WorldWideScience

Sample records for sandfly fever virus

  1. Seroprevalence of sandfly fever virus infection in military personnel on the western border of Iran

    Directory of Open Access Journals (Sweden)

    Ramin Shiraly

    2017-01-01

    Full Text Available Summary: Military troops deployed to endemic areas are at risk of contracting sandfly fever, an arthropod-borne viral infection. Although typically a self-limited disease, sandfly fever can cause significant morbidity and loss of function among soldiers. We conducted this study to determine the extent of past SFV infection in a group of healthy Iranian military personnel in Ilam province on the western border of Iran. A total of 201 serum samples were tested by indirect immunofluorescence assay (IFA to detect four common sandfly fever virus serotypes. Demographic data were also collected. Overall, 37 samples (18.4% were positive for specific IgG antibodies to sandfly viruses. Sandfly fever Sicilian virus (SFSV and sandfly fever Naples virus (SFNV were the most common serotypes. A positive test was inversely related to nativity (P < 0.01 but was not associated with age (P = 0.163, duration of presence in the border region (P = 0.08 or employment status (P = 0.179.Our findings indicate that past SFV infection is common among military personnel in the western border region of Iran, a Leishmania-endemic region. Therefore, it should be considered in the differential diagnosis of troops presenting with acute febrile illness in similar settings. Keywords: Sandfly fever, Virus, Past infection, Military personnel

  2. Sandfly-Borne Phlebovirus Isolations from Turkey: New Insight into the Sandfly fever Sicilian and Sandfly fever Naples Species.

    Directory of Open Access Journals (Sweden)

    Cigdem Alkan

    2016-03-01

    Full Text Available Many studies have presented virus sequences which suggest the existence of a variety of putative new phleboviruses transmitted by sandflies in the Old World. However, in most of these studies, only partial sequences in the polymerase or the nucleoprotein genes were characterised. Therefore to further our understand of the presence and potential medical importance of sandfly-borne phleboviruses that circulate in southern Anatolia, we initiated field campaigns in 2012 and 2013 designed to identify, isolate and characterise phleboviruses in sandflies in this region.An entomological investigation encompassing 8 villages in Adana, Mediterranean Turkey was performed in August and September 2012 and 2013. A total of 11,302 sandflies were collected and grouped into 797 pools which were tested for the presence of phleboviruses using specific primers for RT-PCR analysis and also cell culture methods for virus isolation. Seven pools were PCR positive, and viruses were isolated from three pools of sandflies, resulting in the identification of two new viruses that we named Zerdali virus and Toros virus. Phylogenetic analysis based on full-length genomic sequence showed that Zerdali virus was most closely related with Tehran virus (and belongs to the Sandfly fever Naples species, whereas Toros virus was closest to Corfou virus.The results indicate that a variety of phleboviruses are co-circulating in this region of southern Anatolia. Based on our studies, these new viruses clearly belong to genetic groups that include several human pathogens. However, whether or not Toros and Zerdali viruses can infect humans and cause diseases such as sandfly fever remains to be investigated.

  3. Seroprevalence of Sandfly-Borne Phleboviruses Belonging to Three Serocomplexes (Sandfly fever Naples, Sandfly fever Sicilian and Salehabad in Dogs from Greece and Cyprus Using Neutralization Test.

    Directory of Open Access Journals (Sweden)

    Sulaf Alwassouf

    2016-10-01

    Full Text Available Phleboviruses transmitted by sandflies are endemic in the Mediterranean area. The last decade has witnessed the description of an accumulating number of novel viruses. Although, the risk of exposure of vertebrates is globally assessed, detailed geographic knowledge is poor even in Greece and Cyprus where sandfly fever has been recognized for a long time and repeatedly. A total of 1,250 dogs from mainland Greece and Greek archipelago on one hand and 422 dogs from Cyprus on the other hand have been sampled and tested for neutralising antibodies against Toscana virus (TOSV, Sandfly fever Sicilian virus (SFSV, Arbia virus, and Adana virus i.e. four viruses belonging to the 3 sandfly-borne serocomplexes known to circulate actively in the Mediterranean area. Our results showed that (i SFSV is highly prevalent with 71.9% (50.7-84.9% depending on the region in Greece and 60.2% (40.0-72.6% in Cyprus; (ii TOSV ranked second with 4.4% (0-15.4% in Greece and 8.4% (0-11.4% in Cyprus; (iii Salehabad viruses (Arbia and Adana displayed also substantial prevalence rates in both countries with values ranging from 0-22.6% depending on the region and on the virus strain used in the test. These results demonstrate that circulation of viruses transmitted by sand flies can be estimated qualitatively using dog sera. As reported in other regions of the Mediterranean, these results indicate that it is time to shift these viruses from the "neglected" status to the "priority" status in order to stimulate studies aiming at defining and quantifying their medical and veterinary importance and possible public health impact. Specifically, viruses belonging to the Sandfly fever Sicilian complex should be given careful consideration. This calls for implementation of direct and indirect diagnosis in National reference centers and in hospital microbiology laboratories and systematic testing of unelucidated febrile illness and central and peripheral nervous system febrile

  4. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus.

    Science.gov (United States)

    Lihoradova, Olga A; Indran, Sabarish V; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  5. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR.

    Science.gov (United States)

    Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-11-16

    Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.

  6. Sandfly fever in Afghanistan-a sometimes overlooked disease of military importance: a case series and review of the literature.

    Science.gov (United States)

    Downs, John W; Flood, Daniel T; Orr, Nicholas H; Constantineau, Jason A; Caviness, James W

    2017-01-01

    Sandfly fever, sometimes known as pappataci fever or Phlebotomus fever, is a vector transmitted viral illness with a history of affecting naïve military formations that travel through or fight in areas in which the infection is endemic. We present a series of 4 hospitalized cases of sandfly fever (2 presumptive, 2 laboratory confirmed) that were admitted to a Role 3 hospital in Afghanistan for evaluation and treatment following medical evacuation from a forward area for marked fevers and malaise. Laboratory evaluation of these cases was significant for leukopenia and thrombocytopenia, consistent with historical descriptions of sandfly fever. In the correct geographic and clinical setting, the finding of mild leukopenia among a cluster of febrile patients should prompt the clinician to at least consider a diagnosis of sandfly fever. A cluster investigation conducted by preventive medicine personnel identified numerous other presumed cases of sandfly fever in this forward special operations camp. Response efforts emphasized enforcement of standard vector-borne disease control measures by operational leadership in order to limit effect on tactical operations. We review historical instances of sandfly fever affecting military operations, and present a review of clinical presentation, transmission, management, and prevention.

  7. Arthropod-borne viral infections associated with a fever outbreak in the northern province of Sudan.

    Science.gov (United States)

    Watts, D M; el-Tigani, A; Botros, B A; Salib, A W; Olson, J G; McCarthy, M; Ksiazek, T G

    1994-08-01

    An outbreak of acute febrile illness occurred during August and September 1989 in the Northern Province of Sudan coinciding with a high population density of phlebotomine sandflies. An investigation was conducted to determine whether arboviruses were associated with human illness during this outbreak. Sera were obtained from 185 febrile individuals and tested for IgG and IgM antibody to selected arboviruses by enzyme immunoassay (EIA). The prevalence of IgG antibody was 59% for West Nile (WN), 53% for Sandfly Fever Sicilian (SFS), 32% for Sandfly Fever Naples (SFN), 39% for Yellow Fever (YF), 24% for dengue-2 (DEN-2), 23% for Rift Valley Fever (RVF), 12% for Chikungunya (CHIK) and 5% for Crimean-Congo haemorrhagic Fever (CCHF) viruses. Antibody prevalences tended to increase with age for WN and YF viruses. Antibody rates were about the same for males and females for most of the viruses tested. The prevalence of IgM antibody to SFN was 24% and reciprocal IgM titre exceeded 12,800 for some individuals suggesting that this virus was the cause of recent infection. The prevalence of IgM antibody for the other viruses did not exceed 5%. The study indicated that several arboviruses were endemic and some of them may have caused human disease in the Northern Province of Sudan.

  8. Presence of sandflies infected with Leishmania infantum and Massilia virus in the Marseille urban area.

    Science.gov (United States)

    Faucher, B; Bichaud, L; Charrel, R; Mary, C; Izri, A; de Lamballerie, X; Piarroux, R

    2014-05-01

    Leishmaniasis is considered a rural disease in Europe. However, circumstantial evidence has indicated urban transmission of leishmaniasis and phleboviruses in the urban area of Marseille, France. To investigate this urban transmission, sandflies were trapped in 33 locations in the urban area (horse farms, public gardens and a residential area). Sandflies were always captured: 87.8% were Phlebotomus perniciosus, a vector of Leishmania infantum and Toscana and Massilia viruses. RT-PCR and cell culture inoculation identified the Massilia virus in 2/99 pools of sandflies, and PCR identified Leishmania in 5/99. No dual infection was observed, but both pathogens were detected in samples from the same trapping site. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  9. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern.

    Science.gov (United States)

    Maroli, M; Feliciangeli, M D; Bichaud, L; Charrel, R N; Gradoni, L

    2013-06-01

    Phlebotomine sandflies transmit pathogens that affect humans and animals worldwide. We review the roles of phlebotomines in the spreading of leishmaniases, sandfly fever, summer meningitis, vesicular stomatitis, Chandipura virus encephalitis and Carrión's disease. Among over 800 species of sandfly recorded, 98 are proven or suspected vectors of human leishmaniases; these include 42 Phlebotomus species in the Old World and 56 Lutzomyia species in the New World (all: Diptera: Psychodidae). Based on incrimination criteria, we provide an updated list of proven or suspected vector species by endemic country where data are available. Increases in sandfly diffusion and density resulting from increases in breeding sites and blood sources, and the interruption of vector control activities contribute to the spreading of leishmaniasis in the settings of human migration, deforestation, urbanization and conflict. In addition, climatic changes can be expected to affect the density and dispersion of sandflies. Phlebovirus infections and diseases are present in large areas of the Old World, especially in the Mediterranean subregion, in which virus diversity has proven to be higher than initially suspected. Vesiculovirus diseases are important to livestock and humans in the southeastern U.S.A. and Latin America, and represent emerging human threats in parts of India. Carrión's disease, formerly restricted to regions of elevated altitude in Peru, Ecuador and Colombia, has shown recent expansion to non-endemic areas of the Amazon basin. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.

  10. Novel and emergent sandfly-borne phleboviruses in Asia Minor: a systematic review.

    Science.gov (United States)

    Ergunay, Koray; Ayhan, Nazli; Charrel, Remi N

    2017-03-01

    Sandfly-transmitted phleboviruses are globally spread agents causing febrile diseases and central nervous system infections. The activity of pathogenic phleboviruses, as well as several novel strains, has been reported from Turkey, a transboundary country connecting Asia, Europe, and Africa with suitable habitats for sandflies. This study overviews all published data on phleboviruses from Turkey and evaluates the impact from the virological, epidemiological, and public health perspectives. A systematic review of Web-based global and local resources was performed. Comparison and phylogenetic analyses of particular phlebovirus sequences were also undertaken. Through the evaluation of 1693 international and regional entries, 31 manuscripts providing data on case reports or outbreaks, serological surveillance, animal infections and exposure, virus characterization, vector surveillance, and/or diagnostics were accessed. Detailed information on 5 novel phleboviruses completely or partially characterized during 2008-2015 as well as on clinical and epidemiological features of major phleboviruses established as human pathogens such as Toscana virus and sandfly fever Sicilian virus has been compiled. The ongoing activity of these agents, as indicated by consistently reported symptomatic cases and confirmed exposure in vertebrates including humans, was noted. The circulation in the Anatolian peninsula of phleboviruses with surprising diversity as well as distinct virus species is documented. Specific phlebovirus strains constitute a public health threat for local populations and travelers and must be considered in the diagnostic workup of clinically compatible cases. Human health impact and epidemiological aspects of certain viruses require further investigation via intensive surveillance. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    Science.gov (United States)

    1982-06-18

    encephalitis(TBH-28), West Nile(E-101), Yellow fever(French neurotropic and 17D strains), and Zika . Two Sandfly Fever viruses (213452 and Candiru) were...were provided as first passage isolates ( Aedes pseudoscutellaris cells, AP-61) or human serum from recent dengue virus patients. African isolates... viruses of the Phlebovirus genus (Table 1). Several monoclonal antibody preparations reacted solely with dengue virus serotypes. Two preparations (13E7 and

  12. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  13. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal

    OpenAIRE

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V.; Seymour, Robert; Wood, Thomas G.; Popov, Vsevolov; Guzman, Hilda; Travassos da Rosa, Amelia P.A.; Ghedin, Elodie; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2013-01-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomin...

  14. Niakha virus: a novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal.

    Science.gov (United States)

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V; Seymour, Robert; Wood, Thomas G; Popov, Vsevolov; Guzman, Hilda; Travassos da Rosa, Amelia P A; Ghedin, Elodie; Holmes, Edward C; Walker, Peter J; Tesh, Robert B

    2013-09-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomine sandflies in Senegal. Analysis of the 11,124 nt genome sequence indicates that it encodes the five common rhabdovirus proteins with alternative ORFs in the M, G and L genes. Phylogenetic analysis of the L protein indicate that NIAV's closest relative is Oak Vale rhabdovirus, although in this analysis NIAV is still so phylogenetically distinct that it might be classified as distinct from the eight currently recognized Rhabdoviridae genera. This observation highlights the vast, and yet not fully recognized diversity, of this family. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal

    Science.gov (United States)

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V.; Seymour, Robert; Wood, Thomas G.; Popov, Vsevolov; Guzman, Hilda; da Rosa, Amelia P.A. Travassos; Ghedin, Elodie; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2013-01-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomine sandflies in Senegal. Analysis of the 11,124 nt genome sequence indicates that it encodes the five common rhabdovirus proteins with alternative ORFs in the M, G and L genes. Phylogenetic analysis of the L protein indicate that NIAV’s closest relative is Oak Vale rhabdovirus, although in this analysis NIAV is still so phylogenetically distinct that it might be classified as distinct from the eight currently recognized Rhabdoviridae genera. This observation highlights the vast, and yet not fully recognized diversity, of this family. PMID:23773405

  16. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  17. African Swine Fever Virus Biology and Vaccine Approaches.

    Science.gov (United States)

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  18. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C; Gardner, S

    2012-06-05

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genome wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.

  19. Interventions Against West Nile Virus, Rift Valley Fever Virus, and Crimean-Congo Hemorrhagic Fever Virus: Where Are We?

    NARCIS (Netherlands)

    Kortekaas, J.A.; Ergonul, O.; Moormann, R.J.M.

    2010-01-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and

  20. STUDIES ON THE PATHOGENESIS OF FEVER WITH INFLUENZAL VIRUSES

    Science.gov (United States)

    Atkins, Elisha; Huang, Wei Cheng

    1958-01-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN2 failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses. PMID:13513908

  1. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus.

    Science.gov (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H

    1992-01-01

    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  2. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India.

    Science.gov (United States)

    Sudeep, A B; Bondre, V P; Gurav, Y K; Gokhale, M D; Sapkal, G N; Mavale, M S; George, R P; Mishra, A C

    2014-05-01

    An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV) were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE). The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.

  3. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae from Sergentomyia species of sandflies from Nagpur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    A B Sudeep

    2014-01-01

    Full Text Available Background & objectives: An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Methods: Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE. The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. Results: CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. Interpretation & conclusions: This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.

  4. Establishment of recombinase polymerase amplification assay for five hemorrhagic fever-related viruses

    Directory of Open Access Journals (Sweden)

    Xue-feng CAO

    2017-08-01

    Full Text Available Objective To establish a one-step recombinase polymerase amplification (RPA method for pathogen screening and rapid detection in the field targeting for five hemorrhagic fever related viruses (Zaire ebola virus, Sudan ebola virus, Marburg virus, Lassa virus and Yellow fever virus. Methods The specific nucleic acid (NA fragments of each virus were selected as target genes by genome sequence analysis, and the primers and probes for RPA assays were designed according to the sequence. A series of diluted template genes were used for RPA detection to determine the sensitivity. The hemorrhagic fever-related viral nucleic acids were used for RPA detection to determine the specificity. The amplification experiments were carried out at different temperature ranging from 37℃ to 42℃ to validate the reaction temperature range. Results The RPA reaction systems of the five hemorrhagic fever viruses could effectively amplify the target genes, the sensitivities were between 1.5×102 and 1.5×103 copies. No cross reactions existed with the other hemorrhagic fever-related viral genes. Meanwhile, RPA assay could effectively amplify the target genes at 37-42℃. Conclusion The isothermal RPA assays of five hemorrhagic fever viruses are established, which may amply target genes fast and react at a wide temperature range, and be potentially useful for in field pathogens detection. DOI: 10.11855/j.issn.0577-7402.2017.06.09

  5. Molecular crosstalks in Leishmania-sandfly-host relationships

    Directory of Open Access Journals (Sweden)

    Volf P.

