobile than metolachlor on all four soils. Soils high in humic matter content retained between 45 and 48% of the applied imazaquin and 93 and 97% of the applied metolachlor. The relative order of mobility of imazaquin in the soils was Rion = Norfolk > Cape Fear = Webster. The order for metolachlor in the soils was Rion > Norfolk > Cape Fear > Webster. Adsorption of imazaquin and metolachlor was inversely related to their mobility in the soil columns. Adsorption of imazaquin increased as the suspension pH decreased

  12. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  13. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    Science.gov (United States)

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  14. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    Science.gov (United States)

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  15. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  16. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  17. BEYOND THE “LEAST LIMITING WATER RANGE”: RETHINKING SOIL PHYSICS RESEARCH IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Quirijn de Jong van Lier

    2015-08-01

    Full Text Available As opposed to objective definitions in soil physics, the subjective term “soil physical quality” is increasingly found in publications in the soil physics area. A supposed indicator of soil physical quality that has been the focus of attention, especially in the Brazilian literature, is the Least Limiting Water Range (RLL, translated in Portuguese as "Intervalo Hídrico Ótimo" or IHO. In this paper the four limiting water contents that define RLLare discussed in the light of objectively determinable soil physical properties, pointing to inconsistencies in the RLLdefinition and calculation. It also discusses the interpretation of RLL as an indicator of crop productivity or soil physical quality, showing its inability to consider common phenological and pedological boundary conditions. It is shown that so-called “critical densities” found by the RLL through a commonly applied calculation method are questionable. Considering the availability of robust models for agronomy, ecology, hydrology, meteorology and other related areas, the attractiveness of RLL as an indicator to Brazilian soil physicists is not related to its (never proven effectiveness, but rather to the simplicity with which it is dealt. Determining the respective limiting contents in a simplified manner, relegating the study or concern on the actual functioning of the system to a lower priority, goes against scientific construction and systemic understanding. This study suggests a realignment of the research in soil physics in Brazil with scientific precepts, towards mechanistic soil physics, to replace the currently predominant search for empirical correlations below the state of the art of soil physics.

  18. The Effect of Polymer-Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Ali Ateş

    2013-01-01

    Full Text Available Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4% and cement (10%, 20%, 30%, and 40% were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.

  19. A Comparative Study of the Persistence, Movement and Metabolism of Six Insecticides in Soils and Plants

    International Nuclear Information System (INIS)

    Fuhremann, T.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Two soil types and oat plants grown in these soils were incubated under identical environmental conditions. The insecticides used in order to increase the water solubility were 14 C-DDT, 14 C-lindane, 14 C-fonofos, 14 C-parathion, 14 C-phorate and 14 C-carbofuran. Total amounts of 14 C-residues recovered from insecticide-treated loam soils plus oats grown in these soils were similar with DDT and oarbofuran. They were also higher than those observed with the other insecticides. While most of the 14 C-DDT residues remained in the soils, most of the 14 C-carbofuran residues were recovered from oat leaves in the form of carbofuran and 3-hydroxycarbofuran. 14 C-residues of all insecticides were more persistent in loam than in sandy soil and sand-grown oats took up more 14 C-insecticide residues than loamgrown oats. The more water-soluble insecticides, 14 C-phorate and Ccarbofuran were more mobile and were metabolized to a greater extent than insecticides of lower water solubilities. Unextractable (bound) 14 C-residues in loam soil ranged from 2.8% to 29.1% of the applied doses of 14 C-DDT and 14 C-parathion, respectively. Bound 14 C-residues were lower in the sandy soil than in the loam soil, however, plant-bound 14 C-residues were higher in oats grown in the sandy soil than in loam grown oats. Insecticide metabolites recovered from soils and plants were identified and quantitated whenever possible. The oxygen analog metabolites of the organophosphorus insecticides were most abundant in the sandy soil and in oats grown therein. Data illustrate the importance of chemical structure, water solubility and soil type in predicting the comparative environmental behaviour of pesticides. (author)

  20. Utilisation of transparent synthetic soil surrogates in geotechnical physical models: A review

    Directory of Open Access Journals (Sweden)

    Abideen Adekunle Ganiyu

    2016-08-01

    Full Text Available Efforts to obtain non-intrusive measurement of deformations and spatial flow within soil mass prior to the advent of transparent soils have perceptible limitations. The transparent soil is a two-phase medium composed of both the synthetic aggregate and fluid components of identical refractive indices aiming at attaining transparency of the resulting soil. The transparency facilitates real life visualisation of soil continuum in physical models. When applied in conjunction with advanced photogrammetry and image processing techniques, transparent soils enable the quantification of the spatial deformation, displacement and multi-phase flow in physical model tests. Transparent synthetic soils have been successfully employed in geotechnical model tests as soil surrogates based on the testing results of their geotechnical properties which replicate those of natural soils. This paper presents a review on transparent synthetic soils and their numerous applications in geotechnical physical models. The properties of the aggregate materials are outlined and the features of the various transparent clays and sands available in the literature are described. The merits of transparent soil are highlighted and the need to amplify its application in geotechnical physical model researches is emphasised. This paper will serve as a concise compendium on the subject of transparent soils for future researchers in this field.

  1. nfluences of ammonium-nitrate, food waste compost and bacterial fertilizer on soluble soil nitrogen forms and on the growth of carrot (Daucus Carota L.

    Directory of Open Access Journals (Sweden)

    Andrea Balla Kovács

    2014-04-01

    Full Text Available This paper reports a greenhouse study to compare the effects of food waste compost, bacterial fertilizer and their combination with the effect of mineral fertilizer on yield of carrot and the available nutrient content of soils. The study was conducted on calcareous chernozem and acidic sandy soils and consisted of 8 treatments in a randomized complete block design with four replications. The NH4NO3 resulted in reduced growing of carrot plant in sandy soil, and the treatment effect of mineral fertilizer was not observed significantly in chernozem soil. Sandy soil showed higher response of growth of carrot to food waste compost fertilization than chernozem soil. Sole application of EM-1 bacterial fertilizer did not have marked effect on yield parameters and sizes of roots. When EM-1 bacterial fertilizer was applied together with ammonium-nitrate or with compost in chernozem soil, the weights of roots and the sizes of roots in some cases became higher compared to the values of appropriate treatments without inoculation. In sandy soil the diameter of roots slightly increased when EM-1 bacterial fertilizer was applied with ammonium-nitrate and with ammonium-nitrate+compost combination compared to appropriate treatment without inoculation. In chernozem soil the maximum weights and sizes of roots were achieved with the combined treatment of ammonium-nitrate+compost+EM-1 bacterial fertilizer and in sandy soil with compost treatment. Our results of soluble nitrogen content of soils are in good agreement with yield parameters of carrot. Results suggest that food waste compost could be a good substitute for mineral fertilizer application in carrot production mainly in sandy soil. EM-1 bacterial fertilizer did not cause marked effect on yield and yield parameters of carrot plant, but its combination with other fertilizers promises a little bit higher yield or plant available nutrient in the soil. These effects do not clear exactly, so further studies are

  2. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    Science.gov (United States)

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  3. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  4. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We...... believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths...... (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial...

  5. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  6. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  7. Sandy PMO Disaster Relief Appropriations Act of 2013 Financial Data

    Data.gov (United States)

    Department of Homeland Security — Sandy PMO: Disaster Relief Appropriations Act of 2013 (Sandy Supplemental Bill) Financial Data. This is the Sandy Supplemental Quarterly Financial Datasets that are...

  8. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  9. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    International Nuclear Information System (INIS)

    Rauret, G.; Real, J.

    1995-01-01

    The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)

  10. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).

  11. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  12. Correlation between landscape fragmentation and sandy desertification: a case study in Horqin Sandy Land, China.

