WorldWideScience

Sample records for sandwich groundwater clay

  1. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trieves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  2. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  3. Characterization of groundwater flow in the environment of the Boom Clay (Campine, Belgium)

    International Nuclear Information System (INIS)

    Gedeon, M.; Labat, S.; Wemaere, I.; Wouters, L.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is considered as reference host rock for the geological disposal of radioactive waste. Aquifers surrounding the Boom Clay play a passive role in the context of the disposal safety whereby the radionuclides are diluted by groundwater flow. The groundwater flow in these aquifers has been studied since decades. This research involves observations of groundwater levels in the regional and local piezo-metric networks, several site investigations including geophysics and core-drilled boreholes and groundwater modelling. In this context, groundwater modelling represents the integration of the site characterization efforts and provides a comprehensive tool for constraining the models used in the safety assessment of the geological disposal. Since 1985, groundwater levels are observed monthly in the regional piezo-metric network. It consists of 142 filters monitoring the groundwater levels at 45 sites. Along with the observed groundwater levels from the local piezo-metric network (concentrated around the Mol-Dessel site for surface disposal), these data provide an excellent insight into the evolution of the groundwater levels. Moreover, they represent a calibration (validation) dataset for groundwater flow modelling. The groundwater system forming the environment of the Boom Clay host rock was characterized during several site investigation campaigns, within which seven core-drilled boreholes were realized, whereby hydraulic parameters and hydro-stratigraphy of the groundwater system could be collected. The dataset obtained from the above mentioned campaigns was complemented by archived data on hydraulic testing in the aquifers in order to build a comprehensive groundwater model integrating these data into a single numerical representation of the groundwater system. Three regional groundwater models have been developed integrating the site characterization data collected in the north

  4. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  5. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  6. Methane production rates from natural organics of glacial lake clay and granitic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, M I; Stroes-Gascoyne, S; Hawkins, J L; Hamon, C J; Motycka, M

    1996-05-01

    Engineered barrier materials are an integral part of the proposed Canadian concept for the disposal of used nuclear fuel or high level waste. Components of these barriers, such as the buffer and backfill clays surrounding the waste containers in a vault, and granitic groundwater, naturally contain small quantities of organic material (up to about 1.2 wt%). Despite high temperatures, space and water limitations and radiation effects, the question remains whether gas could be produced from these organics as a result of biological processes. Degradation of organic carbon by microbes can produce gases such as carbon dioxide (C0{sub 2}) and methane (CH{sub 4}). This work demonstrates that methane is produced in natural systems containing < 6 mole % 0{sub 2}. In deep fracture zone groundwater, the largest methane production rate was 0.19 mole %/day or 5 {mu}g CH{sub 4}/L groundwater per day, at STP. This can be compared with the methane production rate of 1 {mu}g CH{sub 4}/(kg clay {center_dot} day) at STP in an earlier experiment containing added organic material. Using this rate of 5 pg CH{sub 4}/(L groundwater {center_dot} day) (3.75 {mu}g C/(L groundwater {center_dot} day)), all of the organic C in the groundwater, assuming it is equally bioavailable, would have been converted to CH{sub 4} during the timeframe of this experiment. Enhanced methane production occurred with an increase in natural organic carbon, an increase in the microbe population and with the addition of Fe. Steady-state methane production rates of 10 to 25 {mu}g CH{sub 4}/ L groundwater per day have been repeatedly observed in clay-free systems. The effects of microbial metabolism, the requirement for a facilitating consortium, the Eh, the pH, the salinity, the groundwater sulphate concentration, the presence of methanotrophs and the sorption effects of clay interlayers are discussed as possible explanations for the inhibition of methanogenesis and methane production in the presence of clay and

  7. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    The mechanism and magnitude of nitrate leaching from grassland on a heavy clay soil were investigated by measuring nitrogen input, and nitrate concentrations in groundwater and drain discharge for two years. A bromide tracer was applied to study solute transport mechanisms. Nitrate transport in the

  8. Lead pollution of soil and groundwater in clay-pigeon shooting ranges

    International Nuclear Information System (INIS)

    Hahn, R.

    1990-01-01

    Within the framework of the exemplary investigation of soil and groundwater pollution with lead on clay-pigeon shooting ranges, three facilities were sampled. The analyses for depth distribution in the main area of the ammunition deposition showed that the dissolved lead amounts are as a rule smaller than the limiting value of the Sewage Sludge Regulation (100 mg/kg). In two groundwater samples, no lead could be found. Considerable amounts of small lead balls are found on the soil surface, but only a very small part appears to be washed out and adsorbed by the soil matrix. (orig.) [de

  9. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  10. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  11. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  12. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills.

    Science.gov (United States)

    Parastar, Fatemeh; Hejazi, Sayyed Mahdi; Sheikhzadeh, Mohammad; Alirezazadeh, Azam

    2017-11-01

    Nowadays, the raise of excessive generation of solid wastes is considered as a major environmental concern due to the fast global population growth. The contamination of groundwater from landfill leachate compromises every living creature. Geotextile clay liner (GCL) that has a sandwich structure with two fibrous sheets and a clay core can be considered as an engineered solution to prevent hazardous pollutants from entering into groundwater. The main objective of the present study is therefore to enhance the performance of GCL structures. By changing some structural factors such as clay type (sodium vs. calcium bentonite), areal density of clay, density of geotextile, geotextile thickness, texture type (woven vs. nonwoven), and needle punching density a series of GCL samples were fabricated. Water pressure, type of cover soil and overburden pressure were the environmental variables, while the response variables were hydraulic conductivity and self-healing rate of GCL. Rigid wall constant head permeability test was conducted on all the samples. The outlet water flow was measured and evaluated at a defined time period and the hydraulic conductivity was determined for each sample. In the final stage, self-healing properties of samples were investigated and an analytical model was used to explain the results. It was found that higher Montmorillonite content of clay, overburden pressure, needle punching density and areal density of clay poses better self-healing properties and less hydraulic conductivity, meanwhile, an increase in water pressure increases the hydraulic conductivity. Moreover, the observations were aligned with the analytical model and indicated that higher fiber inclusion as a result of higher needle-punching density produces closer contact between bentonite and fibers, reduces hydraulic conductivity and increases self-healing properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    Science.gov (United States)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  14. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  15. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  16. Degradation of Nitrobenzene Using Bio-Reduced Fe-Clays: Progress Towards the Development of an in-situ Groundwater Remediation Technology

    Science.gov (United States)

    White, M. L.; Fialips, C. I.

    2008-12-01

    Clay minerals are widely used in agricultural, industrial and environmental engineering applications due to their specific physical and chemical properties and their high abundance in soils in sediments. Currently however, Fe-bearing clays are not widely exploited in these applied fields. Fe-rich smectites, such as nontronite, can contain up to 20wt% of Fe2O3 as structural Fe(III) and if a suitable electron donor is available, this Fe(III) can be utilized by Fe-reducing bacteria as a terminal electron acceptor. When reduced, the overall reactivity of Fe-smectites changes, particularly where interactions with water and various organic compounds are involved. For instance, the presence of reduced Fe-smectites has been found to induce the degradation of certain organic contaminants found in groundwaters and the subsurface, e.g. chlorinated aliphatics and nitroaromatic compounds. The goal of this study is to develop an in-situ groundwater remediation technology that targets redox- sensitive organics, in the form of a permeable Bio Fe-clay barrier. To achieve this, the iron-reducing bacterium Shewanella algae BrY was first used to reduce structural FeIII in <2micron fractions of the Fe- rich smectite nontronite (NAu-2, 41.74wt% Fe2O3) and a Fe-bearing montmorrillonite (Speeton Clay, Yorkshire, UK, ~8wt% Fe2O3). S. algae BrY was able to reduce structural FeIII within these clays to maximum Fe(II)/Fe(II)+Fe(III) ratios 0.34 and 0.19 for the nontronite and Speeton Clay, respectively, in the presence and absence of the electron shuttle, AQDS (9, 10-anthraquinone-2, 6-disulfonic acid). These results are novel because the capability of S. algae BrY to reduce structural Fe(III) in smectite clays has not previously been tested. Nitrobenzene was selected as the test redox-sensitive organic compound as it is a common subsurface contaminant and is of global ecotoxicological concern. To test the capability of bio- reduced Fe-clays to transform nitrobenzene to aniline (the less

  17. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Science.gov (United States)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone. This is in

  18. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2012-04-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1 such as parts of Australia's Murray-Darling Basin (MDB. In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low

  19. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    Science.gov (United States)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  20. Summary and conclusions of the faults-in-clay project

    International Nuclear Information System (INIS)

    Hallam, J.R.; Brightman, M.A.; Jackson, P.D.; Sen, M.A.

    1992-01-01

    This report summarises a research project carried out by the British Geological Survey, in cooperation with ISMES of Italy, into the geophysical detection of faults in clay formations and the determination of the hydrogeological effects of such faults on the groundwater flow regime. Following evaluation of potential research sites, an extensive programme of investigations was conducted at Down Ampney, Gloucester, where the Oxford Clay formation is underlain by the aquifers of the Great Oolite Limestone group. A previously unknown fault of 50 m throw was identified and delineated by electrical resistivity profiling; the subsequent development of a technique utilising measurements of total resistance improved the resolution of the fault 'location' to an accuracy of better than one metre. Marked anisotropy of the clay resistivities complicates conventional geophysical interpretation, but gives rise to a characteristic anomaly across the steeply inclined strata in the fault zone. After exploratory core drilling, an array of 13 boreholes was designed and completed for cross-hole seismic tomography and hydrogeological measurement and testing. The groundwater heads in the clays were found to be in disequilibrium with those in the aquifers, as a result of water supply abstraction. The indication is that the hydraulic conductivity of the fault zone is higher than that of the surrounding clay by between one and two orders of magnitude. Methodologies for the general investigation of faults in clay are discussed. (Author)

  1. The petrography of the Jurassic core from the Harwell research site. Part 1: Kimmeridge Clay, Corallian Beds and Oxford Clay

    International Nuclear Information System (INIS)

    Milodowski, A.E.

    1983-06-01

    Detailed examination by mineralogical and petrological techniques has enabled a detailed characterisation of the lithologies of the Oxford Clay, Corallian Beds and the Kimmeridge Clay beneath the Harwell Research Site. Information obtained has revealed the nature of the bulk mineralogy, pore-types, pore-surface mineralogy and post-depositional alteration of the rocks. Diagenesis has played an important part in determining the mineralogy, porosity and fabric of the rocks and has had the greatest variation of effects in the Corallian Beds, determining the phases now in contact with groundwater. It is these authigenic phases that are of key interest in assessing the behaviour of radionuclides which may be released into the local groundwater systems. The importance of the different pore-types characterised during this investigation and of the mineral phases lining these potential pathways for groundwater movement are discussed in detail at the end of this report. Diagenesis has reduced primary porosity in many of the Corallian rocks by calcite precipitation. In such rocks where a cohesive cement is present, groundwater flow must occur along large-scale fractures and more slowly along intercrystalline grain-boundary cracks. (author)

  2. Diffusion in Clay Layers and Groundwater Remediation

    Science.gov (United States)

    In a collaborative SERDP-funded study, researchers from the Air Force Institute of Technology, the U.S. Environmental Protection Agency, and the University of Michigan developed a numerical model that simulates the enhanced transport of CAHs into and out of low permeability clay ...

  3. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  4. Proglacial Groundwater Flux and Storage in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chavez, D.; McKenzie, J. M.; Baraer, M.; Mark, B. G.

    2012-12-01

    As tropical glaciers continue to rapidly retreat in the Cordillera Blanca, Peru, dry-season water resources are becoming more dependent on groundwater baseflow. Therefore, understanding the flux and storage of proglacial groundwater is necessary to forecast how groundwater storage can offset decreasing water resources. Recent studies of the Rio Santa Watershed, which drains the western slopes of the Cordillera Blanca, have identified that groundwater is the largest contributor to outflow from many watersheds during the dry season and that the flux of groundwater is temporarily available (clay to silt sized glaciolacustrine material at each drill site. This layer was typically less than 5 m in thickness and had a low hydraulic conductivity (clay layer were water bearing units of course material (either well-sorted sand/gravel or talus deposits) with an average hydraulic conductivity of 10-5 m/s. Additionally numerous discontinuous sand lenses and localized glaciofluvial gravel deposits were observed within the clay layer. The glaciolacustrine deposits behave as confining units that were capable of generating localized artesian conditions in the coarse grain units. The occurrence of the clay units adjacent to the main stream channels suggests that the flatness of the valley floors is not the result of river meander. The coarse grained units have the potential to act as important aquifers with significant groundwater storage and flow. Our preliminary findings indicate that the course grained units are important hydrogeological conduits with the ability to buffer low flow conditions in proglacial streams during the dry season. We present a new schematic model of how groundwater moves through these important proglacial environments, providing temporal storage of glacial meltwater and precipitation.

  5. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-10-15

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H{sub 2} for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 106 apsA copies cm-2, corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H{sub 2} appeared to have any effect on the bacterial incidence on metal surfaces

  6. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    International Nuclear Information System (INIS)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten

    2011-10-01

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H 2 for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 10 6 apsA copies cm -2 , corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H 2 appeared to have any effect on the bacterial incidence on metal surfaces

  7. Assessment of groundwater contamination by leachate near a ...

    African Journals Online (AJOL)

    The results show that the leachate from the landfill has a minimal impact on the groundwater resource and this can be attributed to the existing soil stratigraphy at the site consisting of clay which is deduced to have a significant influence on the natural attenuation of leachate into groundwater. Keywords: Groundwater ...

  8. In situ co-adsorption of arsenic and iron/manganese ions on raw clays

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Lhotka, M.; Grygar, Tomáš; Machovič, V.; Herzogová, L.

    2011-01-01

    Roč. 54, č. 2 (2011), s. 166-171 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Arsenic * Groundwater * Co-adsorption * Raw clays * Pre-modified clays * Fe/Mn Subject RIV: DD - Geochemistry Impact factor: 2.474, year: 2011

  9. Characterization of clay deposits from Egypt and assessment of their potential application for waste water treatment: How dissolved organic matter determines the interaction of heavy metals and clay minerals

    NARCIS (Netherlands)

    Refaey Mohammed, Y.B.

    2016-01-01

    The main aim of this study was to investigate the potential of using clay minerals abundant in local soils in Egypt as low cost materials to reduce Cu, Ni and Zn pollution of soil and groundwater originating from polluted wastewater; specifically focusing on the influence of the interaction of clay

  10. Transport of oxidants and radionuclides through a clay barrier

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1978-02-01

    The masstransfer rate for oxidants to, and radionuclides from a capsule in a repository has been computed. The capsule which is 0.75 m in diameter is surrounded by Montmorillonite clay. The hole is 1.5 m in diameter. For one capsule about 1220g copper will corrode due to oxygen corrosion in 10 000 years. If the fissures in the rock nearest the hole are filled with clay, the corrosion will decrease significantly. This is valid for a case where the groundwater is in equilibrium with oxygen of 0.2 bar pressure (normal air pressure). Measurements of the oxygen content in groundwater at large depths show a more than 1 000 times smaller values. The transport rate will then be correspondingly smaller. Corrosion due to sulphate/sulphide corrosion may reach some 590 g in the same time if there is 10 mg/l of the least abundant component. The radionuclides Sr 90 , Cs 137 , Am 241 and Am 243 will decay totally in the clay barriers. Pu 240 will be seriously hindered. The total dissolution of the uranium oxide in a capsule takes at least 1.8 million years. Nuclides with high solubilities decrease in about 2 000 years to half their original concentration. The sodium in the Montmorillonite clay in the fissures is exchanged for calcium in about 20 000 years. The exchange of the sodium in the clay in the hole takes millions of years

  11. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...... (hydraulic fracturing with gravitational injection and direct push delivery) were therefore tested in clay till by injection of amendment-comparable tracers to investigate the possibility to overcome diffusion limitations in the low permeability matrix. The study of hydraulic fracturing demonstrated...

  12. Informing groundwater model hydrostratigraphy with airborne time-domain electromagnetic data and borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus

    lithological information directly into groundwater models is proposed. The approach builds on a clay-fraction inversion which is a spatially variable translation of resistivity values from EM data into clay-fraction values using borehole lithological information. Hydrostratigraphical units are obtained through...... a k-means cluster analysis of the principal components of resistivity and clay-fraction values. Under the assumption that the units have uniform hydrological properties, the units constitute the hydrostratigraphy for a groundwater model. Only aquifer structures are obtained from geophysical...... and lithological data, while the estimation of the hydrological properties of the units is inversely derived from the groundwater model and hydrological data. A synthetic analysis was performed to investigate the principles underlying the clustering approach using three petrophysical relationships between...

  13. The groundwater regime of the Harwell region

    International Nuclear Information System (INIS)

    Alexander, J.

    1983-12-01

    A regional hydrogeological assessment has been undertaken in the Harwell area utilizing currently available geological information and water level data. Since the dissolution and transport of any disposed waste would be controlled by the rate and direction of groundwater movement through a potential repository, a detailed knowledge of regional and local hydrogeology is essential. This study is based on the tenet that very slow groundwater movement, through a sequence of clay lithologies, is measurable at widely separated points within intervening high permeability systems. The analysis of available data from high permeability units within a regional groundwater flow-system provides a general flow model which takes into account inter-lithology water movement in general and vertical water movement across low permeability formations in particular. Groundwater contour maps have been constructed for the Chalk, Upper Greensand, Corallian and Great Oolite lithologies. These show that in the Cretaceous and Jurassic formations of the Harwell area, groundwater movement is predominantly in the horizontal direction with a smaller proportion of vertical flow taking place between adjacent formations. The potential for vertical movement, both upwards and downwards through intervening low permeability clay lithologies is evident. The results are discussed. (author)

  14. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  15. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  16. Basic characteristic test of buffer/backfill material under Horonobe groundwater condition

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji

    2005-02-01

    By the second progress report (H12) on research and development for the geological disposal of high-level radioactive waste (HLW) in Japan, Japan Nuclear Cycle Development Institute (JNC) extended the data base of basic properties of compacted bentonite which were mainly obtained by using distilled water as test fluid. This report presents influence of Horonobe groundwater on the basic properties of buffer and backfill material. The Horonobe groundwater is a type of saline groundwater. The groundwater was sampled at GL-300 m or deeper by using bore hole HDB-6 of the underground laboratory of Horonobe site. In addition, basic properties are also obtained by using distilled water, synthetic seawater, and NaCl solution. Experimental results are as follows; 1) Swelling characteristics, hydraulic characteristics and mechanical characteristics of the buffer material and backfill material decrease by the influence of saline water. The relationship between effective clay density and swelling stress is described by the following equation. σ = exp (2.5786ρ b 3 - 12.238ρ b 2 + 21.818ρ b - 14.035) where σ is swelling stress [MPa], ρ b is effective clay density [Mg/m 3 ]. The relationship between effective clay density and intrinsic permeability is described by the following equation. κ = exp (-41.466 + 4.316ρ b - 4.069ρ b 2 ) where κ is intrinsic permeability [m 2 ], ρ b is effective clay density [Mg/m 3 ]. The relationship between effective clay density and unconfined compressive strength is described by the following equation. qu = 1.4 x 10 -4 exp (5.637ρ b ) where qu is unconfined compressive strength [MPa], ρ b is effective clay density [Mg/m 3 ]. 2) Saline water doesn't influence the thermal characteristic of the buffer material. The thermal conductivity and specific heat are derived by using the relationship that was obtained so far. (author)

  17. SIGNS The sandwich sign

    African Journals Online (AJOL)

    The sandwich sign is demonstrated on cross-sectional imaging, commonly on CT or ultrasound. It refers to homogeneous soft- tissue masses representing mesenteric lymphadenopathy as the two halves of a sandwich bun, encasing the mesenteric fat and tubular mesenteric vessels that constitute the 'sandwich filling' (Figs ...

  18. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  19. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská

    2006-12-01

    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  20. The local groundwater regime at the Harwell research site

    International Nuclear Information System (INIS)

    Alexander, J.; Holmes, D.C.

    1983-01-01

    Three deep and two shallow boreholes have been drilled at the Harwell Research Site as part of a national research programme into the feasibility of disposal of low and intermediate level radioactive wastes to geologic formations. Various hydrogeological and geochemical techniques have been employed in these boreholes, each of which samples a separate formation of interest, to determine the pattern of groundwater movement under the research site. Significant vertical hydraulic gradients have been identified which produce vertically downwards groundwater movement from the surface to a depth of 200 m (Corallian aquifer). Groundwater moves vertically upwards, from greater depths, through the Oxford Clay to the Corallian aquifer. However,the apparently very low hydraulic conductivity of the Oxford Clay results in extremely low flow velocities and long transit times. Groundwaters from the Corallian formation possess higher salinities than those of the characteristic regional groundwaters, and preliminary isotopic data suggest that some groundwater mixing with connate waters has occurred. The chemical nature of groundwaters from the Great Oolite Group, suggest that contamination due to the drilling and completion procedure has taken place. Due to the low hydraulic conductivity in this formation clearance of contaminants will require the implementation of a long-term abstraction programme. (author)

  1. Groundwater Hydrochemical Zoning in Inland Plains and its Genetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Liting Xing

    2018-06-01

    Full Text Available Pore water in inland plain areas, generally having poor water quality, contain complex hydrochemical properties. In order to examine groundwater chemical composition formation characteristics, groundwater in the Jiyang area of Lubei Plain was studied using stratified monitoring of drilling, analysis of water level and water quality, isotope analysis, ion ratio coefficient and isothermal adsorption experiments, hydrochemical characteristics, and analysis of variations in different shallow depths. Results show that: (1 Numerous hydrochemistry types are present in the diving. Along with the direction of groundwater flow, total dissolved solids (TDS of diving in the study area generally increases and the hydrochemical type changes from the HCO3 type to the HCO3·SO4 type, Cl·HCO3 type and the Cl·SO4 type. (2 Shallow brackish water and freshwater in the horizontal direction are alternately distributed, and shallow brackish water is distributed in the area between old channels, showing sporadic spots or bands, whose hydrochemistry type is predominantly Cl·SO4-Na·Mg·Ca. (3 Affected by the sedimentary environment, hydrodynamic conditions and other factors; diving, middle brackish water and deep freshwater are vertically deposited in the study area. The dynamics of middle brackish water quality are stable due to the sedimentary environment and clay deposits. The hydrochemistry types of middle brackish water are mainly Cl·SO4-Mg·Na and SO4·Cl-Na·Mg, while the deep confined water is dominated by HCO3. (4 The optimal adsorption isotherms of Na+, Ca2+ and Mg2+ in groundwater from clay, with a thickness raging from 6–112 m, conformed to the Henry equation and the Langmuir equation. The retardation of Na+, Ca2+ and Mg2+ in groundwater differed with differing depths of the clay deposit. The trend of change in retardation strength correlates strongly with the TDS of groundwater. Groundwater in the inland plain area is affected by complicated

  2. Modelling tools for assessing bioremediation performance and risk of chlorinated solvents in clay tills

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia

    design are challenging. This thesis presents the development and application of analytical and numerical models to improve our understanding of transport and degradation processes in clay tills, which is crucial for assessing bioremediation performance and risk to groundwater. A set of modelling tools...... to groundwater and bioremediation performance in low-permeability media....

  3. Performance of full scale enhanced reductive dechlorination in clay till

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Jacobsen, Carsten S.

    2013-01-01

    At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long-term groundwater monitoring, and after 4...

  4. Influence of Iltization on the Ion-sorbing Capacity of Smectitic Clay

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2008-01-01

    A high-level waste(HLW) repository uses smectitic clay as a buffer material to inhibit the penetration of groundwater and to retard the release of radionuclides from the radioactive wastes to the surrounding environment. However, when the smectitic clay is exposed to an elevated temperature due to radioactive decay heat and geochemical conditions for a long time, its physicochemical and mineralogical properties may be degradated and thus lose its barrier functions. It has been known in literature that the degradation of these properties of the smectitic clay occurs by a illitization in which the smectite transforms into illite. Therefore, an understanding of the illitization is essential to evaluate the long-term barrier performance of smectitic clay for the buffer of a HLW repository. This paper will carry out hydrothermal reaction tests with domestic smectitic clay which will be favorably considered for the buffer material of a Korean HLW repository, and also investigate the influence of illization on the ion-sorbing capacity of the smectitic clay

  5. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). The hydrogeological program at SCK.CEN supports the long-term performance assessments of the geological disposal of radioactive waste by performing a phenomenological research of the aquifer systems surrounding the studied disposal system. One of the important components of this programme is the regional hydrogeological modelling. The regional hydrogeology is studied using two main models - the steady state Neogene aquifer model (NAM) and the transient deep aquifer pumping model (DAP), developed to characterize and quantify the regional groundwater flow in, respectively, the aquifers lying above the Boom Clay in the Nete catchment area (NAM), and the aquifers lying below the Boom Clay in the Campine area (DAP). This paper describes the most recent update of the DAP model. The DAP model represents the confined part of the groundwater system located stratigraphically below the Boom Clay. This includes the parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer buried under the Boom Clay. Due to the considerable pumping from these aquifers in combination with a limited recharge, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. In the DAP model, the shallow aquifer system overlying the Boom Clay is replaced by fixed head boundaries: this aquifer system is dominated by close-to-surface hydrological processes and the heads fluctuate seasonally without any apparent long-term trend. In the horizontal direction, the model extends to the south as far as the outcrops of the major aquitards: the Maldegem Formation confining the Ledo

  6. Palaeo and present-day fluid flow through Eocene clay layers in Flanders. Hydrogeological and hydrogeochemical evidence for the present-day existence of preferential pathways in the Bartonian clay

    International Nuclear Information System (INIS)

    Walraevens, K.; Cardenal, J.; De Smet, D.; De Breuck, W.

    1998-01-01

    The semi-confined Ledo-Paniselian (Eocene) aquifer in Flanders is recharged in the areas with a higher topography, where it is covered by the Bartonian clay. Recharge is thus occurring by downward groundwater flow through the Bartonian clay. This is demonstrated by piezometric levels. Flow modeling in the recharge area of Ursel, where many piezometers provide an excellent knowledge of the hydraulic heads, has indicated a vertical hydraulic conductivity for the Bartonian clay of 10 -9 m/s. However, laboratory measurements often provide values which are at least one order of magnitude lower. This discrepancy can be ascribed to the presence of preferential pathways in the clay, through which the flow is preferentially taking place. The geochemical/mixing cell model PHREEOM has been used to simulate the freshening of the Bartonian clay and the subsequent recharge to the underlying aquifer. (author)

  7. Kaolinitic clay-based grouting demonstration

    International Nuclear Information System (INIS)

    McCloskey, A.L.; Barry, C.J.; Wilmoth, R.