    2008-09-01

    Full Text Available Sandflies (Diptera: Phlebotominae are vectors of Leishmania parasites, causative agents of important human and animal diseases with diverse manifestations. This review summarizes present knowledge about the vectorial part of Leishmania life cycle and parasite transmission to the vertebrate host. Particularly, it focuses on molecules that determine the establishment of parasite infection in sandfly midgut. It describes the concept of specific versus permissive sandfly vectors, explains the epidemiological consequences of broad susceptibility of permissive sandflies and demonstrates that genetic exchange may positively affect Leishmania fitness in the vector. Last but not least, the review describes recent knowledge about circulating antibodies produced by hosts in response to sandfly bites. Studies on specificity and kinetics of antibody response revealed that anti-saliva IgG could be used as a marker of host exposure to sandflies, i.e. as a useful tool for evaluation of vector control.

  6. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  7. Transmission of yellow fever vaccine virus through breast-feeding - Brazil, 2009.

    Science.gov (United States)

    2010-02-12

    In April, 2009, the state health department of Rio Grande do Sul, Brazil, was notified by the Cachoeira do Sul municipal health department of a case of meningoencephalitis requiring hospitalization in an infant whose mother recently had received yellow fever vaccine during a postpartum visit. The Field Epidemiology Training Program of the Secretariat of Surveillance in Health of the Brazilian Ministry of Health assisted state and municipal health departments with an investigation. This report summarizes the results of that investigation, which determined that the infant acquired yellow fever vaccine virus through breast-feeding. The mother reported 2 days of headache, malaise, and low fever occurring 5 days after receipt of yellow fever vaccine. The infant, who was exclusively breast-fed, was hospitalized at age 23 days with seizures requiring continuous infusion of intravenous anticonvulsants. The infant received antimicrobial and antiviral treatment for meningoencephalitis. The presence of 17DD yellow fever virus was detected by reverse transcription--polymerase chain reaction (RT-PCR) in the infant's cerebrospinal fluid (CSF); yellow fever--specific immunoglobulin M (IgM) antibodies also were present in serum and CSF. The infant recovered completely, was discharged after 24 days of hospitalization, and has had normal neurodevelopment and growth through age 6 months. The findings in this report provide documentation that yellow fever vaccine virus can be transmitted via breast-feeding. Administration of yellow fever vaccine to breast-feeding women should be avoided except in situations where exposure to yellow fever viruses cannot be avoided or postponed.

  8. Differentiation of strains of yellow fever virus in γ-irradiated mice

    International Nuclear Information System (INIS)

    Fitzgeorge, R.; Bradish, C.J.

    1980-01-01

    The mouse sensitized by optimal, sub-lethal γ-irradiation has been used for the differentiation of strains of yellow fever virus and for the resolution of their immunogenicity and pathogenicity as distinct characteristics. For different strains of yellow fever virus, the patterns of antibody-synthesis, regulatory immunity (pre-challenge) and protective immunity (post-challenge) are differentially sensitive to γ-irradiation. These critical differentiations of strains of yellow fever virus in γ-irradiated mice have been compared with those shown in normal athymic and immature mice in order to elucidate the range of quantifiable in vivo characteristics and the course of the virus-host interaction. This is discussed as a basis for the comparisons of the responses of model and principal hosts to vaccines and pathogens. (author)

  9. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    Carvalho Ferreira, de H.C.; Zúquete, S.T.; Wijnveld, M.; Weesendorp, E.; Jongejan, F.; Stegeman, J.A.; Loeffen, W.L.A.

    2014-01-01

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  10. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    de Carvalho Ferreira, Helena C; Tudela Zúquete, Sara; Wijnveld, Michiel; Weesendorp, Eefke; Jongejan, Frans; Stegeman, Arjan; Loeffen, Willie L A

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  11. Comparison of sampling techniques for Rift Valley Fever virus ...

    African Journals Online (AJOL)

    time for trapping potential vectors for Rift Valley Fever virus. ..... Krockel, U., Rose, A., Eiras, A.E. & Geier, M. (2006) New tools for surveillance of adult yellow fever ... baited trapping systems for sampling outdoor mosquito populations in ...

  12. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  13. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  14. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  15. 77 FR 68783 - Prospective Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Science.gov (United States)

    2012-11-16

    ... Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for... Valley Fever Virus Utilizing Reverse Genetics,'' US Provisional Application 61/042,987, filed 4/7/2008, entitled ``Recombinant Rift Valley Fever (RVF) Viruses and Method of Use,'' PCT Application PCT/US2008...

  16. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    African swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Uganda where outbreaks regularly occur. There is neither a vaccine nor treatment available for ASF control. Twenty two African swine fever virus (ASFV) genotypes (I - XXII) have been identified based on partial sequencing ...

  17. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.

    Science.gov (United States)

    Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R

    2018-01-01

    Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion:  Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

  18. Enzootic transmission of yellow fever virus, Venezuela.

    Science.gov (United States)

    Auguste, Albert J; Lemey, Philippe; Bergren, Nicholas A; Giambalvo, Dileyvic; Moncada, Maria; Morón, Dulce; Hernandez, Rosa; Navarro, Juan-Carlos; Weaver, Scott C

    2015-01-01

    Phylogenetic analysis of yellow fever virus (YFV) strains isolated from Venezuela strongly supports YFV maintenance in situ in Venezuela, with evidence of regionally independent evolution within the country. However, there is considerable YFV movement from Brazil to Venezuela and between Trinidad and Venezuela.

  19. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Science.gov (United States)

    2012-11-16

    ... Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for Disease..., filed 12/21/2007, entitled ``Development of Rift Valley Fever Virus Utilizing Reverse Genetics,'' US... (RVF) Viruses and Method of Use,'' PCT Application PCT/US2008/ 087023, filed 12/16/2008, entitled...

  20. Malaria and Other Vector-Borne Infection Surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Program: Review of 2009 Accomplishments

    Science.gov (United States)

    2011-03-04

    Vector borne infections (VBIs) such as malaria, dengue fever, yellow fever, scrub typhus , and plague comprise a significant proportion of the global...a VBI: scrub typhus (19), murine typhus (three), Japanese encephalitis (JE) (two), primary dengue infection (12), secondary dengue infection (nine...prioritized by GSRI, half are VBIs (malaria, dengue fever, Rift Valley fever, Chikungunya, CCHF, sandfly fever, O’nyong-nyong, Sindbis virus, scrub typhus

  1. A review of zoonotic disease surveillance supported by the Armed Forces Health Surveillance Center.

    Science.gov (United States)

    Burke, R L; Kronmann, K C; Daniels, C C; Meyers, M; Byarugaba, D K; Dueger, E; Klein, T A; Evans, B P; Vest, K G

    2012-05-01

    The Armed Forces Health Surveillance Center (AFHSC), Division of Global Emerging Infections Surveillance and Response System conducts disease surveillance through a global network of US Department of Defense research laboratories and partnerships with foreign ministries of agriculture, health and livestock development in over 90 countries worldwide. In 2010, AFHSC supported zoonosis survey efforts were organized into four main categories: (i) development of field assays for animal disease surveillance during deployments and in resource limited environments, (ii) determining zoonotic disease prevalence in high-contact species which may serve as important reservoirs of diseases and sources of transmission, (iii) surveillance in high-risk human populations which are more likely to become exposed and subsequently infected with zoonotic pathogens and (iv) surveillance at the human-animal interface examining zoonotic disease prevalence and transmission within and between human and animal populations. These efforts have aided in the detection, identification and quantification of the burden of zoonotic diseases such as anthrax, brucellosis, Crimean Congo haemorrhagic fever, dengue fever, Hantaan virus, influenza, Lassa fever, leptospirosis, melioidosis, Q fever, Rift Valley fever, sandfly fever Sicilian virus, sandfly fever Naples virus, tuberculosis and West Nile virus, which are of military and public health importance. Future zoonotic surveillance efforts will seek to develop local capacity for zoonotic surveillance focusing on high risk populations at the human-animal interface. © 2011 Blackwell Verlag GmbH.

  2. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy.

    Science.gov (United States)

    Beasley, David W C; McAuley, Alexander J; Bente, Dennis A

    2015-03-01

    Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses.

    Science.gov (United States)

    Hastie, Kathryn M; Bale, Shridhar; Kimberlin, Christopher R; Saphire, Erica Ollmann

    2012-04-01

    The innate immune system is one of the first lines of defense against invading pathogens. Pathogens have, in turn, evolved different strategies to counteract these responses. Recent studies have illuminated how the hemorrhagic fever viruses Ebola and Lassa fever prevent host sensing of double-stranded RNA (dsRNA), a key hallmark of viral infection. The ebolavirus protein VP35 adopts a unique bimodal configuration to mask key cellular recognition sites on dsRNA. Conversely, the Lassa fever virus nucleoprotein actually digests the dsRNA signature. Collectively, these structural and functional studies shed new light on the mechanisms of pathogenesis of these viruses and provide new targets for therapeutic intervention. Copyright © 2012. Published by Elsevier B.V.

  4. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses.

    Science.gov (United States)

    Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M

    2013-06-01

    Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have......Kos (with the SL motif). The results indicate that the E2 residues 763-64 play an important role in CSFV virulence....

  6. Yellow Fever Virus Vaccine–associated Deaths in Young Women 1

    OpenAIRE

    Seligman, Stephen J.

    2011-01-01

    Yellow fever vaccine–associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine–associated viscerotropic disease among women 19–34 years of age without known immunodeficiency.

  7. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    Science.gov (United States)

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  8. Prevalence of African swine fever virus and classical swine fever virus antibodies in pigs in Benue State, Nigeria.

    Science.gov (United States)

    Asambe, A; Sackey, A K B; Tekdek, L B

    2018-03-01

    This study investigated the prevalence of African swine fever virus (ASFV) and classical swine fever virus (CSFV) antibodies in pigs in Benue State, Nigeria. Serum samples were collected from a total of 460 pigs, including 416 from 74 piggeries and 44 from Makurdi slaughter slab. The samples were analysed using indirect enzyme-linked immunosorbent assay (ELISA) test kit to detect the presence of ASFV antibodies, while competitive ELISA test kit was used to detect antibodies to CSFV. Our findings showed a total ASF prevalence of 13 (2.8%), while prevalences of 7 (1.7%) and 6 (13.6%) were observed in piggeries and in Makurdi slaughter slab, respectively. However, no CSFV antibody sera were detected in this study. Relatively higher ASFV antibody-positive pigs were detected in the slaughter slab than in piggeries. The difference in prevalence of ASF between the two locations was significantly associated (p = 0.017). These findings suggest the presence of ASFV antibody-positive pig in Benue State, Nigeria. Continuous surveillance and monitoring of these diseases among pigs in Nigeria to prevent any fulminating outbreak are recommended.

  9. Detection of yellow fever virus genomes from four imported cases in China.

    Science.gov (United States)

    Cui, Shujuan; Pan, Yang; Lyu, Yanning; Liang, Zhichao; Li, Jie; Sun, Yulan; Dou, Xiangfeng; Tian, Lili; Huo, Da; Chen, Lijuan; Li, Xinyu; Wang, Quanyi

    2017-07-01

    Yellow fever virus (YFV), as the first proven human-pathogenic virus, is still a major public health problem with a dramatic upsurge in recent years. This is a report on four imported cases of yellow fever virus into China identified by whole genome sequencing. Phylogenetic analysis was performed and the results showed that these four viruses were highly homologous with Angola 71 strains (AY968064). In addition, effective mutations of amino acids were not observed in the E protein domain of four viruses, thus confirming the effectiveness of the YFV-17D vaccine (X03700). Although there is low risk of local transmission in most part of China, the increasing public health risk of YF caused by international exchange should not be ignored. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Crimean Congo Hemorrhagic Fever Virus and Alkhurma (Alkhumra) Virus in Ticks in Djibouti.

    Science.gov (United States)

    Horton, Katherine C; Fahmy, Nermeen T; Watany, Noha; Zayed, Alia; Mohamed, Abro; Ahmed, Ammar Abdo; Rollin, Pierre E; Dueger, Erica L

    2016-10-01

    Crimean Congo hemorrhagic fever virus and Alkhumra virus, not previously reported in Djibouti, were detected among 141 (infection rate = 15.7 per 100, 95% CI: 13.4-18.1) tick pools from 81 (37%) cattle and 2 (infection rate = 0.2 per 100, 95% CI: 0.0-0.7) tick pools from 2 (1%) cattle, respectively, collected at an abattoir in 2010 and 2011.

  11. Unexpected diversity of sandflies (Diptera: Psychodidae) in tourist caves in Northern Thailand.

    Science.gov (United States)

    Sukantamala, Jedsada; Sing, Kong-Wah; Jaturas, Narong; Polseela, Raxsina; Wilson, John-James

    2017-11-01

    Certain species of Phlebotomine sandflies (Diptera: Psychodidae) are vectors of the protozoa which causes leishmaniasis. Sandflies are found breeding in enclosed places like caves. Thailand is a popular tourist destination, including for ecotourism activities like caving, which increases the risk of contact between tourists and sandflies. Surveillance of sandflies is important for monitoring this risk but identification of species based on morphology is challenged by phenotypic plasticity and cryptic diversity. DNA barcodes have been used for the identification of sandflies in Thailand. We collected sandflies using CDC light trap from four tourist caves in Northern Thailand. Female sandflies were provisionally sorted into 13 morphospecies and 19 unidentified specimens. DNA was extracted from the thorax and legs of sandflies and the DNA barcode region of cytochrome c oxidase I mtDNA amplified and sequenced. The specimens were sorted into 22 molecular operational taxonomic units (MOTU) based on the 145 DNA barcodes, which is significantly more than the morphospecies. Several of the taxa thought to be present in multiple caves, based on morphospecies sorting, split into cave-specific MOTU which likely represent cryptic species. Several MOTU reported in an earlier study from Wihan Cave, Thailand, were also found in these caves. This supports the use of DNA barcodes to investigate species diversity of sandflies and their useful role in surveillance of sandflies in Thailand.

  12. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    Science.gov (United States)

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  13. Emergence of sandflies (Phlebotominae) in Austria, a Central European country.

    Science.gov (United States)

    Poeppl, Wolfgang; Obwaller, Adelheid G; Weiler, Martin; Burgmann, Heinz; Mooseder, Gerhard; Lorentz, Susanne; Rauchenwald, Friedrich; Aspöck, Horst; Walochnik, Julia; Naucke, Torsten J

    2013-12-01

    The possible existence of autochthonous sandfly populations in Central Europe north of the Alps has long been excluded. However, in the past years, sandflies have been documented in Germany, Belgium, and recently, also in Austria, close to the Slovenian border. Moreover, autochthonous human Leishmania and Phlebovirus infections have been reported in Central Europe, particularly in Germany. From 2010 to 2012, sandfly trapping (740 trap nights) was performed at 53 different capture sites in Austria using battery-operated CDC miniature light traps. Sites were chosen on the basis of their climate profile in the federal states Styria, Burgenland, and Lower Austria. Sandfly specimens found were transferred to 70% ethanol for conservation. Identification was based on morphological characters of the male genitalia and the female spermathecae, respectively. Altogether, 24 specimens, 22 females and 2 males, all identified as Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, were found at six different sampling sites in all three federal states investigated. The highest number of catches was made on a farm in Lower Austria. Altogether, the period of sandfly activity in Austria was shown to be much longer than presumed, the earliest capture was made on July 3rd and the latest on August 28th. Sandflies have been autochthonous in Austria in small foci probably for long, but in the course of global warming, further spreading may be expected. Although P. mascittii is only an assumed vector of Leishmania spp.-data on its experimental transmission capacity are still lacking-the wide distribution of sandflies in Austria, a country thought to be free of sandflies, further supports a potential emergence of sandflies in Central Europe. This is of medical relevance, not only with respect to the transmission of Leishmania spp. for which a reservoir is given in dogs, but also with respect to the phleboviruses.

  14. Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus.

    Science.gov (United States)

    ATKINS, E; HUANG, W C

    1958-03-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN(2) failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses.

  15. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  16. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus

    OpenAIRE

    Lam, Tommy Tsan-Yuk; Liu, Wei; Bowden, Thomas A.; Cui, Ning; Zhuang, Lu; Liu, Kun; Zhang, Yao-Yun; Cao, Wu-Chun; Pybus, Oliver G.

    2013-01-01

    In 2009, a novel Bunyavirus, called severe fever with thrombocytopenia syndrome virus (SFTSV) was identified in the vicinity of Huaiyangshan, China. Clinical symptoms of this zoonotic virus included severe fever, thrombocytopenia, and leukocytopenia, with a mortality rate of ?10%. By the end of 2011 the disease associated with this pathogen had been reported from eleven Chinese provinces and human-to-human transmission suspected. However, current understanding of the evolution and molecular e...