    Science.gov (United States)

    Ge, Xiaodong; Dong, Kaikai; Luloff, A E; Wang, Luyao; Xiao, Jun; Wang, Shiying; Wang, Qian

    2016-01-01

    The exact roles of landscape fragmentation on sandy desertification are still not fully understood, especially with the impact of different land use types in spatial dimension. Taking patch size and shape into consideration, this paper selected the Ratio of Patch Size and the Fractal Dimension Index to establish a model that reveals the association between the area of bare sand land and the fragmentation of different land use types adjacent to bare sand land. Results indicated that (1) grass land and arable land contributed the most to landscape fragmentation processes in the regions adjacent to bare sand land during the period 1980 to 2010. Grass land occupied 54 % of the region adjacent to bare sand land in 1980. The Ratio of Patch Size of grass land decreased from 1980 to 2000 and increased after 2000. The Fractal Dimension Index of grass increased during the period 1980 to 1990 and decreased after 1990. Arable land expanded significantly during this period. The Ratio of Patch Size of arable land increased from 1980 to 1990 and decreased since 1990. The Fractal Dimension Index of arable land increased from 1990 to 2000 and decreased after 2000. (2) The Ratio of Patch Size and the Fractal Dimension Index were significantly related to the area of bare sand land. The role of landscape fragmentation was not linear to sandy desertification. There were both positive and negative effects of landscape fragmentation on sandy desertification. In 1980, the Ratio of Patch Size and the Fractal Dimension Index were negatively related to the area of bare sand land, showing that the landscape fragmentation and regularity of patches contributed to the expansion of sandy desertification. In 1990, 2000, and 2010, the Ratio of Patch Size and the Fractal Dimension Index were mostly positively related to the area of bare sand land, showing the landscape fragmentation and regularity of patches contributed to the reversion of sandy desertification in this phase. The absolute values of

  13. GERMINATION AND DEVELOPMENT OF BRACHIARIA SEEDLING IN TEXTURES OF SOIL AND SOWING DEPTH

    Directory of Open Access Journals (Sweden)

    J. H. Castaldo

    2016-09-01

    Full Text Available The agriculture expansion at Brazil is turning to lower clay index soils and consequently, less organic matter content and cation exchange capacity. To overcome those deficiencies, an intense organic matter addition in these soils may be a solution, and this solution is positive when using a crop-livestock integration with corn-pasture dual crop planted on winter. However, to establish this dual-crop system, there is a need to study the behavior of seeds and seedlings of Brachiaria ruziziensis sown in greater depths than normally recommended. Thus, this work aimed to determine the best depth of sowing B. ruziziensis in sandy and loamy soils of Umuarama region, studying the germination and early development of seedlings. The work was held in pots of 12 cm diameter x 12 cm deep, filled with 2 types of soil, a sandy and clay ones with 30 B. ruziziensis seeds sown each pot in five sowing depths: 0, 2, 4, 6 and 8 cm. After 16 days, the number of emerged seedlings was evaluated to set up the germination rate of each treatment, after that, the plants where leveled to 4 each pot, those were cultivated for another 45 days to evaluate the fresh and dried masses of plants and roots, the height of the plants and average length of roots. The sowing depth with higher percentage of germination estimated was 2.65 cm to sandy and 3.02 cm to clay soil. At seedlings development, there was a standard, with better development seedling at lower sowing depths on clay soil and better developments at higher sowing depths in sandy soil.

  14. Thallium dynamics in contrasting light sandy soils-Soil vulnerability assessment to anthropogenic contamination

    Czech Academy of Sciences Publication Activity Database

    Vaněk, A.; Chrastný, V.; Komárek, M.; Galušková, I.; Drahota, Petr; Grygar, Tomáš; Tejnecký, V.; Drábek, O.

    2010-01-01

    Roč. 173, 1/3 (2010), s. 717-723 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502 Keywords : thallium * soil * LMWOA * retention * mobility Subject RIV: DF - Soil Science Impact factor: 3.723, year: 2010

  15. Elimination of radionuclides and heavy metals from soils

    International Nuclear Information System (INIS)

    Navarcik, I.; Cipakova, A.; Palagyi, S.

    1994-01-01

    At present increased attention is devoted to occurrence of radionuclides and heavy metals in soils, that enter them, owing to a development of power supply, industry, agriculture, traffic etc. These pollutants can cumulate in soils and therefore it is necessary to know to what extent and under which conditions they are held by soil material, so their transfer into plants and so enter into foodchains and their penetration into underground waters could be stopped. Sorption and desorption processes are the basic ones that can determine migration range of radionuclides and heavy metals. Distribution coefficients (K D ) characterize division of pollutants between soil and soil solution. There is connection between K D and soil characteristics and therefore it is possible to use this quantity for observation of factors influencing sorption of pollutants in soils. In the first period of our work sorption and desorption of radionuclides (RN) and heavy metals (HM) in soils, their vertical migration and gradual extraction from soils were verified. In experiments samples of arable and forest soils of the Slovak Republic (black earth, brown soil and sandy soil) were used. Tessier sequential extraction method was used for determination of RN and HM physico-chemical forms. On the base of obtained experimental results we can claim: From the point of view of RN and HM receipt by root system of plants and their appropriate leaching into ground waters, fixed forms (unavailable) are prevailing in soils. Ratio of their unavailable forms are increasing with content of organic matter and clay minerals in soils. As to artificial RN ( 90 Sr, 137 Cs) ratio of firmly bound forms with soil compartments is higher for 137 Cs (black earth - about 95 % , sandy soil - 62 %). Higher measure of 90 Sr depth migration and higher ratio of its availability for plants follow from it. From studied HM, Cd is more mobile, because of its not firm linkage with soil compartments. Ratio of Cd easily available

  16. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage

    Institute of Scientific and Technical Information of China (English)

    Ayodele Ebenezer AJAYI; Rainer HORN

    2017-01-01

    Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.

  17. Characterization, desorption, and mining of phosphorus in noncalcareous sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.

    2004-01-01

    In areas with intensive livestock farming, soils have been enriched with phosphorus (P), following heavy applications of animal manure. These soils are a risk for nearby surface waters, as the leaching of P from these soils contributes to eutrophication of these surface waters. This study was set up

  18. The effect of autumn ridging and inter-row subsoiling on potato tuber yield and quality on a sandy soil in Denmark

    DEFF Research Database (Denmark)

    Henriksen, Jens Christian Martin Bugge; Mølgaard, Jens Peter; Rasmussen, Jesper

    2007-01-01

    Autumn ridging is a modified version of the ridge tillage system. Instead of setting up ridges during the growing season, they are established in autumn and left for the winter. Previous studies have documented positive effects of autumn ridging on potato yield and we hypothesized that subsoiling...... could enhance these effects. To determine the effect of autumn ridging and inter-row subsoiling on potato yield and quality a field experiment was conducted on sandy soil from 2001 to 2003. Autumn ridging resulted in an average total and marketable tuber yield of 25.6 and 9.2 t ha1, which...... was not significantly different from the average total and marketable yield of 25.6 and 8.9 t ha1 with ploughing. However, autumn ridging significantly reduced the incidence of black scurf from 2.5% to 2.2%. Inter-row subsoiling in the growing season significantly increased marketable potato tuber yield from 8.4 to 9...

  19. The influence of interstitial water velocity on the migration of 85Sr and 137Cs in an aerated sandy soil layer

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1983-01-01

    The influence of interstitial water velocity on the migration of Sr-85 and Cs-137 in an aerated sandy soil layer was studied at different feed water velocities and feed times. As well known, it was found that Sr-85 migrated with interstitial water, but Cs-137 little migrated with interstitial water. The apparent migration velocity for each fraction corresponding to three concentrations (2 x 10 -2 , 1 x 10 -2 and 5 x 10 -3 μCi/g) of Sr-85 was further investigated. At constant interstitial water velocity (1cm/ min), different values were given for the apparent migration velocity of three fractions, and the fraction with thin concentration migrated faster. At constant feeding time (100hr), there was a linear relationship between apparent migration velocity of three fractions and interstitial water velocity, in the range of slow water velocity ( -2 and 5 x 10 -3 μCi/g) and interstitial water velocity, in the range of fast water velocity (> 1cm/min). (author)

  20. Comparison of chromium and nickel uptake of plants grown in different soils

    Energy Technology Data Exchange (ETDEWEB)

    Vago, I. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary); Gyoeri, Z. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary); Loch, J. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary)

    1996-03-01

    The chromium and nickel uptake of ryegrass has been examined in pot experiments in extremely different soils, poor sandy and fertile black chernozem. The effect of calcium carbonate doses and nitrogen supply on heavy metal uptake of the plant has been studied for chromium and nickel loadings (0-100 mg/kg Cr{sup 3+} or Ni{sup 2+}) applied as inorganic salts. The ability to uptake Cr{sup 3+} and Ni{sup 2+} differs significantly and is highly affected by the characteristics of soils, and depends on the metal investigated. The heavy metal uptake of the plant differs significantly in acid, colloid deficient sandy soils; while artificial chromium contamination did not modify the dry-matter production in the pots in either soil, a large quantity of nickel reduced the yields significantly. Nitrogen application did not change significantly the uptake of heavy metals. Lime application reduced the Ni{sup 2+} uptake of plants considerably, especially in sandy soil. In case of a calcium carbonate addition the dry-matter production of the plant was not affected by nickel. In chernozem soil the effect of lime application - i.e., the reduction of nickel uptake - was of a lesser degree. The significantly lesser Cr{sup 3+} uptake was further limited by a calcium carbonate application for both soils studied. A graphic presentation of these effects is given. (orig.). With 3 figs., 3 tabs.