    1997-01-01

    An innovative Kaolinitic Clay-Based Grouting Demonstration was performed under the Mine Waste Technology Program (MWTP), funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by the EPA and the U.S. Department of Energy (DOE). The objective of the technology was to demonstrate the effectiveness of kaolinitic clay-based grouting in reducing/eliminating infiltration of surface and shallow groundwater through fractured bedrock into underground mine workings. In 1993, the Mike Horse Mine was selected as a demonstration site for the field implementation and evaluation of the grouting technology. The mine portal discharge ranged between 114 to 454 liters per minute (30 to 120 gpm) of water containing iron, zinc, manganese, and cadmium at levels exceeding the National Drinking Water Maximum Contaminant Levels. The grout formulation was designed by the developer Morrison Knudsen Corporation/Spetstamponazhgeologia (MK/STG), in May 1994. Grout injection was performed by Hayward Baker, Inc. under the directive of MSE Technology Applications, Inc. (MSE-TA) during fall of 1994. The grout was injected into directionally-drilled grout holes to form a grout curtain at the project site. Post grout observations suggest the grout was successful in reducing the infiltration of the surface and shallow groundwater from entering the underground mine workings. The proceeding paper describes the demonstration and technology used to form the subsurface barrier in the fracture system

  8. Nitrate concentrations in drainage water in marine clay areas : exploratory research of the causes of increased nitrate concentrations

    NARCIS (Netherlands)

    Boekel, van E.M.P.M.; Roelsma, J.; Massop, H.T.L.; Hendriks, R.F.A.; Goedhart, P.W.; Jansen, P.C.

    2013-01-01

    The nitrate concentrations measured in drainage water and groundwater at LMM farms (farms participating in the National Manure Policy Effects Measurement Network (LLM)) in marine clay areas have decreased with 50% since the mid-nineties. The nitrate concentrations in marine clay areas are on average

  9. Reactive transport modelling of groundwater-bentonite interaction: Effects on exchangeable cations in an alternative buffer material in-situ test

    International Nuclear Information System (INIS)

    Wallis, I.; Idiart, A.; Dohrmann, R.; Post, V.

    2016-01-01

    Bentonite clays are regarded a promising material for engineered barrier systems for the encapsulation of hazardous wastes because of their low hydraulic permeability, swelling potential, ability to self-seal cracks in contact with water and their high sorption potential. SKB (Svensk Kärnbränslehantering) has been conducting long term field scale experiments on potential buffer materials at the Äspö Hard Rock Laboratory for radioactive waste disposal in Sweden. The Alternative Buffer Material (ABM) test examined buffer properties of eleven different clay materials under the influence of groundwater and at temperatures reaching up to 135 °C, replicating the heat pulse after waste emplacement. Clay materials were emplaced into holes drilled in fractured granite as compacted rings around a central heater element and subsequently brought into contact with groundwater for 880 days. After test termination, and against expectations, all clay materials were found to have undergone large scale alterations in the cation exchange population. A reactive-diffusive transport model was developed to aid the interpretation of the observed large-scale porewater chemistry changes. It was found, that the interaction between Äspö groundwater and the clay blocks, together with the geochemical nature of the clays (Na vs Ca-dominated clays) exerted the strongest control on the porewater chemistry. A pronounced exchange of Na by Ca was observed and simulated, driven by large Ca concentrations in the contacting groundwater. The model was able to link the porewater alterations to the fracture network in the deposition hole. The speed of alterations was in turn linked to high diffusion coefficients under the applied temperatures, which facilitated the propagation of hydrochemical changes into the clays. With diffusion coefficients increased by up to one order of magnitude at the maximum temperatures, the study was able to demonstrate the importance of considering temperature

  10. Innovative Uses of Organo-philic Clays for Remediation of Soils, Sediments and Groundwater

    International Nuclear Information System (INIS)

    Bullock, A.M.

    2009-01-01

    PCBs and similar low-solubility organic compounds continue to offer significant challenges in terrestrial and sediment remediation applications. While selective media such as granular activated carbon (GAC) have proven to be successful at absorbing soluble organics, these media may have reduced performance due to blinding in the presence of high molecular weight organic matter. An alternative technology addresses this problem with a clay-based adsorption media, which effectively and efficiently stabilizes low-solubility organic matter. Organoclay TM reactive media utilizes granular sodium bentonite, which has been chemically modified to attract organic matter without absorbing water. The unique platelet structure of bentonite clays provides tremendous surface area and the capacity of the media to absorb over 60 percent of its own weight in organic matter. Because of these properties, organo-clays allow for several cost-effective in-situ remediation techniques, such as: - Flow-through filtration for removal of organic matter from aqueous solutions. Organo-clay can be utilized as a fixed-bed media in a column operation. This specialty media offers a high efficient alternative to Granular Activated Carbon (GAC) when applied as a flow through media to remove oil, PCB and other low soluble organic contaminates from water. - Placement in a Reactive Core Mat TM . Organo-clay may be encapsulated into carrier textiles which are adhered together to create a thin reactive layer with high strength and even distribution of the reactive media. This type of delivery mechanism can be successfully applied in a sub aqueous or terrestrial environment for sediment capping applications - Permeable reactive barriers. Organo-clay can deliver high sorption capacity, high efficiency, and excellent hydraulic conductivity as a passive reactive media in these applications. (authors)

  11. Remediation in clay using two-phase vacuum extraction

    International Nuclear Information System (INIS)

    Lindhult, E.C.; Tarsavage, J.M.; Foukaris, K.A.

    1995-01-01

    Soil and groundwater contamination in a tight clay usually requires costly and/or time consuming remediation, due to the inherently low hydraulic conductivity of the soil. However, Dames and Moore is successfully using an innovative, cost-effective two-phase vacuum extraction (VE) technology at a former gasoline service station. Dramatic decreases in BTEX concentrations in onsite and downgradient monitoring wells are apparent

  12. Clay colloid formation and release from MX-80 buffer

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Flowing groundwater can tear off clay colloids from buffer clay that has penetrated into fractures and transport them and bring sorbed radionuclides up to the biosphere. The colloids are 2-50 μm particle aggregates that are liberated from expanded, softened buffer if the water flow rate in the fractures exceeds a few centimeters per second. Except for the first few months or years after application of the buffer in the deposition holes the flow rate will not be as high as that. The aperture of the fractures will not hinder transport of colloids but most of the fractures contain clastic fillings, usually chlorite, that attract and immobilize them. This condition and the flow rate criterion combine to reduce the chance of radionuclide-bearing clay colloids to reach the biosphere to practically zero except for certain cases that need to be considered

  13. The UK contribution to the CEC PACOMA Project: far-field modelling of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Winters, K.H.; Jackson, C.P.; Clark, C.M.

    1990-06-01

    This document describes a study of groundwater flow and radionuclide migration in the far field of a hypothetical repository located in the clay beneath Harwell Laboratory. The work forms part of the assessment of the radiological impact of disposal in a clay formation, carried out as the UK contribution to the CEC PACOMA project. (Author)

  14. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  15. The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone

    International Nuclear Information System (INIS)

    Lege, T.; Shao, H.

    1998-01-01

    A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)

  16. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  17. Performance of Mn 2+ -modified bentonite clay for the removal of ...

    African Journals Online (AJOL)

    Alow-cost adsorbent produced from Mn2+-modified bentonite clay was evaluated for groundwater defluoridation. Batch experiments were used to evaluate the effect of contact time at various adsorbent dosages, adsorption isotherms and the effect of pH on fluoride removal. The results showed that the optimum F– uptake ...

  18. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  19. Field-scale transport of water and bromide in a cracking clay soil

    NARCIS (Netherlands)

    Hendriks, R.F.A.; Hamminga, W.; Oostindie, K.; Bronswijk, J.J.B.

    1995-01-01

    The transport of a bromide tracer was studied in a cracking heavy clay soil. The soil was sampled six times and the groundwater and drain discharge were sampled frequently. Samples were analysed for bromide content. Solutes were transported in three domains: macropores, such as large continuous

  20. Hydrochemistry of the groundwater flow systems in the Harwell region

    International Nuclear Information System (INIS)

    Alexander, J.

    1984-12-01

    A comprehensive range of geochemical and isotopic parameters were analysed in the groundwater samples taken from the high permeability formations in the Harwell region. These analyses were undertaken as part of a hydro-chemical validation of groundwater circulation patterns derived from potentiometric data. Hydro-chemical investigations were concentrated upon the Corallian and Great Oolite formations since these respectively overlie and underlie the Oxford Clay. (author)

  1. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia

    Science.gov (United States)

    Uhlemann, Sebastian; Kuras, Oliver; Richards, Laura A.; Naden, Emma; Polya, David A.

    2017-10-01

    Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface - groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond.

  2. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...

  3. Groundwater age and lifetime expectancy modelling approach for site characterization and performance assessment of radwaste repository in clay formation

    International Nuclear Information System (INIS)

    Cornaton, F.; Perrochet, P.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository of high level and long lived radwaste requires an understanding of the far field and near field groundwater flow and of the transport properties, at actual and future climatic conditions. Andra, French National radioactive waste management Agency, is developing since last 15 years an integrated multi-scale hydrogeological model of whole Paris basin of 200000 km 2 of area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse/Haute Marne clay site of about 250 km 2 of area in the eastern part of the Paris basin that was chosen for the emplacement of a repository. The Callovo-Oxfordian host formation is a clay layer characterized by a very low permeability of the order 10 -14 m/s, a mean thickness of 130 m at about 500 m depth, and is embedded by calcareous aquifer formations (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petro-physic modeling of the Paris basin and is accounting for the structural, geological, hydrogeological and geochemical data in an integrated way. This model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The finite element flow and transport simulator Ground Water (GW) is used to solve for groundwater flow at steady-state in a 3 Million elements model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 3 meters at the local scale. The calibrated reference model includes transmissive major faults as well as structures acting as barrier to flow. Groundwater age (the time elapsed since recharge) and lifetime expectancy (the time remaining prior to exit) are

  4. Chemical processes at the surface of various clays on acid-base titration

    International Nuclear Information System (INIS)

    Park, K. K.; Park, Y. S.; Jung, E. C.

    2010-01-01

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO 3/2 OH and octahedral Al(OH) 6/2 sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  5. Chemical processes at the surface of various clays on acid-base titration

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. K.; Park, Y. S.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO{sub 3/2}OH and octahedral Al(OH){sub 6/2} sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  6. Field studies about radionuclide migration natural analogues and faults in clays

    International Nuclear Information System (INIS)

    Williams, G.M.; Hooker, P.J.; Brightman, M.A.

    1990-01-01

    This report puts together final reports of CEC contracts about the following topics: in situ determination of the effects of organics on the mobility of radionuclides in controlled conditions of groundwater flow (Drigg site); natural analogue studies of radionuclide migration (Loch Lomond, Broubster, Needle's Eye); faults in clays: their detection and characterization (Down Ampney site)

  7. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India.

    Science.gov (United States)

    Janardhana Raju, Nandimandalam; Shukla, U K; Ram, Prahlad

    2011-02-01

    The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na>Ca>Mg>K and HCO3>Cl>SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium-bicarbonate type. The HCO3/(HCO3+SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45 mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.

  8. New "sandwich" structures conformed from three dimensional

    Directory of Open Access Journals (Sweden)

    Alba, Juan J.

    1996-03-01

    Full Text Available Poor interlaminar properties as well as poor-skin-to-core adhesion properties are very often the common existing problems we find when designing with "sandwich" structures. A new type of 3D-fabric "sandwich" structure is being developed in order to avoid these problems. Although the manufacturing process is very simple, a very complex "sandwich" structure is obtained as a result of the complexity of the 3D-fabric used. This 3D-fabric is a 3D woven glass fabric produced on velvet weaving machines with glass yarns. It is an integrally woven "sandwich" laminate for all kinds of composite products. The strength of the vertical fibers makes, that also after impregnation with a resin matrix, the "sandwich" structure is maintained. The result is a laminate with high strength and stiffness and low weight. On each side of this "sandwich" laminate additional reinforcement materials can be laminated and a synthetic foam can be injected in the hollow structure. This will allow to establish the mechanical properties of a finished product.

    Las pobres propiedades, tanto interlaminares como de adhesión entre piel y núcleo, constituyen uno de los grandes problemas cuando se diseñan estructuras utilizando paneles tipo "sandwich". Un nuevo tipo de panel "sandwich", configurado a partir de tejidos tridimensionales, está siendo desarrollado en la actualidad con el objetivo de eliminar esos problemas. Aunque el proceso de fabricación es muy simple, el panel "sandwich" obtenido es de estructura compleja, como resultado de la complejidad del tejido tridimensional utilizado. Este tejido tridimensional (3D es un tejido de fibra de vidrio producido en máquinas de tejer especializadas. La resistencia de las fibras verticales hace que, después de la impregnación con una resina, se mantenga la configuración tipo "sandwich". El resultado es un laminado de alta resistencia, gran rigidez y bajo peso. Sobre cada uno de los lados del panel "sandwich" se pueden

  9. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area.

    Science.gov (United States)

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca+Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO 3 -Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO 3 and Mg-Na-HCO 3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies >95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. >40years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  11. Sound transmission loss of composite sandwich panels

    Science.gov (United States)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  12. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.

    Science.gov (United States)

    Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R

    2005-01-01

    Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.

  13. Colloid and phosphorus leaching from undisturbed soil cores sampled along a natural clay gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann

    2011-01-01

    correlated to the accumulated outflow and was described as a diffusion controlled process, using ¾(accumulated outflow). The mass of leached particles was positively correlated to the clay content as well as to water-dispersible colloids. Particulate phosphorus (P) was linearly correlated to concentration......The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...

  14. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  15. Simulation of field scale water flow and bromide transport in a cracked clay soil

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two-domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute

  16. Transport and leaching of technetium and uranium from spent UO2 fuel in compacted bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Albinsson, Y.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    2000-01-01

    The transport properties of Tc and U in compacted bentonite clay and the leaching behaviour of these elements from spent nuclear fuel in the same system were investigated. Pieces of spent UO 2 fuel were embedded in bentonite clay (ρ d =2100 kg/m 3 ). A low saline synthetic groundwater was used as the aqueous phase. After certain experimental times, the bentonite clay was cut into 0.1 mm thick slices, which were analysed for their content of Tc and U. Measurements were made using inductively coupled plasma mass spectrometry. Tc analysis comprised chemical separation. The analysis of U was done by means of detecting 236 U, since the natural content of U in bentonite clay made it impossible to distinguish between U originating from the fuel and the clay. The influence of different additives mixed into the clay was studied. The results showed an influence on both transport and leaching behaviour when metallic Fe was mixed into the clay. This indicates that Tc and U are reduced to their lower oxidation states as a result of this additive

  17. Groundwater sampling with well-points

    International Nuclear Information System (INIS)

    Laubacher, R.C.; Bailey, W.M.

    1992-01-01

    This paper reports that BP Oil Company and Engineering-Science (ES) conducted a groundwater investigation at a BP Oil Distribution facility in the coastal plain of south central Alabama. The predominant lithologies include unconsolidated Quaternary-aged gravels, sands, silts and clay. Wellpoints were used to determine the vertical and horizontal extent of volatile hydrocarbons in the water table aquifer. To determine the vertical extent of contaminant migration, the hollow-stem augers were advanced approximately 10 feet into the aquifer near a suspected source. The drill stem and bit were removed very slowly to prevent sand heaving. The well-point was again driven ahead of the augers and four volumes (18 liters) of groundwater were purged. A sample was collected and the headspace vapor was analyzed as before. Groundwater from a total of seven borings was analyzed using these techniques. Permanent monitoring wells were installed at four boring locations which had volatile concentrations less than 1 part per million. Later groundwater sampling and laboratory analysis confirmed the wells had been installed near or beyond both the horizontal and vertical plume boundaries

  18. Changes in the Expandability, Layer charge, and CEC of Smectitic Clay due to a Illitization

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2007-01-01

    In a high-level waste(HLW) repository, the major fucntions of the smectitic clay for use as a buffer material are to inhibit the penetration of groundwater and to retard the release of radionuclides from the radioactive wastes to the surrounding environment. However, when the smectite clay is exposed to an elevated temperature due to radioactive decay heat and geochemical conditions for a long time, its physicochemical and mineralogical properties may be degradated and thus lose its barrier functions. It has been known in literature that the degradation of these properties of the smectitic clay occurs by a illitization in which the smectite transforms into illite. Therefore, an understanding of the illitization is essential to evaluate the long-term barrier performance of smectitic clay for the buffer of a HLW repository. This paper will carry out hydrothermal reaction tests with domestic smectitic clay which will be favorably considered for the buffer material of a Korean HLW repository, and investigate changes in the expandibility, layer charge and cation exchange capacity(CEC) of the smectitic clay due to a illitization

  19. Sound-proof Sandwich Panel Design via Metamaterial Concept

    Science.gov (United States)

    Sui, Ni

    Sandwich panels consisting of hollow core cells and two face-sheets bonded on both sides have been widely used as lightweight and strong structures in practical engineering applications, but with poor acoustic performance especially at low frequency regime. Basic sound-proof methods for the sandwich panel design are spontaneously categorized as sound insulation and sound absorption. Motivated by metamaterial concept, this dissertation presents two sandwich panel designs without sacrificing weight or size penalty: A lightweight yet sound-proof honeycomb acoustic metamateiral can be used as core material for honeycomb sandwich panels to block sound and break the mass law to realize minimum sound transmission; the other sandwich panel design is based on coupled Helmholtz resonators and can achieve perfect sound absorption without sound reflection. Based on the honeycomb sandwich panel, the mechanical properties of the honeycomb core structure were studied first. By incorporating a thin membrane on top of each honeycomb core, the traditional honeycomb core turns into honeycomb acoustic metamaterial. The basic theory for such kind of membrane-type acoustic metamaterial is demonstrated by a lumped model with infinite periodic oscillator system, and the negative dynamic effective mass density for clamped membrane is analyzed under the membrane resonance condition. Evanescent wave mode caused by negative dynamic effective mass density and impedance methods are utilized to interpret the physical phenomenon of honeycomb acoustic metamaterials at resonance. The honeycomb metamaterials can extraordinarily improve low-frequency sound transmission loss below the first resonant frequency of the membrane. The property of the membrane, the tension of the membrane and the numbers of attached membranes can impact the sound transmission loss, which are observed by numerical simulations and validated by experiments. The sandwich panel which incorporates the honeycomb metamateiral as

  20. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  1. Geoelectrical mapping and groundwater contamination

    Science.gov (United States)

    Blum, Rainer

    Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.

  2. Impact of colloids on uranium transport in groundwater applied to the Aube radioactive waste disposal

    International Nuclear Information System (INIS)

    Le Cointe, Pierre

    2011-01-01

    The presence of colloids, known vectors of radionuclides and chemical contaminants in groundwater, has been identified in groundwater at the Aube radioactive waste disposal in 2004. This thesis aims to characterize these colloids, and to determine their potential impact in the transport of Uranium, chosen as the element of interest for this study. The identified 60 nm in diameter clay colloids and the fulvic and humic acids can move in Aptian groundwater, as indirectly evidenced by column experiments. A feasibility study of a in situ test has been done through a transport modeling to confirm the colloid mobility at the field scale. Using the conditions of the study, the clay colloids do not influence Uranium transport. Even with the greatest concentration assumed on site, they have a very limited impact on the mobilization of Uranium, in the pH range measured on site. On the contrary, the organic colloids, despite their low concentration, can facilitate Uranium transport, the uranyl - organic acid chemical bond being exceptionally strong. Therefore their low concentration in groundwater makes their impact on uranium mobility equally insignificant. (author)

  3. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  4. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  5. Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study

    Science.gov (United States)

    Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.

    2001-05-01

    Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As

  6. R and D programme on radioactive waste disposal into a clay formation

    International Nuclear Information System (INIS)

    Heremans, R.

    1984-01-01

    The present report presents the main results obtained during the period 1980-82 in the Belgian R and D work on geological disposal of conditioned radioactive waste in the boom clay beneath the Mol site. Multiple research projects have been continued: both experimental research in the field and in the laboratory and theoretical studies. A regional hydrological observation network has been set up which permitted an assessment of the hydrogeological system over- and underlying the Boom clay as well as the modelling of groundwater flow in the area. Clay samples collected during the drilling campaigns were submitted to a number of analyses with a view to chemical characterization and determination of geotechnical properties. Various studies were performed concerning the migration of radionuclides through the clay and an analytical computer model was developed. The corrosion behaviour of various candidate materials for HLW containers and repository linings were tested under different conditions possibly encountered in the clay formation. Furthermore, various backfill and sealing materials and mixtures have been selected and are being tested. Finally, the activities deployed for the safety analysis were continued, mainly concentrated upon two approaches: the probabilistic risk assessment and the performance assessment of a mined repository under normal evolution conditions

  7. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  8. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  9. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  10. Structural and failure mechanics of sandwich composites

    CERN Document Server

    Carlsson, LA; Carlsson, Leif A

    2011-01-01

    Focusing on important deformation and failure modes of sandwich structures, this volume describes the mechanics behind fracture processes. The text also reviews test methods developed for the cr, structural integrity, and failure mechanisms of sandwich structures.

  11. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  12. Predicting safe sandwich production

    DEFF Research Database (Denmark)

    Birk, Tina; Duan, Zhi; Møller, Cleide Oliveira de Almeida

    2014-01-01

    Time and temperature control is crucial to avoid growth of pathogens during production and serving of cold ready-to-eat meals. The Danish guidelines state that chilled foods, such as sandwiches, should not be outside the cold chain for more than 3 hours including the time for preparation...... and serving. However, Danish sandwich producing companies find it challenging to comply with this and have expressed a need for more flexibility. The Danish guidelines do allow for a prolongation of the acceptable time outside the cold chain, if the safety of the specific production can be documented...

  13. Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test

    Science.gov (United States)

    Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei

    2018-05-01

    To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.

  14. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  15. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  16. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  17. Hydrogeological investigations in the Harwell region: the use of environmental isotopes, inert gas contents, and the uranium decay series

    International Nuclear Information System (INIS)

    Alexander, J.; Andrews, J.N.

    1984-12-01

    A comprehensive range of environmental isotopes, radioelement and dissolved gas contents have been measured in groundwaters from the high permeability formations of the Harwell area. These analyses were undertaken as part of a hydrochemical validation of groundwater circulation patterns derived from potentiometric data. These investigations have focused upon the Corallian and Great Oolite formations since these sandwich the Oxford Clay. Geochemical, isotopic, radioelement and inert gas studies have demonstrated consistent trends which substantiate fluid migration patterns derived from hydraulic considerations. Groundwaters at downdip localities in both the Corallian and Great Oolite formations are the oldest waters sampled from the region. Variations in trends in parameters can be attributed to cross-formational flow and subsequent mixing of groundwaters. Individually these techniques can only provide limited information, but the combination of methods used have provided corroborative evidence concerning the direction of fluid circulation in the Harwell region. (author)

  18. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  19. Migration of uranium in the presence of clay colloids in a sandy aquifer

    International Nuclear Information System (INIS)

    Le Cointe, P.; Grambow, B.; Piscitelli, A.; Montavon, G.; Van der Lee, J.; Giffaut, E.; Schneider, V.

    2010-01-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO 2 being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  20. Migration of uranium in the presence of clay colloids in a sandy aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Le Cointe, P. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Centre de Geosciences, Ecole des Mines de Paris, 35 rue St-Honore, 77305 Fontainebleau Cedex (France); ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France); Grambow, B.; Piscitelli, A.; Montavon, G. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Van der Lee, J. [EDF R ete D, Site des Renardieres, Route de Sens - Ecuelles, 77250 Moret sur Loing (France); Giffaut, E.; Schneider, V. [ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France)

    2010-07-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO{sub 2} being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  1. Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2001-03-01

    Natural smectitic clays for backfilling tunnels and shafts in deep repositories may be an alternative to mixtures of bentonite and ballast. Very salt groundwater is known to raise the hydraulic conductivity and reduce the expandability of clay materials in general and of bentonite/ballast mixtures in particular and the present study aimed at determining the impact of salt water on the major physical properties of natural smectitic clays, represented by the German Friedland Ton. The investigation showed that the compactability of the investigated clay is not significantly affected by the water content in contrast to bentonite/ballast fills, and that the conductivity and expandability are acceptable even at salt contents of up to 20 % if the bulk density at saturation is slightly higher than 2000 kg/m{sup 3} . For salt contents up to 3. 5 % the corresponding density is around 1900 kg/m{sup 3}. In general, the investigated clay offers better physical properties than mixtures of bentonite/ballast mixtures with up to 30 % bentonite content.

  2. Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2001-03-01

    Natural smectitic clays for backfilling tunnels and shafts in deep repositories may be an alternative to mixtures of bentonite and ballast. Very salt groundwater is known to raise the hydraulic conductivity and reduce the expandability of clay materials in general and of bentonite/ballast mixtures in particular and the present study aimed at determining the impact of salt water on the major physical properties of natural smectitic clays, represented by the German Friedland Ton. The investigation showed that the compactability of the investigated clay is not significantly affected by the water content in contrast to bentonite/ballast fills, and that the conductivity and expandability are acceptable even at salt contents of up to 20 % if the bulk density at saturation is slightly higher than 2000 kg/m 3 . For salt contents up to 3. 5 % the corresponding density is around 1900 kg/m 3 . In general, the investigated clay offers better physical properties than mixtures of bentonite/ballast mixtures with up to 30 % bentonite content

  3. Development of Aircraft Sandwich Parts

    Directory of Open Access Journals (Sweden)

    J. Křena

    2000-01-01

    Full Text Available The presented paper shows the design and development process of sandwich parts. A spoiler plate and a main landing gear door are developed. Sandwich parts are made of C/E composite facings and a foam core. FE models have been used for optimization of structures. Emphasis has been placed on deformations of parts under a few load cases. Experimental tests have been used for a verification of structure parts loaded by concentrated forces.

  4. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    International Nuclear Information System (INIS)

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-01-01

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10 -8 to 10 -1 cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems

  5. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    Science.gov (United States)

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  6. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  7. Mechanisms associated with the high adsorption of dibenzo-p-dioxin from water by smectite clays.