  17. Studies on the pathogenesis of fever with influenzal viruses. II. The effects of endogenous pyrogen in normal and virus-tolerant recipients.

    Science.gov (United States)

    ATKINS, E; HUANG, W C

    1958-03-01

    Observations have been made on the fever-inducing properties of an endogenous pyrogen found in the circulation of rabbits after the intravenous inoculation of Newcastle disease virus (NDV). When endogenous pyrogen was given to a normal recipient, a biphasic fever was produced which simulated that seen with bacterial endotoxins. With the use of a technique of serial passive transfer, it has been shown that the "double-humped" response results from two separate actions of the injected pyrogen. The first of these appears to be a direct stimulation of the thermoregulatory centers. The second involves the release of further endogenous pyrogen in the normal recipient to cause, in turn, the second fever peak. Since the injection of endogenous pyrogen did not produce a significant change in the number of circulating leukocytes, it is inferred that this substance is different from either bacterial or tissue polysaccharides. In rabbits rendered tolerant by a previous injection of virus the second fever peak failed to appear and the response to endogenous pyrogen was monophasic. Evidence indicates that the absence of a second fever peak in the tolerant recipient was not due to rise in temperature on the preceding day of virus injection or to the development of either serum inhibitors or tolerance to virus itself. It is postulated that prior mobilization of endogenous pyrogen by virus may have modified the ability of the tolerant recipient to liberate further amounts of this substance in response to an injection of endogenous pyrogen.

  18. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses

    Science.gov (United States)

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact on the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double stranded DNA virus. No effective vaccines or antiviral treatment ...

  19. Case report: probable transmission of vaccine strain of yellow fever virus to an infant via breast milk

    OpenAIRE

    Kuhn, Susan; Twele-Montecinos, Loreto; MacDonald, Judy; Webster, Patricia; Law, Barbara

    2011-01-01

    The 17D yellow fever vaccine is a live-virus vaccine that has been in use since the 1940s. The incidence of encephalitis after yellow fever vaccination among young infants is much higher than among children older than nine months of age. Until recently, avoidance of vaccination by breastfeeding women who have received yellow fever vaccine had been based on theoretical grounds only. We report the probable transmission of vaccine strain of yellow fever virus from a mother to her infant through ...

  20. Roles of African swine fever virus structural proteins in viral infection

    Directory of Open Access Journals (Sweden)

    Jia Ning

    2017-06-01

    Full Text Available African swine fever virus (ASFV is a large, double-stranded DNA virus and the sole member of the Asfarviridae family. ASFV infects domestic pigs, wild boars, warthogs, and bush pigs, as well as soft ticks (Ornithodoros erraticus, which likely act as a vector. The major target is swine monocyte-macrophage cells. The virus can cause high fever, haemorrhagic lesions, cyanosis, anorexia, and even fatalities in domestic pigs. Currently, there is no vaccine and effective disease control strategies against its spread are culling infected pigs and maintaining high biosecurity standards. African swine fever (ASF spread to Europe from Africa in the middle of the 20th century, and later also to South America and the Caribbean. Since then, ASF has spread more widely and thus is still a great challenge for swine breeding. The genome of ASFV ranges in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs. The ASFV genome encodes 150 to 200 proteins, around 50 of them structural. The roles of virus structural proteins in viral infection have been described. These proteins, such as pp220, pp62, p72, p54, p30, and CD2v, serve as the major component of virus particles and have roles in attachment, entry, and replication. All studies on ASFV proteins lay a good foundation upon which to clarify the infection mechanism and develop vaccines and diagnosis methods. In this paper, the roles of ASFV structural proteins in viral infection are reviewed.

  1. [Ebola and Marburg hemorrhagic fever viruses: update on filoviruses].

    Science.gov (United States)

    Leroy, E; Baize, S; Gonzalez, J P

    2011-04-01

    The Ebola and Marburg viruses are the sole members of the Filoviridae family of viruses. They are characterized by a long filamentous form that is unique in the viral world. Filoviruses are among the most virulent pathogens currently known to infect humans. They cause fulminating disease characterized by acute fever followed by generalized hemorrhagic syndrome that is associated with 90% mortality in the most severe forms. Epidemic outbreaks of Marburg and Ebola viruses have taken a heavy toll on human life in Central Africa and devastated large ape populations in Gabon and Republic of Congo. Since their discovery in 1967 (Marburg) and 1976 (Ebola), more than 2,300 cases and 1,670 deaths have been reported. These numbers pale in comparison with the burden caused by malnutrition or other infectious disease scourges in Africa such as malaria, cholera, AIDS, dengue or tuberculosis. However, due to their extremely high lethality, association with multifocal hemorrhaging and specificity to the African continent, these hemorrhagic fever viruses have given rise to great interest on the part not only of the international scientific community but also of the general public because of their perceived potential as biological weapons. Much research has been performed on these viruses and major progress has been made in knowledge of their ecology, epidemiology and physiopathology and in development of vaccine candidates and therapeutic schemes. The purpose of this review is to present the main developments in these particular fields in the last decade.

  2. Single-particle cryo-electron microscopy of Rift Valley fever virus

    OpenAIRE

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on...

  3. Single-particle cryo-electron microscopy of Rift Valley fever virus

    International Nuclear Information System (INIS)

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  4. Single-particle cryo-electron microscopy of Rift Valley fever virus.

    Science.gov (United States)

    Sherman, Michael B; Freiberg, Alexander N; Holbrook, Michael R; Watowich, Stanley J

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  5. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  6. A survey of sandflies in the affected areas of leishmaniasis, southern Thailand.

    Science.gov (United States)

    Sukra, Kotchapan; Kanjanopas, Kobkarn; Amsakul, Sakultip; Rittaton, Virot; Mungthin, Mathirut; Leelayoova, Saovanee

    2013-01-01

    Leishmania siamensis was firstly described as a causative agent of autochthonous visceral leishmaniasis in southern provinces of Thailand since 2008. The spread of leishmaniasis depends on the distribution of the vectors and reservoir hosts. Unfortunately, little is known about these vital factors. The objective of this study was to identify the distribution of sandfly species, their density, and their habitats in the affected areas of leishmaniasis, southern Thailand. A cross-sectional survey of sandflies was conducted in three provinces of southern Thailand where leishmaniasis cases were previously reported. The collection of sandflies was performed using CDC light traps for four consecutive months, from March to June 2009. A total of 2,698 sandflies were collected in the affected areas. Among 1,451 female sandflies, six species of genus Sergentomyia were identified, i.e., Sergentomyia gemmea, Sergentomyia iyengari, Sergentomyia barraudi, Sergentomyia indica, Sergentomyia silvatica, and Sergentomyia perturbans. S. gemmea (81.4 %) was the most predominant species in all areas. In addition, one species of the genus Phlebotomus, Phlebotomus argentipes, a known vector of leishmaniasis was also detected. The distribution of sandfly species in these leishmaniasis-affected areas was different from the previous studies in other areas of Thailand. Further studies are needed to proof whether these sandflies can be the natural vectors of leishmaniasis.

  7. Sandflies (Diptera: Psychodidae) in an urban area of Northeastern Brazil.

    Science.gov (United States)

    Agra, Maria Claudia Ribeiro; Costa, Pietra Lemos; Duque, Anderson Enio Silva; Soares, Efraim Naftali Lopes; Alves, Leucio Câmara; Ramos, Rafael Antonio Nascimento; Carvalho, Gílcia Aparecida de

    2016-01-01

    The sandfly fauna is well studied globally. In Brazil, sandfly fauna is very diverse in the Northeast region, especially in states such as Maranhão, Ceará, and Bahia. However, in the State of Pernambuco, the distribution of these insects is still not well known. Therefore, the objective of this study was to identify the different species that constitute the sandfly fauna in an urban area in the Northeast region of Brazil, where an outbreak of visceral leishmaniasis (VL) was recently reported. The sandflies were collected from an urban area endemic for VL, at five collection points. The collection of samples was carried out from November 2014 to December 2015, using CDC light traps installed in intradomiciliary and peridomiciliary fashion. The collected sandflies (n = 297) belonged to eight species: Lutzomyia lenti, Lutzomyia longipalpis, Lutzomyia sallesi, Lutzomyia migonei, Lutzomyia walkeri, Lutzomyia capixaba, Lutzomyia carmelinoi, and Lutzomyia whitmani. Most of the specimens collected were peridomiciliary (247/297, 83%). L. lenti (154/297, 52%) was the most frequently sampled species, followed by L. longipalpis (88/297, 29.6%), and L. sallesi (42/297, 14.1%), which together accounted for over 90% of the collected sandfly specimens. The continued presence of L. longipalpis in urban areas, including that in intradomiciliary areas, with a predominance of females, is crucial because of the high possibility of them causing VL outbreaks, since this species is the main vector of Leishmania infantum in Brazil.

  8. Crimean-Congo Hemorrhagic Fever Virus in Bulgaria and Turkey

    Czech Academy of Sciences Publication Activity Database

    Mertens, M.; Schuster, I.; Sas, M. A.; Vatansever, Z.; Hubálek, Zdeněk; Güven, E.; Deniz, A.; Georgiev, G.; Peshev, R.; Groschup, M. H.

    2016-01-01

    Roč. 16, č. 9 (2016), s. 619-623 ISSN 1530-3667 EU Projects: European Commission(XE) 261504 - EDENEXT Institutional support: RVO:68081766 Keywords : Crimean-Congo hemorrhagic fever virus: CCHFV * domestic animals * ELISA * epidemiology Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.045, year: 2016

  9. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  10. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  11. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies.

    Directory of Open Access Journals (Sweden)

    Mohammad Akhoundi

    2016-03-01

    Full Text Available The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale.Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53, sandflies (more than 800 at genus or subgenus level, and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate?We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.

  12. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

    Science.gov (United States)

    Akhoundi, Mohammad; Kuhls, Katrin; Cannet, Arnaud; Votýpka, Jan; Marty, Pierre; Delaunay, Pascal; Sereno, Denis

    2016-01-01

    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they

  13. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies.

    Science.gov (United States)

    Akhoundi, Mohammad; Kuhls, Katrin; Cannet, Arnaud; Votýpka, Jan; Marty, Pierre; Delaunay, Pascal; Sereno, Denis

    2016-03-01

    The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.

  14. Proceedings of the 1982 Army Science Conference Held at the United States Military Academy, West Point, New York on 15-18 June 1982. Volume II. Principal Authors H through N.

    Science.gov (United States)

    1982-06-18

    and 17D strains), and Zika . Two Sandfly Fever viruses (213452 and Candiru) were included as non-f lavivirus controls. Virus inocula for cell culture...J.P. Digoutte (Institute Pasteur, Dakar, Senegal). Virus isolates from the Carribean were provided as first passage isolates ( Aedes pseudoscutellaris...of dengue viruses in mosquito cell culture under field conditions. Lancet, 1:48-49. 22. Igarashi, A., 1978. Isolation of a Singh’s Aedes albopictus

  15. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...... in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced...... changes within the IRES. The growth characteristics of each rescued mutant virus were compared to that of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES...

  16. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae in coffee agroecosystems

    Directory of Open Access Journals (Sweden)

    Jeanneth Perez

    2014-02-01

    Full Text Available The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.], Finca Argovia (613 m a.s.l. and Teotihuacán del Valle (429 m a.s.l.. Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp.

  17. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems

    Science.gov (United States)

    Pérez, Jeanneth; Virgen, Armando; Rojas, Julio Cesar; Rebollar-Téllez, Eduardo Alfonso; Alfredo, Castillo; Infante, Francisco; Mikery, Oscar; Marina, Carlos Felix; Ibáñez-Bernal, Sergio

    2013-01-01

    The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.)], Finca Argovia (613 m a.s.l.) and Teotihuacán del Valle (429 m a.s.l.). Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp. PMID:24271002

  18. Comparison of sampling techniques for Rift Valley Fever virus ...

    African Journals Online (AJOL)

    We investigated mosquito sampling techniques with two types of traps and attractants at different time for trapping potential vectors for Rift Valley Fever virus. The study was conducted in six villages in Ngorongoro district in Tanzania from September to October 2012. A total of 1814 mosquitoes were collected, of which 738 ...

  19. PHLEBOTOMINE SANDFLIES IN RURAL LOCATIONS IN THE STATE OF PARANA, SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Simone Cristina Castanho Sabaini de Melo

    2013-12-01

    Full Text Available SUMMARY This study reports the fauna and frequency of sandflies in domestic animal shelters, residences and other ecotopes in rural areas of the municipality of Bandeirantes, Paraná State. Sandflies were collected twice in eight rural villages by using Falcon traps from 8pm to 6am in 2008. In these localities 4,790 sandflies were collected, which were represented by ten sandfly species, prevailing of Nyssomyia neivai and Nyssomyia whitmani species. It was observed that animal shelters are the domestic ecotopes where there is the greatest frequency of these insects. The localities where the collections were made had the environmental characteristics that allow the persistence of transmission of parasites from the American tegumentary leishmaniasis. Although the fauna and the behavior of sandflies species are similar in different localities, the method of controlling these insects should be adjusted to the environmental characteristics of each one of the most diverse endemic areas of American tegumentary leishmaniasis in the municipalities of Paraná State.

  20. Repellent effects of the essential oils of Cymbopogon citratus and Tagetes minuta on the sandfly, Phlebotomus duboscqi.

    Science.gov (United States)

    Kimutai, Albert; Ngeiywa, Moses; Mulaa, Margaret; Njagi, Peter G N; Ingonga, Johnstone; Nyamwamu, Lydia B; Ombati, Cyprian; Ngumbi, Philip

    2017-02-15

    The sandfly, Phlebotomus duboscqi is a vector of zoonotic cutaneous leishmaniasis (ZCL) that is an important public health problem in Eastern Africa. Repellents have been used for protection of humans against vectors of ZCL and other vectors that transmit killer diseases including malaria, Rift Valley fever, dengue, and yellow fever. The repellent effects of different doses of the essential oils from the lemon grass, Cymbopogon citratus and Mexican marigold, Tagetes minuta were evaluated in a two-chamber bioassay against 3- to 7-day-old unfed females of P. duboscqi in the laboratory. The results were compared with those that were obtained when test animals were treated with an equivalent dose of diethyl-3-methylbenzamide, which is a repellent that is commonly used as a positive control. Overall, percentage repellency increased with increasing doses of the essential oils while biting rates decreased with increasing concentrations of the oils. Further, the oil of C. citratus was more potent than that of T. minuta with regard to protection time and biting deterrence. The effective doses at 50% (ED 50 ) and at 90% (ED 90 ) for the oil of C. citratus, were 0.04 and 0.79 mg/ml, respectively. Those of the oil of T. minuta were 0.10 and 12.58 mg/ml. In addition, the percentage repellency of 1 mg/ml of the essential oils of C. citratus and T. minuta against sandflies was 100% and 88.89%, respectively. A lower dose of 0.5 mg/ml of the oils, elicited 89.13% repellency for C. citratus and 52.22% for T. minuta. The laboratory tests showed that the essential oils of the two plants were highly repellent to adult sand flies, P. duboscqi. Thus, the two essential oils are candidate natural repellents that can be used against P. duboscqi due to their high efficacy at very low doses, hence, the envisaged safety in their use over chemical repellents. It remains to carry out clinical studies on human subjects with appropriate formulations of the oils prior to recommending their

  1. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil.

    Science.gov (United States)

    Fischer, Carlo; Torres, Maria C; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A; Charrel, Rémi N; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C; Rodrigues, Cintia D S; Kümmerer, Beate M; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-11-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  2. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil

    OpenAIRE

    Fischer, Carlo; Torres, Maria C.; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A.; Charrel, Rémi N.; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C.; Rodrigues, Cintia D.S.; Kümmerer, Beate M.; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-01-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  3. Investigations into yellow fever virus and other arboviruses in the northern regions of Kenya.

    Science.gov (United States)

    Henderson, B E; Metselaar, D; Kirya, G B; Timms, G L

    1970-01-01

    Previous studies having shown an appreciable level of yellow fever immunity to exist in northern Kenya, further epidemiological and serological surveys were carried out there in 1968 in an attempt to define more clearly the distribution of yellow fever and to locate possible vector and reservoir hosts of the disease; these surveys also provided information on a number of other arboviruses.Altogether 436 sera from 5 areas in northern Kenya were screened by haemagglutination-inhibition tests with 8 antigens, and 107 of these sera by neutralization tests for Group-B arboviruses. Small numbers of yellow-fever-immune adults were found in Ileret, Garissa, Loglogo and Mikona. At Marsabit high proportions of immune adults and children were found among the Burgi tribe. As the Burgi are permanent agricultural workers on Marsabit Mountain, an entomological investigation was made, over 15 000 mosquitos being collected. From these, 13 strains of Pongola virus, 1 strain of Semliki Forest virus and an unidentified virus were isolated, but no yellow fever strains. Aedes africanus and Aedes simpsoni were not found at Marsabit; small numbers of Aedes aegypti were collected biting man. The vector potential of other mosquitos collected (particularly Mansonia africana, which is present throughout the year) is discussed.