  1. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  2. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  3. Kirkham’s legacy and contemporary challenges in soil physics research

    Science.gov (United States)

    This paper, written by the winners of the Don and Betty Kirkham Award in Soil Physics, is dedicated to the legacy of Don Kirkham. It describes eight longstanding or emerging research areas in soil physics that contain key unsolved problems. All are field-oriented with applications to a number of imp...

  4. Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. In representative soils of central Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester-Bradley, R; De Oliverira, L A; De Podesta Filho, J A; John, T V

    1980-12-01

    Leguminosae do not predominate in the Brazilian Amazon rain forest, although they are among the five best represented families. Plant roots from various soils were examined for the presence of nodules, acetylene-reducing activity and N/sub 2/-fixing Azospirillum spp. Abundant nodulation was found in black earth (''terra preta dos indios'') and in one case on sandy soil under campinarana vegetation along a tributary of the upper Rio Negro. In sandy latosol some nodules occurred in secondary forest and fewer in primary forest. Legumes in disturbed clayey or sandy latosol showed more frequent nodulation. Primary forest on alluvial (''varzea'') soil, and in Bahia coastal rain forest on sandy latosol and Erythrina glauca used for shading cacao plantations were abundantly nodulated. Acetylene reduction assays showed no, or very little, nitrogenase activity of roots from primary or secondary forest on clayey latosol near Manaus. Nodulated roots from secondary forest on sandy latosol showed acetylene-reducing activity. High rates of acetylene reduction were observed in nodulated roots of primary forest on alluvial ''varzea'' soil. Root samples showed ethylene absorption in controls without acetylene which might interfere with the results of acetylene reduction tests. The incidence of Azospirillum was also higher in black earth than the other soils examined, and in soils with higher pH. The hypothesis that Azospirillum is associated with Trema micantha roots was refuted. Roots and soils collected under cultivated grasses showed a higher incidence of Azospirillum when fertilized with phosphorus and lime. Results indicate that nitrogen fixation did occur in association with roots in some soils, but not with roots of primary or secondary forest on clayey latosol in the vicinity of Manaus, which is the most common soil in Central Amazonia. The possible reasons for this are discussed.

  5. Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities

    Directory of Open Access Journals (Sweden)

    Antonia Cecília Zacagnini Amaral

    Full Text Available ABSTRACT Sandy beaches constitute a key ecosystem and provide socioeconomic goods and services, thereby playing an important role in the maintenance of human populations and in biodiversity conservation. Despite the ecological and social importance of these ecosytems, Brazilian sandy beaches are significantly impacted by human interference, chemical and organic pollution and tourism, as well as global climate change. These factors drive the need to better understand the environmental change and its consequences for biota. To promote the implementation of integrated studies to detect the effects of regional and global environmental change on beaches and on other benthic habitats of the Brazilian coast, Brazilian marine researchers have established The Coastal Benthic Habitats Monitoring Network (ReBentos. In order to provide input for sample planning by ReBentos, we have conducted an intensive review of the studies conducted on Brazilian beaches and summarized the current knowledge about this environment. In this paper, we present the results of this review and describe the physical, biological and socioeconomics features of Brazilian beaches. We have used these results, our personal experience and worldwide literature to identify research projects that should be prioritized in the assessment of regional and global change on Brazilian sandy beaches. We trust that this paper will provide insights for future studies and represent a significant step towards the conservation of Brazilian beaches and their biodiversity.

  6. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2017-06-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  7. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  8. Study on the water retention effect of compound soil of arsenic sandstone and sand under the condition of typical crop planting

    Science.gov (United States)

    Liu, S. Y.; Wang, N.; Xie, J. C.; Jiang, R. G.; Zhao, M. L.

    2017-08-01

    Arsenic sandstone is the main reason of soil erosion in the Mu Us Sandy Land, simultaneously was proved to be a kind of good water retaining agent. In order to provide references for the utilization of water and soil resources and the prevention and control of desertification and soil erosion of the southern margin of Mu Us Sandy Land, on the basis of earlier studies the farmland experiments of compound soil with three ratios of 1:1, 1:2 and 1:5 between arsenic sandstone and sand under maize planting patterns were designed, whose experimental process was divided into six stages according to the crop growth status. The results showed that the soil moisture content was highest in the layer of 0˜40cm where the compound soil mainly concentrated in, which was related to the potent water retention of arsenic sandstone and strong water permeability of undisturbed sandy soil. The variation coefficients in the soil of 1:1 and 1:2 were more stable and evenly distributed. The compound soil can effectively improve the soil water retention capacity, and prolong the storage time of soil water. Among them, water loss rate in soil of 1:1 and 1:2 were lower. The coefficient of variation also confirms that the water distributions of the two types of soil were more uniform and stable. Besides illustrating the effects of the soil amelioration measures on spatial and temporal variation of soil moisture content and the improvement of soil water regime, the study provides some references for the development and utilization of agriculture in Mu Us Sandy Land.

  9. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  10. Uncertainty in soil physical data at river basin scale – a review

    Directory of Open Access Journals (Sweden)

    P. van der Keur

    2006-01-01

    Full Text Available For hydrological modelling studies at the river basin scale, decision makers need guidance in assessing the implications of uncertain data used by modellers as an input to modelling tools. Simulated solute transport through the unsaturated zone is associated with uncertainty due to spatial variability of soil hydraulic properties and derived hydraulic model parameters. In general for modelling studies at the river basin scale spatially available data at various scales must be aggregated to an appropriate scale. Estimating soil properties at unsampled points by means of geostatistical techniques require reliable information on the spatial structure of soil data. In this paper this information is assessed by reviewing current developments in the field of soil physical data uncertainty and adopting a classification system. Then spatial variability and structure is inspected by reviewing experimental work on determining spatial length scales for soil physical (and soil chemical data. Available literature on spatial length scales for soil physical- and chemical properties is reviewed and their use in facilitating change of spatial support discussed. Uncertainty associated to the derivation of hydraulic properties from soil physical properties in this context is also discussed.

  11. THE EFFECT OF SALINITY-SODICITY AND GLYPHOSATE FORMULATIONS – AVANS PREMIUM 360 SL ON PHOSPHOMONOESTERASE ACTIVITIES IN SANDY LOAM

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-01-01

    Full Text Available The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD, II – amount of NaCl (0, 3% and 6%, III – day of experiment (1, 7, 14, 28 and 56. On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.

  12. The spatial variability in studies of soil physical condition

    International Nuclear Information System (INIS)

    Madero M, Edgar; Herrera G Oscar A; Castano C, Alirio

    2000-01-01

    The testing procedure was carried out in 1996-2 at the experimental station of the Universidad Nacional de Colombia in Palmira using vertical tillage (by chiseling) in coherent vertisol (typic Haplustert isohiperthermic fine loamy 1%). eight physical properties in depth of 15-25 cm were studied. the sampling methodology for soil physical properties and corn yield accounted the regionalized variable, and the analysis of results was carried out accounting a map of each variable. the results proved that geostatystics is versatile and give accuracy results. it showed in most of the area that vertical tillage was more favorable than conventional tillage to improve coherence (more soil penetrability without degradation) in seedbed zone. it was not found influence over corn yield. soil organic matter; clay and silt had influence over the soil response to mechanical strengths

  13. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  14. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  15. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  16. Landscape Visual Quality and Meiofauna Biodiversity on Sandy Beaches

    Science.gov (United States)

    Felix, Gabriela; Marenzi, Rosemeri C.; Polette, Marcos; Netto, Sérgio A.