    Science.gov (United States)

    Liu, Cun; Li, Hui; Teppen, Brian J; Johnston, Cliff T; Boyd, Stephen A

    2009-04-15

    Clay minerals may be an important unrecognized sorptive phase for dioxins in soils and clay deposits. Smectites, especially Cs-saponite, effectively adsorbed dibenzo-p-dioxin (DD) from water, reaching 0.8% (wt/wt). Adsorption was promoted by exchangeable cations with low hydration energies, and negative charge in the smectite arising from the tetrahedral siloxane sheets. X-ray diffraction measurements revealed that as DD loading increased to > or =8000 mg/kg the clay basal spacing increased abruptly from 12.3 to 15.2 A demonstrating DD intercalation. The 12.3 A spacing provides an interlayer distance that closely matches the molecular thickness of DD. In this configuration DD is essentially dehydrated as it interacts with the opposing hydrophobic siloxane sheets and with coplanar Cs+ via one of the dioxin ring oxygens. Ab initio calculations suggest that geometrical structures form at higher loadings in which intercalated DD molecules adopt a butterfly geometry sandwiched between dehydrated interlayer Cs+ and the siloxane surface, consistent with the 15.2 A spacing, wherein Cs+ interacts with dioxin ring oxygens and benzene ring pi-electrons. Fourier transformation infrared measurements confirm that adsorbed DD is present in orientations that are not parallel with the interlayer planar siloxane surfaces of smectite.

  8. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  9. The effects of waste leachates on the hydraulic conductivity of natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F

    1989-01-01

    Sanitary land filling remains a viable alternative for disposal of the ever increasing volumes of municipal solid waste. Current landfill design practice requires the presence of a clay barrier (liner) that may consist of either a natural stratum or compacted clay borrow. The liner acts as a hydraulic barrier to control the flux of contaminants from the waste into the adjacent groundwater. In order to do this clay liners are required to have low hydraulic conductivity, k (typically 10{sup {minus}8} cm/s) that shall not increase during exposure to waste leachate. This thesis reports the assessment of compatibility between natural clays from Sarnia, Ontario, and various leachates ranging from municipal solid waste leachate to concentrated organic solvents. The studies were performed using specially designed fixed-ring permeameters that allowed controlling confining effective stresses, volume changes in the soil specimen and chemistry of the influent and effluent permeants. The Sarnia clays appeared to be compatible with domestic waste leachate, showing slight reductions in k. Extensive retardation of potassium from the leachate required long testing periods (up to twelve pore volumes) before the soils were deemed to be in chemical equilibrium. Concentrated, water-soluble organics (ethanol and dioxane) increased the hydraulic conductivity of compacted clays by 100 to 1,000-fold, thus destroying their effectiveness as liners. Water-compacted clays appeared remarkably resistant to penetration by concentrated hydrophobic solvents such as cyclohexane. Large hydraulic gradients (up to {approximately}900) were required to produce breakthrough along compaction induced fractures. However, alcohols and surfactants can facilitate the entry of hydrophobic liquids into the double layers causing large increased in k.

  10. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  11. Mobility of U, Np, Pu, Am and Cm from spent nuclear fuel into bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    1998-01-01

    The mobility of uranium, neptunium, plutonium, americium and curium from spent nuclear fuel (UO 2 ) into compacted bentonite was studied. Pieces of spent BWR UO 2 fuel was embedded in a compacted bentonite clay/low saline synthetic groundwater system. After a contact time of six years the bentonite was sliced into 0.1 mm thick slices and analysed for its content of actinides. Radiometric as well as inductively coupled plasma mass spectrometry (ICP-MS) were used for the analysis. The influence on the mobility by the addition of metallic iron, metallic copper and vivianite (Fe(II)-mineral) to the bentonite clay was investigated. The results show a low mobility of actinides in bentonite clay. Except for uranium the mobility of the other actinides could, after six years of diffusion time, only be detected less than 1 mm from the spent fuel. (orig.)

  12. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  13. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  14. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  15. Nonglobal proof of the thin--sandwich conjecture

    International Nuclear Information System (INIS)

    Pereira, C.M.

    1981-01-01

    A gravitational thin--sandwich conjecture was first proposed by Wheeler and coworkers during the period 1962--4. The present paper contains a proof of the nonglobal form of this gravitational thin--sandwich conjecture. The proof (a) applies for arbitrary choices of the spatial metric and its time derivative; and (b) demonstrates the existence on a spacelike three-surface of solutions which satisfy conditions of continuity known to be sufficient to obtain existence and uniqueness of solutions to Einstein's equations off the three-surface and existence and uniqueness of geodesics. Riquier's existence theorem plays an important role in the proof. The relationship of the present results to previous work is discussed. Some global questions associated with the thin--sandwich conjecture are clarified. Some aspects of the relationship of the thin--sandwich conjecture to the problem of the quantization of the gravitational field are noted. Both the vacuum case and the case of a nonviscous fluid are included. The discussion allows for an arbitrary equation of state p = p

  16. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  17. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  18. Characterization of sandwich panels for indentation and impact

    International Nuclear Information System (INIS)

    Shazly, M; Salem, S; Bahei-El-Din, Y

    2013-01-01

    The integrity of sandwich structures which are susceptible to impact may deteriorate significantly due to collapse of the core material and delamination of the face sheets. The integration of a thin polyurethane interlayer between the composite face sheet and foam core is known to protect the core material and substantially improve the resistance to impact. The objective of the present work is to characterize the response of sandwich panels, as well as that of the constituents to impact. In particular, the response of polyurethane and foam samples under a range of quasi-static and dynamic loading rates is determined experimentally. Furthermore, the response of sandwich panels to quasi-static indentation and low velocity impact is examined to quantify the extent of damage and how it is affected by the integration of polyurethane interlayers in their construction. This information is useful in the modelling of high velocity impact of sandwich panels; an effort which is currently underway. The results illustrate the benefit of using polyurethane interlayers within the construction of sandwich panels in enhancing their performance under quasi-static indentation and impact loads

  19. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    Science.gov (United States)

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  20. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf (Clay Technology AB (SE))

    2006-12-15

    The present work includes a coherent study of Wyoming bentonite with respect to the most relevant properties for use in a repository, and a parallel study of other potential buffer and tunnel backfilling materials. The reason for this is twofold; to quantify the effect of mineralogical variations on the various important sealing properties of bentonite, and to verify that there are alternative potential sources of bentonite. The latter is motivated by the fact that Sweden alone plans to deposit at least 6,000 copper canisters which include approximately 130,000 metric tones bentonite buffer material and several times more as tunnel backfill material. Different types of sealing clay materials may also be relevant to use, since the demands on the clay will be different at the various locations in a repository. Alternative sources of bentonite would consequently be valuable in order to secure quality, supply, and price. Important aspects on buffer and tunnel backfilling materials may be summarized as: Original sealing properties. Hazardous substances in any respect. Short-term effects of ground-water chemistry. Long-term stability, i.e. effects of temperature and ground-water chemistry. Availability. Costs. The focus in this study is on the first three items. The long-term stability is indirectly considered in that mineralogical composition is determined. The availability is only considered in such a way that most of the analyzed materials represent huge clay formations, which contain much more material than needed for a repository. The cost aspects have not been included, mainly because the present day price is not relevant due to the time frame of the construction of a repository

  1. Use of clays as liners in solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gerardo [Facultad de Ingenieria, Universidad Anahuac Mexico Norte, Huixquilucan, Edo. de Mexico 52786 (Mexico); Almanza, Rafael [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2009-06-15

    An alternative to synthetic materials for use in solar pond liners is to select clayey soils as hydraulic barriers. This option reduces the cost of construction and the risk of contamination of subsoil and groundwater by hot brines. This paper deals with the physical, chemical and hydraulic properties of different soils tested mainly as compacted clay liners. The underdeveloped nations have the option to use this type of liner, but before doing so several tests are recommended, including those for soil and water composition, permeability, plasticity and X-ray diffraction analysis. In this investigation the following samples are analyzed: native clayey soils with illite, montmorillonite and halloysite, treated and non-treated bentonites in powder and granulated form, a mixture of zeolite and sodium bentonite, and industrial minerals composed largely of halloysite, kaolinite and attapulgite selected clays. Neutral salt aqueous solutions (NaCl and KCl) at different concentrations and under temperature gradients were used for compatibility testing conducted on these specimens. Experiment setup and particular testing procedures are also discussed. (author)

  2. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  3. Geochemical evolution of groundwater in the Western Delta region of River Godavari, Andhra Pradesh, India

    Science.gov (United States)

    Nageswara Rao, P. V.; Appa Rao, S.; Subba Rao, N.

    2017-05-01

    The present study on geochemical evolution of groundwater is taken up to assess the controlling processes of water chemistry in the Western Delta region of the River Godavari (Andhra Pradesh), which is one of the major rice-producing centers in India. The study region is underlain by coarse sand with black clay (buried channels), black silty clay of recent origin (floodplain) and gray/white fine sand of modern beach sediment of marine source (coastal zone), including brown silty clay with fine sand (paleo-beach ridges). Groundwater is mostly brackish and very hard. It is characterized by Na+ > Mg2+ > Ca2+:HCO3 - > Cl- > SO4 2- > NO3 -, Na+ > Mg2+ > Ca2+:Cl- > HCO3 - > SO4 2-, and Mg2+ > Na+ > Ca2+ > or Cl- > or > SO4 2- facies. The ionic relations (Ca2+ + Mg2+:HCO3 -, Ca2+ + Mg2+:SO4 2- + HCO3 -, Na+ + K+:TC, Na+ + K+:Cl- + SO4 2-, HCO3 -:TC, HCO3 -:Ca2+ + Mg2+, Na+:Cl- and Na+:Ca2+) indicate that the rock weathering, mineral dissolution, evaporation and ion exchange are the processes to control the aquifer chemistry. Anthropogenic and marine sources are also the supplementary factors for brackish water quality. These observations are further supported by Gibbs mechanisms that control the water chemistry. Thus, the study suggests that the initial quality of groundwater of geogenic origin has been subsequently modified by the influences of anthropogenic and marine sources.

  4. Groundwater exploration using 2D Resistivity Imaging in Pagoh, Johor, Malaysia

    Science.gov (United States)

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-12-01

    Groundwater is a very important component of water resources in nature. Since the demand of groundwater increases with population growth, it is necessary to explore groundwater more intensively. In Malaysia only less than 2% of the present water used is developed from groundwater. In order to determine the existence of usable groundwater for irrigation and drinking purposes in Pagoh, 2D resistivity imaging technique was utilized. The 2-D resistivity imaging technique utilized the Wenner—Schlumberger electrode array configuration because this array is moderately sensitive to both horizontal and vertical structures. Three lines were surveyed for groundwater delineation purpose The length for each survey lines are 400 meters. At Pagoh, the survey site shows the existence of groundwater. It is indicated by the resistivity values about 10-100 ohm-m. The maximum depth of investigation survey is 77 meters. In general the results show that the subsurface is made up of alluvium and clay and the high resistivity values of more than 1000 ohm-m near the surface is due laterite and the end of the depth can be interpreted as mixture of weathered material or bedrock.

  5. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  6. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  7. The sandwich sign | Mahomed | SA Journal of Radiology

    African Journals Online (AJOL)

    The sandwich sign refers to the sandwiching of mesenteric vessels and fat by enlarged mesenteric nodes on cross-sectional imaging, commonly occurring in lymphoma, but not specific to lymphoma. The sign is radiologically indistinguishable from post-transplant lymphoproliferative disorders. The radiological significance ...

  8. Characterization of infiltration rates from landfills: supporting groundwater modeling efforts.

    Science.gov (United States)

    Moo-Young, Horace; Johnson, Barnes; Johnson, Ann; Carson, David; Lew, Christine; Liu, Salley; Hancocks, Katherine

    2004-01-01

    The purpose of this paper is to review the literature to characterize infiltration rates from landfill liners to support groundwater modeling efforts. The focus of this investigation was on collecting studies that describe the performance of liners 'as installed' or 'as operated'. This document reviews the state of the science and practice on the infiltration rate through compacted clay liner (CCL) for 149 sites and geosynthetic clay liner (GCL) for 1 site. In addition, it reviews the leakage rate through geomembrane (GM) liners and composite liners for 259 sites. For compacted clay liners (CCL), there was limited information on infiltration rates (i.e., only 9 sites reported infiltration rates.), thus, it was difficult to develop a national distribution. The field hydraulic conductivities for natural clay liners range from 1 x 10(-9) cm s(-1) to 1 x 10(-4) cm s(-1), with an average of 6.5 x 10(-8) cm s(-1). There was limited information on geosynthetic clay liner. For composite lined and geomembrane systems, the leak detection system flow rates were utilized. The average monthly flow rate for composite liners ranged from 0-32 lphd for geomembrane and GCL systems to 0 to 1410 lphd for geomembrane and CCL systems. The increased infiltration for the geomembrane and CCL system may be attributed to consolidation water from the clay.

  9. Feasibility study of a SiC sandwich neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian, E-mail: caepwujian@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Lei, Jiarong, E-mail: jiarong_lei@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Jiang, Yong; Chen, Yu; Rong, Ru; Zou, Dehui; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Chen, Gang; Li, Li; Bai, Song [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2013-04-21

    Semiconductor sandwich neutron spectrometers are suitable for in-pile measurements of fast reactor spectra thanks to their compact and relatively simple design. We have assembled and tested a sandwich neutron spectrometer based on 4H-silicon carbide (4H-SiC) Schottky diodes. The SiC diodes detect neutrons via neutron-induced charged particles (tritons and alpha particles) produced by {sup 6}Li(n,α){sup 3}H reaction. {sup 6}LiF neutron converter layers are deposited on the front surface of Schottky diodes by magnetron sputtering. The responses of SiC diodes to charged particles were investigated with an {sup 241}Am alpha source. A sandwich neutron spectrometer was assembled with two SiC Schottky diodes selected based on the charged-particle-response experimental results. The low-energy neutron response of the sandwich spectrometer was measured in the neutron field of the Chinese Fast Burst Reactor-II (CFBR-II). Spectra of alpha particles and tritons from {sup 6}Li(n,α){sup 3}H reaction were obtained with two well-resolved peaks. The energy resolution of the sum spectrum was 8.8%. The primary experimental results confirmed the 4H-SiC sandwich neutron spectrometer's feasibility. -- Highlights: ► Sandwich neutron spectrometer employing 4H-SiC as a detecting material has been developed for the first time. ► {sup 6}LiF neutron converter has been deposited on the surface of 4H-SiC Schottky diode. ► Preliminary testing results obtained with the 4H-SiC sandwich neutron spectrometer are presented.

  10. Optimization of composite sandwich cover panels subjected to compressive loadings

    Science.gov (United States)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  11. Factors affecting the hydraulic performance of infiltration based SUDS in clay

    DEFF Research Database (Denmark)

    Bockhorn, B.; Klint, K.E.S.; Locatelli, Luca

    2017-01-01

    The influence of small scale soil heterogeneity on the hydraulic performance of infiltration based SUDS was studied using field data from a clayey glacial till and groundwater simulations with the integrated surface water and groundwater model HydroGeoSphere. Simulations of homogeneous soil blocks...... with hydraulic properties ranging from sand to clay showed that infiltration capacities vary greatly for the different soil types observed in glacial till. The inclusion of heterogeneities dramatically increased infiltration volume by a factor of 22 for a soil with structural changes above and below the CaC03...... boundary. Infiltration increased further by 8% if tectonic fractures were included and by another 61% if earthworm burrows were added. Comparison of HydroGeoSphere infiltration hydrographs with a simple soakaway model (Roldin et al. 2012) showed similar results for homogenous soils but indicated...

  12. Final report of the rock sealing project - Sealing properties and longevity of smectitic clay grouts

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Hoekmark, H.; Sanden, T.; Boergesson, L.

    1991-12-01

    Na and Ca bentonite clay grouts with densities that make them easily injected into fine fractures have been hydrothermally treated and investigated with respect to the hydraulic conductivity and shear strength. Exposure of the grouts to salt groundwater increased the hydraulic conductivity up to around 10 -5 m/s, which is on the same order of magnitude as the value at complete conversion of soft montmorillonite clay to hydrous mica, i.e. the major ultimate reaction product. Still, even this 'worst scenario' case will not lead to a higher bulk conductivity of the grouted rock than around 10 -10 m/s of rock with a conductivity of 10 -8 m/s before grouting. The rate of such conversion, which is entirely dependent on the potassium content of the groundwater, can be anything from a few hundred years to several thousand years depending primarily on the magnitude of prevailing hydraulic gradients. The shear strength of the grouts, which determines the resistance to piping and erosion, increases with time and temperature. The most critical situation is immediately after injection into the rock, when hydraulic gradients exceeding about 30 may produce piping. (au)

  13. Flow, origin, and age of groundwater in some deep-lying poorly permeable aquifers in the Netherlands; implications for geological waste disposal

    International Nuclear Information System (INIS)

    Glasbergen, P.

    1985-01-01

    Interest in the hydrological properties of deep strata has been increasing rapidly, especially in relation to waste disposal. For the assessment of the geohydrological stability of the host-rock itself as well as of the migration of contaminants leached from a disposal facility, investigation of the hydrological system is obligatory. Three drillings down to and beyond 500 m through very thick clay layers yielded a number of data providing new information about the hydrological system of deep strata in the Netherlands. Clay samples were taken profiles of water quality vs. depth were established, and groundwater present above and below the deep clay strata was subjected to chemical analyses in isotope determinations. Well tests and slug tests were performed to determine the permeability of the underlying aquifers. Hydraulic conductivity was found to range from 10 -7 to 10 -6 m/s. The estimated age of the deep groundwater below the Oligocene clay is at most about 4 x 10 4 years. An interpretation of the flow system is given on the basis of the relations found between water quality, depth, the conductivity, and the measured water pressures. The present observations and interpretations lead to the conclusion that the groundwater in the investigated deep strata is part of a hydrological cycle whose scale is probably limited and in some places very limited. Studies based on a model support the presented conclusions. 18 references, 9 figures

  14. Natural attenuation of diesel fuel in heavy clay soil

    International Nuclear Information System (INIS)

    Berry, K.A.T.; Burton, D.L.

    1997-01-01

    The application of bioremediation techniques on heavy clay soils contaminated with diesel fuels was studied. Earlier studies suggested that in-situ bioreclamation was only effective on permeable soils such as medium- to coarse-textured sandy or loamy soils. It was assumed that heavy clay soils such as those found in the Red River Valley in Southern Manitoba had physical and chemical properties that would limit the usefulness of natural attenuation. In this study, the disappearance and the natural attenuation of diesel fuel added to soil at a rate of 5000 mg/kg soil in tilled and untilled heavy clay soil was monitored. Three methods of analysis were used: (1) oil and grease content, (2) extractable organics, and (3) the Millipore EnviroGard ELISA method for petroleum hydrocarbons. Effects of the contamination on the soil microbial population were measured using surface CO 2 flux measurements and microbial biomass carbon analysis. Soil moisture contents at all sample times were between 44 and 49 per cent. Soil temperature was also monitored. All three analytical methods used in the study showed the near-complete disappearance of detectable diesel fuel hydrocarbons from the soil after 30 days with half-lives ranging from 11 to 26 days. The advantages and limitations of the ELISA kit were described. No hydrocarbons were detected in the groundwater sample. 45 refs., 7 tabs., 2 figs

  15. Simulation of groundwater flows in unsaturated porous media

    International Nuclear Information System (INIS)

    Musy, A.

    1976-01-01

    Groundwater flow in unsaturated porous media is caused by a potential gradient where the total potential consists of the sum of a gravitational and a suction component. The partial differential equations which result from the general analysis of groundwater flow in unsaturated soil are solved by succesive approximations with the finite-element method. General boundary and initial conditions, linear or curvilinear shaped elements (isoparametric elements) and steady-state or transient flow can be introduced into the numerical computer program. The results of this mathematical model are compared with experimental data established in the laboratory with a physical groundwater model. This is a rectangular testing tank of dimension 3 x 1.5 x 0.15 m and contains a silty clay loam. The variation of the bulk density and the volumetric moisture of the soil as a function of time and space are measured by gamma absorption from a 137 Cs source with 300 mCi intensity

  16. Proglacial Hydrogeology of the Cordillera Blanca (Peru): Integrating Field Observations with Hydrogeophysical Inversions to Inform Groundwater Flow Simulations and Conceptual Models

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Moucha, R.; Mark, B. G.

    2017-12-01

    Geological and depositional conditions of the glaciated Cordillera Blanca in Peru have given way to proglacial aquifer systems that contribute substantially to regional streams and rivers, particularly during the dry season. As glacial retreat accelerates, the dry season water budget will be increasingly dominated by groundwater inputs, although predictions of future groundwater quantities require estimations of groundwater storage capacity, aquifer extents, and groundwater residence time. We present a characterization of the sediment structure in a prototypical proglacial valley in the central portion of the range, the Quilcayhuanca Valley. Northern and Central valleys of the Cordillera Blanca feature ubiquitous talus deposits that line the steep granite walls, and have become partially buried beneath lacustrine sediments deposited in proglacial lake beds. The portion of the talus still exposed near the valley walls provides recharge to deeper portions of the valley aquifers that underlie lacustrine clay, resulting in a confined aquifer system that is connected to the surface via perennial springs. Seismic refraction surveys reveal an interface separating relatively slow ( 400-800 m/s) and fast ( 2500 m/s) p-wave velocities. The depth of this refractor coincides with the depth to buried talus observed in drilling records. Electrical resistivity tomography profiles of the same transect show depths near the buried talus to be relatively conductive (10-100 Ωm). At these depths, we hypothesize that electrical conductance is elevated by saturated clay particles in the sediment matrix of the talus deposit. The resistivity models all show a more resistive ( 700 Ω m) region at depth, likely corresponding to a more hydraulically conductive material. The resistive zone is interpreted to be a deeper portion of a buried talus deposit that did not accumulate clay in the matrix. Other possibilities include a thick deposit of gravelly glacial outwash, or a relatively clay

  17. Mechanism of groundwater arsenic removal by goethite-coated mineral sand

    Science.gov (United States)

    Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.

    2017-11-01

    Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.

  18. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1995-01-01

    Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository

  19. Squeezed Interstitial Water and Soil Properties in Pleistocene Blue Clays under Different Natural Environments

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fidelibus

    2018-03-01

    Full Text Available Studies dating almost a century relate clay properties with the structure of the diffuse double layer (DDL, where the charged surfaces of clay crystal behave like an electric capacitor, whose dielectric is the interstitial fluid. The intensity of the inner electric field relates to the concentration and type of ions in the DDL. Other important implications of the model are less stressed: this part of the clay soil system, energetically speaking, is conservative. External contribution of energy, work of overburden or sun driven capillarity and long exposure to border low salinity waters can modify the concentration of pore-waters, thus affecting the DDL geometry, with electric field and energy storage variations. The study of clay soils coming from various natural geomorphological and hydrogeological contexts, determining a different salinity of interacting groundwater, shows how the clay interaction with freely circulating waters at the boundaries produces alterations in the native pore water salinity, and, at the nano-scale, variations of electric field and stored energy from external work. The swelling and the shrinkage of clay soil with their volumetric and geotechnical implications should be regarded as variations of the electrostatic and mechanical energy of the system. The study is based on tests on natural clay soil samples coming from a formation of stiff blue clays, widespread in southern Italy. Geotechnical identification and oedometer tests have been performed, and pore waters squeezed out from the specimens have been analyzed. Tested samples have similar grain size, clay fraction and plasticity; sorted according to the classified geomorphological/hydrogeological contexts, they highlight good correlations among dry density, mechanical work performed in selected stages of the oedometric test, swelling and non-swelling behaviour, and electrical conductivity of the squeezed pore waters. The work performed for swelling and non

  20. Status of geochemical modeling of groundwater evolution at the Tono in-situ tests site, Japan

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu; Arthur, R.C.

    1999-12-01

    Hydrochemical investigation of Tertiary sedimentary rocks at JNC's Tono in-situ tests site indicate the groundwaters are: meteoric in origin, chemically reducing at depths greater than a few tens of meters in the sedimentary rock, relatively old [carbon-14 ages of groundwaters collected from the lower part of the sedimentary sequence range from 13,000 to 15,000 years BP (before present)]. Ca-Na-HCO 3 type solutions near the surface, changing to Na-HCO 3 type groundwaters with increasing depth. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest it is possible to interpret approximately the 'real' groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted: CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 bar, minerals in the rock zone that control the solubility of respective elements in the groundwater include; chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties (e.g., the actual mineralogy of 'plagioclase', 'clay' and 'zeolite') are needed to improve the model. Alternative conceptual models of key reactions may also be necessary. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvements of model considering ion-exchange reactions are needed in future, however. (author)

  1. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  2. Constructing Regional Groundwater Models from Geophysical Data of Varying Type, Age, and Quality

    DEFF Research Database (Denmark)

    Vest Christiansen, Anders; Auken, Esben; Marker, Pernille Aabye

    for parameterization of a 3D model of the subsurface, integrating lithological information from boreholes with resistivity models. The objective is to create a direct input to regional groundwater models for sedimentary areas, where the sand/clay distribution governs the groundwater flow. The resistivity input is all......-inclusive in the sense that we include data from a variety of instruments (DC and EM, ground-based and airborne), with a varying spatial density and varying ages and quality. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters, which...

  3. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    Science.gov (United States)

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  4. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...... and 6 % of river input into the lagoon. This large-scale study was the motivation to conduct field investigation techniques in order to understand the dynamic processes in the near-shore environment. Field campaigns were conducted every two months in order to understand the seasonal groundwater...

  6. Fracture Analysis of Debonded Sandwich Columns Under Axial Compression

    DEFF Research Database (Denmark)

    May, A.; Avilés, F.; Berggreen, Christian

    A sandwich structure consists of two strong and stiff face sheets bonded to a weak low density core. The large separation between the face sheets provides increased bending rigidity and strength at low weight cost. Thus, sandwich structures frequently present better mechanical properties than...... monolithic structures of the same weight. The vast range of applications of such materials includes wind turbines, marine, and aerospace industries. In this work, geometrically nonlinear finite element analysis is conducted to investigate the fracture parameters and debond propagation of sandwich columns...