  4. An Outbreak of Ebola Virus Disease in the Lassa Fever Zone.

    Science.gov (United States)

    Goba, Augustine; Khan, S Humarr; Fonnie, Mbalu; Fullah, Mohamed; Moigboi, Alex; Kovoma, Alice; Sinnah, Vandi; Yoko, Nancy; Rogers, Hawa; Safai, Siddiki; Momoh, Mambu; Koroma, Veronica; Kamara, Fatima K; Konowu, Edwin; Yillah, Mohamed; French, Issa; Mustapha, Ibraham; Kanneh, Franklyn; Foday, Momoh; McCarthy, Helena; Kallon, Tiangay; Kallon, Mustupha; Naiebu, Jenneh; Sellu, Josephine; Jalloh, Abdul A; Gbakie, Michael; Kanneh, Lansana; Massaly, James L B; Kargbo, David; Kargbo, Brima; Vandi, Mohamed; Gbetuwa, Momoh; Gevao, Sahr M; Sandi, John D; Jalloh, Simbirie C; Grant, Donald S; Blyden, Sylvia O; Crozier, Ian; Schieffelin, John S; McLellan, Susan L; Jacob, Shevin T; Boisen, Matt L; Hartnett, Jessica N; Cross, Robert W; Branco, Luis M; Andersen, Kristian G; Yozwiak, Nathan L; Gire, Stephen K; Tariyal, Ridhi; Park, Daniel J; Haislip, Allyson M; Bishop, Christopher M; Melnik, Lilia I; Gallaher, William R; Wimley, William C; He, Jing; Shaffer, Jeffrey G; Sullivan, Brian M; Grillo, Sonia; Oman, Scott; Garry, Courtney E; Edwards, Donna R; McCormick, Stephanie J; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Reyna, Ashley A; Bradley, Benjamin T; Yu, Haini; Yenni, Rachael E; Hastie, Kathryn M; Geisbert, Joan B; Kulakosky, Peter C; Wilson, Russell B; Oldstone, Michael B A; Pitts, Kelly R; Henderson, Lee A; Robinson, James E; Geisbert, Thomas W; Saphire, Erica Ollmann; Happi, Christian T; Asogun, Danny A; Sabeti, Pardis C; Garry, Robert F

    2016-10-15

     Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs.  Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities.  Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case.  Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Serological reactions in Rhesus monkeys inoculated with the 17D strain of yellow fever virus.

    Science.gov (United States)

    GROOT, H

    1962-01-01

    Haemagglutination-inhibition tests, which depend on the appearance of haemagglutination-inhibiting antibodies in the serum in virus infections, are in common use in the study of arthropod-borne diseases. This paper contains the results of an investigation into the appearance and pattern of haemagglutination-inhibiting antibodies in the serum of rhesus monkeys inoculated intracerebrally with the 17D strain of yellow fever virus during the testing of seed lots of yellow fever vaccine. These antibodies appeared on the tenth day after inoculation, and were still demonstrable four years later. In all of the eight monkeys tested complement-fixing and neutralizing antibodies against yellow fever antigens also developed, and in six out of the eight heterologous antigens developed.

  6. Efficient cellular release of Rift Valley fever virus requires genomic RNA.

    Directory of Open Access Journals (Sweden)

    Mary E Piper

    2011-03-01

    Full Text Available The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.

  7. Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein

    NARCIS (Netherlands)

    Boer, de S.M.; Kortekaas, J.A.; Spel, L.; Rottier, P.J.M.; Moormann, R.J.M.; Bosch, B.J.

    2012-01-01

    Entry of the enveloped Rift Valley fever virus (RVFV) into its host cell is mediated by the viral glycoproteins Gn and Gc. We investigated the RVFV entry process and its pH-dependent activation mechanism in particular using our recently developed nonspreading RVFV particle system. Entry of the virus

  8. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype.

    Directory of Open Access Journals (Sweden)

    Séverine Mercier-Delarue

    Full Text Available Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D. The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.

  9. A flow cytometry-based assay for quantifying non-plaque forming strains of yellow fever virus.

    Directory of Open Access Journals (Sweden)

    Erika Hammarlund

    Full Text Available Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar could not be measured by plaque assay (PA, focus-forming assay (FFA, or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6 and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine. Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

  10. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: Implications from other RNA viruses

    Directory of Open Access Journals (Sweden)

    Shoko eNishiyama

    2015-08-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae. Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the United States. MP-12 displays a temperature-sensitive (ts phenotype and does not replicate at 41oC. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  11. HEMORRHAGIC-FEVER VIRUS-INFECTIONS IN AN ISOLATED RAIN-FOREST AREA OF CENTRAL LIBERIA - LIMITATIONS OF THE INDIRECT IMMUNOFLUORESCENCE SLIDE TEST FOR ANTIBODY SCREENING IN AFRICA

    NARCIS (Netherlands)

    van der Waals, F. W.; Pomeroy, K. L.; Goudsmit, J.; Asher, D. M.; Gajdusek, D. C.

    1986-01-01

    Serum samples from 119 healthy individuals and 106 epilepsy patients inhabiting Grand Bassa County, Liberia, were tested for antibodies to hemorrhagic fever viruses (HFV) by indirect immunofluorescence. E6 Vero cells infected with Lassa fever virus (LAS), Rift Valley Fever virus (RVF), Congo

  12. Dengue fever (image)

    Science.gov (United States)

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, ... second exposure to the virus can result in Dengue hemorrhagic fever, a life-threatening illness.

  13. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes

    NARCIS (Netherlands)

    Vloet, Rianka P.M.; Vogels, Chantal B.F.; Koenraadt, Constantianus J.M.; Pijlman, Gorben P.; Eiden, Martin; Gonzales, Jose L.; Keulen, van Lucien J.M.; Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2017-01-01

    Background: Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus

  14. What Does the Future Hold for Yellow Fever Virus? (I

    Directory of Open Access Journals (Sweden)

    Raphaëlle Klitting

    2018-06-01

    Full Text Available The recent resurgence of yellow fever virus (YFV activity in the tropical regions of Africa and South America has sparked renewed interest in this infamous arboviral disease. Yellow fever virus had been a human plague for centuries prior to the identification of its urban transmission vector, the Aedes (Stegomyia aegypti (Linnaeus mosquito species, and the development of an efficient live-attenuated vaccine, the YF-17D strain. The combination of vector-control measures and vaccination campaigns drastically reduced YFV incidence in humans on many occasions, but the virus never ceased to circulate in the forest, through its sylvatic invertebrate vector(s and vertebrate host(s. Outbreaks recently reported in Central Africa (2015–2016 and Brazil (since late 2016, reached considerable proportions in terms of spatial distribution and total numbers of cases, with multiple exports, including to China. In turn, questions about the likeliness of occurrence of large urban YFV outbreaks in the Americas or of a successful import of YFV to Asia are currently resurfacing. This two-part review describes the current state of knowledge and gaps regarding the molecular biology and transmission dynamics of YFV, along with an overview of the tools that can be used to manage the disease at individual, local and global levels.

  15. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    Science.gov (United States)

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  16. Immunofluorescence Plaque Assay for African Swine Fever Virus

    Science.gov (United States)

    Tessler, J.; Hess, W. R.; Pan, I. C.; Trautman, R.

    1974-01-01

    Suitably diluted cell culture adapted African swine fever virus preparations were inoculated on VERO cell monolayers and grown on coverslips. Gum tragacanth was used as an overlay. After three days incubation at 37°C the infected cultures were fixed with acetone and stained with fluorescent antibody conjugate. Fluorescing plaques consisted of 20-30 infected cells. Three statistical criteria for a quantitatively reliable assay were met: the Poisson distribution for plaque counts, linearity of the relationship between the concentration of virus and the plaque count and reproducibility of replicate titrations. The method is suitable for counts up to at least 70 plaques per 5 cm2 coverslip and computed titers are reproducible within 0.16 log units with a total of 300 plaques enumerated. PMID:4279763

  17. Vertical transmission of Rift Valley Fever Virus without detectable maternal viremia

    NARCIS (Netherlands)

    Antonis, A.F.G.; Kortekaas, J.A.; Kant-Eenbergen, H.C.M.; Vloet, R.P.M.; Vogel-Brink, A.; Stockhofe, N.; Moormann, R.J.M.

    2013-01-01

    Rift Valley fever virus (RVFV) is a zoonotic bunyavirus that causes abortions in domesticated ruminants. Sheep breeds exotic to endemic areas are reportedly the most susceptible to RVFV infection. Within the scope of a risk assessment program of The Netherlands, we investigated the susceptibility of

  18. Urban invation of sandflies transmition of leishmania in merida venezuela

    Directory of Open Access Journals (Sweden)

    Elsa Nieves Blanco

    2018-05-01

    Full Text Available Urban development together with uncontrolled construction in endemic areas of leishmaniasis has resulted in a series of environmental transformations that have promoted the spread of cutaneous leishmaniasis, with the adaptation sandflies transmitters to these urban environments. This study aims to determine the presence of sandflies and the epidemiological factors associated with the transmission of leishmaniasis in an urban area of Zea, Venezuela. Five methods of catching sandflies were used indoors in two urbanizations in Zea, Venezuela. Through a survey-type instrument, the epidemiological variables associated with the transmission of leishmaniasis in the housing estates were determined. The presence in the urban dwellings of Lutzomyia youngi, Lutzomyia spinicrassa, Lutzomyia migonei, Lutzomyia ovallesi, Lutzomyia walkeri, Lutzomyia venezuelensis, Lutzomyia atroclavata and Lutzomyia lichyi were demonstrated. 62.5% of the species caught in urbanized areas have antropohematophagy habits. A 67% and 80% of infestation was determined in the dwellings of the studied urbanizations. It was evidenced a low level of knowledge in the inhabitants mainly on the sandflies, which increases the risk of domiciliation and transmission of leishmaniasis, the control entities are warned to implement preventive and educational measures.

  19. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    Directory of Open Access Journals (Sweden)

    Marko Zivcec

    2016-04-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  20. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  1. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses.

    Science.gov (United States)

    Borca, Manuel V; Holinka, Lauren G; Berggren, Keith A; Gladue, Douglas P

    2018-02-16

    African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.

  2. Crimean-Congo haemorrhagic fever virus infection in birds: field investigations in Senegal.

    Science.gov (United States)

    Zeller, H G; Cornet, J P; Camicas, J L

    1994-01-01

    In Senegal, wild ground-feeding birds are frequently infested with immature ticks. In two areas where numerous Crimean-Congo haemorrhagic fever (CCHF) virus isolations were obtained from Hyalomma marginatum rufipes adult ticks collected on ungulates, 175 birds were captured and sera collected. CCHF antibodies were detected by ELISA in 6/22 red-beaked hornbills (Tockus erythrorhynchus), 2/11 glossy starlings (Lamprotornis sp.) and 1/3 guinea fowls. The virus was isolated from H. m. rufipes nymphs collected on a hornbill. The role of wild ground-feeding birds in CCHF virus ecology in West Africa is discussed.

  3. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae): a review.

    Science.gov (United States)

    Dinesh, Diwakar Singh; Kumari, Seema; Kumar, Vijay; Das, Pradeep

    2014-03-01

    Use of chemical pesticides is the current method for controlling sandflies. However, resistance is being developed in sandflies against the insecticide of choice that is DDT (dichlorodiphenyl trichloroethane). Botanicals have potential to act as an alternative to chemical insecticides as the crude extracts and active molecules of some plants show insecticidal effect to sandflies. This will lead to safe, easy and environment friendly method for control of sandflies. Therefore, information regarding botanicals acting as alternative to chemical insecticide against sandflies assumes importance in the context of development of resistance to insecticides as well as to prevent environment from contamination. This review deals with some plants and their products having repellent and insecticidal effect to sandflies in India and abroad. Different methods of extraction and their bioassay on sandflies have been emphasized in the text. Various extracts of some plants like Ricinus communis (Euphorbiaceae), Solanum jasminoides (Solanaceae), Bougainvillea glabra (Nyctaginaceae), Capparis spinosa (Capparidaceae), Acalypha fruticosa (Euphorbiaceae) and Tagetes minuta (Asteraceae) had shown repellent/insecticidal effect on sandflies. This review will be useful in conducting the research work to find out botanicals of Indian context having insecticidal effect on sandflies.

  4. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  5. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia.

    Directory of Open Access Journals (Sweden)

    Simon Delgado

    2008-04-01

    Full Text Available A small focus of hemorrhagic fever (HF cases occurred near Cochabamba, Bolivia, in December 2003 and January 2004. Specimens were available from only one fatal case, which had a clinical course that included fever, headache, arthralgia, myalgia, and vomiting with subsequent deterioration and multiple hemorrhagic signs. A non-cytopathic virus was isolated from two of the patient serum samples, and identified as an arenavirus by IFA staining with a rabbit polyvalent antiserum raised against South American arenaviruses known to be associated with HF (Guanarito, Machupo, and Sabiá. RT-PCR analysis and subsequent analysis of the complete virus S and L RNA segment sequences identified the virus as a member of the New World Clade B arenaviruses, which includes all the pathogenic South American arenaviruses. The virus was shown to be most closely related to Sabiá virus, but with 26% and 30% nucleotide difference in the S and L segments, and 26%, 28%, 15% and 22% amino acid differences for the L, Z, N, and GP proteins, respectively, indicating the virus represents a newly discovered arenavirus, for which we propose the name Chapare virus. In conclusion, two different arenaviruses, Machupo and Chapare, can be associated with severe HF cases in Bolivia.

  6. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate results in virus attenuation and may be a potential virus vaccine strain

    Science.gov (United States)

    African Swine Fever Virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Successful experi...

  7. Fauna, Abundance and Dispersion of Sandflies in Three Endemic Areas of Cutaneous Leishmaniasis in Rural Fars Province

    Directory of Open Access Journals (Sweden)

    F Ahmadipour

    2011-05-01

    Full Text Available Introduction: Leishmaniasis is one of important tropical diseases caused by Leishmania parasites which is transmitted by biting of female phlebotomine sandfies. Regarding high densities' and distribution of sandflies in majority areas of Iran, understanding of sandflies identification and distribution as vectors is importation to control disease. Methods: This is a descriptive survey which was done temporarily, Sandflies were sampled from 17 villages of three studied regions to coordinate with authorities of sanitary province to provide the necessary facilities .foci using sticky papers and CDC traps. All sandflies were identified based on external and internal morphological characters of the head and abdominal terminalia, which were slide-mounted in Berlese fluid. Results: In total 3178 Sandflies were sampled and identified. Sandfies species are P. papatasi, P. bergeroti, P. alexandri, P. sergenti, P. mongolensis, P. tobbi and S. dentate, S. sintoni and S. tiberiadis. sandfly species identified and separated based on habitat collections. Females analysed according to their gonotrophic stage which majority were unfed. Conclusion: The collections contained the important putative vectors of Leishmaniasis in Iran. P. papatasi was abundant in three study foci. Of the sandflies recorded from Iran, only P. papatasi was judged to be a proven vector of Leishmaniasis. Understanding criteria of vectors, population variations and ecological aspect of sandflies can help to control better of diseases.

  8. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase

    Directory of Open Access Journals (Sweden)

    TELISSA C. KASSAR

    Full Text Available ABSTRACT Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV expressing Gaussia luciferase (GLuc (YFV-GLuc. We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967, indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.

  9. The phylogeny of yellow fever virus 17D vaccines.

    Science.gov (United States)

    Stock, Nina K; Boschetti, Nicola; Herzog, Christian; Appelhans, Marc S; Niedrig, Matthias

    2012-02-01

    In recent years the safety of the yellow fever live vaccine 17D came under scrutiny. The focus was on serious adverse events after vaccinations that resemble a wild type infection with yellow fever and whose reasons are still not known. Also the exact mechanism of attenuation of the vaccine remains unknown to this day. In this context, the standards of safety and surveillance in vaccine production and administration have been discussed. Therein embodied was the demand for improved documentation of the derivation of the seed virus used for yellow fever vaccine production. So far, there was just a historical genealogy available that is based on source area and passage level. However, there is a need for a documentation based on molecular information to get better insights into the mechanisms of pathology. In this work we sequenced the whole genome of different passages of the YFV-17D strain used by Crucell Switzerland AG for vaccine production. Using all other publically available 17D full genome sequences we compared the sequence variance of all vaccine strains and oppose a phylogenetic tree based on full genome sequences to the historical genealogy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Four-segmented Rift Valley fever virus-based vaccines can be applied safely in ewes during pregnancy

    NARCIS (Netherlands)

    Wichgers Schreur, Paul J.; Keulen, van Lucien; Kant-Eenbergen, Jet; Kortekaas, Jeroen

    2017-01-01

    Rift Valley fever virus (RVFV) causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. This mosquito-borne virus, belonging to the genus Phlebovirus of the family Bunyaviridae contains a tri-segmented negative-strand RNA

  11. Molecular analysis of yellow fever virus 17DD vaccine strain

    Directory of Open Access Journals (Sweden)

    Paulo R. Post

    1991-06-01

    Full Text Available The Oswaldo Cruz Foundation produces most of the yellow fever (YF vaccine prepared world wide. As part of a broader approach to determine the genetic variability in YF l7D seeds and vaccines and its relevance to viral attenuation the 17DD virus was purifed directly from chick embryo homogenates which is the source of virus used for vaccination of millions of people in Brazil and other countries for half a century. Neutralization and hemagglutination tests showed that the purified virus is similar to the original stock. Furthermore, radioimmune precipitation of 35S-methionine-labeled viral proteins using mouse hyperimmune ascitic fluid revealed identical patterns for the purified 17DD virus and the YF l7D-204 strain except for the 17DD E protein which migrated slower on SDS-PAGE. This difference is likely to be due to N-linked glycosylation. Finally, comparison by northern blot nybridization of virion RNAs of purified 17DD with two other strains of YF virus only fenome-sized molecules for all three viruses. These observations suggest that vaccine phenotype is primarily associated with the accumulation of mutations.