    2016-10-01

    Sandy beaches are central economic assets, attracting more recreational users than other coastal ecosystems. However, urbanization and landscape modification can compromise both the functional integrity and the attractiveness of beach ecosystems. Our study aimed at investigating the relationship between sandy beach artificialization and the landscape perception by the users, and between sandy beach visual attractiveness and biodiversity. We conducted visual and biodiversity assessments of urbanized and semiurbanized sandy beaches in Brazil and Uruguay. We specifically examined meiofauna as an indicator of biodiversity. We hypothesized that urbanization of sandy beaches results in a higher number of landscape detractors that negatively affect user evaluation, and that lower-rated beach units support lower levels of biodiversity. We found that urbanized beach units were rated lower than semiurbanized units, indicating that visual quality was sensitive to human interventions. Our expectations regarding the relationship between landscape perception and biodiversity were only partially met; only few structural and functional descriptors of meiofauna assemblages differed among classes of visual quality. However, lower-rated beach units exhibited signs of lower environmental quality, indicated by higher oligochaete densities and significant differences in meiofauna structure. We conclude that managing sandy beaches needs to advance beyond assessment of aesthetic parameters to also include the structure and function of beach ecosystems. Use of such supporting tools for managing sandy beaches is particularly important in view of sea level rise and increasing coastal development.

  17. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  18. Transfer of 137Cs to plants from two types of soil

    International Nuclear Information System (INIS)

    Skowronska-Smolak, M.; Pietrzak-Flis, S.

    1994-01-01

    Transfer of 137 Cs from soil to plants was studied in two types of soil: sandy soil (I) and sandy loam soil (II). The study was performed on an experimental field for of 1991 (soil I) and for 1992-93 (soil II). Transfer of 137 Cs from soil I was examined for spring barley, spring wheat, red beet, lettuce and kale; transfer from soil II was examined for winter barley, grass, alfalfa, potato tubers, red beet, radish, bean, spinach and lettuce. 137 Cs and potassium in plants and soil were determined using gamma spectrometry. The soils were characterized by particle size distribution and such chemical properties as pH H 2 O , pH KCl , content of organic matter, Ca, Mg and exchangeable K. The concentration of 137 Cs in the soil I was over five times lower than in soil II, being equal to 8.84±0.32 Bq kg -1 and 50.38±2.21 Bq kg -1 , respectively. The soils differ in their chemical characteristics and texture. Soil I contains 6.47±0.21 g kg -1 potassium, 0.147±0.015 g kg -1 exchangeable potassium, 2.21±0.32 g kg -1 Ca, 0.055±0.013 g kg -1 Mg and 1.733% organic matter. Soil II contains 10.87±0.22 g kg -1 potassium, 0.082±0.007 g kg -1 exchangeable potassium, 1.62±0.16 g kg -1 Ca, 0.097±0.009 g kg -1 Mg and 2.307% organic matter; pH H2O of soil I was equal to 7.40 and of soil II - 6.56. The lowest concentrations of 137 Cs for both soils were observed in cereals (spring wheat - 0.67±0.06 Bq kg -1 dw and spring barley - 0.33± Bq kg -1 dw for soil I and winter barley - 0.79±0.20 Bq kg -1 dw for soil II). The highest concentrations of this isotope were found in red beet leaves (9.11±1.38 Bq kg -1 dw for soil I and 16.44±1.14 Bq kg -1 dw for soil II). Transfer of 137 Cs to plants from the sandy loam soil was from about 2 up to about 7 times lower than from the sandy soil. The lower transfer of 137 Cs from soil II to plants in comparison to soil I might be associated with the presence of clay which binds Cs strongly. The strong binding of Cs in soil II can also be

  19. Influence of soil amendments made from digestate on soil physics and the growth of spring wheat

    Science.gov (United States)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas; Krümmelbein, Julia

    2016-04-01

    Every year 13 million tons of organic wastes accumulate in Germany. These wastes are a potential alternative for the production of energy in biogas plants, especially because the financial subventions for the cultivation of renewable resources for energy production were omitted in 2014. The production of energy from biomass and organic wastes in biogas plants results in the accumulation of digestate and therefore causes the need for a sustainable strategy of the utilization of these residues. Within the scope of the BMBF-funded project 'VeNGA - Investigations for recovery and nutrient use as well as soil and plant-related effects of digestate from waste fermentation' the application of processed digestate as soil amendments is examined. Therefore we tested four different mechanical treatment processes (rolled pellets, pressed pellets, shredded compost and sieved compost) to produce soil amendments from digestate with regard to their impact on soil physics, soil chemistry and the interactions between plants and soil. Pot experiments with soil amendments were performed in the greenhouse experiment with spring wheat and in field trials with millet, mustard and forage rye. After the first year of the experiment, preliminary results indicate a positive effect of the sieved compost and the rolled pellets on biomass yield of spring wheat as compared to the other variations. First results from the Investigation on soil physics show that rolled pellets have a positive effect on the soil properties by influencing size and distribution of pores resulting in an increased water holding capacity. Further ongoing enhancements of the physical and chemical properties of the soil amendments indicate promising results regarding the ecological effects by increased root growth of spring wheat.

  20. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  1. Movement of Cryptosporidium parvum Oocysts through Soils without Preferential Pathways: Exploratory Test

    Directory of Open Access Journals (Sweden)

    Christophe J. G. Darnault

    2017-06-01

    Full Text Available Groundwater contamination by oocysts of the waterborne pathogen Cryptosporidium parvum is a significant cause of animal and human disease worldwide. Although research has been undertaken in the past to determine how specific physical and chemical properties of soils affect the risk of groundwater contamination by C. parvum, there is as yet no clear conclusion concerning the range of mobility of C. parvum that one should expect in field soils. In this context, the key objective of this research was to determine the magnitude of C. parvum transport in a number of soils, under conditions in which fast and preferential transport has been successfully prevented. C. parvum oocysts were applied at the surface of different soils and subjected to artificial rainfall. Apparently for the first time, quantitative PCR was used to detect and enumerate oocysts in the soil columns and in the leachates. The transport of oocysts by infiltrating water, and the considerable retention of oocysts in soil was demonstrated for all soils, although differences in the degree of transport were observed with soils of different types. More oocysts were found in leachates from sandy loam soils than in leachates from loamy sand soils and the retention of oocysts in different soils did not significantly differ. The interaction of various processes of the hydrologic system and biogeochemical mechanisms contributed to the transport of oocysts through the soil matrix. Results suggest that the interplay of clay, organic matter, and Ca2+ facilitates and mediates the transfer of organic matter from mineral surfaces to oocysts surface, resulting in the enhanced breakthrough of oocysts through matrices of sandy loam soils compared to those of loamy sand soils. Although the number of occysts that penetrate the soil matrix account for only a small percentage of initial inputs, they still pose a significant threat to human health, especially in groundwater systems with a water table not

  2. Comparative study of soil physical characteristics of Jaipur district ...

    African Journals Online (AJOL)

    Vikram

    The present study was carried in Jaipur district of Rajasthan state to measure physical characteristics of the soil samples from different districts of Jaipur. Soils samples were taken at ..... Random field models in earth sciences. Academic. Press.

  3. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention

    DEFF Research Database (Denmark)

    Bruun, Esben; Petersen, C. T.; Hansen, E.

    2014-01-01

    Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring...... barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar-amended subsoil, and 30 cm un-amended subsoil lowermost placed on an impervious surface. Low-temperature gasification straw-biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow...... pyrolysis hardwood-biochar (at 2 wt%) were investigated. One wt% can be scaled up to 102 Mg/ha of char. After full irrigation and drainage, the in-situ moisture content at 30-80 cm depth increased linearly (R2 = 0.99) with straw-biochar content at a rate corresponding to 0.029 m3/m3/%. The lab determined...

  4. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    Science.gov (United States)

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  5. Migracija dizel goriva izlivenog u slojeve zemljišta / Migration of diesel fuel spilled in subsurface layers of soil

    Directory of Open Access Journals (Sweden)

    Mladen Vuruna

    2005-09-01

    Full Text Available U radu su prikazane osnovne fizičko-hemijske karakteristike dizel goriva i zemljišta. Objašnjena je migracija izlivenog naftnog zagađivača kroz vertikalni profil zemljišta. U eksperimentalnom delu ispitivane su koncentracije dizel goriva i relativne koncentracije n-alkana u površinskim slojevima peska, u koje gorivo dospeva kao posledica akcidentnog izlivanja. Utvrđeno je da se koncentracije dizel goriva menjaju sa vremenom nakon izlivanja u svim ispitivanim slojevima. Takođe, utvrđeno je da se dizel gorivo, kao potencijalni zagađivač, u prvih šest nedelja, uglavnom, zadržava u površinskom sloju dubine 30 cm, a objašnjene su i mogućnosti sanacije zagađenog zemljišta. / The basic physical and chemical properties of both diesel fuel and soil have been given in this article and oil pollutants migration through vertical soil profile have been explained as well. In the experimental part of the paper both the concentrations of diesel fuel and relative concentrations of n-alkynes spilled in sandy soil by accident have been investigated. It has been proven that the concentrations of diesel fuel have changed in all layers of soil depending on the time after spill. Diesel fuel as possible pollutant has been retained 30 cm deep in sandy soil during six weeks after spill. Finally, cleanup techniques of polluted soil have been explained.