  7. Porous Sandwiched Graphene/Silicon Anodes for Lithium Storage

    International Nuclear Information System (INIS)

    Wei, Liangming; Hou, Zhongyu; Wei, Hao

    2017-01-01

    Highlights: • In situ hydrolysis of tetraethoxysilane within the confined galleries region of graphite oxide. • New porous sandwiched graphene/Si nanocomposites were prepared by magnesium thermal reduction. • The Si nanostructure was compactly sandwiched between two neighboring graphenes. • The Si/graphene anodes deliver large reversible capacity with excellent cycling stability. - Abstract: Porous sandwiched graphene/Si nanocomposites (PG-Si) are prepared by in situ hydrolysis of tetraethoxysilane within the confined gallery region of graphite oxide, and then magnesium thermal reduction of the intra-gallery SiO 2 to Si nanocrystals. The Si nanostructures are in situ formed within the confined gallery region of graphite, and they are compactly sandwiched between two neighboring graphene sheets. This compactly sandwiched structure affords enhanced electron conductivity, and prevents Si nanoparticles from aggregation. Meanwhile, the free voids between neighboring Si nanocrystals alleviate the volume change of Si during cycling. As a consequence, the resulting PG-Si nanocomposites are high-performance anode materials for lithium-ion batteries which show long cycle life (>500 cycles) and high specific charge capacity (1464 mAh g −1 at a current density of 200 mA/g, 920 mAh g −1 at a current density of 1.68A/g after 500 cycles). The Li + diffusion kinetics in PG-Si is also discussed.

  8. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The magnetic horn, focusing the antiprotons emanating from the target, was affixed to a sandwich line through which the 150 kA pulses were supplied. Expecting to have to change from time to time the fragile horn (inner conductor only 0.7 mm thick), the assembly was designed for quick exchange. At the lower end of the sandwich line we see the connectors for the high-current cables, at the upper end the magnet horn. It has just been lifted from the V-supports which held it aligned downstream of the target. Continue with 8010293.

  10. Buckling driven debonding in sandwich columns

    DEFF Research Database (Denmark)

    Østergaard, Rasmus Christian

    2008-01-01

    results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...

  11. Measuring Cohesive Laws for Interfaces in Sandwich Structures

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Sørensen, Bent F.; Berggreen, Carl Christian

    2006-01-01

    mixities. The sandwich specimens consists of glass fiber faces and Divinycell H200 foam core with a pre-crack between face and core made with teflon film. Arbitrary stiffening of the sandwich faces with steel bars adhered to the faces reduces rotations and ensures that the method is useable for a wide...

  12. Study on assessment scenarios of natural phenomena effected on groundwater flow system. Case study for the sea-level change (Contract research)

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2009-03-01

    It is important to evaluate effects on the groundwater flow system by the natural phenomena in the safety assessment of geological disposal of radioactive waste. Safety assessment is performed by using safety assessment methods, thus it is necessary to establish reasonable scenarios for safety assessment. In this report, we study change effecting on the groundwater flow system by literature reviews. The scenario of sea level change is expected to have a importance for a safety of disposal facility in coastal area. The recent information related to the groundwater flow condition in sedimentary rocks of sub-seabed coastal area shows that there are four groundwater domains as follows with depth; (1) modern meteoric water, (2) saline water in the transgression period, (3) paleo-fresh water which formed during the last glacial age when sea levels were lower than at present and (4) pre-glacial fossil saline water. This study suggests that the non-current (3) paleo-fresh water at present is possible to move to discharged area at sea floor in the next glacial period by denudation of marine-clay sediments and to become stagnant water again in the next interglacial period by deposition of marine-clay sediments in coastal region. Therefore it is important to predict the scenario considering the denudation and deposition correlated with transgression and regression that could affect the change of groundwater flow velocity, groundwater flow path and groundwater chemical characteristics during the glacial and interglacial period. (author)

  13. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  14. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  15. A Debonded Sandwich Specimen Under Mixed Mode Bending (MMB)

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    Face/core interface crack propagation in sandwich specimens is analyzed. A thorough analysis of the typical failure modes in sandwich composites was performed in order to design the MMB specimen to promote face/core debond fracture. Displacement, compliance and energy release rate expressions...... for the MMB specimen were derived from a superposition analysis. An experimental verification of the methodology proposed was performed using MMB sandwich specimens with H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 faces. Different mixed mode loadings were applied...

  16. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  17. Hydro-mechanical aspects: glacial loading/erosion - the opalinus clay study

    International Nuclear Information System (INIS)

    Marschall, P.; Kupfer, T.; Kuhlmann, U.

    2004-01-01

    In Nagra's high level waste programme the future geological evolution of the investigation area in the Zurcher Weinland (NE Switzerland) is considered over a time period of around 1 Ma. Uplift, erosion and climatic changes were identified as processes that may affect the long-term performance of a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW). The possible impact of those long-term processes on the barrier function of the host rock formation (Opalinus Clay) comprises: (i) the change of the vertical hydraulic gradient caused by changing recharge/discharge conditions in the regional aquifer systems; (ii) permeability enhancement of the host rock formation due to the uplift process; and (iii) expulsion of contaminated pore water from the disposal area as a result of repeated glacial loading. Due to the fact that the discharge level of the regional aquifer systems is defined by the Rhine valley and the regional recharge areas are characterised by moderate elevations (typically 2 are not expected within the next several million years. Hence, the topography of NE Switzerland together with the favourable hydraulic properties of the host rock formation prevent efficiently the vertical exchange of groundwater between the regional aquifer systems. Even on geological time scales of millions of years the expected vertical pore water flow through the host rock formation is in the order of 10 -14 m/s and lower. At present, the Opalinus Clay forms a perfect hydraulic barrier. The process of ongoing uplift, however, may give rise to embrittlement of the rock, entailed by permeability enhancement. Evidence for permeability enhancement of Opalinus Clay in shallow depth was observed by Hekel (1994). On the other hand, regional studies confirmed the low permeability of the Opalinus Clay formation in greater depth even when fractured (Gautschi, 2001; Marschall et al., 2003). Such evidence, together with conceptual

  18. Mechanical evaluation with fe analysis of sandwich panels for wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Yasaswi, M.; Naveen, P.N.E.; Prasad, R.V. [GIET. Dept. of Mechanical Engineering, Rajahmundry (India)

    2012-07-01

    Sandwich panels are notable for their structural efficiency and are used as load bearing components in various branches of engineering, especially in aerospace and marine industries. The objective of the present work is to perform computer-aided analysis on sandwich panels. The analysis of sandwich panel with truss core are compared with other four types of sandwich panel with continuous corrugated core, top hat core, zed core and channel core. The basic reason to use sandwich structure is to save weight, however smooth skins and excellent fatigue resistance are also attributes of a sandwich structure. A sandwich is comprised of two layered composite materials formed by bonding two or more thin facings or face sheets to relatively thick core materials. In this type of construction the facings resist nearly all of the in-plane loads and out-of-plane bending moments. The thin facings provide nearly all of the bending stiffness because they are generally of a much higher modulus material is located at a greatest distance from the neutral axis of the component. The basic concept of sandwich panel is that the facings carry the bending loads and the core carries the shear loads. The main function of the core material is to distribute local loads and stresses over large areas. From all this analysis it is concluded that the truss core Sandwich panels can be used in wind turbine blade design. (Author)

  19. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...... and discharge observations. The method was applied to field data collected at a Danish field site. Our results show that a competitive hydrological model can be constructed from the AEM dataset using the automatic procedure outlined above....

  20. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    Science.gov (United States)

    Taylor, Richard G.; Chandler, Richard E.

    2015-01-01

    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841

  1. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  2. Behavior of sandwich panels in a fire

    Science.gov (United States)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  3. Impact of leachable sulfate on the quality of groundwater in the Pocatello aquifer

    International Nuclear Information System (INIS)

    Meehan, C.; Welhan, J.

    1994-01-01

    During the summer of 1993, groundwaters and surface waters were found to have anomalous sulfate concentrations in the Southern Pocatello municipal aquifer in an area known as the Highway Ponds. Leach tests performed on a large pile of road aggregate stockpiled near the Highway Ponds have been identified as the most likely source for the sulfate. Correlating trends of sulfate and chloride concentrations can be found both in the main Pocatello aquifer and in Pocatello Creek groundwaters. The chloride contamination at Pocatello Creek has previously been suggested to be derived from road salt. It is hypothesized that aggregate used in roadbed construction may be responsible for elevated sulfate in the areas groundwater. Chemical modeling has eliminated carbonate precipitation/dissolution reactions in buffering the chemistry of sulfate-impacted groundwater. Ion-exchange with clays is hypothesized to be a more significant process and is being investigated further. 12 refs., 3 figs

  4. Sandwich mapping of schistosomiasis risk in Anhui Province, China.

    Science.gov (United States)

    Hu, Yi; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Sun, Liqian; Xia, Congcong; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2015-06-03

    Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes) into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.

  5. Sorption of activation products on London clay and Dungeness aquifer gravel

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J.

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R D values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R D for radioactive Ca but higher R D values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R D for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R D values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R D values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.)

  6. Analysis of syntactic foam – GFRP sandwich composites for flexural loads

    Science.gov (United States)

    Paul, Daniel; Velmurugan, R.; Jayaganthan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The use of glass microballoon (GMB) — epoxy syntactic foams as a sandwich core material is studied. The skins and foam core are fabricated and joined instantaneously unlike the procedures followed in the previous studies. Each successive layer of the sandwich is fabricated when the previous layer is in a semi-gelled state. These sandwich samples are characterized for their properties under flexural loading. The failure modes and mechanical properties are carefully investigated. The change in fabrication technique results in a significant increase in the load bearing pattern of the sandwich. In earlier studies, debonding was found to occur prematurely since the bonding between the skins and core is the weakest plane. Using the current technique, core cracking occurs first, followed by skin fiber breaking and debonding happens at the end. This ensures that the load carrying phase of the structure is extended considerably. The sandwich is also analytically studied using Reddy’s higher order shear deformation theory. A higher order theory is selected as the sandwich can no longer be considered as a thin beam and thus shear effects also need to be considered in addition to bending effects.

  7. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  9. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  10. Simulation of the degradation of a concrete/clay interface: influence of temperature, unsaturated conditions and porosity variations

    International Nuclear Information System (INIS)

    Burnol, A.; Dupros, F.; Spycher, N.; Xu, T.; Gaucher, E.C.

    2006-01-01

    For long-lived intermediate-level radioactive waste, the use of concrete as engineering barrier and Callovian-Oxfordian clay as geological barrier at a depth of 500 m is considered in the French disposal concept (ANDRA, 2005). Upon emplacement, initially unsaturated concrete is expected to experience coupled processes involving heating, re-saturation with groundwater from the clay formation, gas exchanges and geochemical reactions. After an early period of re-saturation, solute transport is supposed to be diffusion-controlled because of the extremely low permeability of the two media. These coupled processes may lead to changes in the porosity of the concrete or clay barriers. In the present paper, a fully coupled Thermo-Hydro-Chemical (THC) response of a two-phase (gas and solution) mass-transfer model was evaluated and tested by a sensitivity analysis. This study is an extension of a previous model applied to an isothermal and fully saturated concrete/clay interface (Burnol et al., 2005); it investigated the coupled effect of temperature and unsaturated conditions assuming no production of H2(g). The system was simulated for a 2000-year period, which covers the most predominant thermal perturbation

  11. An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; He, X.

    2015-01-01

    of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study......Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data......-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models...

  12. Groundwater salinity at Olkiluoto and its effects on a spent fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T. [VTT Energy, Espoo (Finland)

    2000-06-01

    significantly decrease the swelling pressure and increase the hydraulic conductivity of such a backfill. The most promising alternative backfill options are natural mixed-layer clay (Friedland clay) and crushed rock backfill combined with special sealing structures. It is recommended that for a repository to be constructed at the depth of about 500 metres at Olkiluoto, all engineered barriers should be designed to perform properly at groundwater salinities ranging from fresh water to 35 g/l. Geochemistry and salinity of groundwater will be a key area in the further characterisation of Olkiluoto, in supporting research, as well as in performance assessment. Posiva will participate in studies and large-scale experiments on the performance of bentonite-based as well as alternative backfill and buffer materials in the projects to be launched within the 5th Framework Programme of the European Commission and in the Prototype Repository in the Hard Rock Laboratory at Aespoe. (orig.)

  13. Sandwich mapping of schistosomiasis risk in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2015-06-01

    Full Text Available Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.

  14. In-situ remediation of TCE by ERD in clay tills. Feasibility and performance of full-scale application insights gained through an integrated investigative approach for 2 sites

    OpenAIRE

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia; Manoli, Gabriele; Pade, Dorte Moon; Christiansen, Camilla Maymann; Binning, Philip John; Westergaard, Claus; Tsitonaki, Aikaterini; Christophersen, Mette; Kerrn-Jespersen, Henriette; Bjerg, Poul Løgstrup

    2012-01-01

    Background/Objectives. Remediation of trichloroethene (TCE) in clay and other low permeabil-ity geologic media, where groundwater flow occurs preferentially in higher permeability sand lenses or fractures, is a significant challenge. At older sites, much of the contaminant mass is pre-sent as a sorbed phase in the matrix due to matrix diffusion. The principal challenge for in situ remediation in clay is to achieve effective contact between contaminant and bioremediation addi-tives (e.g., orga...

  15. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    International Nuclear Information System (INIS)

    Zabala, M.E.; Manzano, M.; Vives, L.

    2015-01-01

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO 3 -Ca type, in the middle basin it is HCO 3 -Na, and in the lower basin it is ClSO 4 –NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO 2 , calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The work studies the

  16. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  17. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  18. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc : a column experiment

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; Parsons, J.R.; de Voogt, P.; Bagnis, S.; Markus, A.; El-Shater, A.-H.; El-Haddad, A.-A.; Kalbitz, K.

    2017-01-01

    Infiltration of heavy metal (HM) polluted wastewater can seriously compromise soil and groundwater quality. Interactions between mineral soil components (e.g. clay minerals) and dissolved organic matter (DOM) play a crucial role in determining HM mobility in soils. In this study, the influence of

  19. Salads, Sandwiches and Desserts.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on salads, sandwiches, and desserts is designed to provide Marine food service personnel with a general background in the proper techniques for the preparation of these items. Introductory materials include specific information for MCI students and a…

  20. 3D Energy Absorption Diagram Construction of Paper Honeycomb Sandwich Panel

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2018-01-01

    Full Text Available Paper honeycomb sandwich panel is an environment-sensitive material. Its cushioning property is closely related to its structural factors, the temperature and humidity, random shocks, and vibration events in the logistics environment. In order to visually characterize the cushioning property of paper honeycomb sandwich panel in different logistics conditions, the energy absorption equation of per unit volume of paper honeycomb sandwich panel was constructed by piecewise function. The three-dimensional (3D energy absorption diagram of paper honeycomb sandwich panel was constructed by connecting the inflexion of energy absorption curve. It takes into account the temperature, humidity, strain rate, and characteristics of the honeycomb structure. On the one hand, this diagram breaks through the limitation of the static compression curve of paper honeycomb sandwich panel, which depends on the test specimen and is applicable only to the standard condition. On the other hand, it breaks through the limitation of the conventional 2D energy absorption diagram which has less information. Elastic modulus was used to normalize the plateau stress and energy absorption per unit volume. This makes the 3D energy absorption diagram universal for different material sandwich panels. It provides a new theoretical basis for packaging optimized design.

  1. Finite element simulation of low velocity impact loading on a sandwich composite

    Directory of Open Access Journals (Sweden)

    Vishwas M.

    2018-01-01

    Full Text Available Sandwich structure offer more advantage in bringing flexural stiffness and energy absorption capabilities in the application of automobile and aerospace components. This paper presents comparison study and analysis of two types of composite sandwich structures, one having Jute Epoxy skins with rubber core and the other having Glass Epoxy skins with rubber core subjected to low velocity normal impact loading. The behaviour of sandwich structure with various parameters such as energy absorption, peak load developed, deformation and von Mises stress and strain, are analyzed using commercially available analysis software. The results confirm that sandwich composite with jute epoxy skin absorbs approximately 20% more energy than glass epoxy skin. The contact force developed in jute epoxy skin is approximately 2.3 times less when compared to glass epoxy skin. von Mises stress developed is less in case of jute epoxy. The sandwich with jute epoxy skin deforms approximately 1.6 times more than that of same geometry of sandwich with glass epoxy skin. Thus exhibiting its elastic nature and making it potential candidate for low velocity impact application.

  2. A conceptual model for groundwater - surface water interactions in the Darling River Floodplain, N.S.W., Australia

    Science.gov (United States)

    Brodie, R. S.; Lawrie, K.; Somerville, P.; Hostetler, S.; Magee, J.; Tan, K. P.; Clarke, J.

    2013-12-01

    Multiple lines of evidence were used to develop a conceptual model for interaction between the Darling River and associated floodplain aquifers in western New South Wales, Australia. Hydrostratigraphy and groundwater salinities were mapped using airborne electromagnetics (AEM), validated by sonic-core drilling. The AEM was highly effective in mapping groundwater freshening due to river leakage in discrete zones along the river corridor. These fresh resources occurred in both the unconfined Quaternary aquifers and the underlying, largely semi-confined Pliocene aquifers. The AEM was also fundamental to mapping the Blanchetown Clay aquitard which separates these two aquifer systems. Major-ion chemistry highlighted a mixing signature between river waters and groundwaters in both the Quaternary and Pliocene aquifers. Stable isotope data indicates that recharge to the key Pliocene aquifers is episodic and linked to high-flow flood events rather than river leakage being continuous. This was also evident when groundwater chemistry was compared with river chemistry under different flow conditions. Mapping of borehole levels showed groundwater mounding near the river, emphasising the regional significance of losing river conditions for both aquifer systems. Critically, rapid and significant groundwater level responses were measured during large flood events. In the Pliocene aquifers, continuation of rising trends after the flood peak receded confirms that this is an actual recharge response rather than hydraulic loading. The flow dependency of river leakage can be explained by the presence of mud veneers and mineral precipitates along the Darling River channel bank when river flows are low. During low flow conditions these act as impediments to river leakage. During floods, high flow velocities scour these deposits, revealing lateral-accretion surfaces in the shallow scroll plain sediments. This scouring allows lateral bank recharge to the shallow aquifer. During flood

  3. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  4. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  5. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  6. Design Analysis of the Mixed Mode Bending Sandwich Specimen

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A design analysis of the mixed mode bending (MMB) sandwich specimen for face–core interface fracture characterization is presented. An analysis of the competing failure modes in the foam cored sandwich specimens is performed in order to achieve face–core debond fracture prior to other failure modes...... for the chosen geometries and mixed mode loading conditions....

  7. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  8. Two dimensional dynamic analysis of sandwich plates with gradient foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)

    2016-09-15

    Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.

  9. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A. [Univ. of Florence (Italy)] [and others

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  10. Sorption of activation products on London clay and Dungeness aquifer gravel

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R[sub D] values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R[sub D] for radioactive Ca but higher R[sub D] values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R[sub D] for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R[sub D] values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R[sub D] values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.).

  11. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  12. Magnetic properties of sandwiches based on Nd-Co and Y-Co amorphous alloys

    International Nuclear Information System (INIS)

    Ndjaka, J.M.B.; Givord, D.

    1996-01-01

    Y-Co/Nd-Co/Y-Co and Nd-Co/Y-Co/Nd-Co amorphous sandwiches have been prepared by d.c. triode sputtering. The chemical composition of the constituent layers is R 0.33 Co 0.67 (R=Y, Nd). In such systems, the Co moments are coupled parallel through the whole sandwich thickness by strong positive 3d-3d exchange interactions. But, the coercive fields of the constituent layers taken separately differ. In the sandwiches as well, the reversal of magnetization in the different layers occurs at different values of the applied magnetic field. This phenomenon has been analysed qualitatively in terms of creation and annihilation of walls at the interfaces between layers for sandwiches where the thicknesses of the constituent layers are about 1000 A. In sandwiches where the thickness of the constituent layers is 100 A, the wall width available is very weak and the value of the applied magnetic field necessary for the creation of such a wall is higher than the coercive field of the entire sandwich system. As a result, the magnetization of the sandwich system reverses as a whole like in homogeneous systems. (orig.)

  13. Sandwich design for ships and railway wagons

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, K.-A. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Aeronautics

    2000-07-01

    In Sweden we have long experience of different types of vehicles and ships in sandwich construction, especially for Navy ships, such as minesweepers, mine-counter-measure-vessels and corvettes. As face materials mostly GRP and FRP have been used, but also metallic materials of Al-alloys, coated carbon steel and stainless steel. Core materials have usually been cellular plastic foams of cross-linked PVC, but also extruded PS, PUR, PEI and PMI. A lot of different continuous and discontinuous manufacturing processes are used. Vacuum assisted infusion is used in the last years, because it is a closed process, gives high fibre content and a good quality of the laminates. Sandwich design has mainly been used in the transportation area, where lightweight design is needed to give higher performance and load bearing capacity. The use of sandwich will give high stiffness- and strength-to weight ratio. These are in most cases not enough from economic point of view, but even other integrated functions must be considered, i.e. insulation, energy consumption, damping, less components, lower manufacturing costs, low maintenance, signature effects (military) etc. (orig.)

  14. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  15. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  16. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use

    Science.gov (United States)

    Schot, P. P.; van der Wal, J.

    1992-06-01

    The relations between groundwater composition, land use, soil conditions and flow patterns on a regional scale are studied for the Gooi and Vechtstreek area in the Netherlands. This densely populated area consists of a glacier-created ridge with dry sand soils bordered by the Vecht and Eem River plains with wet peat and clay soils. R-mode factor analysis and Q-mode cluster analysis were applied to a set of 1349 groundwater analyses to determine the factors controlling groundwater composition and the main resulting water types. The results indicate that groundwater composition in the study area is affected on a regional scale by human activities through changes in land use and intervention in natural flow patterns. On the ridge, ground water is recharged by precipitation, which dissolves carbonates from the matrix of the sandy aquifer. Increased solute concentrations in shallow ground water, especially of nitrate, sulphate and potassium, indicate increased pollution resulting from urbanization and increasingly intensive agricultural activity over the past decades. In the Vecht River plain infiltration occurs as a result of drainage of polders and groundwater extraction on the ridge. Recharge occurs by precipitation and from polluted surface water to which ammonium, organic complexes and carbonic acid are added through decomposition of organic matter in the peat and clay soils. The carbonic acid results in enhanced dissolution of carbonates present in the soil and the underlying sandy aquifer. Oxygen depletion and subsequent low redox potentials result in denitrification, dissolution of manganese and iron oxides, and sulphate reduction. The flow of ground water from high-level to low-level polders causes displacement of a former stagnant brakish groundwater body under the Vecht River plain accompanied by increased mixing of fresh and brackish ground water.

  17. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO 3 - , with the concentration varying from 0.1mg/L to 206mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh (shallow groundwater of the Poyang Lake basin has Eh>100mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ 15 N and δ 18 О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ 18 О values from -4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15 N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An isotope-aided study on the interaction between surface water and groundwater in the KAERI area

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Jong Hoon; Yun, Si Tae; Jeong, Chan Ho; Kim, Kae Nam

    1988-01-01

    The basement rocks of the KAERI area are compose421d of two mica granite and schistose granite. The groundwater in these fresh crystalline rocks appears to be restricted within the zones developing the fractures. The groundwater in this area occurs mainly in the weathered zones of granitic rocks, with a thickness of 5-20 m. On the results of environmental isotopes analyses, it was proved that surface water and precipitation infiltrated rapidly through the subsurface media into the weathered zone. The high environmental isotopes level found in some groundwater samples are ascribed to the impermeable layer such as clay and silt around the sampling points. Consequently, the groundwater flow in this area is controlled by the heterogeneity of weathered materials. The water types classified by the piper diagram are attributed to the Ca-Cl and Ca-HCO 3 types

  19. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  20. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  1. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  2. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  3. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  4. Time evolution of the Clay Barrier Chemistry in a HLW deep geological disposal in granite

    International Nuclear Information System (INIS)

    Font, I.; Miguel, M. J.; Juncosa, R.

    2000-01-01

    The main goal of a high level waste geological disposal is to guarantee the waste isolation from the biosphere, locking them away into very deep geological formations. The best way to assure the isolation is by means of a multiple barrier system. These barriers, in a serial disposition, should assure the confinement function of the disposal system. Two kinds of barriers are considered: natural barriers (geological formations) and engineered barriers (waste form, container and backfilling and sealing materials). Bentonite is selected as backfilling and sealing materials for HLW disposal into granite formations, due to its very low permeability and its ability to fill the remaining spaces. bentonite has also other interesting properties, such as, the radionuclide retention capacity by sorption processes. Once the clay barrier has been placed, the saturation process starts. The granite groundwater fills up the voids of the bentonite and because of the chemical interactions, the groundwater chemical composition varies. Near field processes, such as canister corrosion, waste leaching and radionuclide release, strongly depends on the water chemical composition. Bentonite pore water composition is such a very important feature of the disposal system and its determination and its evolution have great relevance in the HLW deep geological disposal performance assessment. The process used for the determination of the clay barrier pore water chemistry temporal evolution, and its influence on the performance assessment, are presented in this paper. (Author)

  5. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  6. Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

    OpenAIRE

    Yang, Shu; Qi, Chang

    2013-01-01

    Sandwich armor structures with aluminum foam can be utilized to protect a military vehicle from harmful blast load such as a landmine explosion. In this paper, a system-level dynamic finite element model is developed to simulate the blast event and to evaluate the blast-resistant performance of the sandwich armor structure. It is found that a sandwich armor structure with only aluminum foam is capable of mitigating crew injuries under a moderate blast load. However, a severe blast load causes...

  7. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  8. Analysis and Behaviour of Sandwich Panels with Profiled Metal Facings under Transverse Load

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2004-01-01

    Full Text Available Sandwich panels with thin steel facings and polyurethane core combine the load-carrying capacity of metal facings and protection functions with core properties. The core separates the two facings and keeps them in a stable condition, transmits shear between external layers, provides most of the shear rigidity and occasionally makes of useful contribution to the bending stiffness of the sandwich construction as a whole [1]. An experimental program on sandwich panels has been organized to prove that the mechanical properties of core and interface satisfy the load-carrying requirements for structural sandwich panels. The analysis of sandwich panels with deep profiles facings for cladding elements, respectively the roof constructions, has been carried out according to the European design norms [1], [5].

  9. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  10. Long sandwich modules for photon veto detectors

    International Nuclear Information System (INIS)

    Yershov, N.; Khabibullin, M.; Kudenko, Yu.; Littenberg, L.; Mayatski, V.; Mineev, O.