  12. A fatal yellow fever virus infection in China: description and lessons

    Science.gov (United States)

    Chen, Zhihai; Liu, Lin; Lv, Yanning; Zhang, Wei; Li, Jiandong; Zhang, Yi; Di, Tian; Zhang, Shuo; Liu, Jingyuan; Li, Jie; Qu, Jing; Hua, Wenhao; Li, Chuan; Wang, Peng; Zhang, Quanfu; Xu, Yanli; Jiang, Rongmeng; Wang, Qin; Chen, Lijuan; Wang, Shiwen; Pang, Xinghuo; Liang, Mifang; Ma, Xuejun; Li, Xingwang; Wang, Quanyi; Zhang, Fujie; Li, Dexin

    2016-01-01

    Yellow fever (YF) is a viral disease endemic to the tropical regions of Africa and South America. An outbreak of YF has been occurring in Angola, since the beginning of 2016. In March 2016, a 32-year-old Chinese man who returned from Angola was hospitalized and diagnosed with the first case of imported YF in China. Clinical observations, blood viral RNA detection, serological testing and treatments for the patient were performed daily. The virus was isolated in Vero cells, and the complete viral genome was sequenced and analyzed using the next-generation genomic sequencing platform. The patient presented with hemorrhagic fever, jaundice and oliguria at day 3 after onset, which rapidly progressed to multisystem organ failure with extremely elevated liver, pancreatic and myocardial enzymes. The patient died despite the intensive supportive treatments that were performed. A liver biopsy showed severe and multilobular necrosis. Viral RNA was detectable throughout the clinical course of the disease. Whole-genomic sequence analysis revealed that the virus belongs to the Angola71 genotype. Although the virus has been circulating in Angola for 45 years, only 14 amino-acid substitutions and no amino-acid changes were observed in the membrane and envelope proteins compared with the virus collected in 1971. The presence of this imported YF case in China indicated that with the increase in business travel among countries, YF outbreaks in Africa can lead to the international spread of the disease. The production and use of YF vaccines is, therefore, an urgent issue. PMID:27406389

  13. Spread and Control of Rift Valley Fever virus after accidental introduction in the Netherlands: a modelling study.

    NARCIS (Netherlands)

    Fischer, E.A.J.; Boender, G.J.; Koeijer, de A.A.; Nodelijk, G.; Roermund, van H.J.W.

    2011-01-01

    Rift Valley Fever (RVF) is a zoonotic vector-borne infection and causes a potentially severe disease in both humans and young animals. The Ministry of Economic Affairs, Agriculture and Innovation (EL&I) is interested in the risk of an outbreak of Rift Valley Fever virus (RVFV) for the

  14. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Science.gov (United States)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  15. Investigation of hemorrhagic fever viruses inside wild populations of ticks: One of the pioneer studies in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Rania Ali El Hadi Mohamed

    2017-05-01

    Full Text Available Objective: To screen hemorrhagic fever viruses inside wild populations of ticks collected from Riyadh, Saudi Arabia between January and March 2016. Methods: Ticks were identified depending on their morphological features using classical keys then grouped into pools. Ticks in each pool were processed separately using the sterile pestles and mortars. Viral RNA was extracted using Qiagen RNeasy Mini Kit and Qiagen RNAeasy Columns (Qiagen, Hilden, Germany according to the instructions of manufacturers. A total number of 1 282 hard ticks were collected, and 582 of them were precisely identified then screened for the presence of arboviruses using quantitative real-time PCR. The four species were screened for six viruses: Rift Valley fever virus (RVFV, Chikungunya virus (CHIKV, Crimean-Congo hemorrhagic fever virus (CCHFV, Alkhurma virus (INKV, Sindbis virus (SINV, and Pan Hanta virus (HANTA. CT value for the negative control (RNA free water was zero. Negative and positive controls were tested for each test to confirm the specificity of the selected primer pairs. SYBR Green One step RT-PCR Master Mix (KAPA Biosystems, Boston, MA was tested along with primers. Results: Ticks identification resulted into four species: Hyalomma schulzei, Hyalomma onatoli, Boophilus kdhlsi, and Hyalomm dromedarii. All the ticks’ species (except Boophilus kdhlsi were positive for the following viruses: SINV, RVFV, CHIKV, and CCHFV. While HANTA viruses have been detected in a single species (Hyalomm dromedarii. Conclusions: According to our knowledge this research may be one of the pioneer studies in Kingdom of Saudi Arabia. Incrimination of the above mentioned ticks species as well as their vectorial capacity are highly recommended for investigation in the upcoming researches.

  16. Distribution and periodicity of sandflies (Diptera: Phlebotominae along different altitudes in Asir Region, Southwest of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M.A. Kenawy

    2015-08-01

    Full Text Available Asir Region in the southwest of Saudi Arabia has been a subject for expansion of agricultural projects, urbanization, which presumably have impact on distribution of phlebotomine sandflies. Few reports are available on sandflies in this region which is an important focus of cutaneous leishmaniasis. Therefore, this study aimed at updating the species composition, distribution and periodical fluctuation of sandflies in this region. Specimens were monthly collected by the Center for Disease Control light traps for one year in four localities representing different altitudes. In five other, collections were twice during the year period. Ten species (six Phlebotomus and four Sergentomyia were identified, of which P. arabicus (32% was the most common followed by P. bergeroti (29% and P. sergenti (15%. Of the reported species, S. palestinensis is considered a new record from Asir. Sandflies were more common and maximum biodiversity was observed in lowlands and not in high altitudes. At different altitudes, the two commonest species were more active during spring. Sandfly density (sandfly/trap was directly related to temperature and inversely related to altitude, relative humidity (RH and wind velocity (P<0.05. To sum up, the distribution and abundance of sandflies in Asir are influenced by a combination of different factors: temperature, RH, wind velocity and altitude.

  17. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Lam, Tommy Tsan-Yuk; Liu, Wei; Bowden, Thomas A; Cui, Ning; Zhuang, Lu; Liu, Kun; Zhang, Yao-Yun; Cao, Wu-Chun; Pybus, Oliver G

    2013-03-01

    In 2009, a novel Bunyavirus, called severe fever with thrombocytopenia syndrome virus (SFTSV) was identified in the vicinity of Huaiyangshan, China. Clinical symptoms of this zoonotic virus included severe fever, thrombocytopenia, and leukocytopenia, with a mortality rate of ~10%. By the end of 2011 the disease associated with this pathogen had been reported from eleven Chinese provinces and human-to-human transmission suspected. However, current understanding of the evolution and molecular epidemiology of SFTSV before and after its identification is limited. To address this we undertake phylogenetic, evolutionary and structural analyses of all available SFTSV genetic sequences, including a new SFTSV complete genome isolated from a patient from Henan in 2011. Our discovery of a mosaic L segment sequence, which is descended from two major circulating lineages of SFTSV in China, represents the first evidence that homologous recombination plays a role in SFTSV evolution. Selection analyses indicate that negative selection is predominant in SFTSV genes, yet differences in selective forces among genes are consistent between Phlebovirus species. Further analysis reveals structural conservation between SFTSV and Rift Valley fever virus in the residues of their nucleocapsids that are responsible for oligomerisation and RNA-binding, suggesting the viruses share similar modes of higher-order assembly. We reconstruct the epidemic history of SFTSV using molecular clock and coalescent-based methods, revealing that the extant SFTSV lineages originated 50-150 years ago, and that the viral population experienced a recent growth phase that concurs with and extends the earliest serological reports of SFTSV infection. Taken together, our combined structural and phylogenetic analyses shed light into the evolutionary behaviour of SFTSV in the context of other, better-known, pathogenic Phleboviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ebola hemorrhagic fever associated with novel virus strain, Uganda, 2007-2008.

    Science.gov (United States)

    Wamala, Joseph F; Lukwago, Luswa; Malimbo, Mugagga; Nguku, Patrick; Yoti, Zabulon; Musenero, Monica; Amone, Jackson; Mbabazi, William; Nanyunja, Miriam; Zaramba, Sam; Opio, Alex; Lutwama, Julius J; Talisuna, Ambrose O; Okware, Sam I

    2010-07-01

    During August 2007-February 2008, the novel Bundibugyo ebolavirus species was identified during an outbreak of Ebola viral hemorrhagic fever in Bundibugyo district, western Uganda. To characterize the outbreak as a requisite for determining response, we instituted a case-series investigation. We identified 192 suspected cases, of which 42 (22%) were laboratory positive for the novel species; 74 (38%) were probable, and 77 (40%) were negative. Laboratory confirmation lagged behind outbreak verification by 3 months. Bundibugyo ebolavirus was less fatal (case-fatality rate 34%) than Ebola viruses that had caused previous outbreaks in the region, and most transmission was associated with handling of dead persons without appropriate protection (adjusted odds ratio 3.83, 95% confidence interval 1.78-8.23). Our study highlights the need for maintaining a high index of suspicion for viral hemorrhagic fevers among healthcare workers, building local capacity for laboratory confirmation of viral hemorrhagic fevers, and institutionalizing standard precautions.

  19. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  20. Uncovering of Classical Swine Fever Virus adaptive response to vaccination by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Orton, Richard; Höper, Dirk

    Next Generation Sequencing (NGS) has rapidly become the preferred technology in nucleotide sequencing, and can be applied to unravel molecular adaptation of RNA viruses such as Classical Swine Fever Virus (CSFV). However, the detection of low frequency variants within viral populations by NGS...... is affected by errors introduced during sample preparation and sequencing, and so far no definitive solution to this problem has been presented....

  1. Antibodies against severe fever with Thrombocytopenia syndrome Virus in healthy persons, China, 2013

    NARCIS (Netherlands)

    Zhang Lei, Lei; Sun, J.; Yan, J.; Huakun, L.; Chai, C.Y.; Sun, Y.; Shao, B.; Jiang, J.D.; Chen, Z.; Kortekaas, J.A.; Zhang, Y.

    2014-01-01

    In June 2013, a subclinical infection with severe fever with thrombocytopenia syndrome virus (SFTSV) was detected in Zhejiang Province, China, prompting seroprevalence studies in 6 districts within the province. Of 986 healthy persons tested, 71 had IgG antibodies against SFTSV. This finding

  2. Innate Immune Response to Rift Valley Fever Virus in Goats

    Science.gov (United States)

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  3. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus

    Science.gov (United States)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...

  4. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...... viruses under all conditions tested. The implications for disease spread are discussed....

  5. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham J.

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, the nucleotides 47 to 427, including the IRES region of the wt CSFV strain Paderborn, were amplified...... and inserted, under T7 promoter control, into mono- and dicistronic plasmids containing the reporter genes rLuc and fLuc. Mutant fragments of the IRES sequence were generated by overlap PCR and inserted into the reporter plasmids. To evaluate IRES functionality, translation of the rLUC was placed under...... viruses were obtained after one cell culture passage from constructs with more than 75 % translation efficiency compared to the wildtype IRES. cDNA was generated from these clones and sequenced to verify the maintenance of the changes in the IRES. These results show that full-length viable mutant viruses...

  6. First international external quality assessment of molecular detection of Crimean-Congo hemorrhagic fever virus.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is a zoonosis caused by a Nairovirus of the family Bunyaviridae. Infection is transmitted to humans mostly by Hyalomma ticks and also by direct contact with the blood or tissues of infected humans or viremic livestock. Clinical features usually include a rapid progression characterized by hemorrhage, myalgia and fever, with a lethality rate up to 30%. CCHF is one of the most widely distributed viral hemorrhagic fevers and has been reported in Africa, the Middle East and Asia, as well as parts of Europe. There is no approved vaccine or specific treatment against CCHF virus (CCHFV infections. In this context, an accurate diagnosis as well as a reliable surveillance of CCHFV infections is essential. Diagnostic techniques include virus culture, serology and molecular methods, which are now increasingly used. The European Network for the Diagnostics of "Imported" Viral Diseases organized the first international external quality assessment of CCHVF molecular diagnostics in 2011 to assess the efficiency and accurateness of CCHFV molecular methods applied by expert laboratories. A proficiency test panel of 15 samples was distributed to the participants including 10 different CCHFV preparations generated from infected cell cultures, a preparation of plasmid cloned with the nucleoprotein of CCHFV, two CCHFV RNA preparations and two negative controls. Forty-four laboratories worldwide participated in the EQA study and 53 data sets were received. Twenty data sets (38% met all criteria with optimal performance, 10 (19% with acceptable performance, while 23 (43% reported results showing a need for improvement. Differences in performance depended on the method used, the type of strain tested, the concentration of the sample tested and the laboratory performing the test. These results indicate that there is still a need for improving testing conditions and standardizing protocols for the molecular detection of Crimean

  7. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  8. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  9. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L.

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host – dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies. PMID:23326450

  10. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  11. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Directory of Open Access Journals (Sweden)

    Dumrong Mairiang

    Full Text Available The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  12. Vectors of Crimean Congo Hemorrhagic Fever Virus in Iran

    Directory of Open Access Journals (Sweden)

    Zakkyeh Telmadarraiy

    2015-10-01

    Full Text Available Background: Ticks are important vectors and reservoirs of Crimean Congo Hemorrhagic Fever (CCHF virus. Human beings may be infected whenever the normal life cycle of the infected ticks on non- human vertebrate hosts is interrupted by the undesirable presence of humans in the cycle. A total of 26 species of Argasid and Ixodid ticks have been recorded in Iran; including nine Hyalomma, two Rhipicephalus, two Dermacentor, five Haemaphysalis, two Boophilus, one Ixodes and two Argas as well as three Ornithodoros species as blood sucking ectoparasites of livestock and poultries. The present paper reviews tick vectors of CCHF virus in Iran, focusing on the role of ticks in different provinces of Iran using reverse transcription polymerase chain reaction (RT-PCR assay.Methods: During ten years study, 1054 tick specimens; including two species of Argasidae and 17 species of Ixodidae were examined for their infection to CCHF virus genome. The output of all studies as well as related publications were discussed in the current paper.Results: The results show that Rhipicephalus sanguineus, Hyalomma marginatum, H. anatolicum, H. asiaticum and H. dromedarii were known as the most frequent species which were positive for CCHF virus.Conclusion: The status of ticks which were positive for CCHF virus revealed that unlike the most common idea that Hyalomma species are the most important vectors of CCHF virus, other ticks including Rhipicephalus,Haemaphysalis and Dermacentor can be reservoir of this virus; thus, considering geographical distribution, type of host and environmental conditions, different tick control measurements should be carried out in areas with high incidence of CCHF disease.

  13. Vectors of Crimean Congo Hemorrhagic Fever Virus in Iran

    Science.gov (United States)

    Telmadarraiy, Zakkyeh; Chinikar, Sadegh; Vatandoost, Hassan; Faghihi, Faezeh; Hosseini-Chegeni, Asadollah

    2015-01-01

    Background: Ticks are important vectors and reservoirs of Crimean Congo Hemorrhagic Fever (CCHF) virus. Human beings may be infected whenever the normal life cycle of the infected ticks on non-human vertebrate hosts is interrupted by the undesirable presence of humans in the cycle. A total of 26 species of Argasid and Ixodid ticks have been recorded in Iran; including nine Hyalomma, two Rhipicephalus, two Dermacentor, five Haemaphysalis, two Boophilus, one Ixodes and two Argas as well as three Ornithodoros species as blood sucking ectoparasites of livestock and poultries. The present paper reviews tick vectors of CCHF virus in Iran, focusing on the role of ticks in different provinces of Iran using reverse transcription polymerase chain reaction (RT-PCR) assay. Methods: During ten years study, 1054 tick specimens; including two species of Argasidae and 17 species of Ixodidae were examined for their infection to CCHF virus genome. The output of all studies as well as related publications were discussed in the current paper. Results: The results show that Rhipicephalus sanguineus, Hyalomma marginatum, H. anatolicum, H. asiaticum and H. dromedarii were known as the most frequent species which were positive for CCHF virus. Conclusion: The status of ticks which were positive for CCHF virus revealed that unlike the most common idea that Hyalomma species are the most important vectors of CCHF virus, other ticks including Rhipicephalus, Haemaphysalis and Dermacentor can be reservoir of this virus; thus, considering geographical distribution, type of host and environmental conditions, different tick control measurements should be carried out in areas with high incidence of CCHF disease. PMID:26623426

  14. [Spatial and/or olfactory memory in sandflies in an endemic area for American cutaneous leishmaniasis, southern Brazil].