  6. Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere

    NARCIS (Netherlands)

    Inceoglu, Ozgul; Salles, Joana Falcao; van Elsas, Jan Dirk

    The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses,

  7. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    OpenAIRE

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  8. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    Science.gov (United States)

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  9. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  10. Structural-functional concept of thermophysical condition of the soils of Altai Region

    Directory of Open Access Journals (Sweden)

    Sergey Makarychev

    2016-10-01

    Full Text Available The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems and chestnut soils of light and medium loamy particle size distribution of temperately arid zone, and the heavy loamy gray forest soils and clayey chernozems of the Altai foothills and low mountains. The samples of undisturbed structures in different soil horizons were studied. To measure the thermophysical properties in laboratory setting, a pulse method of a two-dimensional heat source was used. The method takes into account the patterns of temperature field equalization in an unbounded medium after the heat source termination. A feature of this process is the occurrence of peak temperature at the investigated point of the medium at a given instant. The knowledge of this temperature and time enables to determine the soil thermal capacity, thermal conductivity and thermal diffusivity.

  11. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  12. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  13. Natural attenuation of diesel fuel in heavy clay soil

    International Nuclear Information System (INIS)

    Berry, K.A.T.; Burton, D.L.

    1997-01-01

    The application of bioremediation techniques on heavy clay soils contaminated with diesel fuels was studied. Earlier studies suggested that in-situ bioreclamation was only effective on permeable soils such as medium- to coarse-textured sandy or loamy soils. It was assumed that heavy clay soils such as those found in the Red River Valley in Southern Manitoba had physical and chemical properties that would limit the usefulness of natural attenuation. In this study, the disappearance and the natural attenuation of diesel fuel added to soil at a rate of 5000 mg/kg soil in tilled and untilled heavy clay soil was monitored. Three methods of analysis were used: (1) oil and grease content, (2) extractable organics, and (3) the Millipore EnviroGard ELISA method for petroleum hydrocarbons. Effects of the contamination on the soil microbial population were measured using surface CO 2 flux measurements and microbial biomass carbon analysis. Soil moisture contents at all sample times were between 44 and 49 per cent. Soil temperature was also monitored. All three analytical methods used in the study showed the near-complete disappearance of detectable diesel fuel hydrocarbons from the soil after 30 days with half-lives ranging from 11 to 26 days. The advantages and limitations of the ELISA kit were described. No hydrocarbons were detected in the groundwater sample. 45 refs., 7 tabs., 2 figs

  14. A RAINFALL SIMULATOR STUDY OF INFILTRATION INTO ARABLE SOILS

    NARCIS (Netherlands)

    WIERDA, A; VEEN, AWL

    Since Hortonian surface runoff is one possible mechanism for the fast transport of agricultural chemicals from arable soils to surface water, more information is needed on its significance in agricultural areas. The present study concerns the sandy soils of the Dutch Cover Sands area, and is based

  15. Bibliography of sandy beaches and sandy beach organisms on the African continent

    CSIR Research Space (South Africa)

    Bally, R

    1986-01-01

    Full Text Available This bibliography covers the literature relating to sandy beaches on the African continent and outlying islands. The bibliography lists biological, chemical, geographical and geological references and covers shallow marine sediments, surf zones off...

  16. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  17. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  18. Influence of humic acid on migration of 60Co, 85Sr and 137Cs in coastal sandy soil

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Ni Shiwei.

    1993-10-01

    Sorption and migration experiments were performed by both batch and column methods, to study influence of humic acid complexing on the mobility of 60 Co, 85 Sr and 137 Cs in a coastal sandy soil. The study focuses on a correlation between molecular-weight of dissolved humic acid and ability of the complexing with the radionuclides in liquid phase. Dissolved humic acid was complexed with 60 Co and 85 Sr. The interaction ability of 60 Co was independent of molecular-weight of humic acid, while that of 85 Sr depended on. The mobility of 60 Co increased under the condition with coexistence of humic acid as well as its sorption ratio decreased. The distribution profile of molecular-weight of 60 Co was kept at a constant in the solution before and after the sorption experiment, due to completing the sorption and complexation equilibrium. The mobility of 85 Sr increased under the condition with coexistence of humic acid, in spite of the sorption ratio of 85 Sr was not affected by the coexistence. Such contradiction was caused by different kinetics between the batch and column methods. The sorption ability and mobility of 137 Cs were not affected by the coexistence of the humic acid. (author)

  19. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  20. The Method of Calculating the Settlement of Weak Ground Strengthened with the Reinforced Sandy Piles

    Directory of Open Access Journals (Sweden)

    Maltseva Tatyana

    2016-01-01

    Full Text Available The paper presents an engineering method for calculating the weak clay base, strengthened with sandy piles reinforced along the contour. The method is based on the principle of layer-by-layer summation, which is used when designing the bases and foundations. The novelty of the suggested method lies in the taking account of the soil reaction along the pile lateral surface and the impact of external vertical loads on the vertical displacement of the base.

  1. Metals in European roadside soils and soil solution--a review.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  3. Model projections of atmospheric steering of Sandy-like superstorms.

    Science.gov (United States)

    Barnes, Elizabeth A; Polvani, Lorenzo M; Sobel, Adam H

    2013-09-17

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  4. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion.

    Science.gov (United States)

    Zhang, Yuning; Chen, Yulong

    2017-10-23

    Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  5. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion

    Directory of Open Access Journals (Sweden)

    Yuning Zhang

    2017-10-01

    Full Text Available Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  6. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  7. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  8. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  9. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  10. New instruments for soil physics class: Improving the laboratory and field seminars

    Science.gov (United States)

    Klipa, Vladimir; Jankovec, Jakub; Snehota, Michal

    2014-05-01

    Teaching soil science and soil physics is an important part of the curriculum of many programs with focus on technical and natural sciences. Courses of soil science and namely soil physics have a long tradition at the faculty of Civil Engineering of the Czech Technical University in Prague. Students receive the theoretical foundations about soil classification, soil physics, soil chemistry and soil hydraulic characteristics in the course. In practical seminars students perform measurements of physical, hydraulic and chemical characteristics of soils, thus a comprehensive survey of soil is done in the given site. So far, students had the opportunity to use old, manually operated instrumentation. The project aims to improve the attractiveness of soil physics course and to extend the practical skills of students by introducing new tasks and by involving modern automated equipment. New instruments were purchased with the support of the Ministry of Education, Youth and Sports of the Czech Republic under the project FRVS No. 1162/2013 G1. Specifically, two tensiometers T8 with multi-functional handheld read-out unit (UMS, GmbH) and manual Mini Disk Infiltrometer (Decagon Devices, Inc.) were purchased and incorporated into the course. In addition, newly designed MultiDisk the automated mini disk Infiltrometer (CTU in Prague) and combined temperature and soil moisture TDT sensor TMS 2 (TOMST®, s.r.o.), were made freely available for soil physics classes and included into the courses. Online tutorials and instructional videos were developed. Detailed multimedia teaching materials were introduced so that students are able to work more independently. Students will practice operating the digital tensiometer T8 with integrated temperature sensor and manual Mini Disk Infiltrometer (diameter disk: 4.4 cm, suction range: 0.5 to 7.0 cm of suction) and MultiDisk the automated mini disk Infiltrometer (see Klipa et al., EGU2014-7230) and combined temperature and soil moisture TDT

  11. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  12. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  13. [Effects of biochar addition into soils in semiarid land on water infiltration under the condition of the same bulk density].