    2005-01-01

    Long lead-scintillator sandwich modules developed for the BNL experiment KOPIO are described. The individual 4 m long module consists of 15 layers of 7 mm thick extruded scintillator and 15 layers of 1 mm lead absorber. Readout is implemented via WLS fibers glued into grooves in a scintillator with 7 mm spacing and viewed from both ends by the phototubes. Time resolution of 300 ps for cosmic MIPs was obtained. Light output stability monitored for 2 years shows no degradation beyond the measurement errors. A 4 m long C-bent sandwich module was also manufactured and tested

  11. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  12. Application of fibre reinforced plastic sandwich structures for automotive crashworthiness applications

    NARCIS (Netherlands)

    Lukaszewicz, D.; Blok, L.G.; Kratz, J.; Ward, C.; Kassapoglou, C.; Elmarakbi, A.; Araújo, A.L.

    2016-01-01

    In this work the application of fibre reinforced plastic (FRP) sandwich
    structures, with particular focus on aramid fibre tufted sandwiches is being studied for
    automotive crashworthiness applications using impact testing and numerical simulation.

  13. Application of Load Carrying Sandwich Elements in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jensen, Jacob Fisker; Schultz, Jacob Pagh; Berggreen, Carl Christian

    2005-01-01

    The present work investigates the possibilities and drawbacks when applying sandwich as opposed to single skin composites in the flanges of the load carrying spar in a future 180 m wind turbine rotor. FEA is applied to investigate two basic designs with single skin and sandwich flanges respectively...

  14. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    Science.gov (United States)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  15. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    pellets as sealing material in groundwater wells. The way and the pattern, in which bentonite pellets are deposited, have been shown to have an effect on the swelling pressure of the bentonite seal. During the transport phase of pellets from the terrain to a given sedimentation depth, a sorting process......) into densities for clay/water systems has been developed. This method has successfully been used to evaluate e.g., macroporosity, homogenization of the bentonite seal during the hydration of water, hydraulic conductivity and the creation of channels in the bentonite seals. Based on the results obtained...

  16. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    , silts, and clays and generally are coarser closest to the Sierra Nevada and become finer towards the center of the basin. The structure and composition of the deposits in the Madera-Chowchilla study unit are different from those in other parts of the eastern San Joaquin Valley because the Fresno and Chowchilla Rivers primarily drain the Sierra Nevada foothills, whereas the larger rivers drain higher elevations with greater sediment supply. These differences in the sources of sediments are important because they may affect the groundwater chemistry and the physical structure of the sedimentary deposits. Some of the clay layers are lacustrine deposits, the most extensive of which, the Corcoran Clay, underlies the western part of the study unit and divides the primary aquifer system into an unconfined to semi-confined upper system and a largely confined lower system. Regional lateral flow of groundwater is southwest towards the valley trough. Irrigation return flows are the major source of groundwater recharge, and groundwater pumping is the major source of discharge. Groundwater on a lateral flow path may be repeatedly extracted by pumping wells and reapplied at the surface multiple times before reaching the valley trough, resulting in a substantial component of downward vertical flow (Burow and others, 2004; Phillips and others, 2007; Faunt, 2009). This flow pattern enhances movement of water from shallow depths to the primary aquifer system.

  17. Uranium series disequilibrium: application to studies of the groundwater regime of the Harwell region

    International Nuclear Information System (INIS)

    Ivanovich, M.; Alexander, J.

    1985-03-01

    Regional groundwater systems incorporating argillaceous formations beneath the Harwell site have been studied as part of a national research programme of investigation into the feasibility of disposal of low and intermediate radioactive wastes into argillaceous rocks. The principal aim of the programme is to establish the groundwater flow patterns using hydrogeological and geochemical methods in association with isotope contents and uranium series disequilibrium and thus provide an independent approach to the study of effective permeabilities of clay lithologies in a sedimentary sequence. Thirty four groundwater samples derived from the high permeability formations in the Harwell region have been analysed for uranium and thorium content and 234 U/ 238 U, 230 Th/ 234 U and 230 Th/ 232 Th activity ratios. The uranium isotopic signatures have been interpreted in terms of the regional groundwater circulation and mixing patterns. The most significant zones of groundwater mixing determined from uranium isotopic data are situated just beneath the edge of the confined strata. These zones coincide with the locations of hydraulic lows in the Great Oolite and the Corallian formations towards which the regional groundwaters move. It is concluded that the uranium isotopic signatures can be used to identify water masses and to evaluate mixing of groundwaters in a sedimentary sequence on a regional scale. (author)

  18. Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India

    Science.gov (United States)

    Rao, Nagireddi Srinivasa

    2006-12-01

    The complex depositional pattern of clay and sand in most of the areas controlled the vertical and lateral movement of nitrate in groundwater. The variation of nitrate concentration at different groundwater levels and the lateral distribution of nitrate in the groundwater at two sites indicated the filtration of nitrate by clayey formations. A rural agricultural district located in the Vamsadhara river basin, India was selected for studying the lateral and vertical distribution of nitrate in the groundwater and the association of nitrate with other chemical constituents. The nitrate concentrations in the groundwater are observed to vary between below detectable limit and 450 mg NO3/L. The sources for nitrate are mainly point sources (poultry farms, cattleshed and leakages from septic tanks) and non-point sources (nitrogenous fertilisers). The nitrate concentrations are increased after fertiliser applications. However, very high concentrations of nitrate are derived from animal wastes. Relatively better correlations between nitrate and potassium are observed ( R = 0.74 to 0.82). The better relationship between these two chemical constituents in the groundwater may be due to the release of potassium and nitrate from both point and non-point sources. The nitrate and potassium concentrations are high in the groundwater from clayey formations.

  19. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China)

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO3-, with the concentration varying from 0.1 mg/L to 206 mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh ( 100 mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ15N and δ18О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ18О values from - 4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions.

  20. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.

    Science.gov (United States)

    Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A

    2008-11-14

    This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard

  1. Sandwiched Rényi divergence satisfies data processing inequality

    International Nuclear Information System (INIS)

    Beigi, Salman

    2013-01-01

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo information defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem

  2. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  3. Multi-objective optimal design of sandwich panels using a genetic algorithm

    Science.gov (United States)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  4. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  5. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    Science.gov (United States)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  6. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  7. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  8. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  10. Photocatalytic perfermance of sandwich-like BiVO_4 sheets by microwave assisted synthesis

    International Nuclear Information System (INIS)

    Liu, Suqin; Tang, Huiling; Zhou, Huan; Dai, Gaopeng; Wang, Wanqiang

    2017-01-01

    Graphical abstract: Sandwich-like BiVO_4 sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO_4 sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO_4. • The sandwich-like BiVO_4 sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO_4 sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO_4 sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO_4 sheets can be attributed to its large surface area over the irregular BiVO_4 particles.

  11. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  12. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  13. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  14. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  15. Behavior of composite sandwich panels with several core designs at different impact velocities

    Science.gov (United States)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  16. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  17. Numerical study of unsaturated flows and seepage of contaminants from subgrade mill tailings disposal areas equipped with bottom-clay liners

    International Nuclear Information System (INIS)

    Pin, F.G.; Witten, A.J.; Sharp, R.D.; Long, E.C. Jr.

    1983-08-01

    A computer code (MIGRAT) is developed to quantify the migration of moisture and multiple decaying and retarded contaminants in the unsaturated zone. MIGRAT was specifically conceived to assess the impacts of open mine to allow its use in many problems related to shallow, subsurface waste disposal. The model is applied to a generic uranium-mill-tailings pit constructed with a clay-lined bottom and steep unlined sidewalls. The contaminant decays and only one contaminant is retarded. This study shows the anticipated result that moisture and contamination migrate slowly through the bottom clay liner and that, in this migration, concentrations of the retarded contaminant significantly lag the unretarded contaminant. More importantly, this study reveals that the major pathway from the pit to the groundwater is through the sidewall. The time scales for this pathway are much shorter than those associated with the clay liner, and retardation has little effect on the rate of contaminant migration

  18. Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan

    Science.gov (United States)

    Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.

    2009-12-01

    The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.

  19. The UK contribution to the CEC PACOMA Project: far-field modelling of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Winters, K.H.; Jackson, C.P.; Clark, C.M.

    1990-06-01

    PACOMA (Performance Assessment of Confinement for Medium-active and Alpha-bearing wastes) is a multinational project supported as part of the Commission of the European Community's R and D programme on radioactive waste management and storage. The aim of the project is to assess the radiological impact of deep geological disposal of intermediate level waste in three different types of geological formation: clay, granite and salt. The contribution of AEA Technology is a study of the groundwater flow and radionuclide migration in the far field. This report describes the far-field modelling. The three-stratum model used in previous hydrogeological studies of the Harwell region is used as a basis for the far-field two-dimensional section through the chalk, clay and Corallian strata underlying Harwell. Each of the three layers is represented as a continuous porous medium with an assumed best-estimate value of permeability, and the groundwater flow is predicted by solving the Darcy equations over the complete section using the NAMMU finite-element code. Two-dimensional transport equations describing the migration of radionuclides in the groundwater are solved, also using NAMMU. The fluxes of radionuclides normal to the surface of the water table are calculated as a function of space and time. The most significant result of the calculations of radionuclide transport through the geosphere is the prediction of multiple pathways for radionuclide movement in the geological strata, and hence multiple release points into the biosphere. Particular attention is paid in the study to the performance and appropriation of the numerical methods and the physical models used for the far-field calculations. (author)

  20. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  1. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  2. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jia Nen; Liu, Jun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin (China); Zhang, Wei; Yao, Ming Hui [College of Mechanical Engineering, Beijing University of Technology, Beijing (China); Sun, Min [School of Science, Tianjin Chengjian University, Tianjin (China)

    2016-09-15

    Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude.

  3. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  4. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  5. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  6. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  7. Failure Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Carlsson, Leif A.

    2009-01-01

    Failure of compression loaded sandwich columns with an implanted through-width face/core debond is examined. Compression tests were conducted on sandwich columns containing implemented face/core debonds. The strains and out-of-plane displacements of the debonded region were monitored using the di...

  8. Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites.

    Science.gov (United States)

    Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan

    2012-01-01

    Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades.

  9. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  10. Robust and Air-Stable Sandwiched Organo-Lead Halide Perovskites for Photodetector Applications

    KAUST Repository

    Mohammed, Omar F.; Banavoth, Murali; Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Pan, Jun; Liu, Jiakai; Peng, Wei; Bakr, Osman

    2016-01-01

    We report the simplest possible method to date for fabricating robust, air-stable, sandwiched perovskite photodetectors. Our proposed sandwiched structure is devoid of electron or hole transporting layers and also the expensive electrodes

  11. Geostatistical analysis of groundwater chemistry in Japan. Evaluation of the base case groundwater data set

    Energy Technology Data Exchange (ETDEWEB)

    Salter, P.F.; Apted, M.J. [Monitor Scientific LLC, Denver, CO (United States); Sasamoto, Hiroshi; Yui, Mikazu

    1999-05-01

    The groundwater chemistry is one of important geological environment for performance assessment of high level radioactive disposal system. This report describes the results of geostatistical analysis of groundwater chemistry in Japan. Over 15,000 separate groundwater analyses have been collected of deep Japanese groundwaters for the purpose of evaluating the range of geochemical conditions for geological radioactive waste repositories in Japan. The significance to issues such as radioelement solubility limits, sorption, corrosion of overpack, behavior of compacted clay buffers, and many other factors involved in safety assessment. It is important therefore, that a small, but representative set of groundwater types be identified so that defensible models and data for generic repository performance assessment can be established. Principal component analysis (PCA) is used to categorize representative deep groundwater types from this extensive data set. PCA is a multi-variate statistical analysis technique, similar to factor analysis or eigenvector analysis, designed to provide the best possible resolution of the variability within multi-variate data sets. PCA allows the graphical inspection of the most important similarities (clustering) and differences among samples, based on simultaneous consideration of all variables in the dataset, in a low dimensionality plot. It also allows the analyst to determine the reasons behind any pattern that is observed. In this study, PCA has been aided by hierarchical cluster analysis (HCA), in which statistical indices of similarity among multiple samples are used to distinguish distinct clusters of samples. HCA allows the natural, a priori, grouping of data into clusters showing similar attributes and is graphically represented in a dendrogram Pirouette is the multivariate statistical software package used to conduct the PCA and HCA for the Japanese groundwater dataset. An audit of the initial 15,000 sample dataset on the basis of

  12. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  13. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    Science.gov (United States)

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  14. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  15. Fault-tree analysis for probabilistic assessment of radioactive-waste segregation: an application to a plastic clay formation at a specific site

    International Nuclear Information System (INIS)

    D'Alessandro, M.; Bonne, A.

    1982-01-01

    This study concerns a probabilistic safety analysis of potential nuclear-waste repository which may be mined into a Tertiary clay formation underlying the Nuclear Research Centre at Mol (Belgium). The value of the geological barrier has been analyzed in probabilistic terms through the application of the Fault-Tree Analysis (FTA) which can answer two main questions: how can the barrier fail (query) and what is the failure probability (query). FTA has been applied to conceptual radioactive-waste disposal systems. In this paper this methodology has been applied to a specific clay formation, to test the applicability of the procedure to a potential site. With this aim, release probabilities to three different receptors (groundwater, land surface, and atmosphere) were estimated for four different time periods. Because of obvious uncertainties in geology predictive capabilities, a probability band has been obtained. Faulting phenomena are among the main mechanisms having the potential to cause release to groundwater, whereas direct releases to land surface may be linked to various glacial phenomena; on short term, different types of human actions may be important. The overall failure probabilities seem to be sufficiently low to offer a good safety margin. (author)

  16. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  17. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core. It is found that certain modifications of the face/core interface region influence the kinking behavior, which is studied experimentally in the present paper. A sandwich double cantilever....... The transition points where the crack kinks are identified and the influence of four various interface design modifications on the propagation path and fracture resistance are investigated....

  18. Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures

    Science.gov (United States)

    Aziz, M.; Halim, Z.; Othman, M.

    2018-01-01

    Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

  19. Denitrification in groundwater at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Goering, Timothy J.; Groffman, Armando; Thomson, Bruce

    1992-01-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  20. Denitrification in groundwater at uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Timothy J [Jacobs Engineering Group, Inc., Albuquerque, NM (United States); Groffman, Armando [Roy F. Weston, Inc., Albuquerque, NM (United States); Thomson, Bruce [University of New Mexico, Albuquerque, NM (United States)

    1992-07-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  1. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  2. Groundwater residence time and movement in the Maltese islands - A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, M.E., E-mail: mest@bgs.ac.uk [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Maurice, L. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Heaton, T.H.E. [British Geological Survey, NERC Isotope Geoscience Laboratory, Keyworth, Nottinghamshire NG12 5GG (United Kingdom); Sapiano, M.; Micallef Sultana, M. [Malta Resources Authority, Marsa MRS 9065 (Malta); Gooddy, D.C.; Chilton, P.J. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2010-05-15

    The Maltese islands are composed of two limestone aquifers, the Upper and Lower Coralline Limestone separated by an aquitard, the 'Blue Clay'. The Lower Coralline Limestone is overlain in part by the poorly permeable Globigerina Limestone. The upper perched aquifers are discontinuous and have very limited saturated thickness and a short water level response time to rainfall. Frequent detections of coliforms suggest a rapid route to groundwater. However, the unsaturated zone has a considerable thickness in places and the primary porosity of the Upper Coralline Limestone is high, so there is likely to be older recharge by slow matrix flow as well as rapid recharge from fractures. Measurement of SF{sub 6} from a pumping station in a deep part of one of the perched aquifers indicated a mean saturated zone age of about 15 a. The Main Sea Level aquifers (MSL) on both Malta and Gozo have a large unsaturated thickness as water levels are close to sea level. On Malta, parts of the aquifer are capped by the perched aquifers and more extensively by the Globigerina Limestone. The limited detection of coliform bacteria suggests only some rapid recharge from the surface via fractures or karst features. Transmissivity is low and {sup 3}H and CFC/SF{sub 6} data indicate that saturated zone travel times are in the range 15-40 a. On Gozo the aquifer is similar but is more-extensively capped by impermeable Blue Clay. CFC data show the saturated zone travel time is from 25 a to possibly more than 60 a. Groundwater age is clearly related to the extent of low-permeability cover. The {delta}{sup 13}C signature of groundwater is related to the geochemical processes which occur along the flowpath and is consistent with residence time ages in the sequence; perched aquifers < Malta MSL < Gozo MSL. The {sup 18}O and {sup 2}H enriched isotopic signature of post 1983 desalinated water can be seen in more-modern groundwater, particularly the urbanized areas of the perched and Malta MSL

  3. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  4. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  5. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Directory of Open Access Journals (Sweden)

    Sonja Cerar

    2013-01-01

    Full Text Available Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1 Ljubljansko polje aquifer, with higher Ca2+ values, as limestone predominates in its recharge area, (2 northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3 central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4 Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  6. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  7. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, Randolph E.

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  8. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  9. Gravity sag of sandwich panel assemblies as applied to precision cathode strip chamber structural design

    International Nuclear Information System (INIS)

    Horvath, J.

    1993-01-01

    The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ''gap frame'' connection is explained

  10. Functional grading of metal foam cores for yield-limited lightweight sandwich beams

    International Nuclear Information System (INIS)

    Conde, Yves; Pollien, Arnaud; Mortensen, Andreas

    2006-01-01

    We show that grading the porosity in a bent metal skin/metal foam core sandwich can generate significant weight savings in yield-limited design when, and only when, there is a gradient in the applied moment along the sandwich beam

  11. Behaviour of glued fibre composite sandwich structure in flexure: Experiment and Fibre Model Analysis

    International Nuclear Information System (INIS)

    Manalo, Allan; Aravinthan, Thiru

    2012-01-01

    Highlights: ► Fibre Model Analysis is used to examine the flexural behaviour of sandwich beams. ► Theoretical prediction using FMA is in good agreement with the experiment. ► Using the constituent materials in FMA predicted accurately the beam’s behaviour. ► FMA can be used for analysing sandwich beams with high-strength core in flexure. -- Abstract: The behaviour of glued composite sandwich beams in flexure was investigated with a view of using this material for structural and civil engineering applications. The building block of this glue-laminated beam is a new generation composite sandwich structure made up of glass fibre reinforced polymer skins and a high strength phenolic core material. A simplified Fibre Model Analysis (FMA) usually used to analyse a concrete beam section is adopted to theoretically describe the flexural behaviour of the innovative sandwich beam structure. The analysis included the flexural behaviour of the glued sandwich beams in the flatwise and the edgewise positions. The FMA accounted for the non-linear behaviour of the phenolic core in compression, the cracking of the core in tension and the linear elastic behaviour of the fibre composite skin. The results of the FMA showed a good agreement with the experimental data showing the efficiency and practical applications of the simplified FMA in analysing and designing sandwich structures with high strength core material.

  12. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  13. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  14. Characterizing the Occurrence and Transport of Brackish Groundwater in Southwest Bangladesh

    Science.gov (United States)

    worland, S.; Hornberger, G. M.

    2013-12-01

    Bangladesh is host to the largest and the most active delta system in the world. The morphology of the southern part of the country is characterized by low lying deltaic plains partitioned by the distributary networks of the Ganges, Brahmaputra and Meghna river systems. Much of the tidal mangrove forest ecosystem of the lower delta has been converted into poldered islands that sustain shrimp farming and rice production. The polder inhabitants depend on shallow groundwater as a primary source for drinking water and sanitation. Understanding the origin and hydrologic controls on the distribution of the brackish water and freshwater on the polder is a necessary step to ensuring a sustainable and potable freshwater source for drinking and irrigation. Preliminary sampling from shallow tube wells on Polder 32 in southwest Bangladesh suggests sporadic lateral apportioning of fresh water in the primarily brackish aquifer. This research characterizes the occurrence, transport and fate of the brackish groundwater through a combination of 3H and 14C dating, geochemical signatures, subsurface mapping using inversions from electromagnetic induction, and a 1D finite difference model and a 2D finite element model. The geochemical analysis and radiometric dating suggest that the salt water originates from paleo-brackish estuarine water deposited ~5000 years ago along with the sediments that compose the shallow aquifer. Inversions of electromagnetic survey data show potential freshwater recharge areas where the clay cap pinches out. The finite difference model demonstrates that recharge from the distributary channels is unlikely due to the low transmissivity of the clay channel beds. The finite element model gives reasonable estimates of the flushing rates of the connate brackish water beneath the polder. Inversion of electromagnetic data from a two hundred meter transect taken on Polder 32 Head gradient and groundwater flow vectors for fixed head boundary conditions across Polder

  15. Applications of thin-film sandwich crystallization platforms

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James [Diamond Light Source, Harwell Oxford, Didcot OX11 0DE (United Kingdom)

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.

  16. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  17. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  18. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  19. (222)Rn activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard.

    Science.gov (United States)

    Pinti, Daniele L; Retailleau, Sophie; Barnetche, Diogo; Moreira, Floriane; Moritz, Anja M; Larocque, Marie; Gélinas, Yves; Lefebvre, René; Hélie, Jean-François; Valadez, Arisai

    2014-10-01

    One hundred ninety-eight groundwater wells were sampled to measure the (222)Rn activity in the region between Montreal and Quebec City, eastern Canada. The aim of this study was to relate the spatial distribution of (222)Rn activity to the geology and the hydrogeology of the study area and to estimate the potential health risks associated with (222)Rn in the most populated area of the Province of Quebec. Most of the groundwater samples show low (222)Rn activities with a median value of 8.6 Bq/L. Ninety percent of samples show (222)Rn activity lower than 100 Bq/L, the exposure limit in groundwater recommended by the World Health Organization. A few higher (222)Rn activities (up to 310 Bq/L) have been measured in wells from the Appalachian Mountains and from the magmatic intrusion of Mont-Saint-Hilaire, known for its high level of indoor radon. The spatial distribution of (222)Rn activity seems to be related mainly to lithology differences between U-richer metasediments of the Appalachian Mountains and magmatic intrusions and the carbonaceous silty shales of the St. Lawrence Platform. Radon is slightly enriched in sodium-chlorine waters that evolved at contact with clay-rich formations. (226)Ra, the parent element of (222)Rn could be easily adsorbed on clays, creating a favorable environment for the production and release of (222)Rn into groundwater. The contribution of groundwater radon to indoor radon or by ingestion is minimal except for specific areas near Mont-Saint-Hilaire or in the Appalachian Mountains where this contribution could reach 45% of the total radioactive annual dose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Photocatalytic perfermance of sandwich-like BiVO{sub 4} sheets by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suqin, E-mail: liusuqin888@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Tang, Huiling; Zhou, Huan [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Wang, Wanqiang [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China)

    2017-01-01

    Graphical abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO{sub 4} sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO{sub 4}. • The sandwich-like BiVO{sub 4} sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N{sub 2} adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO{sub 4} sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO{sub 4} sheets can be attributed to its large surface area over the irregular BiVO{sub 4} particles.

  1. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  2. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  3. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  4. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  5. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  6. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    Science.gov (United States)

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  7. Evolution of the groundwater chemistry around a nuclear waste repository

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tasker, P.W.; Tweed, C.J.

    1987-12-01

    Some of the necessary techniques to construct a research model of the evolution of the groundwater under the influence of the backfill material in a nuclear waste repository are developed. These involve various extensions to the coupled ionic migration and chemical equilibria code, CHEQMATE. These extensions have been used in the first stages of a model of the chemical environment within the host rock. In this preliminary model we have considered a concrete backfill material embedded in a clay geology. However, the model is sufficiently flexible that other backfill materials and host rocks may be considered if a good thermodynamical description is available. The preliminary results from the model suggest that over timescales of about a thousand years the natural buffering action of the clay against changes in pH has a significant effect on the scale of perturbation by the ingress of highly alkaline porewater. It seems likely therefore that this type of modelling will have considerable relevance to the safety assessment models. (author)

  8. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  9. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  10. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  11. Natural fabric sandwich laminate composites: development and ...

    Indian Academy of Sciences (India)

    3Department of Production Technology, MIT Campus, Anna University, Chennai 600044, India. MS received ... In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using ... and eco-friendly quality [22].

  12. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  13. A materials selection procedure for sandwiched beams via parametric optimization with applications in automotive industry

    International Nuclear Information System (INIS)

    Aly, Mohamed F.; Hamza, Karim T.; Farag, Mahmoud M.

    2014-01-01

    Highlights: • Sandwich panels optimization model. • Sandwich panels design procedure. • Study of sandwich panels for automotive vehicle flooring. • Study of sandwich panels for truck cabin exterior. - Abstract: The future of automotive industry faces many challenges in meeting increasingly strict restrictions on emissions, energy usage and recyclability of components alongside the need to maintain cost competiveness. Weight reduction through innovative design of components and proper material selection can have profound impact towards attaining such goals since most of the lifecycle energy usage occurs during the operation phase of a vehicle. In electric and hybrid vehicles, weight reduction has another important effect of extending the electric mode driving range between stops or gasoline mode. This paper adopts parametric models for design optimization and material selection of sandwich panels with the objective of weight and cost minimization subject to structural integrity constraints such as strength, stiffness and buckling resistance. The proposed design procedure employs a pre-compiled library of candidate sandwich panel material combinations, for which optimization of the layered thicknesses is conducted and the best one is reported. Example demonstration studies from the automotive industry are presented for the replacement of Aluminum and Steel panels with polypropylene-filled sandwich panel alternatives

  14. A quantitative exposure model simulating human norovirus transmission during preparation of deli sandwiches.

    Science.gov (United States)

    Stals, Ambroos; Jacxsens, Liesbeth; Baert, Leen; Van Coillie, Els; Uyttendaele, Mieke

    2015-03-02

    Human noroviruses (HuNoVs) are a major cause of food borne gastroenteritis worldwide. They are often transmitted via infected and shedding food handlers manipulating foods such as deli sandwiches. The presented study aimed to simulate HuNoV transmission during the preparation of deli sandwiches in a sandwich bar. A quantitative exposure model was developed by combining the GoldSim® and @Risk® software packages. Input data were collected from scientific literature and from a two week observational study performed at two sandwich bars. The model included three food handlers working during a three hour shift on a shared working surface where deli sandwiches are prepared. The model consisted of three components. The first component simulated the preparation of the deli sandwiches and contained the HuNoV reservoirs, locations within the model allowing the accumulation of NoV and the working of intervention measures. The second component covered the contamination sources being (1) the initial HuNoV contaminated lettuce used on the sandwiches and (2) HuNoV originating from a shedding food handler. The third component included four possible intervention measures to reduce HuNoV transmission: hand and surface disinfection during preparation of the sandwiches, hand gloving and hand washing after a restroom visit. A single HuNoV shedding food handler could cause mean levels of 43±18, 81±37 and 18±7 HuNoV particles present on the deli sandwiches, hands and working surfaces, respectively. Introduction of contaminated lettuce as the only source of HuNoV resulted in the presence of 6.4±0.8 and 4.3±0.4 HuNoV on the food and hand reservoirs. The inclusion of hand and surface disinfection and hand gloving as a single intervention measure was not effective in the model as only marginal reductions of HuNoV levels were noticeable in the different reservoirs. High compliance of hand washing after a restroom visit did reduce HuNoV presence substantially on all reservoirs. The

  15. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  16. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  17. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuexin [College of Chemistry, Beijing Normal University, Beijing 100875 (China); School of Pharmacy, North China University of Science and Technology, Tangshan 063000 (China); Jia, Zhiqian, E-mail: zhqjia@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-11-05

    Highlights: • Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared. • The removal efficiency for 4-nitrotoluene is greater than 95% after five recycles. • The membrane showed higher adsorption capacity than that of mixed matrix membrane. - Abstract: Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles.