    Science.gov (United States)

    Freitas, Janaína Sales de; Reinhold-Castro, Kárin Rosi; Casanova, Cláudio; Silva, Joseane Padilha da; Previdelli, Isolde; Teodoro, Ueslei

    2009-01-01

    The results from an investigation on the possibility that sandflies in an endemic area for American cutaneous leishmaniasis, in the state of Paraná, may have memory are reported. Sandflies were caught in Recanto Marista, Doutor Camargo, State of Paraná, Brazil, using Falcão traps in two chicken sheds (G1 and G2), between November 15 and 26, 2007. A total of 2,080 sandflies were caught (1,000 in G1 and 1,080 in G2) and these were marked and released. Nyssomyia neivai was the most (90.5%) frequent species. Out of the total released, 168 sandflies (8%) were recaptured and the recapture rate in G2 was significant. The results show that it is possible that spatial or olfactory memory and/or host loyalty exists, and that this will guide the sandflies in recognizing the places where sources of blood are available.

  15. Identification of a major non-structural protein in the nuclei of Rift Valley fever virus-infected cells.

    Science.gov (United States)

    Struthers, J K; Swanepoel, R

    1982-06-01

    A non-structural protein of mol. wt. 34 X 10(3) was demonstrated in the nuclei of Rift Valley fever virus-infected Vero cells by SDS-polyacrylamide gel electro-phoresis. The protein appears to correspond to the virus-induced antigen demonstrated by indirect immunofluorescence in intranuclear inclusions.

  16. Molecular Assay on Crimean Congo Hemorrhagic Fever Virus in Ticks (Ixodidae) Collected from Kermanshah Province, Western Iran

    Science.gov (United States)

    Mohammadian, Maria; Chinikar, Sadegh; Telmadarraiy, Zakkyeh; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Hanafi-Bojd, Ahmad Ali; Sedaghat, Mohammad Mehdi; Noroozi, Mehdi; Faghihi, Faezeh; Jalali, Tahmineh; Khakifirouz, Sahar; Shahhosseini, Nariman; Farhadpour, Firoozeh

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever (CCHF) is a feverous and hemorrhagic disease endemic in some parts of Iran and caused by an arbovirus related to Bunyaviridae family and Nairovirusgenus. The main virus reservoir in the nature is ticks, however small vertebrates and a wide range of domestic and wild animals are regarded as reservoir hosts. This study was conducted to determine the infection rate of CCHF virus in hard ticks of Sarpole-Zahab County, Kermanshah province, west of Iran. Methods: From total number of 851 collected ticks from 8 villages, 131 ticks were selected randomlyand investigated for detection of CCHF virus using RT-PCR. Results: The virus was found in 3.8% of the tested ticks. Hyalommaanatolicum, H. asiaticum and Rhipicephalus sanguineus species were found to have viral infection, with the highest infection rate (11.11%) in Rh. sanguineus. Conclusion: These findings provide epidemiological evidence for planning control strategies of the disease in the study area. PMID:27308296

  17. Molecular Assay on Crimean Congo Hemorrhagic Fever Virus in Ticks (Ixodidae Collected from Kermanshah Province, Western Iran

    Directory of Open Access Journals (Sweden)

    Maria Mohammadian

    2016-01-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a feverous and hemorrhagic disease endemic in some parts of Iran and caused by an arbovirus related to Bunyaviridae family and Nairovirusgenus. The main virus reser­voir in the nature is ticks, however small vertebrates and a wide range of domestic and wild animals are regarded as reservoir hosts. This study was conducted to determine the infection rate of CCHF virus in hard ticks of Sarpole-Zahab County, Kermanshah province, west of Iran.Methods: From total number of 851 collected ticks from 8 villages, 131 ticks were selected randomlyand investi­gated for detection of CCHF virus using RT-PCR.Results: The virus was found in 3.8% of the tested ticks. Hyalommaanatolicum, H.asiaticum and Rhipicephalus sanguineus species were found to have viral infection, with the highest infection rate (11.11% in Rh. sanguineus.Conclusion: These findings provide epidemiological evidence for planning control strategies of the disease in the study area.

  18. Seroprevalence of yellow fever virus in selected health facilities in Western Kenya from 2010 to 2012.

    Science.gov (United States)

    Kwallah, Allan ole; Inoue, Shingo; Thairu-Muigai, Anne Wangari; Kuttoh, Nancy; Morita, Kouichi; Mwau, Matilu

    2015-01-01

    Yellow fever (YF), which is caused by a mosquito-borne virus, is an important viral hemorrhagic fever endemic in equatorial Africa and South America. Yellow fever virus (YFV) is the prototype of the family Flaviviridae and genus Flavivirus. The aim of this study was to determine the seroprevalence of YFV in selected health facilities in Western Kenya during the period 2010-2012. A total of 469 serum samples from febrile patients were tested for YFV antibodies using in-house IgM-capture ELISA, in-house indirect IgG ELISA, and 50% focus reduction neutralization test (FRNT50). The present study did not identify any IgM ELISA-positive cases, indicating absence of recent YFV infection in the area. Twenty-eight samples (6%) tested positive for YFV IgG, because of either YFV vaccination or past exposure to various flaviviruses including YFV. Five cases were confirmed by FRNT50; of these, 4 were either vaccination or natural infection during the YF outbreak in 1992-1993 or another period and 1 case was confirmed as a West Nile virus infection. Domestication and routine performance of arboviral differential diagnosis will help to address the phenomenon of pyrexia of unknown origin, contribute to arboviral research in developing countries, and enhance regular surveillance.

  19. Sandfly species diversity in association with human activities in the Kani tribe settlements of the Western Ghats, Thiruvananthapuram, Kerala, India

    Directory of Open Access Journals (Sweden)

    Srinivasan Ranganathan

    2015-04-01

    Full Text Available Sandfly prevalence in the Kani tribe settlements of Western Ghats in India was investigated. A total of 1,279 sandflies comprising 17 species was obtained. Sandfly abundance showed a negative correlation (r = -0.97, p = 0.003 with increase in altitudinal ranges from 0-1,000 m. When sandfly samples were grouped according to landscape characteristics of the location, the estimated Shannon-Weiner index (H and species richness index (S were high and species evenness index (J was low in settlements located at 0-300 m altitudinal range. On the contrary, the values of H and J were high, while S was low at 301-600 m altitudinal range. With further increase in altitude, species diversity, S and J were low. Though the relative abundance of sandflies decreased with increase in altitude, the influence of altitudinal variation could not be attributed to determine sandfly diversity, since the number of sampling units were not uniform at all the altitudinal gradients due to nonavailability of suitable resting shelters. Sandfly species showed great aggregation at 0-300 m altitude interval, where not only the number of settlements were maximum (n = 19, but also the environmental conditions favoured sandfly abundance due to the concentration of tribal settlements, human dwellings and his activities.

  20. Sandfly species diversity in association with human activities in the Kani tribe settlements of the Western Ghats, Thiruvananthapuram, Kerala, India.

    Science.gov (United States)

    Ranganathan, Srinivasan; Swaminathan, Subramanian

    2015-04-01

    Sandfly prevalence in the Kani tribe settlements of Western Ghats in India was investigated. A total of 1,279 sandflies comprising 17 species was obtained. Sandfly abundance showed a negative correlation (r = -0.97, p = 0.003) with increase in altitudinal ranges from 0-1,000 m. When sandfly samples were grouped according to landscape characteristics of the location, the estimated Shannon-Weiner index (H) and species richness index (S) were high and species evenness index (J) was low in settlements located at 0-300 m altitudinal range. On the contrary, the values of H and J were high, while S was low at 301-600 m altitudinal range. With further increase in altitude, species diversity, S and J were low. Though the relative abundance of sandflies decreased with increase in altitude, the influence of altitudinal variation could not be attributed to determine sandfly diversity, since the number of sampling units were not uniform at all the altitudinal gradients due to nonavailability of suitable resting shelters. Sandfly species showed great aggregation at 0-300 m altitude interval, where not only the number of settlements were maximum (n = 19), but also the environmental conditions favoured sandfly abundance due to the concentration of tribal settlements, human dwellings and his activities.

  1. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Yellow fever virus, dengue 2 and other arboviruses isolated from mosquitos, in Burkina Faso, from 1983 to 1986. Entomological and epidemiological considerations].

    Science.gov (United States)

    Robert, V; Lhuillier, M; Meunier, D; Sarthou, J L; Monteny, N; Digoutte, J P; Cornet, M; Germain, M; Cordellier, R

    1993-01-01

    An arbovirus surveillance was carried out in Burkina Faso from 1983 to 1986. It was based on crepuscular catches of mosquitoes on human bait in some wooded areas and in one town. The total collection was 228 catches with an average of 8 men per catch. The total number of mosquitoes caught was 44,956 among which 32,010 potential vector of yellow fever; all these mosquitoes were analysed for arbovirology. In the south-western part of the country (region of Bobo-Dioulasso), surveillance was conducted each year from August to November, whilst the circulation of Aedes-borne arboviruses is well known to be favoured. In 1983, 1984 and 1986, seven strains of yellow fever virus were isolated in circumstances remarkably similar. They came from selvatic areas and never from the town. They concerned only Aedes (Stegomyia) luteocephalus which is the very predominant potential vector of yellow fever in the region. They were obtained in low figure, between 1 and 4 per year. They occurred from 27th of October to 21th of November. These observations confirm that the southern portion of the Sudan savanna zone of West Africa is the setting of a customary circulation of yellow fever virus and therefore belongs to the endemic emergence zone. In 1986, two strains of dengue 2 virus were isolated. One concerned Ae. luteocephalus from the selvatic area, the other Ae. (St.) aegypti from the heart of town. These data suggest two distinct cycles for dengue 2 virus, one urban and one selvatic, which could coexist simultaneously in the same region. In the south-eastern part of the country (region of Fada-N'Gourma) a yellow fever epidemic occurred between September and December 1983; its study has enable to precise their entomological aspects. The entomological inoculation rate of yellow fever virus has been evaluated to 22 infected bites per man during the month of october, for a man living close to forest gallery. 25 strains of yellow fever virus strains was isolated from Ae. (Diceromyia

  3. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Anna Papa

    2017-05-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission.

  4. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  5. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers

    Science.gov (United States)

    Transboundary animal disease viruses such as foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV) are highly contagious and cause severe morbidity and mortality in livestock. Proper disinfection during an outbreak can help prevent virus spread and will shorten the time for contam...

  6. Clinical and laboratory features of dengue virus-infected travellers previously vaccinated against yellow fever

    NARCIS (Netherlands)

    Teichmann, Dieter; Göbels, Klaus; Niedrig, Matthias; Grobusch, Martin P.

    2003-01-01

    Dengue is a mosquito-borne viral infection endemic throughout the tropics and subtropics. The global prevalence of dengue has grown dramatically in recent years and it has become a major international public health concern. The close taxonomic relationships between yellow fever and dengue viruses

  7. Yellow Fever Vaccine: What You Need to Know

    Science.gov (United States)

    ... How can I prevent yellow fever? Yellow fever vaccine Yellow fever vaccine can prevent yellow fever. Yellow fever vaccine ... such as those containing DEET. 3 Yellow fever vaccine Yellow fever vaccine is a live, weakened virus. It is ...

  8. Circulation of antibodies against yellow fever virus in a simian population in the area of Porto Primavera Hydroelectric Plant, São Paulo, Brazil.

    Science.gov (United States)

    Lima, Maura Antonia; Romano-Lieber, Nicolina Silvana; Duarte, Ana Maria Ribeiro de Castro

    2010-01-01

    Yellow fever (YF) is an acute viral infectious disease transmitted by mosquitoes which occurs in two distinct epidemiological cycles: sylvatic and urban. In the sylvatic cycle, the virus is maintained by monkey's infection and transovarian transmission in vectors. Surveillance of non-human primates is required for the detection of viral circulation during epizootics, and for the identification of unaffected or transition areas. An ELISA (enzyme-linked immunosorbent assay) was standardized for estimation of the prevalence of IgG antibodies against yellow fever virus in monkey sera (Alouatta caraya) from the reservoir area of Porto Primavera Hydroelectric Plant, in the state of São Paulo, Brazil. A total of 570 monkey sera samples were tested and none was reactive to antibodies against yellow fever virus. The results corroborate the epidemiology of yellow fever in the area. Even though it is considered a transition area, there were no reports to date of epizootics or yellow fever outbreaks in humans. Also, entomological investigations did not detect the presence of vectors of this arbovirus infection. ELISA proved to be fast, sensitive, an adequate assay, and an instrument for active search in the epidemiological surveillance of yellow fever allowing the implementation of prevention actions, even before the occurrence of epizootics.

  9. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone

    OpenAIRE

    Nougairede, Antoine; Klitting, Raphaelle; Aubry, Fabien; Gilles, Magali; Touret, Franck; De Lamballerie, Xavier

    2018-01-01

    Zika virus (ZIKV) recently dispersed throughout the tropics and sub-tropics causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. Here we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared diff...

  10. Distribution of Sandflies (Diptera:Psychodidae on Tree-trunks in a Non-flooded Area of the Ducke Forest Reserve, Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    MRS Cabanillas

    1999-05-01

    Full Text Available Sandflies were collected in the base of tree-trunks in the seasons of high and least rainfall in the Ducke Forest Reserve, near Manaus in the State of Amazonas. Lutzomyia umbratilis was the most abundant sandfly species. Caryocar villosum, Chrysophyllum amazonicum, Dinizia excelsa, Eschweilera atropetiolata and Parkia multijuga were the tree species on which most sandflies were collected and relative abundance were related to trunk characteristics. Seasonal patterns of sandfly distribution in the forest were observed.

  11. Antibodies against Severe Fever with Thrombocytopenia Syndrome Virus in Healthy Persons, China, 2013

    Science.gov (United States)

    Zhang, Lei; Sun, Jimin; Yan, Jie; Lv, Huakun; Chai, Chengliang; Sun, Yi; Shao, Bin; Jiang, Jianmin; Chen, Zhiping

    2014-01-01

    In June 2013, a subclinical infection with severe fever with thrombocytopenia syndrome virus (SFTSV) was detected in Zhejiang Province, China, prompting seroprevalence studies in 6 districts within the province. Of 986 healthy persons tested, 71 had IgG antibodies against SFTSV. This finding suggests that most natural infections with SFTSV are mild or subclinical. PMID:25061813

  12. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection.

    Science.gov (United States)

    Molinas, Andrea; Mirazimi, Ali; Holm, Angelika; Loitto, Vesa M; Magnusson, Karl-Eric; Vikström, Elena

    2016-04-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne pathogen that causes infectious disease with severe hemorrhagic manifestations in vascular system in humans. The proper function of the cells in the vascular system is critically regulated by aquaporins (AQP), water channels that facilitate fluxes of water and small solutes across membranes. With Hazara virus as a model for CCHFV, we investigated the effects of viruses on AQP6 and the impact of AQP6 on virus infectivity in host cells, using transiently expressed GFP-AQP6 cells, immunofluorescent assay for virus detection, epifluorescent imaging of living cells and confocal microscopy. In GFP-AQP6 expressing cells, Hazara virus reduced both the cellular and perinuclear AQP6 distribution and changed the cell area. Infection of human cell with CCHFV strain IbAR 10200 downregulated AQP6 expression at mRNA level. Interestingly, the overexpression of AQP6 in host cells decreased the infectivity of Hazara virus, speaking for a protective role of AQP6. We suggest the possibility for AQP6 being a novel player in the virus-host interactions, which may lead to less severe outcomes of an infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Biosafety standards for working with Crimean-Congo hemorrhagic fever virus.