    Science.gov (United States)

    Qi, Rui-Peng; Zhang, Lei; Yan, Yong-Hao; Wen, Man; Zheng, Ji-Yong

    2014-08-01

    Making clear the effects of biochar addition on soil water infiltration process can provide the scientific basis for the evaluation of the influence of biochar application on soil hydrology in semi-arid region. In this paper, through the soil column simulation method in laboratory, the effects of biochar of three sizes (1-2 mm, 0.25-1 mm and ≤ 0.25 mm) at 4 doses (10, 50, 100 and 150 g x kg(-1)) on the cumulative infiltration, the permeability and the stable infiltration rate of two different soils (anthrosol and aeolian sandy soil) were studied. The results showed that the infiltration capacity of the anthrosol was obviously increased compared to the control, however, the one in the aeolian sandy soil was decreased due to the biochar addition. At 100 minutes after infiltration starting, the averaged cumulative infiltration was increased by 25.1% in the anthrosol with comparison to the control. Contrarily, the averaged cumulative infiltration was decreased by 11.1% in the aeolian sandy soil at 15 minutes after infiltration starting. When the dose was the same, biochar with different particle sizes improved the infiltration for the anthrosol, but for the different dose treatments, the particle size of biochar which showed the greatest improvement was different. As for the aeolian sandy soil, the infiltration increased at the dose of 10 g x kg(-1) after the addition of biochar with different particle sizes, while decreased at the higher dose of 50, 100 and 150 g x kg(-1). The cumulative infiltration of the aeolian sandy soil was decreased with the increase in addition amount of biochar with the same particle size, while it was not so for the anthrosol. The determination coefficient fitted by the Philip infiltration model ranged from 0.965 to 0.999, suggesting this model was suitable for the simulation of soil water infiltration process after biochar application. Statistical analysis of main effects showed that the biochar particle size, the biochar addition amount

  14. Evaluation of the Intel Sandy Bridge-EP server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2012-01-01

    In this paper we report on a set of benchmark results recently obtained by CERN openlab when comparing an 8-core “Sandy Bridge-EP” processor with Intel’s previous microarchitecture, the “Westmere-EP”. The Intel marketing names for these processors are “Xeon E5-2600 processor series” and “Xeon 5600 processor series”, respectively. Both processors are produced in a 32nm process, and both platforms are dual-socket servers. Multiple benchmarks were used to get a good understanding of the performance of the new processor. We used both industry-standard benchmarks, such as SPEC2006, and specific High Energy Physics benchmarks, representing both simulation of physics detectors and data analysis of physics events. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following features: processor frequency, overclocking via Turbo mode, the number of physical cores in use, the use of logical cores ...

  15. Predicting and mapping soil available water capacity in Korea.

    Science.gov (United States)

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  16. Predicting and mapping soil available water capacity in Korea

    Directory of Open Access Journals (Sweden)

    Suk Young Hong

    2013-04-01

    Full Text Available The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively. Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  17. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  18. Content Analysis of Select YouTube Postings: Comparisons of Reactions to the Sandy Hook and Aurora Shootings and Hurricane Sandy.

    Science.gov (United States)

    Miller, Eric D

    2015-11-01

    This study details an innovative and methodical content analysis of 2,207 YouTube comments from four different YouTube videos (e.g., breaking news or memorials) related to the 2012 Sandy Hook Elementary School and Aurora theater mass shootings and the catastrophic Hurricane Sandy. As expected, YouTube comments associated with the Sandy Hook shootings (particularly those from a memorial video) were especially likely to feature compassion and grief with lessened hostility. This study highlights differing online contexts by which individuals show grief and related emotions following man-made and natural calamities and how-even in an online environment-powerful situational contexts greatly guide behavior.

  19. Analysis of Water Resources in Horqin Sandy Land Using Multisource Data from 2003 to 2010

    Directory of Open Access Journals (Sweden)

    Zhenzhen Zhao

    2016-04-01

    Full Text Available Over the past four decades, land use/land cover (LU/LC change, coupled with persistent drought, has resulted in the decline of groundwater levels in Horqin Sandy Land. Accordingly, this study quantifies changes in LU/LC and groundwater storage (GWS. Furthermore, it investigates the effects of LU/LC changes on GWS. GWS changes are estimated using Gravity Recovery and Climate Experiment (GRACE data and ground-based measurements obtained from July 2003 to December 2010. Soil moisture and snow water equivalent data derived from the Global Land Data Assimilation System (GLDAS are used to isolate GWS changes from GRACE-derived terrestrial water storage changes. The result shows that the groundwater depletion rate in Horqin Sandy Land is 13.5 ± 1.9 mm·year−1 in 2003–2010, which is consistent with the results of monitoring well stations. LU/LC changes are detected using bitemporal imageries (2003 and 2010 from Landsat Thematic Mapper through the post-classification comparison method. The result shows that LU/LC significantly changed during the aforementioned period. Bare soil and built-up land have increased by 76.6% and 82.2%, respectively, while cropland, vegetation, and water bodies have decreased by 14.1%, 74.5%, and 82.6%, respectively. The analysis of GWS and LU/LC changes shows that LU/LC changes and persistent drought are the main factors that affect groundwater resources.

  20. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  1. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Virto, I.; Imaz, M. J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P.

    2012-07-01

    Changing from conventional vineyard soil management, which includes keeping bare soil through intense tilling and herbicides, to permanent grass cover (PGC) is controversial in semi-arid land because it has agronomic and environmental advantages but it can also induce negative changes in the soil physical status. The objectives of this work were (i) gaining knowledge on the effect of PGC on the soil physical and biological quality, and (ii) identifying the most suitable soil quality indicators for vineyard calcareous soils in semi-arid land. Key soil physical, organic and biological characteristics were determined in a Cambic Calcisol with different time under PGC (1 and 5 years), and in a conventionally managed control. Correlation analysis showed a direct positive relationship between greater aggregate stability (WSA), soil-available water capacity (AWC), microbial biomass and enzymatic activity in the topsoil under PGC. Total and labile organic C concentrations (SOC and POM-C) were also correlated to microbial parameters. Factor analysis of the studied soil attributes using principal component analysis (PCA) was done to identify the most sensitive soil quality indicators. Earthworm activity, AWC, WSA, SOC and POM-C were the soil attributes with greater loadings in the two factors determined by PCA, which means that these properties can be considered adequate soil quality indicators in this agrosystem. These results indicate that both soil physical and biological attributes are different under PGC than in conventionally-managed soils, and need therefore to be evaluated when assessing the consequences of PGC on vineyard soil quality. (Author) 65 refs.

  2. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  3. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    Science.gov (United States)

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  4. Sampling Design of Soil Physical Properties in a Conilon Coffee Field

    Directory of Open Access Journals (Sweden)

    Eduardo Oliveira de Jesus Santos

    Full Text Available ABSTRACT Establishing the number of samples required to determine values of soil physical properties ultimately results in optimization of labor and allows better representation of such attributes. The objective of this study was to analyze the spatial variability of soil physical properties in a Conilon coffee field and propose a soil sampling method better attuned to conditions of the management system. The experiment was performed in a Conilon coffee field in Espírito Santo state, Brazil, under a 3.0 × 2.0 × 1.0 m (4,000 plants ha-1 double spacing design. An irregular grid, with dimensions of 107 × 95.7 m and 65 sampling points, was set up. Soil samples were collected from the 0.00-0.20 m depth from each sampling point. Data were analyzed under descriptive statistical and geostatistical methods. Using statistical parameters, the adequate number of samples for analyzing the attributes under study was established, which ranged from 1 to 11 sampling points. With the exception of particle density, all soil physical properties showed a spatial dependence structure best fitted to the spherical model. Establishment of the number of samples and spatial variability for the physical properties of soils may be useful in developing sampling strategies that minimize costs for farmers within a tolerable and predictable level of error.

  5. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  6. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    Science.gov (United States)

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of Dexter’s soil physical quality index: an Irish case study

    Directory of Open Access Journals (Sweden)

    Fenton O.

    2017-08-01

    Full Text Available Historically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ S-Index, as described by Dexter (2004a,b,c using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC], is used. This can be determined using simple (S-Indirect or complex (S-Direct soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions, whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory, which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si and S-Direct (Sd. Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC and bulk density (Bd values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.

  8. On the effect of the ionizing radiation of soil and 15N-labelled slurry of respiration and N-dynamic of soils

    International Nuclear Information System (INIS)

    Peschke, H.; Markgraf, G.; Feist, A.; Kiok, K.

    1991-01-01

    Ionizing radiation on a sandy soil with a dose of 25 kGy shows no effect opposite untreated soil in view to the soil respiration. Besides, the nitrifying bacteria has been inpaired for a long time and the nitrificid efficiency has kept for 44 days. There was no influences of slurry of cow treated with γ-rays (25 and 10 kGy) on the CO 2 exhalation, ammonification and nitrification in 3 tested soils. (orig.) [de

  9. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  10. application of used engine oil on of used engine oil in soil on of ...

    African Journals Online (AJOL)

    eobe

    Keywords: soil stabilization, used engine oil, s. 1. INTRODUCTION ... cement, lime, fly ash and a combination of ot additives is meant to ... California bearing ratio (CBR) of the soil. This p of the soil. ... range of silty-clay and sandy. CBR of ...