  18. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  19. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  20. Groundwater availability in the Atlantic Coastal Plain of North and South Carolina

    Science.gov (United States)

    Campbell, Bruce G.; Coes, Alissa L.

    2010-01-01

    The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a

  1. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  2. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  3. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  4. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  5. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Science.gov (United States)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  6. Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 1-3).

    Science.gov (United States)

    Wang, Shu-Jian; Li, Ying; Wu, Di; Wang, Yin-Feng; Li, Zhi-Ru

    2012-09-13

    By means of density functional theory, a hexanuclear sandwich complex [18]annulene-Li6-[18]annulene which consists of a central Li6 hexagon ring and large face-capping ligands, [18]annulene, is designed and investigated. The large interaction energy and HOMO-LUMO gap suggest that this novel charge-separated complex is highly stable and may be experimentally synthesized. In addition, the stability found in the [18]annulene-Li6-[18]annulene complex extends to multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 2-3). The energy gain upon addition of a [18]annulene-Li6 unit to (Li6)n-1([18]annulene)n is pretty large (96.97-98.22 kcal/mol), indicating that even larger multideckers will also be very stable. Similar to ferrocene, such a hexanuclear sandwich complex could be considered as a versatile building block to find potential applications in different areas of chemistry, such as nanoscience and material science.

  7. Recent flow regime and sedimentological evolution of a fluvial system as the main factors controlling spatial distribution of arsenic in groundwater (Red River, Vietnam)

    DEFF Research Database (Denmark)

    Kazmierczak, J.; Larsen, F.; Jakobsen, R.

    2016-01-01

    sediments was partially eroded during the Holocene and covered by sand and clay deposited in fluvial environments. Sedimentary processes lead to the development of two flow systems. Shallow groundwater discharges either to the local surface water bodies or, in the areas where low permeable sediments...... isolating Pleistocene and Holocene aquifers were eroded, to the deep groundwater flow system discharging to Red River. Previously reported pattern of arsenic groundwater concentrations decreasing with an increasing sediment age is modified by the observed flow regime. Connection of the younger and older...... river channels resulted in a transport of high arsenic concentrations towards the Pleistocene aquifer, where low arsenic concentrations were expected....

  8. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets

    Directory of Open Access Journals (Sweden)

    Ashraf M. Zenkour

    Full Text Available The aim of this research is to develop nonlocal transient magneto-electro-elastic formulation of a sandwich curved nanobeam including a nano-core and two piezo-magnetic face-sheets subjected to transverse mechanical loads and applied electric and magnetic potentials rest on Pasternak’s foundation. Nonlocal magneto-electro-elastic relations and Hamilton’s principle are used for derivation of the governing equations of motion. The analytical solution based on Fourier solution is presented for a simply-supported sandwich curved nanobeam. The numerical results are presented to investigate influence of significant parameters such as nonlocal parameter, radius of curvature, applied electric and magnetic potentials and two parameters of Pasternak's foundation on the dynamic responses of sandwich curved nanobeam. Keywords: Sandwich curved nanobeam, Dynamic responses, Piezo-magnetic face-sheets, Pasternak’s foundation, Radius of curvature, Nonlocal parameter

  9. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  10. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    Science.gov (United States)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  11. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  12. Robust and Air-Stable Sandwiched Organo-Lead Halide Perovskites for Photodetector Applications

    KAUST Repository

    Mohammed, Omar F.

    2016-02-25

    We report the simplest possible method to date for fabricating robust, air-stable, sandwiched perovskite photodetectors. Our proposed sandwiched structure is devoid of electron or hole transporting layers and also the expensive electrodes. These simpler architectures may have application in the perovskite-only class of solar cells scaling up towards commercialization.

  13. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  14. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  15. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.

    Science.gov (United States)

    Ortega-Guerrero, Adrián

    2017-10-01

    High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ 18 O, δ 2 H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.

  16. Spatial and temporal variations in shallow wetland groundwater quality

    Science.gov (United States)

    Schot, Paul P.; Pieber, Simone M.

    2012-02-01

    SummaryWetlands worldwide are threatened by environmental change. Differences in groundwater composition is one of the factors affecting wetland terrestrial floristic biodiversity. However, few studies discuss variations in wetland groundwater composition. This study presents an analysis of local-scale spatial and short-term temporal variations in 15 groundwater composition parameters of the 7 km2 Naardermeer wetland nature reserve in The Netherlands. Data is available from a network of 35 groundwater wells with 2-4 filters each, at depths between 50 and 800 cm, which were sampled about monthly over a 1-year period, totalling 1042 chemical analysis from 103 filter screens. Relative standard deviations indicate large differences in variation between parameters. Largest spatial and temporal variations were found for nutrients (NO3-, PO43-, NH4+) and redox sensitive parameters (Fe, Mn), and lowest variations for macroions and SiO2. A horizontal zonation in groundwater concentrations has been found related to soil type and soil wetness, with largest horizontal decrease in NO3- and SO42-, and largest increase in Fe and SiO2, going in the groundwater flow direction from dry sandy soils to wet peat/clay soils. No clear horizontal patterns have been found for the macroions. Spatial zonations in the north-south direction and with depth are absent for all parameters. Spatial and temporal variations were found to be related. 3D-maps indicate highest temporal fluctuations at filter screens with lowest median concentrations for NO3-, SO42- and Fe, but the reverse pattern for SiO2. High temporal variations of nutrients and redox sensitive parameters could not be traced back to a seasonal trend. The spatial and temporal variability of groundwater quality parameters as presented in this study, together with their reported effects on different vegetation types, may be used to design efficient monitoring schemes by nature managers having set specific vegetation development targets

  17. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain

    International Nuclear Information System (INIS)

    Saha, Dipankar; Sinha, U.K.; Dwivedi, S.N.

    2011-01-01

    Research highlights: → Sub-regional scale aquifers delineated in arsenic-enriched belt in the Ganga Plain. Isotopic fingerprint of the groundwater, from arsenic-enriched and arsenic-safe aquifers established for the first time in the Ganga Plain. → Recharge processes and the water provenances of vertically separated Quaternary aquifers have been established. → Mean residence time of groundwater in the deeper aquifers has been worked out using C-14 isotope. → Water from the deeper aquifer has been correlated with the paleoclimatic model of the Middle Ganga Plain (Mid-Ganga Basin) for 6-2 ka. - Abstract: Arsenic concentrations in groundwater extracted from shallow aquifers in some areas of the Ganga Plain in the states of Bihar and Uttar Pradesh, exceed 50 μg L -1 and locally reach levels in the 400 μg L -1 range. The study covered 535 km 2 of active flood plain of the River Ganga, in Bihar where a two-tier aquifer system has been delineated in a multi-cyclic sequence of Quaternary sand, clay, sandy clay and silty clay all ≤∼250 m below ground surface. The research used isotopic signatures (δ 18 O, δ 2 Η, 3 H, 14 C) and major chemical constituents (HCO 3 - ,SO 4 2- ,NO 3 - ,Cl - ,Ca 2+ ,Mg 2+ ,Na + ,K + ,As total ) of groundwater to understand the recharge processes and groundwater circulation in the aquifers. Values of δ 18 O and δ 2 Η combined with 3 H data indicate that the recharge to the As-enriched top 40 m of the deposits is modern ( -1 ) is hydrologically isolated from the upper aquifer and is characterized by lower 14 C concentration and lower (more negative) δ 18 O values. Groundwater in the lower aquifer is ∼3 ka old, occurs under semi-confined to confined conditions, with hydrostatic head at 1.10 m above the head of the upper aquifer during the pre-monsoon. The recharge areas of the lower aquifer lies in Pleistocene deposits in basin margin areas with the exposed Vindhyan System, at about 55 km south of the area.

  18. In-situ remediation of TCE by ERD in clay tills. Feasibility and performance of full-scale application insights gained through an integrated investigative approach for 2 sites

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    -scale applications of ERD in clay tills were investigated in a research project in-cluding 2 sites in Denmark undergoing remediation since 2006. Site remediation approach. At the Sortebrovej site an emulsified oil donor (EOS) and a bio-augmentation culture (KB1®) with specific degraders Dehalococcoides were injected......Background/Objectives. Remediation of trichloroethene (TCE) in clay and other low permeabil-ity geologic media, where groundwater flow occurs preferentially in higher permeability sand lenses or fractures, is a significant challenge. At older sites, much of the contaminant mass is pre......-sent as a sorbed phase in the matrix due to matrix diffusion. The principal challenge for in situ remediation in clay is to achieve effective contact between contaminant and bioremediation addi-tives (e.g., organic electron donors and bioaugmentation cultures). The feasibility and perfor-mance of full...

  19. X-joints in composite sandwich panels

    NARCIS (Netherlands)

    Vredeveldt, A.W.; Janssen, G.Th.M.

    1998-01-01

    The small structural weight of fast large ships such as fast mono hulls or catamaran type of ships is of extreme importance to their success. One possible light weight structural solution is the sandwich panel with fibre reinforced laminates and a balsa, honeycomb or foam core. A severe obstacle for

  20. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  1. Groundwater Assessment Study for 50 Communities in Southeastern New Hampshire. Appendixes

    Science.gov (United States)

    1980-09-01

    warlso dePosito : ’ i" rim ’" "% .g~ iowf J.IA APe1o1013 : MW......................... .5. 17.8 : ortsimo xx^ mae aesesClay &IA slit, Crw...3.3 3.3 CE131 10. X164. Alt 83 Mt 23 M Usbvtwntk. gin................9 7 ~ * ~3~~~ 9.2 90omeolidtad deposito , I JAd1Sd 𔃺, n15-4. Alt. XIP -%. 2 w se...YIELD - Amount of groundwater that can be withdirawn from an aquifer on a sustained basis econc-nically and legally , without impairing the native

  2. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  3. Limiting nitrogen and veterinary pharmaceutical input into groundwater: combining hydrogeophysics and soil science

    Science.gov (United States)

    Noell, Ursula; Stadler, Susanne

    2017-04-01

    The EU Interreg project TOPSOIL investigates opportunities to improve surface and groundwater quality as well as water management strategies under the consideration of climate adaptation challenges. Within the framework of the project, we investigate the transport behavior of percolation water in the unsaturated zone, the migration of nitrogen and veterinary pharmaceuticals in soils, and - together with different stakeholders (e.g. farmers, water supply companies) - develop common strategies to minimize the migration of these substances into the groundwater. In our study we focus on distinguishing preferential and diffuse flow using soil scientific and geophysical methods. During the first investigation campaign, we combined soil sampling with radiometry and electrical conductivity overview measurements on the typical sandy soil of the studied area south of Oldenburg, Germany. We used the CMD explorer for the electromagnetic mapping (horizontal and vertical dipoles, intercoil spacing of 1.48/2.82/4.49 m, investigations depths of appr. 0 - 6 m) and the radiometry detector comprised five sodium-iodide crystals each with a volume of 4 litres. The spectral data are evaluated for potassium (1.37 - 1.57 MeV), uranium (Bi-214) (1.66 - 1.86MeV) and thorium (T-208) (2.41 - 2.81MeV) and total counts (0.41-2.81MeV). A total of 292 soil samples were taken from 46 ram coring profiles (depth range: 0 to 3 m) and analyzed for soil chemical parameters and water content. The first evaluation showed a good correlation between conductivity and radiometry measurements. While the uranium and thorium values are generally low, the potassium values possibly reflect higher clay contents as do the higher conductivity values. The geophysical overview measurements were used to select the locations for soil sampling and we specifically targeted presumably clay-rich as well as clay-poor areas for sampling.

  4. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    Various modifications of the face/core interface in foam core sandwich specimens are examined in a series of two papers. This paper constitutes part I and describes the finite element analysis of a sandwich test specimen, i.e. a DCB specimen loaded by uneven bending moments (DCB-UBM). Using...... this test almost any mode-mixity between pure mode I and mode II can be obtained. A cohesive zone model of the mixed mode fracture process involving large-scale bridging is developed. Results from the analysis are used in Part II, which describes methods and results of a series of experiments....

  5. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  6. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  7. Accumulation of Pesticides in Anaerobic Clayey Till-Controls and Implications for Groundwater

    DEFF Research Database (Denmark)

    Jorgensen, Peter R.; Spliid, Niels H.

    2016-01-01

    of the phenoxy acids and triazines was much closer in sand-filled fractures and thin sand layers/lamina in the clay, suggesting that the migration of the same compounds along these textural preferential flow paths into the underlying aquifer was less different. Despite that a greater mass had originally been......Pesticide residuals after point-source pesticide spills in clay-rich aquitards may potentially affect underlying groundwater for many decades due to slow release of accumulated pollution in the clayey matrix material of the aquitard. In this study, we evaluated factors behind different degrees...... by diffusion and flow for the phenoxy acids (R = 1 to 2) than for the triazines (R = 9 to 16) in the clayey matrix material of the aquitard. This indicated that more rapid and greater accumulation could occur for the phenoxy acids in the clayey matrix than for the triazines. In contrast, the relative mobility...

  8. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  9. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    Science.gov (United States)

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  10. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  11. Groundwater recharge patterns in the Yobe river Fadama: evidence from hydrochemistry

    International Nuclear Information System (INIS)

    Agbo, J.U.; Alkali, S.C.; Nwaiwu, M. O.

    1998-01-01

    Twenty Groundwater monitor Piezometers installed linearly away from the channel of River Yobe, on opposing banks were monitored across the rainy and dry seasons of 1993. Results indicate that water levels rose rapidly in July attaining levels above ground surface in September, and by October the water level was at the decline. These coincided with the advance and the retreat of the Yobe River flood, suggestive of the Yobe River having a significant influence on the recharge to the alluvial aquifers of the Fadama. Results of chemical analyses of water samples collected from the piezometers, river water, and flood water, suggest that groundwater of the shallow alluvial aquifers do not seem to have a common immediate source with the surface water sources of the Fadama. Hydrochemical concentration trend show concentration gradient towards the river channel, implying that the river might not be the source of the groundwater recharge to the Yobe River Fadama aquifers. Groundwater flow characteristics, also seem to support this view, since there is flow gradient towards the river for the greater part of the year except during peak flood when there are indications of flow (by way of higher potentiometric surface) away from the river. These and other evidences discussed in the paper suggest that the Fadama alluvial aquifer gets most of its recharge directly from rainfall infiltration in regions devoid of clay cover

  12. Assessment of foam fracture in sandwich beams using thermoelastic stress analysis

    DEFF Research Database (Denmark)

    Dulieu-Barton, J.M.; Berggreen, Christian; Mettemberg, C.

    2009-01-01

    Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures.......Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures....

  13. Investigationof Clay Mineralogy, Micromorphology and Evolution of Soils in Bajestan Playa

    Directory of Open Access Journals (Sweden)

    Mohammad Ghasemzadeh Ganjehie

    2017-03-01

    Full Text Available Introduction: Playa is one of the most important landscapes in arid regions which covers about 1% of the world's total land area. Study of playas is important from different points of view especially pedology, sedimentology, mineralogy, environmental geology, groundwater and surface water chemistry. More than 60 playas have been identified in Iran. Considering the fact that playas and surrounding landforms are important archive of landscape evolution and paleoenvironmental variations, it seems that less attention has been paid to them so far. Soils are known as indicators of the landscapes evolution. Previous studies in arid regions of Iran imply different periods of deposition and soil formation in playa and alluvial fans or pediments. Bajestan playa is one of the known playa in northeastern Iran, and the largest clay flat exists in this playa. There is no information on the soils and their evolution in Bajestan playa. The objective of this study were to 1 identify the soils in different landforms along a transect from alluvial fan to clay in Bajestan playa 2 determine the morphological, micromorphological and mineralogical characteristics of these soils 3 determine the periods of soil and landform evolution and 4 comparison of soils evolution of the study area to other arid regions of Iran. Material and Methods: The study area of approximately 20000 hectares is located in southeastern of KhorasanRazavi province. The climate of the study area is hot and dry with mean annual temperature and rainfall of 17.3 °C and 193 mm, respectively. Soil moisture regime is aridic with subdivisions of weak aridic and soil temperature regime is thermic. Firstly, landforms and geomorphic surfaces of the study area were recognized based on Google Earth images interpretations and field observations. Four main landforms were recognized in the study area. The landforms from north to the south of the study area were alluvial fan, intermediate alluvial fan- clay flat

  14. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  15. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  16. Replacements in bentonite. What happens when groundwater comes into contact with the barrier?; Austausch im Bentonit. Was passiert, wenn Grundwasser auf die Barriere trifft?

    Energy Technology Data Exchange (ETDEWEB)

    Dohrmann, Reiner; Kaufhold, Stephan [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Fachbereich ' ' Geophysikalische Erkundung - Technische Mineralogie' '

    2016-05-15

    BGR scientists are investigating samples from the Swedish underground rock laboratory in Aspo to find out which geochemical processes are involved in the final disposal of radioactive waste in underground rock formations: such as when the clay buffer in the geotechnical barrier comes into contact with groundwater.

  17. Concentrations and compositions of colloidal particles in groundwater near the ICPP, Idaho National Laboratory, Idaho

    International Nuclear Information System (INIS)

    Estes, M.; McCurry, M.

    1994-01-01

    The presence of colloidal material is being investigated in groundwater near the ICPP to determine whether the concentrations and chemical compositions are suitable to have an impact on the transport of Sr-90. Colloids are proposed as a viable transport mechanism, and may have an influence on the chemical trends observed in three wells near the ICPP. Ultrafiltration of groundwater samples has been performed on difFerent intervals in USGS wells 45, 46, and Site 14, has provided filtrate samples, for analyses by ICP-MS, and filters for analyses by SEM/EDS. Preliminary results indicate that concentrations of colloids are from 2.1-0.8 ppm for the >0.45 μm size fraction, and 2.3-9.8 ppm for the <0.45 μm size fractions. Compositions consist of calcite, silicic acid, ferrihydrite, clay, and possibly dolomite. Calcium was shown to have the largest contribution from both EDS and ICP-MS. Magnesium and silicon were also found to filter out in large concentrations. Iron and aluminum are minor constituents of the colloidal mass and contain concentrations of <10ppb and <1ppb, respectively. These results indicate that if colloids are going to have a major impact on contaminant migration then the coprecipitation of Sr-90 with calcite and dolomite would have to be a sorption mechanism. Sorption onto Fe and Al colloids probably does not have a major impact because of the low concentrations. Clay colloids were noted to be relatively abundant and may also have an impact on Sr-90 migration, due to the exchange of Sr with other cations in the clay structure. 14 refs., 4 figs., 2 tabs

  18. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    International Nuclear Information System (INIS)

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel; Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine

    2015-01-01

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All 87 Sr/ 86 Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO 3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues. - Highlights:

  19. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Continuation from 8010293: Finally, the sandwich line with the horn is placed on the ground, for the horn to be inspected and, if needed, exchanged for a new one. The whole procedure was trained with several members of the AA team, for quick and safe handling, and to share the radiation dose amongst them.

  20. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    Science.gov (United States)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  1. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    International Nuclear Information System (INIS)

    Azmi, M A; Abdullah, H Z; Idris, M I

    2013-01-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction

  2. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  3. Self-healing sandwich structures incorporating an interfacial layer with vascular network

    International Nuclear Information System (INIS)

    Chen, Chunlin; Peters, Kara; Li, Yulong

    2013-01-01

    A self-healing capability specifically targeted for sandwich composite laminates based on interfacial layers with built-in vascular networks is presented. The self-healing occurs at the facesheet–core interface through an additional interfacial layer to seal facesheet cracks and rebond facesheet–core regions. The efficacy of introducing the self-healing system at the facesheet–core interface is evaluated through four-point bend and edgewise compression testing of representative foam core sandwich composite specimens with impact induced damage. The self-healing interfacial layer partially restored the specific initial stiffness, doubling the residual initial stiffness as compared to the control specimen after the impact event. The restoration of the ultimate specific skin strength was less successful. The results also highlight the critical challenge in self-healing of sandwich composites, which is to rebond facesheets which have separated from the core material. (paper)

  4. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading

    Directory of Open Access Journals (Sweden)

    Lin Jing

    Full Text Available The dynamic response of cylindrical sandwich shells with aluminum foam cores subjected to air blast loading was investigated numerically in this paper. According to KNR theory, the nonlinear compressibility of the air and finite shock conditions were taken into account in the finite element model. Numerical simulation results show that the compression strain, which plays a key role on energy absorption, increases approximately linearly with normalized impulse, and reduces with increasing relative density or the ratio of face-sheet thickness and core thickness. An increase of the impulse will delay the equalization of top and bottom face-sheet velocities of sandwich shell, but there is a maximum value in the studied bound. A limited study of weight optimization was carried out for sandwich shells with respect to the respective geometric parameters, including face-sheet thickness, core thickness and core relative density. These numerical results are of worth to theoretical prediction and engineering application of cellular metal sandwich structures.

  5. Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications

    Directory of Open Access Journals (Sweden)

    A. Dineshkumar

    2016-07-01

    Full Text Available This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.

  6. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  7. The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers-the Gusghegu District, Northern Region

    International Nuclear Information System (INIS)

    Salifu, M.

    2012-01-01

    Elevated levels of fluoride have been reported to occur in some groundwater in the Gushegu district of the Northern region of Ghana leading to the closure of some boreholes in the area. Hydrochemical data from 21 water, soil and some rock samples were used to evaluate water quality, water types and to identify whether the unsaturated zone has influence on the elevated fluoride levels in groundwater as well as the processes that control fluoride level in the groundwater. Water samples were extracted from soil sample for flouride analysis using the cryogenic vacuum extraction set-up. Results of the water quality analysis showed that the groundwater in the study area were generally potable. A plot of Gibbs diagram revealed that rock weathering and rainfall were the major hydrogeochemical processes regulating the water chemistry of the study area. Two different water types were identified in the study area, namely: Na-HCO 3 - , which happened to be the major water type in the study area and Na-Ca-Mg-HCO 3 - water type. The fluoride concentration in the groundwater varied from 0.0 to 1.97 mg/L while that of the unsaturated zone ranged from 0.0 to 2.08 mg/L. The elevated fluoride levels in the groundwater strongly correlated with that of fluoride levels in the unsaturated zone (r 2 =0.76). Petrographic analysis of rock samples (siltstones) identified the minerals present to be muscovite, plagioclase feldspars, quartz, sericite and iron oxide. Other clay minerals such as montmorillonite, illite and chloride were identified. The elevated fluoride levels recorded in the groundwater may be due to leaching, as a result of the weathering and dissolution of muscovite, sericite as well as the presence of other clay minerals in the unsaturated zone. Application of phosphate fertilizers may also account for the the elevated fluoride concentrations recorded in the study area. Stable isotopic composition of the waters revealed that most of the groundwater were of meteoric origin

  8. Fracture Characterization of Sandwich Face/Core Interfaces

    DEFF Research Database (Denmark)

    Manca, Marcello

    of load transfer between the faces and the core layer is lost, the debonds are considered as primary damage initiators. Under fatigue loading the debonds may evolve into cracks that cause a reduction in structural performance and consequent failure. At present most structural design is based on “life-time...... of sandwich structures is defects that are introduced in the manufacturing process. It is inevitable that areas of the face sheets will not fully adhere to the core resulting in defects known as “debonds”. Debonds can also be induced in-service due to e.g. localised impact loading or overloading. As the means...... such result it is important to devise new experimental and analytical techniques to establish the multi-mode fracture characteristics of sandwich plate structures and accordingly develop methods to inhibit defect propagation. This thesis deals with characterization of fracture between face and core...

  9. Sensory Evaluation and Feasibility Report of Plantain Sandwich for Nigerian Market

    OpenAIRE

    Olu Malomo; E.O. Uche; E.A. Alamu

    2015-01-01

    Protein-energy malnutrition is a common nutritional disorder in developing countries and constitutes a major public health problem in young children and elderly people. This project is aimed at evaluating the acceptability of plantain-peanut sandwich and roasted at different temperatures. A plantain-peanut sandwich consists of minced protein stuffed into a carbohydrate source made into a roll as a food product. The plantain was roasted at two different temperatures than later enriched with 5%...

  10. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  11. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    DEFF Research Database (Denmark)

    Bockhorn, Britta

    investigations on two typical Danish clay till sites, and one modeling study with the integrated surface water and groundwater model HydroGeoSphere. The saturated hydraulic conductivity (Ksat) is the most critical soil physical parameter when it comes to sizing stormwater infiltration systems. In the first study......, different field methods for Ksat estimation, the double ring infiltrometer, the Guelph permeameter and falling head infiltration tests in a small excavation, were compared and evaluated for their capability to return realistic Ksat values in tills. The double ring infiltrometer and the Guelph permeameter...... represent suitable methods for sizing stormwater infiltration systems if measurements are combined with geological knowledge from maps of near-surface deposits and borehole descriptions. If space allows, the more invasive infiltration tests in a small excavation are recommended, because measurements...

  12. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  13. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  14. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  15. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  16. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  17. Calculation of dynamic stresses in viscoelastic sandwich beams using oma

    DEFF Research Database (Denmark)

    Pelayo, F.; Aenlle, M. L.; Ismael, G.

    2017-01-01

    The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...