    Science.gov (United States)

    Weidmann, Manfred; Avsic-Zupanc, Tatjana; Bino, Silvia; Bouloy, Michelle; Burt, Felicity; Chinikar, Sadegh; Christova, Iva; Dedushaj, Isuf; El-Sanousi, Ahmed; Elaldi, Nazif; Hewson, Roger; Hufert, Frank T; Humolli, Isme; Jansen van Vuren, Petrus; Koçak Tufan, Zeliha; Korukluoglu, Gülay; Lyssen, Pieter; Mirazimi, Ali; Neyts, Johan; Niedrig, Matthias; Ozkul, Aykut; Papa, Anna; Paweska, Janusz; Sall, Amadou A; Schmaljohn, Connie S; Swanepoel, Robert; Uyar, Yavuz; Weber, Friedemann; Zeller, Herve

    2016-11-01

    In countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus, CCHF virus (CCHFV), is classified as a hazard group 4 agent and handled in containment level (CL)-4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL)-2 or -3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100 000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the tests required to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the countries affected. Downgrading of CCHFV research work from CL-4, BSL-4 to CL-3, BSL-3 should also be considered.

  14. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    Science.gov (United States)

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  15. Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation.

    Science.gov (United States)

    Eymann-Häni, Rita; Leifer, Immanuel; McCullough, Kenneth C; Summerfield, Artur; Ruggli, Nicolas

    2011-09-01

    Amplification of natural virus isolates in permanent cell lines can result in adaptation, in particular enhanced binding to heparan sulfate (HS)-containing glycosaminoglycans present on most vertebrate cells. This has been reported for several viruses, including the pestivirus classical swine fever virus (CSFV), the causative agent of a highly contagious hemorrhagic disease in pigs. Propagation of CSFV in cell culture is essential in virus diagnostics and research. Adaptation of CSFV to HS-binding has been related to amino acid changes in the viral E(rns) glycoprotein, resulting in viruses with altered replication characteristics in vitro and in vivo. Consequently, a compound blocking the HS-containing structures on cell surfaces was employed to monitor conversion from HS-independency to HS-dependency. It was shown that the porcine PEDSV.15 cell line permitted propagation of CSFV within a limited number of passages without adaptation to HS-binding. The selection of HS-dependent CSFV mutants was also prevented by propagation of the virus in the presence of DSTP 27. The importance of these findings can be seen from the altered ratio of cell-associated to secreted virus upon acquisition of enhanced HS-binding affinity, a phenotype proposed previously to be related to virulence in the natural host. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes.

    Science.gov (United States)

    Lumley, Sarah; Horton, Daniel L; Hernandez-Triana, Luis L M; Johnson, Nicholas; Fooks, Anthony R; Hewson, Roger

    2017-05-01

    Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus-host and vector-virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.

  17. CAPA-gene products in the haematophagous sandfly Phlebotomus papatasi (Scopoli) - vector for leishmaniasis disease

    DEFF Research Database (Denmark)

    Predel, Reinhard; Neupert, Susanne; Russell, William K.

    2013-01-01

    Sandflies (Phlebotominae, Nematocera, Diptera) are responsible for transmission of leishmaniasis and other protozoan-borne diseases in humans, and these insects depend on the regulation of water balance to cope with the sudden and enormous intake of blood over a very short time period. The sandfly...... inventory of neuropeptides, including those that regulate diuretic processes, is completely unknown. Direct MALDI-TOF/TOF mass spectrometric analysis of dissected ganglia of Phlebotomus papatasi, combined with a data-mining of sandfly genome 'contigs', was used to identify native CAPA-peptides, a peptide...... class associated with the regulation of diuresis in other hematophagous insects. The CAPA-peptides identified in this study include two CAPA-PVKs, differentially processed CAPA-PK, and an additional CAPA precursor peptide. The mass spectrometric analysis of different parts of the neuroendocrine system...

  18. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    Directory of Open Access Journals (Sweden)

    Marisa Arias

    2017-10-01

    Full Text Available African swine fever (ASF is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated.

  19. Ebola haemorrhagic fever

    Science.gov (United States)

    Feldmann, Heinz; Geisbert, Thomas W

    2012-01-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. PMID:21084112

  20. Dengue fever: a Wikipedia clinical review.

    Science.gov (United States)

    Heilman, James M; De Wolff, Jacob; Beards, Graham M; Basden, Brian J

    2014-01-01

    Dengue fever, also known as breakbone fever, is a mosquito-borne infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles. In a small proportion of cases, the disease develops into life-threatening dengue hemorrhagic fever, which results in bleeding, thrombocytopenia, and leakage of blood plasma, or into dengue shock syndrome, in which dangerously low blood pressure occurs. Treatment of acute dengue fever is supportive, with either oral or intravenous rehydration for mild or moderate disease and use of intravenous fluids and blood transfusion for more severe cases. Along with attempts to eliminate the mosquito vector, work is ongoing to develop a vaccine and medications targeted directly at the virus.

  1. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Need yellow fever vaccine? Plan ahead

    Science.gov (United States)

    ... Submit What's this? Submit Button Past Emails Need yellow fever vaccine? Plan ahead. Language: English (US) Español (Spanish) ... none were from the United States). What is yellow fever? Yellow fever is caused by a virus that ...

  3. Effect of environmental temperature on the vector competence of mosquitoes for Rift Valley fever virus

    Science.gov (United States)

    Environmental temperature has been shown to affect the ability of mosquitoes to transmit numerous arboviruses and for Rift Valley fever virus (RVFV) in particular. We evaluated the effect of incubation temperatures ranging from 14-26ºC on infection, dissemination, and transmission rates for Culex ta...

  4. FEVER AS INDICATOR TO SECONDARY INFECTION IN DENGUE VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2018-04-01

    Full Text Available Dengue Virus Infections are distributed in tropical and sub-tropical regions and transmitted by the mosquitoes such as Aedes aegypti and Aedes albopictus. Dengue virus can cause dengue fever, dengue hemorrhagic fever and dengue shock syndrome or dengue and severe dengue classified by World Health Organization. Beside it concurrent infection virus salmonella had been found some cases who showed fever more than 7 days. Concurrent infection with two agents can result in an illness having overlapping symptoms creating a diagnostic dilemma for treating physician, such as dengue fever with typhoid fever. The aim of this research is detection of dengue virus and secondary infection with Salmonella typhi in patients suspected dengue virus infection. Detection of dengue virus and Salmonella typhi using immunochromatography test such as NS1, IgG/IgM for dengue virus infection, and IgM/IgG Salmonella and blood culture. The fifty children with dengue virus infection came to Soerya hospital and 17 cases suspected dengue virus infection, five cases showed a positive NS1 on the second day of fever and one case concurrent with clinical manifestation of convulsi on the third days of fever there were five cases only showed positive. It was showed in this study that on the fourth to six day of fever in dengue virus infection accompanied by antibody IgM & IgG dengue. There were 12 cases showed the clinical manifestation of concurrent dengue viral infection and Salmonella, all of them showed a mild clinical manifestation and did not show plasma leakage and shock. In this study we found the length of stay of concurrent Dengue Virus Infection and Salmonella infection is more than 10 days. These patients were also more likely to have co-existing haemodynamic disturbances and bacterial septicaemia which would have required treatment with inotropes and antibiotics. This idea is very important to make update dengue viral management to decrease mortality in outbreak try to

  5. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    Science.gov (United States)

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  6. Genistein, a general kinase inhibitor, as a potential antiviral for arenaviral hemorrhagic fever as described in the Pirital virus-Syrian golden hamster model.

    Science.gov (United States)

    Vela, Eric M; Knostman, Katherine A; Mott, Jason M; Warren, Richard L; Garver, Jennifer N; Vela, Lela Johnson; Stammen, Rachelle L

    2010-09-01

    Arenaviruses are rodent-borne negative strand RNA viruses and infection of these viruses in humans may result in disease and hemorrhagic fever. To date, supportive care, ribavirin, and in some cases immune plasma remain the foremost treatment options for arenaviral hemorrhagic fever. Research with the hemorrhagic fever causing-arenaviruses usually requires a Biosafety level (BSL)-4 environment; however, surrogate animal model systems have been developed to preliminarily study and screen various vaccines and antivirals. The Syrian golden hamster-Pirital virus (PIRV) surrogate model of hemorrhagic fever provides an opportunity to test new antivirals in an ABSL-3 setting. Thus, we challenged hamsters, implanted with telemetry, with PIRV and observed viremia and tissue viral titers, and changes in core body temperature, hematology, clinical chemistry, and coagulation parameters. Physical signs of disease of the PIRV-infected hamsters included weight loss, lethargy, petechial rashes, epistaxis, ocular orbital and rectal hemorrhage, and visible signs of neurologic disorders. However, treating animals with genistein, a plant derived isoflavone and general kinase inhibitor, resulted in increased survival rates and led to an improved clinical profile. In all, the results from this study demonstrate the potential of a general kinase inhibitor genistein as an antiviral against arenaviral hemorrhagic fever. 2010 Elsevier B.V. All rights reserved.

  7. Fever versus Fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus

    Science.gov (United States)

    Hanley, Kathryn A.; Monath, Thomas P.; Weaver, Scott C.; Rossi, Shannan L.; Richman, Rebecca L.; Vasilakis, Nikos

    2013-01-01

    Two different species of flaviviruses, dengue virus (DENV) and yellow fever virus (YFV), that originated in sylvatic cycles maintained in non-human primates and forest-dwelling mosquitoes have emerged repeatedly into sustained human-to-human transmission by Aedes aegypti mosquitoes. Sylvatic cycles of both viruses remain active, and where the two viruses overlap in West Africa they utilize similar suites of monkeys and Aedes mosquitoes. These extensive similarities render the differences in the biogeography and epidemiology of the two viruses all the more striking. First, the sylvatic cycle of YFV originated in Africa and was introduced into the New World, probably as a result of the slave trade, but is absent in Asia; in contrast, sylvatic DENV likely originated in Asia and has spread to Africa but not to the New World. Second, while sylvatic YFV can emerge into extensive urban outbreaks in humans, these invariably die out, whereas four different types of DENV have established human transmission cycles that are ecologically and evolutionarily distinct from their sylvatic ancestors. Finally, transmission of YFV among humans has been documented only in Africa and the Americas, whereas DENV is transmitted among humans across most of the range of competent Aedes vectors, which in the last decade has included every continent save Antarctica. This review summarizes current understanding of sylvatic transmission cycles of YFV and DENV, considers possible explanations for their disjunct distributions, and speculates on the potential consequences of future establishment of a sylvatic cycle of DENV in the Americas. PMID:23523817

  8. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at

  9. Hourly Activity and Natural Infection of Sandflies (Diptera: Psychodidae) Captured from the Aphotic Zone of a Cave, Minas Gerais State, Brazil

    Science.gov (United States)

    Carvalho, Gustavo Mayr de Lima; Brazil, Reginaldo Peçanha; Saraiva, Lara; Quaresma, Patrícia Flávia; Botelho, Helbert Antônio; Ramos, Mariana Campos das Neves Farah; de Almeida Zenóbio, Ana Paula Lusardo; e Meira, Paula Cavalcante Lamy Serra; de Castilho Sanguinette, Cristiani; Filho, José Dilermando Andrade

    2012-01-01

    Sandflies are holometabolous insects that are of great epidemiological importance in the neotropical region as vectors of leishmaniases. Caves are ecotopes that significantly differ from external environments and, among the insects that live or visit their internal area and adjacent environment, sandflies are commonly found. Based on this context, the objective of this work was to examine the period of activity of sandflies in the cave environment in the aphotic zone. Thus, four sandfly captures were conducted, one in each season of the year, in a cave where studies on the bioecological aspects of sandfly fauna have been conducted since 2008. In this same study, we have also noticed the presence of flagellates in some captured females. Catches were carried out for 24 hours using a Shannon trap, light bait, and cave walls were actively searched. We collected a total of 638 sandflies, representing 11 species. The most abundant species and with more intense period of activity were, in descending order: Lu. cavernicola (62%), Ev. spelunca (16%) and Ev. sallesi (14%). A total of 69 females were dissected to check for natural infection, and in five specimens we found living flagellated forms: two Ev. spelunca, two Ev. sallesi and one Sc. sordellii. This study shows that the activity of some species caught in the aphotic zone of the cave, especially Lu. cavernicola, differs from what has already been reported in previous sandfly captures, which are almost always conducted at night and during twilight. The existence of sandflies that were naturally infected with flagellates and the lack of awareness regarding the behaviour of sandflies in cave environments are strong indicators of the need for further study on this group of insects in this ecotope, as a safety measure to protect the visitors of such environment. PMID:23284957

  10. Toscana virus meningo-encephalitis: an important differential diagnosis for elderly travellers returning from Mediterranean countries.

    Science.gov (United States)

    Veater, James; Mehedi, Farhan; Cheung, Chee Kay; Nabarro, Laura; Osborne, Jane; Wong, Nicholas; Wiselka, Martin; Tang, Julian W

    2017-08-29

    Elderly patients have a long list of differentials for causes of acute confusion and altered consciousness levels, including infectious agents. In addition, elderly, retired patients often have more time to travel for tourism, particularly to exotic, warmer locations. Mediterranean countries such as Spain and Italy are popular holiday destinations for British and other tourists, especially during the winter months. However, these warm climates allow insect vectors to proliferate, increasing the risk of exposure to endemic vectorborne viral infections whilst on vacation. Such infections may not be routinely considered by geriatric medical teams. An 87-year old gentleman presented with a three-day history of worsening confusion, lethargy, ataxia, and fevers following a trip to Spain, where he may have sustained a sandfly bite. By the time of admission, he had a reduced GCS, was hallucinating, and was incontinent of urine and faeces, though blood pressure and heart rate were normal. He also appeared hyperaesthetic, and found even capillary blood sugar testing extremely painful. He had no history of cognitive defect or other neurological conditions. He had been previously independently active, with frequent trips to Spain where he maintained a holiday home. He probably sustained a sandfly bite during this most recent trip, whilst cleaning out a shed. Acute and convalescent sera demonstrated IgG antibodies to Toscana virus at extremely high titres of ≥1:10,000 by immunofluorescence assay, though no Toscana virus RNA was detectable in these sera by the time of presentation. Toscana virus should be included in the differential diagnosis of any patients presenting with meningo-encephalitis who have recently returned from a Mediterranean country. Testing for Toscana virus infection is performed by serological testing on acute/convalescent paired sera, and/or a polymerase chain reaction (PCR) assay on blood or cerebrospinal fluid (CSF) if presenting within 5 days of

  11. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  12. Treating viral hemorrhagic fever.

    NARCIS (Netherlands)

    Mairuhu, A.T.; Brandjes, D.P.; Gorp, E. van

    2003-01-01

    Viral hemorrhagic fevers are illnesses associated with a number of geographically restricted, mostly tropical areas. Over recent decades a number of new hemorrhagic fever viruses have emerged. Advances in our understanding of the pathophysiology of these diseases have improved our initial supportive

  13. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    Shustov, Alexandr V.; Frolov, Ilya

    2010-01-01

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  14. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  15. Evolution and molecular epidemiology of classical swine fever virus during a multi-annual outbreak amongst European wild boar.

    Science.gov (United States)

    Goller, Katja V; Gabriel, Claudia; Dimna, Mireille Le; Le Potier, Marie-Frédérique; Rossi, Sophie; Staubach, Christoph; Merboth, Matthias; Beer, Martin; Blome, Sandra

    2016-03-01

    Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.

  16. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    Directory of Open Access Journals (Sweden)

    Heinz Feldmann

    2013-05-01

    Full Text Available Tick-borne hemorrhagic fever viruses (TBHFV are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health.

  17. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region.

    Directory of Open Access Journals (Sweden)

    Fadila Amraoui

    Full Text Available West Nile fever (WNF and Rift Valley fever (RVF are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8 and 10(8.5 plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.

  18. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  19. High Prevalence and Diversity of Hepatitis Viruses in Suspected Cases of Yellow Fever in the Democratic Republic of Congo.

    Science.gov (United States)

    Makiala-Mandanda, Sheila; Le Gal, Frédéric; Ngwaka-Matsung, Nadine; Ahuka-Mundeke, Steve; Onanga, Richard; Bivigou-Mboumba, Berthold; Pukuta-Simbu, Elisabeth; Gerber, Athenaïs; Abbate, Jessica L; Mwamba, Dieudonné; Berthet, Nicolas; Leroy, Eric Maurice; Muyembe-Tamfum, Jean-Jacques; Becquart, Pierre

    2017-05-01

    The majority of patients with acute febrile jaundice (>95%) identified through a yellow fever surveillance program in the Democratic Republic of Congo (DRC) test negative for antibodies against yellow fever virus. However, no etiological investigation has ever been carried out on these patients. Here, we tested for hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV) viruses, all of which can cause acute febrile jaundice, in patients included in the yellow fever surveillance program in the DRC. On a total of 498 serum samples collected from suspected cases of yellow fever from January 2003 to January 2012, enzyme-linked immunosorbent assay (ELISA) techniques were used to screen for antibodies against HAV (IgM) and HEV (IgM) and for antigens and antibodies against HBV (HBsAg and anti-hepatitis B core protein [HBc] IgM, respectively), HCV, and HDV. Viral loads and genotypes were determined for HBV and HVD. Viral hepatitis serological markers were diagnosed in 218 (43.7%) patients. The seroprevalences were 16.7% for HAV, 24.6% for HBV, 2.3% for HCV, and 10.4% for HEV, and 26.1% of HBV-positive patients were also infected with HDV. Median viral loads were 4.19 × 10 5 IU/ml for HBV (range, 769 to 9.82 × 10 9 IU/ml) and 1.4 × 10 6 IU/ml for HDV (range, 3.1 × 10 2 to 2.9 × 10 8 IU/ml). Genotypes A, E, and D of HBV and genotype 1 of HDV were detected. These high hepatitis prevalence rates highlight the necessity to include screening for hepatitis viruses in the yellow fever surveillance program in the DRC. Copyright © 2017 Makiala-Mandanda et al.