  11. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia

    Science.gov (United States)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2017-04-01

    Two fire-affected soils were studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia (Volga Basin, Togliatti city). Samples were collected in the green zone of Togliatti city. The results showed that both soils were rich in quartz and feldspar. Mica was highly present in soils affected by surface fires, while calcium carbonates were identified in the soils affected by crown fires. The type of plasma is humus-clay, but the soil assemblage is plasma-silt with a prevalence of silt. Angular and subangular grains are the most dominant soil particulates. No evidence of intensive weathering was detected. There was a decrease in the porosity of soils affected by fires as a consequence of soil pores filled with ash and charcoal.

  12. Prediction of cesium-134 and strontium-85 crop uptake based on soil properties

    International Nuclear Information System (INIS)

    Roca, M.C.; Vallejo, V.R.; Roig, M.; Tent, J.; Vidal, M.; Rauret, G.

    1997-01-01

    Nowadays, there is still the need to improve the quantification of parameters that affect radionuclide mobility. With this aim, radiocesium and radiostrontium soil-to-plant transfer was measured in lysimeters in a Calcic Luvisol, loamy soil and in a Fluvisol, loam-sandy soil, using lettuce [Lactuca sativa L. cv. Kinemontepas] and pea plants [Pisum sativum L. cv. Kelvedon Wonder]. Weighted Concentration Ratios (WCR), expressed as kg soil/kg plant, were calculated for different growth stages. Weighted Concentration Ratios were in general higher for 85Sr than for 134Cs, and also higher in the loam-sandy than in the loamy soil. To predict plant uptake, we evaluated a set of soil properties to define a prediction factor for the relative transfer in the two soils using cation exchange capacity (CEC) and radionuclide available fraction (fav) for radiostrontium, and soil solution composition, solid-liquid distribution coefficient, and radionuclide available fraction for radiocesium. The ratios of WCR in the loam-sandy and loamy soil were compared with the prediction factor. There was good agreement in lettuce for 85Sr (ratio of WCR was 5.4 for seedling and 3.9 for commercial samples, whereas prediction factor was 3.1) and for 134Cs (ratio of WCR was 5.1 for seedling and 5.5 for commercial samples, the prediction factor being 5.1), although for pea only the relative root uptake of radiocesium in seedling pea was well predicted (the ratio of WCR was 8.8, the prediction factor being 9.1). These soil parameters improved former predictions based solely on the fav, although factors depending on plant physiology should be better evaluated

  13. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.

    Science.gov (United States)

    Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar

    2015-07-15

    It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional

  14. Differences in nitrogen cycling and soil mineralisation between a ...

    African Journals Online (AJOL)

    Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. ... An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the ...

  15. Effects of pH-Induced Changes in Soil Physical Characteristics on the Development of Soil Water Erosion

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2018-04-01

    Full Text Available Soil water erosion is frequently reported as serious problem in soils in Southeast Asia with tropical climates, and the variations in pH affect the development of the erosion. This study investigated the effects of changes in pH on soil water erosion based on changes in the physical properties of the simulated soils with pH adjusted from 2.0 to 10.0 through artificial rainfall tests. The zeta potential was entirely shifted to positive direction at each pH condition due to Al, Ca, and Mg. In the pH range of 6.0 to 2.0, the aggregation of soil particles resulting from the release of Al3+ from clay minerals and/or molecular attraction between soil particles caused the plastic index (IP of the soil to decrease. The decrease in IP led to the development of soil water erosion at the pH range. When the pH exceeded 6.0, the repulsive force generated by the negative charges on soil particles decreased IP, resulting in accelerated erosion by water. The results suggest that changes in pH causes physical properties of the soil to change through changes of the zeta potential in the clayey soil rich in Al, Ca, and Mg, leading to the development of soil water erosion.

  16. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  17. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  18. Degradation of aldrin im samples of 'cerrado' Brazilian soils

    International Nuclear Information System (INIS)

    Musumeci, M.R.; Ruegg, E.F.

    1981-01-01

    14 C-aldrin degradation was studied in the laboratory, in samples of 'cerrado' Brazilian soils, during a period of 240 days. Recovery of radiocarbon decreased with time, although radiocarbon was not incorporated to the soil organic matter as show by soil combustion. In both soils 14 C-aldrin degraded to dieldrin and another compound that showed caracteristics of a hydrosoluble derivative of aldrin 14 C-aldrin was more persistent in sandy soil but amendment of this soil with nutrients or fertilizers did not enhanced aldrin degradation in this soil. (Author) [pt

  19. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    Science.gov (United States)

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  20. A New approach for evaluate a sandy soil infiltration to calculate the permeability

    Science.gov (United States)

    Mechergui, M. Mohamed; Latifa Dhaouadi, Ms

    2016-04-01

    10 sites were chosen in the four ha field of Research Regional Center of Oasis Agriculture in Deguache (Tozeur). The soil is homogeneous to the depth of 120 cm; with a sandy texture (60% big sand, 20% small sand 13% silt and 7% clay); with a mean bulk density equal to 1.43g/cm3 and with field capacity and welting point equal respectively to 11.9 and 6 %. The time duration for each infiltration essay lasted between 352 and 554 minutes. The number of observation points for each infiltration curve varies between 31 and 40. The shape of the infiltration curves observed in all sites is in part similar to what observed in literature (high increase with time of cumulative infiltration for a short time and then a linear increase of this parameter to a time varying between 122 to 197 minutes depending on the site) and then something special a slowdown in the cumulative infiltration to the end of the essay. The (F(t) / t 1/2 versus t 1/2) plotted curves showed two distinguished parts: A linear relation to the time varying between 122 and 197 minutes confirming the validity of Philips model and a second part showed a slowdown in the slope to a time varying between 231 and 347 minutes depending on the site and then drop down to the end of the essay. This is may be due to the rearrangement of particles after a long time of infiltration which led to a decrease in hydraulic conductivity. To improve the calculation of the saturated hydraulic conductivity, we choose only the part that is validated by Philips model, the linear part. The number of omitted points in the cumulative infiltration varies between 11 and 22 points. By this method, the saturated hydraulic conductivity varies between 1 and 3.72 m/day with a mean equal to 2.35. However the previous technique used gave a mean value equal to 2.07. The new method is accurate and gives better results of K and sorbtivity.

  1. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  2. Respuesta del trigo a la fertilización nitrogenada y nitroazufrada en suelos arenosos Wheat response to nitrogen and nitrogen with sulfur fertilization in sandy soils

    Directory of Open Access Journals (Sweden)

    Mirian Barraco

    2009-12-01

    (S additions. However, the available information is not consistent for the diagnosis and analysis of the marginal contribution of S on wheat grain responses in combination with N fertilization. Thus, the objective of this study was to quantify the yield response of dryland wheat crops to N and NS fertilization and to determine the relationship between yield response and several soil properties in sandy soils. The study consisted in 34 field experiments within the semiarid and subhumid sandy pampas region (Argentina managed under no-tillage practices. Three treatments were evaluated: i control (without fertilization, ii 140 kg of N ha-¹ [N-NO3 soil (0-40 cm + N fertilizer], iii 140 kg of N ha-¹ [N-NO3 soil (0- 40 cm + N fertilizer] + 12 kg of S ha-¹. A positive response to N fertilization was observed in every experimental site. Mean grain yield response to the application of N was 949 kg ha-¹. Although the mean grain yield response to S fertilization was 232 kg ha-¹, only 38% of the sites (13 sites showed a significant response to this treatment. Crop response to S fertilization was not related to soil organic matter (p = 0.61, sand content (p = 0.90, soil extractable S-S0(4 ²-(p = 0.29, nor soil N-N0(3 -(p = 0.47 levels. Furthermore, it decreased with increasing maximum grain yields and it was positively related to crop responses to N fertilization. We conclude that in coarse textured soils with significant N limitations, wheat responses to S fertilization are greater and more common in low productivity sites.