  18. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  19. Groundwater chemical changes at SFR in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Gurban, Ioana [3DTerra (Sweden)

    2003-01-01

    The examination of the groundwater sampled at the SFR tunnel system indicated that the groundwater consist mainly of a Na-Cl to Na-Ca-Cl type of water. Most of the samples fall within the Cl range of 2500-5500 mg/l having a neutral pH (6.6-7.7 units). The water is reducing and despite the fact that the tunnel acts like a hydraulic sink constantly withdrawing water out from the rock into the tunnel the groundwater changes are moderate with time. Most of the sampling points in the SFR tunnel system are located under the Sea and M3 calculations indicated that most of the sampling points have a change of water types from an older marine water type affected by glacial melt water to an more modern marine water type such as Baltic Sea water which has been modified by possibly microbial sulphate reduction and ion exchange. Mass balance calculations indicated that the waters seem to be in equilibrium with the fracture filling mineral such as calcite. The quality of the aluminium data made the modelling with the major rock forming aluminium silicates such as feldspars and clay minerals uncertain and was therefore not reported. The conclusion is that the groundwater evolution and patterns at SFR are a result of many factors such as: 1. the changes in hydrogeology related to glaciation/deglaciation and land uplift, 2. repeated Sea/lake water regressions/transgressions 3. the closeness to Baltic Sea resulting in relative small hydrogeological driving forces which could preserve old water types from being flushed out, 4. organic or inorganic alteration of the groundwater caused by microbial processes or in situ water/rock interactions 5. tunnel construction which changed the flow system The modelled present-day groundwater conditions of the SFR site consist of a mixture in varying degrees of different water types. The data indicate that all the groundwater at SFR is strongly affected by Sea water of different origin and ages. The meteoric (0- 1000 B.P) portion is located close

  20. Radiocarbon dating of groundwater in the vicinity of a potential repository in clay for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marmol, P. del

    1984-12-01

    In the context of a study of Boom clay in Mol (Belgium) for the purpose of storing radioactive waste, 14 C activity measurements of the surrounding aquifers have been carried on in the Kempen region to investigate their flow patterns. This work is done in conjunction with classical hydrogeological methods, and a mathematical modelling of the aquifer system. Radiochemical dating is believed to give a decisive support to the hydrogeological modelling approaches. 43 wells in 11 locations have been sampled for 14 C isotopic and chemical analyses. So far 34 14 C and 23 13 C/ 12 C isotopic ratios are available. Preliminary results are presented. The decreasing trend in 14 C activity with depth from Neogene to older layers is generally observed. The 14 C activities of the Berg sands in general are discussed. The 14 C data compared to the piezometric measurements cannot be explained without taking into account a contribution through seepage from one or more other aquifers. A positive 14 C measurement in the interstitial water of the Boom clay confirms this view. This work will be pursued as many more data are needed to reach any quantitative conclusion

  1. Preparation of nanocomposites polyurethane water bone with clay montmorillonite sodica and organophilic clay

    International Nuclear Information System (INIS)

    Garcia, Claudia P.; Delpech, Marcia C.; Coutinho, Fernanda M.B.; Mello, Ivana L.

    2009-01-01

    Nanocomposites based on water bone polyurethane (NWPU's) were synthesized based on poli(propylene glycol), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI) and hydrazine (HYD), as chain extender. Two kinds of clays were employed: hydrophilic and organophilic. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and the mechanical properties were evaluated. The FTIR results showed the presence of specific groups of clay and the XRD suggested that occurred their intercalation/exfoliation through polyurethane matrix. The mechanical resistance of the systems showed significant increase when compared to water dispersions synthesized without clay. (author)

  2. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    Science.gov (United States)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  3. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration.

    Science.gov (United States)

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-09-30

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  4. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Viewpoints of working sandwich generation women and occupational therapists on role balance strategies.

    Science.gov (United States)

    Evans, Kiah L; Girdler, Sonya J; Falkmer, Torbjorn; Richmond, Janet E; Wagman, Petra; Millsteed, Jeannine; Falkmer, Marita

    2017-09-01

    Occupational therapists need to be cognizant of evidence-based role balance advice and strategies that women with multigenerational caring responsibilities can implement independently or with minimal assistance, as role balance may not be the primary goal during many encounters with this population. Hence, this study aimed to identify the viewpoints on the most helpful role balance strategies for working sandwich generation women, both from their own perspectives and from the perspective of occupational therapists. This was achieved through a Q methodology study, where 54 statements were based on findings from interviews, sandwich generation literature and occupational therapy literature. In total, 31 working sandwich generation women and 42 occupational therapists completed the Q sort through either online or paper administration. The data were analysed using factor analysis with varimax rotation and were interpreted through collaboration with experts in the field. The findings revealed similarities between working sandwich generation women and occupational therapists, particularly in terms of advocating strategies related to sleep, rest and seeking practical assistance from support networks. Differences were also present, with working sandwich generation women viewpoints tending to emphasize strategies related to coping with a busy lifestyle attending to multiple responsibilities. In contrast, occupational therapy viewpoints prioritized strategies related to the occupational therapy process, such as goal setting, activity focused interventions, monitoring progress and facilitating sustainable outcomes.

  6. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  7. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  8. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  9. Face/core interface fracture characterization of mixed mode bending sandwich specimens

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, L.A.

    2011-01-01

    and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading......Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets...... application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack...

  10. Sound insulation of composite cylindrical shells: a comparison between a laminated and a sandwich cylinder

    OpenAIRE

    Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan

    2012-01-01

    The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...

  11. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  12. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    National Research Council Canada - National Science Library

    Vaidya, U

    1999-01-01

    .... The sandwich composite concepts considered in this study possessed the feasibility to improve the transverse stiffness, provide enhanced damage resistance/tolerance to impact and functionality...

  13. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  14. Assessment of groundwater contamination risk in an agricultural area in north Italy

    Directory of Open Access Journals (Sweden)

    Georgios Bartzas

    2015-09-01

    Full Text Available In the present study a specific approach is followed, considering the Pesticide DRASTIC and Susceptibility index (SI methods and a GIS framework, to assess groundwater vulnerability in the agricultural area of Albenga, in north Italy. The results indicate “high” to “very high” vulnerability to groundwater contamination along the coastline and the middle part of the Albenga plain, for almost 49% and 56% of the total study area for Pesticide DRASTIC and SI methods, respectively. These sensitive regions depict characteristics such as shallow depth to groundwater, extensive deposits of alluvial silty clays, flat topography and intensive agricultural activities. The distribution of nitrates concentration in groundwater in the study area is slightly better correlated with the SI (0.728 compared to Pesticide DRASTIC (0.693, thus indicating that both methods are characterized by quite good accuracy. Sensitivity analysis was also performed to acknowledge statistical uncertainty in the estimation of each parameter used, assess its impact and thus identify the most critical parameters that require further investigation in the future. Depth to water is the parameter that exhibited the largest impact on the Pesticide DRASTIC vulnerability index followed by the impact of the vadose zone and topography. On the other hand, the SI method is more sensitive to the removal of the topography parameter followed by the aquifer media and the depth to water parameters.

  15. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  16. Feasibility of using overburden clays for sealing purposes and laboratory testing of the clays

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J. (Vyzkumny Ustav pro Hnede Uhli, Most (Czechoslovakia))

    1992-03-01

    Studies properties of overburden clay from North Bohemian surface coal mines for use as sealants of industrial and household waste that will be dumped at Czechoslovak surface mine sites. Basic requirements of sealing layers are optimum compressibility and impermeability by suitable compacting. Laboratory soil mechanical tests of different clay samples were carried out using the Proctor standard tests (PCS) and the Norwegian Geonor A/S - m 45 instrument. Laboratory tests were used to select the best available clay types with optimum density and moisture content. Experimental results of laboratory tests are provided.

  17. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  18. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  19. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  20. Therapeutic Results of Radiotherapy in Rectal Carcinoma -Comparison of Sandwich Technique Radiotherapy with Postoperative Radiotherapy

    International Nuclear Information System (INIS)

    Huh, Gil Cha; Suh, Hyun Suk; Lee, Hyuk Sang; Kim, Re Hwe; Kim, Chul Soo; Kim, Hong Yong; Kim, Sung Rok

    1996-01-01

    Purpose : To evaluate the potential advantage for 'sandwich' technique radiotherapy compared to postoperative radiotherapy in respectable rectal cancer. Between January 1989 and May 1994, 60 patients with respectable rectal cancer were treated at Inje University Seoul and Sanggye Paik Hospital.Fifty one patients were available for analysis : 20 patients were treated with sandwich technique radiotherapy and 31 patients were treated with postoperative radiotherapy. In sandwich technique radiotherapy(RT), patients were treated with preoperative RT 1500 cGy/5fx followed by immediate curative resection. Patients staged as Astler-Coller B2, C were considered for postoperative RT with 2500-4500 cGy. In postoperative RT, total radiation dose of 4500-6120 cGy, 180 cGy daily at 4-6 weeks was delivered. Patients were followed for median period of 25 months. Results : The overall 5-year survival rates for sandwich technique RT group and postoperative RT group were 60% and 71%, respectively(p>0.05). The 5-year disease free survival rates for each group were 63%. There was no difference in local failure rate between two groups(11% versus 7%). Incidence of distant metastasis was 11%(2/20) in the sandwich technique RT group and 20%(6/31) in the postoperative RT group(p>0.05). The frequencies of acute and chronic complications were comparable in both groups. Conclusion : The sandwich technique radiotherapy group shows local recurrence and survival similar to those of postoperative RT alone group but reduced distant metastasis compared to postoperative RT group. But long term follow-up and large number of patients is needed to make an any firm conclusion regarding the value of this sandwich technique RT

  1. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  2. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  3. The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available Lightweight sandwich structures with highly porous 2D cores or 3D (three-dimensional periodic cores can effectively withstand underwater explosion load. In most of the previous studies of sandwich structure antiblast dynamics, the underwater explosion (UNDEX bubble phase was neglected. As the UNDEX bubble load is one of the severest damage sources that may lead to structure large plastic deformation and crevasses failure, the failure mechanisms of sandwich structures might not be accurate if only shock wave is considered. In this paper, detailed 3D finite element (FE numerical models of UNDEX bubble-LCSP (lightweight corrugated sandwich plates interaction are developed by using MSC.Dytran. Upon the validated FE model, the bubble shape, impact pressure, and fluid field velocities for different stand-off distances are studied. Based on numerical results, the failure modes of LCSP and the whole damage process are obtained. It is demonstrated that the UNDEX bubble collapse jet local load plays a more significant role than the UNDEX shock wave load especially in near-field underwater explosion.

  4. Sandwich panels with high performance concrete thin plates at elevated temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    concerned HMT modelling and elastic stress analysis with nonlinear temperature effects of a full size loaded sandwich wall, qualitatively assessing the location of critically stressed zones. Modelling output was compared to published experimental results. The model reproduced experimental temperature...... recordings satisfactorily, except phase changes of water at low heating rates. It was suggested that the function governing moisture evolution with temperature and pressure should be updated for HPC. Pore pressure was found critical for sandwich structures due their higher temperatures. Adding polypropylene...

  5. What Makes a Natural Clay Antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  6. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    subbasin. Residual effects of pre-1970s intrusion of saline water from San Francisco Bay, including high chloride concentrations in groundwater, are evident in parts of the Niles Cone subbasin. Noble gas recharge temperatures indicate two primary recharge sources (Quarry Lakes and Alameda Creek) in the Niles Cone groundwater subbasin. Although recharge at Quarry Lakes affects hydraulic heads as far as the transition zone between the Niles Cone and East Bay Plain groundwater subbasins (about 5 miles), the effect of recharged water on water quality is only apparent in wells near (less than 2 miles) recharge sources. Groundwater chemistry from upper aquifer system wells near Quarry Lakes showed an evaporated signal (less negative oxygen and hydrogen isotopic values) relative to surrounding groundwater and a tritium concentration (2 tritium units) consistent with recently recharged water from a surface-water impoundment.Uncorrected carbon-14 activities measured in water sampled from wells in the Niles Cone groundwater subbasin range from 16 to 100 percent modern carbon (pmC). The geochemical reaction modeling software NETPATH was used to interpret carbon-14 ages along a flowpath from Quarry Lakes toward the East Bay Plain groundwater subbasin. Model results indicate that changes in groundwater chemistry are controlled by cation exchange on clay minerals and weathering of primary silicate minerals. Old groundwater (lower carbon-14 activities) is characterized by high dissolved silica and pH. Interpreted carbon-14 ages ranged from 830 to more than 7,000 years before present and are less than helium-4 ages that range from 2,000 to greater than 11,000 years before present. The average horizontal groundwater velocity along the studied flowpath, as calculated using interpreted carbon-14 ages, through the Deep aquifer of the Niles Cone groundwater subbasin is between 3 and 12 feet per year. The groundwater velocity decreases near the boundary of the transition zone to the southern

  7. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  8. Veterans' informal caregivers in the "sandwich generation": a systematic review toward a resilience model.

    Science.gov (United States)

    Smith-Osborne, Alexa; Felderhoff, Brandi

    2014-01-01

    Social work theory advanced the formulation of the construct of the sandwich generation to apply to the emerging generational cohort of caregivers, most often middle-aged women, who were caring for maturing children and aging parents simultaneously. This systematic review extends that focus by synthesizing the literature on sandwich generation caregivers for the general aging population with dementia and for veterans with dementia and polytrauma. It develops potential protective mechanisms based on empirical literature to support an intervention resilience model for social work practitioners. This theoretical model addresses adaptive coping of sandwich- generation families facing ongoing challenges related to caregiving demands.

  9. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These s......This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed...

  10. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  11. Development of indirect sandwich ELISA for determination of excretory-secretory antigens of Fasciola hepatica

    Directory of Open Access Journals (Sweden)

    Libertad Alzamora-Gonzales

    2016-05-01

    Full Text Available Fasciolosis is a cosmopolitan parasitosis medical-veterinary importance caused by Fasciola hepatica, which affects sheep, goats and cattle; and it affects man accidentally causing an epidemic-endemic infection difficult to diagnose. The aim was to develop an indirect sandwich ELISA with 3 antibodies for detecting excretory-secretory antigens of Fasciola hepatica (ESFh. For the development of indirect sandwich ELISA were used, as capture antibody, mouse polyclonal antibodies anti ESFh and polyclonal antibodies rabbit anti-ESFh as detection antibody, at the concentrations of 10 and 5 µg/mL respectively. The conjugate used was mouse monoclonal anti- total immunoglobulins rabbit linked to peroxidase (1/1000. Were analized 31 sheep fecal samples, and the results were compared with those obtained by direct coproparasitological examination (DC and counterimmunoelectrophoresis (CIEP. The detection limit obtained for indirect sandwich ELISA was 100 ng/mL. The test had a 100% sensitivity, 96.6% specificity, positive and negative predictive values of 50% and 96.6% respectively, in relation to DC test. Comparing with CIEP the specificity obtained for indirect sandwich ELISA was 93.5% and a negative predictive value of 100%. We concluded that indirect sandwich ELISA designed is able to detect metabolic antigens in ovine feces samples and can be used for Fasciola hepatica diagnosis.

  12. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  13. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  14. Electrical switching and memory phenomena observed in redox-gradient dendrimer sandwich devices

    OpenAIRE

    Li, JianChang; Blackstock, Silas C.; Szulczewski, Greg J.

    2005-01-01

    We report on the fabrication of dendrimer sandwich devices with electrical switching and memory properties. The storage media is consisted of a redox-gradient dendrimer layer sandwiched in organic barrier thin films. The dendrimer layer acts as potential well where redox-state changes and consequent electrical transitions of the embedded dendrimer molecules are expected to be effectively triggered and retained, respectively. Experimental results indicated that electrical switching could be re...

  15. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  16. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater

  17. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  18. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  19. The Effect of Face Sheet Wrinkle Defects on the Strength of FRP Sandwich Structures

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Pettersson, Robert

    2007-01-01

    . In the studies reported here, the influence of wrinkle defects on the in-plane compressive strength of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates used in PVC foam-cored sandwich panels has been investigated by three approaches: testing of sandwich beam specimens in four-point bending...

  20. Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass

    International Nuclear Information System (INIS)

    Ying, Z G; Ni, Y Q

    2009-01-01

    Magnetorheological (MR) elastomers are used to construct a smart sandwich beam for micro-vibration control. The micro-vibration response of a clamped–free sandwich beam with an MR elastomer core and a supplemental mass under stochastic support micro-motion excitation is studied. The dynamic behavior of MR elastomer as a smart viscoelastic material is described by a complex modulus which is controllable by external magnetic field. The sixth-order partial differential equation of motion of the sandwich beam is derived from the dynamic equilibrium, constitutive and geometric relations. A frequency-domain solution method for the stochastic micro-vibration response of the sandwich beam is developed by using the frequency-response function, power spectral density function and spatial eigensolution. The root-mean-square velocity response in terms of the one-third octave frequency band is calculated, and then the response reduction capacity through optimizing the complex modulus of the core is analyzed. Numerical results illustrate the influences of the MR elastomer core parameters on the root-mean-square velocity response and the high response reduction capacity of the sandwich beam. The developed analysis method is applicable to sandwich beams with arbitrary cores described by complex shear moduli under arbitrary stochastic excitations described by power spectral density functions

  1. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  2. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  3. Changing Welfare States and the “Sandwich Generation” : Increasing Burden for the Next Generation?

    Directory of Open Access Journals (Sweden)

    Harald Künemund

    2006-12-01

    Full Text Available The burden placed on individuals aged 40 to 59 – especially on women – by competing demands from work and both older and younger family members is often addressed using the metaphor of the „sandwich gen-eration“. Based on a systematization of the definitions used in the litera-ture, empirical evidence on the frequency of such generational constella-tions and on their impact on the well-being of sandwiched adults will be presented. Analysing the second wave of the German Aging Survey shows that being sandwiched – defined as a generational constellation – is very common, but simultaneous care activities for both older and younger family members are rare, especially in combination with labour force participation, and that life satisfaction is not systematically related to being sandwiched. Implications for further research and future devel-opments will be discussed, especially with respect to changes in family structure (e.g. the beanpole family and changes in the amount of welfare state spending for the aged.

  4. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  5. Compressive properties of sandwiches with functionally graded

    Indian Academy of Sciences (India)

    The compressive behaviour of a new class of sandwich composite made up of jute fiber reinforced epoxy skins and piece-wise linear fly ash reinforced functionally graded (FG) rubber core is investigated in flat-wise mode. FG samples are prepared using conventional casting technique. Presence of gradation is quantified ...

  6. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wei

    2017-09-01

    Full Text Available Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  7. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  8. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    International Nuclear Information System (INIS)

    Dimassi, M A; Brauner, C; Herrmann, A S

    2016-01-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence. (paper)

  9. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  10. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  11. ELISA with double antigen sandwich for screening specific serum anti-TP antibody in blood donors

    International Nuclear Information System (INIS)

    Wang Yiqing; Shi Zhixu

    2002-01-01

    Objective: To select a sensitive and specific laboratory examination suitable for screening serum anti-TP antibody in blood donors. Methods: The serum anti-TP antibody in 11271 blood donors were detected using ELISA with double antigen sandwich and the outcomes were compared with those using RPR assay. The conflicting specimen were confirmed by repeating the test with TPHA assay. Results: The positive rates of serum anti-TP antibody by ELISA with double antigen sandwich and RPR was 0.36% (41/11271) and 0.26% (29/11271), respectively. The coincidence of the detecting outcomes by ELISA with double antigen sandwich and RPR with TPHA was 97.5% (40/41) and 63.41%(26/41) respectively. Conclusion: Compared with RPR assay, ELISA with double antigen sandwich has higher sensibility and specificity for screening serum anti-TP antibody in blood donors

  12. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  13. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  14. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests

    Directory of Open Access Journals (Sweden)

    Amir Shahdin

    2011-01-01

    Full Text Available Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio. This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores. Low velocity impacts are done below the barely visible impact damage (BVID limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.

  15. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  16. Geological and geophysical evaluation of the Ajana area’s groundwater potential, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    O.M Ajibade

    2011-06-01

    Full Text Available Acombined geological and geophysical evaluation was madeof the groundwater potential of the Ajana, RemoNorth area in south-western Nigeria; the geology and other structural features of the rocks there strongly influenced and correlated the aquifers' storability and transmissivity. Geological mapping revealed that the area was made up of granite, quartzite and varieties of gneiss, some of which have good secondary porosity and permeability. Ten vertical electric soundings (VES stations were established using a Schlumberger electrode array. Five geoelectric layers consisting of topsoil, sand,
    clayey-sandy, fractured / weathered basement and fresh bedrock were delineated. The aquifer layers were the 38.3m thick 283 ?m resistivity sand/sandy clay and 55 - 518 ?m resistivity fractured/weathered basement. Other geoelectric parameters used in evaluating the area's hydrogeological potential included curve type, anisotropy coefficient and reflection coefficient - The QH curve type was predominant in the area. The anisotropy Coefficients suggested VES stations having high groundwater potential ranging from 1.4 - 1.56; while the reflection coefficients for the area ranged from 0.21 - 0.99. The overall results showed that VES stations 8, 9 and 10 could be possible groundwater sources having high expected yield.

  17. Studies Related to the Role of Colloids on the Transport of Some Radio Contaminants in Groundwater

    International Nuclear Information System (INIS)

    Mekhemar, H.S.A.

    2012-01-01

    The safety of a radioactive waste repository is related to its capacity to confine radioactivity and isolate it from biosphere. The most likely process that can lead to the release of radionuclides from a repository to the geosphere is transport by groundwater. The transport and distribution of radionuclides in groundwater or through geologic media depend on the radioactive source, the physicochemical forms of radionuclides and interactions of radionuclides with other components present in the groundwater. Colloids naturally exist in groundwater aquifers and can significantly impact contaminant migration rate. The presence of colloids affects contaminant transport in aquifers either by facilitation or retardation. The effect of the presence of colloid (Al 2 O 3 ) on the sorption characteristics of Co 2+ and Cs + , as two of the most important radionuclides commonly encountered in the Egyptian waste streams, onto yellow sand and clay taken from Inshas site was studied. Based on the obtained results, the maximum sorption capacity of Cs + and Co 2+ in presence of colloid was higher than sorption in absence of colloid but the sorption capacity of clay was found to be greater than that of yellow sand for both ions in absence and presence of colloid. Sorption capacity (q) increased by increasing initial metal ion concentration. The increasing temperature from 25 to 65 degree C leads to slight decrease in the sorption of Cs ions while lead to increase in sorption of Co ions. The kinetic data could be successfully interpreted by simplified second order kinetic expression. The rate constants and the theoretical equilibrium Sorption capacities were calculated for studied cases. It was demonstrated from column experiments that colloid presence influences radionuclides transport through fixed bed yellow sand column. Al 2 O 3 and Fe 2 O 3 colloids reduce the migration of Cs + and Co 2+ ions in all studied cases. From the results of desorption experiments it can be concluded

  18. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  19. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  20. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  1. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  2. Effect of Reinforced Hybrid Palm Shells on Mechanical Properties of Polyurethane-Jute Woven/ Vinyl Ester Sandwich Board

    International Nuclear Information System (INIS)

    Cheng, T.S.; Nurul Ain Nanyan; Lan, D.N.U.; Leng, T.P.

    2014-01-01

    A natural fiber sandwich was constructed from palm shells/polyurethane core and jute woven/vinyl ester face sheets by the in-situ sandwich process (core and panel prepared simultaneously). The polyurethane sandwich core was reinforced by hybrid shell systems of dried palm shell (DPS) and palm kernel shell (PKS) (50P-50D, 25P-75D), and single shell system of PKS (100P) as well as 20 phr empty fruit bunch (EFB) based on hundred part of polyurethane. The sandwich face sheets are prepared by using two jute woven layers and impregnated by vinyl ester. Interlocking between DPS and polyurethane matrix was formed, which hence enhanced the mechanical properties. The interfacial adhesion between DPS, PKS, and EFB with the polyurethane binder played the important role to achieve high mechanical properties. It was found that hybrid shells exhibited high reinforcement for sandwich's performance resulting better compression (50P-50D) and flexural (25P-75D) properties. The single shell 100P showed only improvement on flexural modulus.The fracture surface morphology of sandwich under mechanical test was performed by using optical microscopy. (author)

  3. Extent and Durability of Contamination of Groundwater and Water Works With The Pesticide Metabolite Bam (2,6 -dichlorbenzamide) Evaluated For Representative Aquifers In Denmark

    Science.gov (United States)

    Jørgensen, Peter R.; Clausen, Liselotte; Larsen, Flemming

    The pesticide metabolite BAM (2,6-dichlorbenzamide) is the most frequently found pesticide contaminant in Danish groundwater. In 1999 BAM was found in 26% of Danish water supply wells and the drinking water standard (0.1 µg/L) was exceeded in 11% of the wells. BAM is a metabolite from the active ingredient dichlobenil (DCB), which was used for non-agricultural total weed protection during 1966 ­ 1997. By using the numerical codes FRAC3Dvs and MODFLOW/MT3D it is the aim of the study to evaluate the extent and durability of the BAM pollution in Danish groundwater and to recommend planning strategies to avoid or minimize BAM in future water supply. The modeling was based on the total amount sold of the DCB (29.000 ton/year) combined with data for sorption and degradation of the DCB and BAM measured from comprehensive laboratory experiments with soil material representing root zone and main aquifer soil types in Denmark. As a main result the laboratory experiments revealed that BAM was only very slowly degraded in the root zone, while no degradation was observed in the sub-soil environments. Combining these model in-put data with representative data for the main aquifer types and overriding fractured clay aquitards, the modeling indicates that more than 99% of infiltrated dichlobenile has been transformed to its metabolite BAM (approximately 500 tons in total), and that currently (year 2001) approximately 100% of this compound appears widely in the groundwater and/or in the above aquitards. The modeling shows that the BAM pollution will appear in the groundwater with a high frequency in extensive parts of Denmark during the following 20 years to more than 100 years. The highest current BAM concentrations, but however also the shortest durability of the BAM pollution, will occur in contaminated aquifers, which are not covered with clay layers. Short durability in such areas is furthermore dependent on the lack of further up-stream BAM sources. The modeling moreover

  4. Sorption of Pu onto some kinds of clay

    International Nuclear Information System (INIS)

    Jia Haihong; Si Gaohua; Liu Wei; Yu Jing

    2010-01-01

    There are rich clay mines holding in one area, so it's necessary to know about these clays' sorption capacity to Pu, for building radioactive waste repository in the area. Distribution coefficients of Pu onto different clays were acquired in static method, with the result about 104. The size of clay is different, but the result of Kds is near. In addition, it's estimated how far Pu moves in the most rapid speed in the clay based on these Kids', disregarding the influence of Pu-colloid. In a word, as a kind of backfilling material clays in the area can effectively prevent Pu from moving to environment, and when designing the backfilling layer, it's not necessary to catch clays through NO.200 sieve, if only considering the influence of Kd. (authors)

  5. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  6. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    Science.gov (United States)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  7. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Clay minerals can be found all over the world.1 Clay minerals have ... salts or covalent bonding with silanes at the OH edges of the clay. ..... Marras S I, Tsimpliaraki A, Zuburtikudis I and ... Mansoori Y, Roojaei K, Zamanloo M R and Imanzadeh.