  3. Sorção do imazapyr em solos com diferentes texturas Imazapyr sorption in soils with different textures

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-06-01

    Full Text Available O conhecimento do comportamento de herbicidas no ambiente, sobretudo no solo, permite a predição de possíveis impactos do seu uso em sistemas agrícolas. Com o intuito de avaliar a sorção do herbicida imazapyr no solo, foi realizado um experimento, utilizando sorgo (Sorghum bicolor como planta bioindicadora. A sorção do imazapyr foi avaliada em areia lavada e em três solos, com as seguintes texturas: muito argilosa, franco-argilo-arenosa e areia-franca, provenientes, respectivamente, das cidades de Sete Lagoas, João Pinheiro e Rio Casca, em Minas Gerais. Foram determinados: o valor de I50 (dose que inibiu 50% no acúmulo de massa seca da planta-teste e a relação de sorção [RS = (I50 solo -I 50 areia/I50 areia]. Os valores de I50 observados foram: 29,41; 10,20 e 7,33 mg kg-1, e a relação de sorção (RS: 9,77; 2,73 e 1,68, respectivamente para os solos muito argiloso, franco-argilo-arenoso e areia franca. O herbicida imazapyr apresentou a seguinte ordem de sorção nos substratos: muito argiloso > franco-argilo-arenoso > areia-franca > areia lavada. Em solos arenosos e com baixos teores de matéria orgânica, a baixa sorção do imazapyr predispõe o produto à lixiviação no perfil do solo, podendo contaminar mananciais de águas subterrâneas.Knowledge about herbicide behavior in the environment, especially in soil, allows predicting possible impacts caused by its use in agricultural systems. An experiment using Sorghum bicolor as a bio-indicator was carried out to evaluate imazapyr sorption in soil. Sorption was evaluated in washed sand and in soils of 3 different textures: very clayed, sandy clayed loam and sandy loam, respectively from Sete Lagoas, João Pinheiro and Rio Casca - Minas Gerais. The value of I50, which inhibits 50% of dry biomass accumulation of the test-plant, and sorption relation (SR = I50 soil - I50 sand/I50 sand were determined. I50 values observed were 29.41, 10.20 and 7.33 mg kg-1 and SR values were 9

  4. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    Science.gov (United States)

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization

  5. Correlation indices physical space of soil and productivity of fruit tomato industry

    Directory of Open Access Journals (Sweden)

    Danilo Gomes de Oliveira

    2017-12-01

    Full Text Available With mechanization at all stages of crop management, the soil began to receive a higher surface load, which causes changes in its physical properties with possible production impacts. Thus, the objective of this work was to evaluate the variability and spatial correlation of the physical attributes of a Red Latosol with the productivity of industrial tomatoes. For this, a sample mesh was assembled using a global receiver positioning system (GPS, with 84 pairs of spaced apart 80 x 80 m points. After the mesh construction, samples in the 0.00-0.20 m layer were collected in the field to measure the physical attributes of the soil and plant data. The variables measured were: soil density (Ds, soil penetration resistance (PR, soil texture and tomato productivity. The values obtained were analyzed using geostatistics, and were classified according to the degree of spatial dependence. Then, using the ordinary kriging interpolation method and ordinary cokriging, the values for nonsampled sites were estimated, allowing the mapping of isovalues and the definition of management zones in the field. The spatial correlation of the physical attributes with the production components by the ordinary Cokriging method verified spatial correlation only between attributes (soil x soil density and sand content. The use of geostatistics and the construction of the maps by means of kriging and ordinary cokrigation allowed to identify different management zones, that is, the variability of soil attributes and productivity.

  6. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  7. Number and Effectiveness of Pea Rhizobia in Danish Soils

    DEFF Research Database (Denmark)

    Engvild, K.C.

    1989-01-01

    Most of 44 Danish soils tested contain between 1000 and 10 000 pea rhizobia (Rhizobium leguminosarum biovar viceae) per gram. Pea rhizobia were not detected in acid moor and forest soils. Only one case of failed nodulation in peas in the field has been noted, in spots in a reclaimed sandy heath m...

  8. Transformation of the herbicide [14C]glufosinate in soils

    International Nuclear Information System (INIS)

    Smith, A.E.

    1989-01-01

    The degradation of 2 μg/g [ 14 C]glufosinate (DL-homoalan-4-ylmethylphosphinic acid) was studied in clay, clay loam, and sandy loam soils at 85% field capacity and at 20 degree C. Over a 4-week period the soils were extracted and analyzed for transformation products by radiochemical and gas chromatographic techniques. In all soils there was release of [ 14 C]carbon dioxide and formation of [ 14 C]-3-(hydroxymethylphosphinyl)propionic acid (MPPA) as major degradation products. Within 21 days, about 55% of the applied 14 C herbicide had been transformed to MPPA in the sandy loam and 19% to [ 14 C]carbon dioxide. After 28 days, approximately 45% of the 14 C herbicide had been transformed to MPPA in the clay and clay loam and 10% released as [ 14 C]carbon dioxide. At all samplings, other 14 C transformation products appeared to be insignificant

  9. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  10. Runoff and soil loss on a sandveld in Rhodesia | DL | African ...

    African Journals Online (AJOL)

    year period on a sandy soil with a 4 percent slope in south-western Rhodesia. The runoff as a percentage of the mean annual rainfall varied from 3.8, where the veld was left undisturbed, to 30.3, where the soil was kept bare artificially.

  11. Toxicity of Fipronil in Mississippi Soil Types Against Reticulitermes flavipes (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    J. E. Mulrooney; P. D. Gerard

    2007-01-01

    Three soils (a silt loam, loamy sand, sandy loam) found in Mississippi and pure silica sand were treated with fipronil and bioassayed using eastern subterranean termites, Reticulitermes flavipes. Soils were treated with aqueous solutions of Termidor (fipronil) at concentrations of 0, 0.12, 0.25,2.5, 5.0 and 20.0 ppm (wt AI: wt soil) that brought the soils to 15%...

  12. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Jackson, T.J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  13. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    Science.gov (United States)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  14. Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem.

    Science.gov (United States)

    Frimpong, J O; Ofori, E S K; Yeboah, S; Marri, D; Offei, B K; Apaatah, F; Sintim, J O; Ofori-Ayeh, E; Osae, M

    2018-07-30

    This study evaluated three herbicides active ingredients: Paraquat, Glyphosate and 2,4-D Amine in commercial formulations as Frankoquat, Roundup and Agriherb respectively under field conditions to determine their influence on soil dwelling macrobes and the physical state of soil. Herbicides were serially diluted to three treatment concentrations for each plus three controls. Herbicide concentrations were applied to the demarcated field on three consecutive occasions in splits. Macrobes extraction from soil was done under a stereo microscope at 20 × magnification. The Simpson's diversity index was used to calculate the soil macrobes diversity. Soil water content, bulk density and total porosity of sampled soils were determined. The study revealed that both herbicides and non-herbicides treatment had no statistical significance (p > 0.05) on the soil dwelling macrobes. Also, a Simpson's index of diversity, estimated as 53.46%, showed how the experimental area is lowly diverse in the specific soil dwelling macrobes identified. Significant correlations existed between the soil water content, bulk density, total porosity and number of soil macrobes at p dwelling macrobes decreased with increasing soil physical conditions. Thus, the dynamics in soil physical properties affected macrobes abundance in soil, with the slightest influence coming from the herbicides concentrations used in the experiment. The study recommended that Frankoquat and Roundup herbicides could be used to control weeds on farmer's field because, their influence were slightly felt on the soil macrobes and also, quite a number soil dwelling macrobes recovered after application. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  16. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  17. CORRELATIONS BETWEEN PESTICIDE TRANSFORMATION RATE AND MICROBIAL RESPIRATION ACTIVITY IN SOIL OF DIFFERENT ECOSYSTEMS

    Science.gov (United States)

    Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, GA, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and s...

  18. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait. cultivated on mineral soils

    Directory of Open Access Journals (Sweden)

    Szwonek Eugeniusz

    2016-06-01

    Full Text Available A study was conducted to evaluate the possibility of cranberry cultivation on mineral soils and to assess the influence of vegetative biomass development, generative growth and yield components on the yielding of three cranberry cultivars originating in the USA (Stevens, Pilgrim and Ben Lear at two locations in Poland. The key biometrical traits involved in yield formation were taken into account, and the soil and plant chemical conditions were evaluated. All of the measured biometrical characteristics were strongly influenced by the location and the year of cultivation, and varietal differences were also noted. The most important determinants that explained yield variation were: the number of uprights per square meter, floral induction and berry set. However, the participation of each component in yield variation was strongly affected by the location, age of plantation and to a minor extent by the cultivar. The study confirmed the possibility of cranberry cultivation on mineral soils with a low pH. The biggest average yield of the three years was collected from cv. Stevens as cultivated on sandy soil in contrast to the same cultivar grown on sandy loam soil. In the case of sandy loam soil after acidification, cv. Pilgrim appeared to be a relatively better yielding cultivar.

  19. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Plaza, Cristine; Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel; Booth, Matthew

    2007-08-01

    Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.

  20. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.