  8. Analysis of a ceramic filled bio-plastic composite sandwich structure

    International Nuclear Information System (INIS)

    Habib Ullah, M.; Islam, M. T.

    2013-01-01

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz

  9. Analysis of a ceramic filled bio-plastic composite sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Habib Ullah, M. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia); Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 (Malaysia); Islam, M. T. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia)

    2013-11-25

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz.

  10. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-02-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as materialalternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforcedplastics single skin. The weakness of this FRP was heavy construction and requires many production time.Therefore, will be checked comparison between single skin with sandwich constructions for shell.In this research, the way for making composite is hand lay up method with three various thickness of skinthere are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin,must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesiarules for the fiberglass ship.Based on the result, indicates that optimization skin thickness of sandwich construction applies Corematwhich tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT.Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  11. Influence of reinforcement type on the mechanical behavior and fire response of hybrid composites and sandwich structures

    Science.gov (United States)

    Giancaspro, James William

    Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both

  12. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Lise, E-mail: l.cary@brgm.fr [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Petelet-Giraud, Emmanuelle [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Bertrand, Guillaume [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Kloppmann, Wolfram [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Aquilina, Luc [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Martins, Veridiana; Hirata, Ricardo [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Montenegro, Suzana [Civil Engineering Department, Federal University of Pernambuco, 50740 Recife, PE Brazil (Brazil); Pauwels, Hélène [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Chatton, Eliot [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Franzen, Melissa [CPRM, Brazilian Geologic Survey, Avenida Sul 2291, Recife PE (Brazil); Aurouet, Axel [Géo-Hyd, 101 rue Jacques Charles, 45160 Olivet (France); Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); and others

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All {sup 87}Sr/{sup 86}Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO{sub 3} water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues

  13. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    Document available in extended abstract form only. Long-term storage of high-level radioactive waste in deep geologic formations is worldwide the only accepted solution to warranty long term safety. Besides clay and crystalline rocks, salt is one of the potential host-rock candidates, mainly favored in Germany. As salts rocks are highly soluble their barrier integrity against water inflow from the cap rock is questionable. Argillaceous cap rocks or intercalated clay layers may act as protective shield in the hanging wall above a repository, thus providing a multi-barrier system. The aims of our study are twofold: 1) to characterize the mineralogical, hydraulic and rock-mechanical properties of the so-called Red Salt Clay (T4) as natural analogue of a clay barriers represented by different states of induration corresponding to various depth of burial diagenesis; 2) to demonstrate the favoured barrier properties of an argillaceous layer in the top of a salt formation undergoing dynamic processes such as rock bursts. The so-called Red Salt Clay (T4) is deposited as clay rich clastic sediment at the base of the Aller-series forming a persistent lateral layer above the lower Zechstein-series. The thickness of the clay-formation becomes smaller with decreasing distance from the border of the basin, i.e. from ∼15 m at Rossleben, over 7 m at Bernburg to 3.5 m at Zielitz, all in Saxony-Anhalt, D). The mineralogical composition of the Red Salt Clay varies, e.g. average composition for the Teutschenthal area: clay minerals 54% (Chlorite: 8%; Illite/Muscovite: 46%); quartz: 22%; anhydrite: 15%; accessory gypsum; Halite: 6%, Hematite: ∼ 2%). The geochemical and mineralogical composition of the Red Salt Clay represents a final state of natural salt-clay-systems, thus standing as a natural analogue for bentonite-based sealing systems in contact with high-saline solutions (e.g. saturated NaCl-solution, solutions with various Mg 2+ -, K + -, SO 4 2- - concentrations). The

  14. Groundwater table rise in northwest Nile Delta:Problems and Recommendations

    International Nuclear Information System (INIS)

    El-Sayed, S. A.; Atta, E. R.; Al-Ashri, K. M.

    2012-01-01

    The present research work is devoted to evaluate the surrounding zones of a site which could be selected for construction of radiation facility. It is a model study to investigate the factors that protect sites from the risks of groundwater rising. The study area (village 17 and the related cultivated lands) lies in Bangar El Sukar area, south Alexandria Governorate. The area is suffering from the groundwater table rise phenomenon and its relevant problems (water logging, soil salinization and degradation of buildings). This water table rise is investigated using the hydrogeological, hydrogeochemical and isotopic approaches. The groundwater table of the Pleistocene-Holocene aquifer rises due to uncontrolled irrigation and drainage systems and the lack of municipal sewage system as well as soil and aquifer characteristics. The aquifer is being shallow and exists under semi-confined conditions. It consists of heterogeneous deposits (very fine to coarse grained sand, clay and calcareous rock fragments). Depths to water vary between 0.85 m and 1.44 m from ground surface. The groundwater (TDS 3331 mg/l, averagely) is a mixture of both the fresh water of the irrigation canals (TDS = 544.2 mg/l) and the more saline water (TDS = 5505 mg/l, averagely) of the drains used in irrigation. Nile water is considered the main recharge source to these types of waters. The recharge to the aquifer occurs by seepage from the canals and/or by the infiltration of the return flow after irrigation. The infiltration rate is moderately rapid (ranging from 1.8 mm/min to 2.6 mm/min). The groundwater moves from south to north with an average hydraulic gradient reaching about 1.7 x 10-3. The average rate of groundwater flow through the aquifer varies between 1799 m2/day and 543.65 m2/day. In order to avoid the risks related to the problem and its environmental impacts, proper recommendations are presented. Suggested design for a constructed net of drainage system and pumped well is presented in

  15. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  16. Preparation and properties of recycled HDPE/clay hybrids

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  17. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  18. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of the proposed EPA groundwater standards on the Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Titus, F.B.

    1988-01-01

    Potential groundwater contamination beneath the 24 tailings piles that are to be stabilized under the UMTRA Project was intended in early project plans to be minimized by placing disposal piles over thick stratigraphic sequences of tight (minimally permeable) formations, and by designing covers that contained low permeability soil/clay infiltration barriers. The court-ordered revision of the UMTRA groundwater standards by EPA (proposed standards of September 1987) include very low Maximum Concentration Limits (MCLs), which are based mostly on Primary Drinking Water Standards. EPA also mandates that the designs should control radioactivity and hazardous constituents...for up to one thousand years, to the extends reasonably achievable, and, in any case, for at least two hundred years.... In order to accommodate this stipulation, transport modeling of water and contaminants in both the vadose and saturated zones beneath the piles is run until steady state conditions are reached. The early decision to locate stabilized piles over tight formations now exacerbates the problem of complying with the standards, since the contaminants percolate to groundwater that moves only slowly through strata having low permeabilities. Innovative solutions have been evaluated that are aimed at further minimizing long-term infiltration, geochemically fixing contaminants in place before they reach groundwater, or otherwise minimizing contaminant flux

  20. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  1. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    In the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it is now well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick's law, are mainly governed by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactive anionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupled sorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes with sites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClay project is to address this issue, using a 'bottom-up' approach, in which simpler, analogous systems (here a compacted clay, 'pure' illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e. the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, is verified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbing cation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort was devoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data needed to test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbing cations of interest was confirmed both in the simpler analogous illite system for Sr 2+ , Co(II) and Zn(II), but also in the natural clay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisingly succeeded in reproducing the experimental data under the various conditions both in

  2. Sandwich veto detector at COMPASS experiment

    International Nuclear Information System (INIS)

    Sarkar, S.; Dasgupta, S.S.; Calcutta-COMPASS group

    2010-01-01

    This paper presents the newly build Sandwich Detector for 190 GeV hadron run of COMPASS Experiment at CERN. The technical details and the testing procedures are included to highlight the physics objective of the installation. Single electron detection techniques has been developed and used to scale the performance of the detector. This analysis can predict the number of single electrons per MIP at the scintillation detector. (author)

  3. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    International Nuclear Information System (INIS)

    Sandstroem, Bjoern; Nilsson, Kersti; Tullborg, Eva-Lena

    2011-12-01

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  4. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Nilsson, Kersti [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2011-12-15

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  5. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  6. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  7. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  8. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  9. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  10. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  11. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  12. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  13. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  15. Effects of Core Softness and Bimodularity of Fibreglass Layers on Flexural Stiffness of Polymer Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Šuba Oldřich

    2017-01-01

    Full Text Available This paper deals with the study of the flexural stiffness of the sandwich structures based on fibreglass and polymeric foams. The influence of geometrical and material parameters on the resulting effective flexural stiffness of the sandwich structure is being studied experimentally, analytically and by using FEM models. The effective modulus of elasticity of the sandwich-structured element is being studied and its theoretical and model dependencies on the flexibility of the foam core and bimodularity of the fibreglass layers are being investigated. The achieved results are compared with the experimentally observed values. This study shows that it is necessary to pay special attention to the issue of flexural stiffness of the walls when designing sandwich shell products in order to prevent possible failures in the practical applications of these types of structures.

  16. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  17. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  18. Groundwater exploration and evaluation by using geophysical interpretation (case study: Al Qantara East, North Western Sinai, Egypt)

    International Nuclear Information System (INIS)

    Sultan, Sultan Awad; Mekhemer, Hatem M; Santos, Fernando M

    2009-01-01

    Different geophysical tools such as geoelectric, gravity, and magnetic have been applied to detect groundwater potentiality and structural elements, which controlled a geometry of the groundwater aquifers in the study area. Nineteen vertical electrical soundings measured using ABEM SAS 4000 equipment through Schlumberger configuration of AB/2 ranged from 1.5 to 1,000 m; the quantitative interpretation was carried out using manual and analytical techniques. The results of quantitative interpretation used to construct six geoelectrical cross-sections indicate that the subsurface sequence of the study area consists of seven geoelectrical units. These units are Quaternary sand sheet and sand dunes, Quaternary aquifer, marly limestone, clay, sandy clay, clay with sandstone intercalation, and deep Nubian sandstone aquifer. The isopach map of the Quaternary aquifer exhibits thickness of the Quaternary aquifer that increased at the northern and southern part (50 m) and decreased at the eastern and western part (5 m), and the depth of the aquifer increased at the northern part (40 m) and decreased at the central part to 6 m. The isoresistivity map of the aquifer shows a high resistivity at the northern part but the southern part reveals low resistivity according to the lithology. The water salinity increases in the direction of groundwater flow from 500 to 10,500 mg/l. The low water salinity is due to direct recharge from El-Sheikh Zayed Canal, which supplied fresh water to this area. Sixty-five gravity stations were measured using Auto-Grav gravity meter; different gravity corrections were applied on raw data. The corrected gravity values were plotted to represent a Bouguer anomaly map; the residual gravity anomaly map was used for delineation of the fault elements. The area was dissected by different fault elements of trends NW-SE, NE-SW, and E-W. In addition, 65 ground magnetic stations were measured at the same sites of gravity stations. The results of magnetic

  19. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  20. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  1. Enhanced detection levels in a semi-automated sandwich ...

    African Journals Online (AJOL)

    A peptide nucleic acid (PNA) signal probe was tested as a replacement for a typical DNA oligonucleotidebased signal probe in a semi-automated sandwich hybridisation assay designed to detect the harmful phytoplankton species Alexandrium tamarense. The PNA probe yielded consistently higher fluorescent signal ...

  2. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  3. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Science.gov (United States)

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  4. Theoretical prediction on corrugated sandwich panels under bending loads

    Science.gov (United States)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  5. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  6. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao; Shakfa, Mohammad Khaled; Mishra, Pawan; Li, Ming-Yang; Chiu, Ming-Hui; Ng, Tien Khee; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  7. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  8. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  9. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  10. Failure of uniformly compression loaded debond damaged sandwich panels — An experimental and numerical study

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Quispitupa, Amilcar; Berggreen, Christian

    2012-01-01

    This paper deals with the failure of compression-loaded sandwich panels with an implanted circular face/core debond. Uniform compression tests were conducted on intact sandwich panels with three different types of core material (H130, H250 and PMI) and on similar panels with circular face...

  11. Polyisocyanurate systems for insulating and sandwich elements; Polyisocyanurat-Systeme fuer Daemm- und Sandwichelemente

    Energy Technology Data Exchange (ETDEWEB)

    Malotki, P. von [Elastogran GmbH, Lemfoerde (Germany)

    2000-07-01

    PUR rigid foam plates are laminated with flexible Al films, paper or glass non-wovens, or may be processed into sandwich elements with metallic top-layers via coil-coating. Dependence of heat insulation efficiency, dimensional stability and fire behavior of the foam on chemical composition and the blowing agents is considered and compared with polyisocyanurate foams. Recipes for the production of PIR heat insulation elements and sandwich elements are given.

  12. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  13. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    Science.gov (United States)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  14. Failure modes of composite sandwich beams

    OpenAIRE

    Gdoutos E.; Daniel I.M.

    2008-01-01

    A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared wit...

  15. Fatigue Debond Growth in Sandwich Structures Loaded in Mixed Mode Bending (MMB)

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    Static and cyclic debond growth in sandwich specimens loaded in mixed mode bending (MMB) is examined. The MMB sandwich specimens were manufactured using H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 face sheets. Static test were performed to determine...... the fracture toughness of the debonded sandwich specimens at different mixed mode loadings. The mixed mode ratio (mode I to mode II) was controlled by changing the lever arm distance of the MMB test rig. Compliance technique and visual inspection was employed to measure the crack length during fatigue. Fatigue...... tests were performed at 90% of the static fracture toughness at a loading ratio of R=0.1. Fatigue results revealed higher debond crack growth rates when the lever arm distance was increased. For some specimens, the crack propagated just below the face/core interface in the foam core and for others...

  16. Compressibility characteristics of Sabak Bernam Marine Clay

    Science.gov (United States)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  17. Temporal-spatial variations and influencing factors of nitrogen in the shallow groundwater of the nearshore vegetable field of Erhai Lake, China.

    Science.gov (United States)

    Chen, Anqiang; Lei, Baokun; Hu, Wanli; Wang, Hongyuan; Zhai, Limei; Mao, Yanting; Fu, Bin; Zhang, Dan

    2018-02-01

    Nitrogen export from the nearshore vegetable field of Erhai Lake seriously threatens the water quality of Erhai Lake, which is the second largest highland freshwater lake in Yunnan Province, China. Among the nitrogen flows into Erhai Lake, shallow groundwater migration is a major pathway. The nitrogen variation and influencing factors in the shallow groundwater of the nearshore vegetable field of Erhai Lake are not well documented. A 2-year field experiment was conducted to determine the concentrations of nitrogen species in the shallow groundwater and their influencing factors in the nearshore vegetable field of Erhai Lake. The results showed that concentrations of TN, NO 3 - -N, and NO 2 - -N gradually increased with increasing elevation and distance from Erhai Lake, but the opposite was observed for NH 4 + -N in the shallow groundwater. The concentrations of nitrogen species in the rainy season were greater than those in the dry season. NO 3 - -N accounted for more than 79% of total nitrogen in shallow groundwater. Redundancy analysis showed that more than 70% of the temporal and spatial variations of nitrogen concentrations in the shallow groundwater were explained by shallow groundwater depth, and only approximately 10% of variation was explained by the factors of soil porosity, silt clay content of soil, and NH 4 + -N and NO 3 - -N concentrations of soil (p shallow groundwater depth had more notable effects on nitrogen concentrations in the shallow groundwater than other factors. This result will strongly support the need for further research regarding the management practices for reducing nitrogen concentrations in shallow groundwater.

  18. Examination of Sandwich Materials Using Air-Coupled Ultrasonics

    DEFF Research Database (Denmark)

    Borum, K.K.; Berggreen, Carl Christian

    2004-01-01

    The air-coupled ultrasonic techniques have been improved drastically in recent years. Better equipment has made this technique much more useful. This paper focuses on the examination of sandwich materials used in naval ships. It is more convenient to be able to make the measurements directly...

  19. Geochemical and isotopic characterization of groundwater resources in El Hicha region, Gabes, southern Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M.F.; Ben Kraiem, H.; Mahjoub, A.; Labidi, B.; Ghoudi, R.; Hamrouni, H.; Nasr, H.; Zouari, K.; Froehlich, K.; Sajjad, M.I.; Garcia-Agudo, E.

    2002-01-01

    The groundwater study area is located in the southern part of Tunisia at some kilometers from the Mediterranean Sea, about 35 km north of the town Gabes. It extends over 300 km 2 and is bounded by the Gulf of Gabes in the East, El Hamma in the West and Skhira in the North. This region is characterized by a semi-arid climate with an average annual rainfall of about 180 mm and a potential evaporation of 2130 mm per year. The groundwater resources of the region are represented by four hydrogeological units: the Continental Intercalaire, the Sfax Aquifer, the Jeffara Aquifer and the shallow aquifer of El Hicha. The dug wells and boreholes used for groundwater abstraction in this region reach depths between a few meters and about 170m. The upper zone of 50m depths is formed by sandy clay and gypsum, and the lower zone of 50 to 70m depths consists of sandy layers. The salinity measured in groundwater samples from this area is rather high; the values range between 5 and 7g/l. Since the water will be used to grow salt-tolerant plants, it is important to know the origin of the groundwater (to assess its availability) and the source(s) of its salinity. To this end, groundwater samples for isotope and chemical analysis were taken from 6 dug wells, 6 boreholes (one of them is an artesian well), a spring and a drainage canal. Each site was sampled in March, June, July, September and December 1999. During these sampling campaigns, in-situ measurements of temperature and electrolytic conductivity were carried out

  20. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  1. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  2. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  3. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  4. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-04-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as material alternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforced plastics single skin. The weakness of this FRP was heavy construction and requires many production time. Therefore, will be checked comparison between single skin with sandwich constructions for shell. In this research, the way for making composite is hand lay up method with three various thickness of skin there are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin, must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesia rules for the fiberglass ship. Based on the result, indicates that optimization skin thickness of sandwich construction applies Coremat which tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes 23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT. Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  5. Pengaruh perlakuan serat tapis kelapa terhadap kekuatan lentur skin komposit sandwich

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2018-01-01

    Full Text Available Abstrak Penggunaan serat alam sebagai penguat komposit semakin berkembang. Indonesia sebagai negara beriklim tropis menghasilkan berbagai jenis serat alami seperti rami, abaca, agave, serat sabut kelapa dan serat tapis kelapa. Penelitian ini bertujuan untuk menyelidiki pengaruh perlakuan alkali serat (NaOH 5% terhadap kekuatan lentur komposit sandwich serat tapis kelapa bermatrik polyester dengan core kayu albasia Bahan penelitian adalah serat tapis kelapa dengan panjang 15 mm, resin unsaturated polyester 157 BQTN, kayu albasia dan NaOH. Hardener yang digunakan adalah MEKPO dengan konsentrasi 1%. Serat tapis kelapa yang digunakan terdiri dari serat tanpa perlakuan dan dengan perlakuan alkali 2 jam. Komposit sandwich tersusun atas dua skin dengan core ditengahnya dan dibuat dengan metode cetak tekan hidrolis. Lamina komposit sebagai skin terbuat dari serat tapis kelapa-polyester dengan fraksi volume serat 30%. Spesimen dan prosedur pengujian lentur mengacu pada standar ASTM C 393. Penampang patahan dilakukan foto makro untuk mengidentifikasi pola kegagalannya.Hasil penelitian menunjukkan serat yang mendapatkan perlakuan alkali 2 jam NaOH menghasilkan kekuatan lentur yang lebih tinggi. Hal ini disebabkan karena perlakuan alkali pada serat tapis kelapa dapat membersihkan lapisan lilin (lignin dan kotoran pada permukaan serat sehingga menghasilkan mechanical interlocking yang lebih baik antara serat dengan matrik poliester. Dengan ikatan yang lebih baik maka komposit tersebut akan mampu menahan beban lentur yang lebih tinggi. Kata kunci: komposit sandwich, serat tapis kelapa, perlakuan NaOH, kekuatan lentur Abstract The use of natural fibers as reinforcement composites is growing. Indonesia as a tropical country produces various types of natural fibers like coconut filter fiber. The purpose of this study is to investigate the effect of alkali treatment of the fiber (5% NaOH. The research material is coconut filter fiber, 157 BQTN unsaturated

  6. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  7. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    Science.gov (United States)

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  8. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  9. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evolution of pH in a radwaste repository: leaching of modified cements and reactions with groundwater

    International Nuclear Information System (INIS)

    Atkinson, A.; Guppy, R.M.

    1988-01-01

    Cementitious materials in radioactive waste repositories establish high pH which brings many benefits. The pH will change with time as the chemical constituents responsible for it are leached away. This has been simulated in the laboratory for a Sulphate Resisting Portland Cement (SRPC), a slag-modified cement composed of 90% Blast Furnace Slag (BFS) and 10% Ordinary Portland Cement (OPC) and an ash-modified cement containing 90% Pulverized Fuel Ash (PFA) and 10% OPC. They have been leached in demineralised water and a synthetic groundwater typical of a clay environment. Leachate analyses for a variety of elements showed that the leachate was not usually in equilibrium with any of the solid phases. Nevertheless the experimental evolution of pH was not too different from that predicted by assuming equilibrium and the predictions offer a means of estimating a lower bound for pH as it evolves in a real repository. The experiments with synthetic groundwater showed that the dominant effect influencing pH was precipitation of CaCO 3 from bicarbonates in the groundwater resulting in a reduction in both pH and buffer capacity. The ash-modified cement has particularly poor pH-buffering performance which is exacerbated in the groundwater. (author)

  11. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  12. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Sassani, David Carl; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kuhhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens T.; Caporuscio, Florie Andre; Cheshire, Michael; Rearick, Michael; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark.; Jerden, James L.; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William L.

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale

  13. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  14. Effect of a magnetic field on the excess resistance of SNS sandwiches

    International Nuclear Information System (INIS)

    Logvenov, G.Y.; Ryazanov, V.V.

    1983-01-01

    The contribution of superconducting plates to the resistance of Ta--Cu--Ta sandwiches in the presence of a magnetic field of up to 170 Ge is investigated. Near the superconducting transition temperature T/sub c/H, the Ta used was in a mixed (vortical) state. It is shown that the presence of gradients of the order parameter near the Abrikosov vortices appreciably changes the penetration depth of a longitudinal electric field into the superconductor and leads to a corresponding change in the excess resistance of SNS sandwiches

  15. Erosion experiments in swelling clays and result evaluation

    International Nuclear Information System (INIS)

    Sane, Petri; Turtiainen, M.; Koskinen, K.

    2012-01-01

    ensure adequate buffer properties even after suffering from severe erosive mass loss. With these fixed parameters a thorough set of experiments was planned and performed at B+Tech to test the erosive properties of chosen buffer materials in different groundwater conditions. The test method was chosen to be a pinhole erosion test with two size-scales; 100 mm and 400 mm of cell length. In the pinhole test the material is compacted to a certain fixed density as a cylindrical block with a fixed diameter hole at the center axis of the block. The purpose of the pinhole tests was to test the scenario where piping channel has been formed in the buffer in the deposition hole and water flows through a single channel. Test duration depended on the test geometry, for smaller samples durations from 55-200 hours were logged, for larger samples test duration was approx. 200 hours in every case. Several issues enhancing the quality of measurements were considered and developments employed. The repeatability was ensured by carefully documenting every step of the testing process starting from the sample manufacturing to the sample dismantling. In addition, tests were performed with repetitions to yield better reliability and to gain information on the general scatter/noise in the results. Verification of the overall mass loss was performed by measuring the residual mass in the sample cells. Identical measurement run in parallel provided information on the deviation of the results and careful examination of the environmental parameters revealed 2 major problems: 1. Measurement solutions mimicking the groundwater composition are prepared with laboratory grade NaCl and CaCl 2 salts. The standard clay sample drying procedure of heating the sample in 105 C oven for 24 hours is assumed to result water-free clay that contains only the residual salts that are not evaporated during the drying and hence can easily deducted if the original solution salt contents are known. What is typically

  16. Speciation of plutonium during sorption and diffusion in Opalinus clay

    International Nuclear Information System (INIS)

    Kaplan, Ugras

    2013-01-01

    The presented work was carried out in the framework of the BMWi-project ''Interaction and migration of actinides in natural clay rocks taking into account humic substances and clay organic matter - Interactions of neptunium and plutonium with natural clay rocks''. For the long-term safety assessments of nuclear repositories, the possible migration of the radiotoxic wastes into the environment must be considered. Due to its long half-life (T 1/2 = 24000 y) 239 Pu has a significant contribution to the radiotoxicity of spent nuclear fuel in a repository after long periods of storage. The redox-sensitive plutonium has a very complicated chemical behavior. In aqueous solution under environmental relevant conditions Pu can exist in oxidation states +III to +VI and it can exist in up to four oxidation states simultaneously in a solution. Clays are considered as a possible host rock formation for of high-level radioactive waste disposal. Therefore, detailed information on the mobilization and immobilization of plutonium through / into the groundwater from a repository are of special interest. In this work new insights into the interaction between Pu and natural Opalinus clay (OPA, Mont Terri, Switzerland) are obtained with regard to the disposal of heat-generating radioactive waste in a deep geological repository.rnThe focus of this work was on the determination of the speciation of Pu on the mineral surface after sorption and diffusion process by different synchrotron based techniques (μ-XRF, μ-XANES/-EXAFS, μ-XRD, and EXAFS/XANES). The interaction between Pu and OPA was studied in batch sorption and diffusion experiments in dependence of various experimental parameters (e.g. pH, Pu oxidation state). Sorption experiments showed that some experimental parameters (e.g. temperature, humic acid) have a significant impact on the sorption of Pu on OPA. Speciation studies were performed as a function of various chemical parameters on powder samples form batch experiments as

  17. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  18. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    Science.gov (United States)

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  19. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  20. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.