  20. Functional requirements of the yellow fever virus capsid protein.

    Science.gov (United States)

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  1. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within......Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2...... each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus...

  2. Lutzomyia Lewisi, a new Phlebotomine sandfly (Diptera: Psychodidae from Cojedes State, Venezuela

    Directory of Open Access Journals (Sweden)

    M. Dora Feliciangeli

    1984-09-01

    Full Text Available The female of a new species, Lutzomyia lewisi is described. Reasons are stated on which the classification proposed by Lewis et al. (1977 is adopted for sandflies recorded in Venezuela. The current controversy over the generic names of phlebotomine sandflies are also discussed.A fêmea da uma nova espécie, Lutzomyia lewisi é descrita. A argumentação pela qual se adota a classificação de Lewis et al. (1977 para os flebótomos da venezuela é apresentada, assim como se discute a controvérsia atual sobre a nomenclatura genérica dos flebótomos.

  3. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  4. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stabl...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  5. Marburg haemorrhagic fever: recent advances | AdegborO | African ...

    African Journals Online (AJOL)

    With the exception of a vaccine for yellow fever and ribavirin, which is used for treatment of some arenaviral infections, no specific chemotherapy for viral hemorrhagic fever exists. Only supportive treatment is possible The filoviruses, Marburg virus (MARV) and Ebola virus (EBOV), have been associated with hemorrhagic ...

  6. Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation.

    Science.gov (United States)

    Vialat, P; Muller, R; Vu, T H; Prehaud, C; Bouloy, M

    1997-11-01

    The MP12 attenuated strain of Rift Valley fever virus was obtained by 12 serial passages of a virulent isolate ZH548 in the presence of 5-fluorouracil (Caplen et al., 1985. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol., 66, 2271-2277). The comparison of the M segment of the two strains has already been reported by Takehara et al. (Takehara et al., 1989. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus. Virology 169, 452-457). We have completed the comparison and found that altogether a total of nine, 12 and four nucleotides were changed in the L, M and S segments of the two strains, respectively. Three mutations induced amino acid changes in the L protein but none of them was located in the recognized motifs conserved among RNA dependent polymerases. In the S segment, a single change modified an amino acid in the NSs protein and in the M segment, seven of the mutations resulted in amino acid changes in each of the four encoded G1, G2, 14 kDa and 78 kDa proteins. Characterization of the MP12 virus indicated that determinants for attenuation were present in each segment and that they were introduced progressively during the 12 passages in the presence of the mutagen (Saluzzo and Smith, 1990. Use of reassortant viruses to map attenuating and temperature-sensitive mutations of the Rift Valley fever virus MP-12 vaccine. Vaccine 8, 369-375). Passages 4 and 7-9 were found to be essential for introduction of temperature-sensitive lesions and attenuation. In an attempt to correlate some of the mutations with the attenuated or temperature-sensitive phenotypes, we determined by sequencing the passage level at which the different mutations appeared. This work should help to address the question of the role of the viral gene products in Rift Valley fever pathogenesis.

  7. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    Science.gov (United States)

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Potential for Mosquitoes (Diptera: Culicidae) From Florida to Transmit Rift Valley Fever Virus

    Science.gov (United States)

    2013-09-01

    signiÞcant disease and economic disruption. Rift Valley fever virus (RVFV), whichhasbeen responsible fornumerousoutbreaksof severe disease in ruminants and...is predominately a disease of domestic ruminants (cattle, goats, and sheep), where infection in pregnant animals usually results in abortion, and...www.cdc.gov/EID/ content /13/8/e1.htm). Britch, S.C.,K. J.Linthicum,A.Anyamba,C. J.Tucker,E.W. Pak, F. A. Maloney, K. Cobb, E. Stanwix, J. Humphries, A

  9. Simian Hemorrhagic Fever Virus Cell Entry Is Dependent on CD163 and Uses a Clathrin-Mediated Endocytosis-Like Pathway

    OpenAIRE

    Caì, Yíngyún; Postnikova, Elena N.; Bernbaum, John G.; Yú, Shuǐqìng; Mazur, Steven; Deiuliis, Nicole M.; Radoshitzky, Sheli R.; Lackemeyer, Matthew G.; McCluskey, Adam; Robinson, Phillip J.; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L.; Lauck, Michael; Friedrich, Thomas C.

    2014-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A ...

  10. Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses

    Czech Academy of Sciences Publication Activity Database

    Müller, M. A.; Devignot, S.; Lattwein, E.; Corman, V. M.; Maganga, G. D.; Gloza-Rausch, F.; Binger, T.; Vallo, Peter; Emmerich, P.; Cottontail, V. M.; Tschapka, M.; Oppong, S.; Drexler, J. F.; Weber, F.; Leroy, E. M.; Drosten, C.

    2016-01-01

    Roč. 6, č. 26637 (2016), č. článku 26637. ISSN 2045-2322 EU Projects: European Commission(XE) 278976 - ANTIGONE; European Commission(XE) 260427 - CCH Fever Institutional support: RVO:68081766 Keywords : sheep disease virus * family Bunyaviridae * serological relationships * antibody-response * migratory birds * rapid detection * viral load * ticks * nairovirus * genus Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 4.259, year: 2016

  11. Oropouche Fever: A Review

    OpenAIRE

    Hercules Sakkas; Petros Bozidis; Ashley Franks; Chrissanthy Papadopoulou

    2018-01-01

    Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV), an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and s...

  12. Dengue hemorrhagic fever and acute hepatitis: a case report

    Directory of Open Access Journals (Sweden)

    Maria Paula Gomes Mourão

    Full Text Available Dengue fever is the world's most important viral hemorrhagic fever disease, the most geographically wide-spread of the arthropod-born viruses, and it causes a wide clinical spectrum of disease. We report a case of dengue hemorrhagic fever complicated by acute hepatitis. The initial picture of classical dengue fever was followed by painful liver enlargement, vomiting, hematemesis, epistaxis and diarrhea. Severe liver injury was detected by laboratory investigation, according to a syndromic surveillance protocol, expressed in a self-limiting pattern and the patient had a complete recovery. The serological tests for hepatitis and yellow fever viruses were negative. MAC-ELISA for dengue was positive.

  13. Dengue hemorrhagic fever and acute hepatitis: a case report.

    Science.gov (United States)

    Mourão, Maria Paula Gomes; Lacerda, Marcus Vinícius Guimarães de; Bastos, Michele de Souza; Albuquerque, Bernardino Cláudio de; Alecrim, Wilson Duarte

    2004-12-01

    Dengue fever is the world's most important viral hemorrhagic fever disease, the most geographically wide-spread of the arthropod-born viruses, and it causes a wide clinical spectrum of disease. We report a case of dengue hemorrhagic fever complicated by acute hepatitis. The initial picture of classical dengue fever was followed by painful liver enlargement, vomiting, hematemesis, epistaxis and diarrhea. Severe liver injury was detected by laboratory investigation, according to a syndromic surveillance protocol, expressed in a self-limiting pattern and the patient had a complete recovery. The serological tests for hepatitis and yellow fever viruses were negative. MAC-ELISA for dengue was positive.

  14. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-09-29

    The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.

  15. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    Science.gov (United States)

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  16. Phlebotomine sandflies (Diptera, Phlebotomidae) of Lanzarote Island (Canary Islands, Spain): Ecological survey and evaluation of the risk of Leishmania transmission.

    Science.gov (United States)

    Morillas-Márquez, Francisco; Díaz-Sáez, Victoriano; Morillas-Mancilla, María Jesús; Corpas-López, Victoriano; Merino-Espinosa, Gemma; Gijón-Robles, Patricia; Martín-Sánchez, Joaquina

    2017-04-01

    Phlebotomine sandflies are natural vectors of Leishmania spp. and their expansion throughout has been evidenced in the last few years due to the global warming and changes in human behavior, worsening leishmaniasis problem. However, phlebotomine sandflies have been captured in small numbers on the Canary Islands, particularly on the island of Lanzarote, where only one limited survey was carried out almost thirty years ago. The proximity of this island to Morocco, in addition to the high number of tourists, sometimes accompanied by their dogs, from leishmaniasis endemic regions, highlights the importance of studying the sandfly fauna on this island in order to determine the transmission risk of leishmaniasis Thirty-eight sampling sites spread across the island were studied, and ecological features were gathered to identify the ecological traits associated to the presence of sandflies. Only 85 sandfly specimens were captured (1.18/m 2 ) with the following species distribution: Sergentomyia minuta (0.15 specimens/m 2 ), which was reported for the first time on this island, and S. fallax (1.03/m 2 ). Sandfly captured were achieved in only 7 out of 38 stations. No specimen of the Phlebotomus genus was captured and given that none of the species captured has been demonstrated vectors of human pathogenic Leishmania and considering that they were captured in low frequency and density, it can be concluded that the current leishmaniasis transmission risk is null. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dengue fever: a Wikipedia clinical review

    OpenAIRE

    Heilman, James M; Wolff, Jacob De; Beards, Graham M; Basden, Brian J

    2014-01-01

    Dengue fever, also known as breakbone fever, is a mosquito-borne infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles. In a small proportion of cases, the disease develops into life-threatening dengue hemorrhagic fever, which results in bleeding, thrombocytopenia, and leakage of blood plasma, or into dengue shock syndrome, in which dangerously low blood pressure occurs. Treat...

  18. Natural Leishmania sp. reservoirs and phlebotomine sandfly food source identification in Ibitipoca State Park, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia Flávia Quaresma

    2012-06-01

    Full Text Available Leishmania spp are distributed throughout the world and different species are associated with varying degrees of disease severity. However, leishmaniasis is thought to be confined to areas of the world where its insect vectors, sandflies, are present. Phlebotomine sandflies obtain blood meals from a variety of wild and domestic animals and sometimes from humans. These vectors transmit Leishmania spp, the aetiological agent of leishmaniasis. Identification of sandfly blood meals has generally been performed using serological methods, although a few studies have used molecular procedures in artificially fed insects. In this study, cytochrome b gene (cytB polymerase chain reaction (PCR was performed in DNA samples isolated from 38 engorged Psychodopygus lloydi and the expected 359 bp fragment was identified from all of the samples. The amplified product was digested using restriction enzymes and analysed for restriction fragment length polymorphisms (RFLPs. We identified food sources for 23 females; 34.8% yielded a primate-specific banding profile and 26.1% and 39.1% showed banding patterns specific to birds or mixed restriction profiles (rodent/marsupial, human/bird, rodent/marsupial/human, respectively. The food sources of 15 flies could not be identified. Two female P. lloydi were determined to be infected by Leishmania using internal transcribed spacer 1 and heat shock protein 70 kDa PCR-RFLP. The two female sandflies, both of which fed on rodents/marsupials, were further characterised as infected with Leishmania (Viannia braziliensis. These results constitute an important step towards applying methodologies based on cytB amplification as a tool for identifying the food sources of female sandflies.

  19. A recombinant Toscana virus nucleoprotein in a diagnostic immunoblot test system.

    Science.gov (United States)

    Schwarz, T F; Gilch, S; Schätzl, H M

    1998-01-01

    Sandfly fever, a vector-borne disease endemic in the Mediterranean region, is caused by Toscana virus (TOS). The disease is increasingly important as a travel-related infection. Serological diagnosis is currently dependent on viral antigens derived from TOS-infected cell cultures. In this study, we report the cloning and expression of the TOS nucleoprotein (N) in Escherichia coli and evaluation of the recombinant (r) TOS N protein as an antigen for immunoblot assays. The TOS N gene was amplified by reverse-transcriptase polymerase chain reaction and cloned into the bacterial expression vector pTrcHis-A. Sera with known TOS antibody status were used to evaluate the immunoblot assay. The expressed rTOS N protein was purified and used as antigen for immunoblots. By recombinant immunoblot, the TOS antibody status (IgM and/or IgG) of the test panel was correctly identified. No cross-reactivity was detected. The rTOS N protein is useful as an antigen for immunoblot assays, and will enable more laboratories to perform TOS antibody diagnosis.

  20. Molecular phylogeny of edge hill virus supports its position in the yellow Fever virus group and identifies a new genetic variant.

    Science.gov (United States)

    Macdonald, Joanne; Poidinger, Michael; Mackenzie, John S; Russell, Richard C; Doggett, Stephen; Broom, Annette K; Phillips, Debra; Potamski, Joseph; Gard, Geoff; Whelan, Peter; Weir, Richard; Young, Paul R; Gendle, Debra; Maher, Sheryl; Barnard, Ross T; Hall, Roy A

    2010-06-15

    Edge Hill virus (EHV) is a mosquito-borne flavivirus isolated throughout Australia during mosquito surveillance programs. While not posing an immediate threat to the human population, EHV is a taxonomically interesting flavivirus since it remains the only member of the yellow fever virus (YFV) sub-group to be detected within Australia. Here we present both an antigenic and genetic investigation of collected isolates, and confirm taxonomic classification of the virus within the YFV-group. Isolates were not clustered based on geographical origin or time of isolation, suggesting that minimal genetic evolution of EHV has occurred over geographic distance or time within the EHV cluster. However, two isolates showed significant differences in antigenic reactivity patterns, and had a much larger divergence from the EHV prototype (19% nucleotide and 6% amino acid divergence), indicating a distinct subtype or variant within the EHV subgroup.

  1. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    Science.gov (United States)

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  2. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  3. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    OpenAIRE

    Piper, Mary E.; Gerrard, Sonja R.

    2010-01-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly ...

  4. Yellow fever: an update.

    Science.gov (United States)

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  5. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    Science.gov (United States)

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  6. STUDIES ON SOUTH AMERICAN YELLOW FEVER

    Science.gov (United States)

    Davis, Nelson C.; Shannon, Raymond C.

    1929-01-01

    Yellow fever virus from M. rhesus has been inoculated into a South American monkey (Cebus macrocephalus) by blood injection and by bites of infected mosquitoes. The Cebus does not develop the clinical or pathological signs of yellow fever. Nevertheless, the virus persists in the Cebus for a time as shown by the typical symptoms and lesions which develop when the susceptible M. rhesus is inoculated from a Cebus by direct transfer of blood or by mosquito (A. aegypti) transmission. PMID:19869607

  7. Changing clinical scenario in Chandipura virus infection

    Directory of Open Access Journals (Sweden)

    A B Sudeep

    2016-01-01

    Phlebotomine sandflies are implicated as vectors due to their predominance in endemic areas, repeated virus isolations and their ability to transmit the virus by transovarial and venereal routes. Significant contributions have been made in the development of diagnostics and prophylactics, vaccines and antivirals. Two candidate vaccines, viz. a recombinant vaccine and a killed vaccine and siRNAs targeting P and M proteins have been developed and are awaiting clinical trials. Rhabdomyosarcoma and Phlebotomus papatasi cell lines as well as embryonated chicken eggs have been found useful in virus isolation and propagation. Despite these advancements, CHPV has been a major concern in Central India and warrants immediate attention from virologists, neurologists, paediatricians and the government for containing the virus.

  8. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  9. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen.

    Science.gov (United States)

    Madani, Tariq A; Abuelzein, El-Tayeb M E; Al-Bar, Hussein M S; Azhar, Esam I; Kao, Moujahed; Alshoeb, Haj O; Bamoosa, Alabd R

    2013-03-14

    Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. From 15-17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. DENV-3 was confirmed to be the cause of an outbreak of VHF in Al-Mukalla. It is important to use both IgM and NS1-antigen

  10. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen

    Science.gov (United States)

    2013-01-01

    Background Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. Methods From 15–17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Results Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. Conclusions DENV-3 was confirmed to be the cause of an outbreak of VHF in Al

  11. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.

    Science.gov (United States)

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki

    2016-12-15

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.

  12. Hemophagocytic syndrome in classic dengue fever

    Directory of Open Access Journals (Sweden)

    Sayantan Ray

    2011-01-01

    Full Text Available A 24-year-old previously healthy girl presented with persistent fever, headache, and jaundice. Rapid-test anti-dengue virus IgM antibody was positive but anti-dengue IgG was nonreactive, which is suggestive of primary dengue infection. There was clinical deterioration during empiric antibiotic and symptomatic therapy. Bone marrow examination demonstrated the presence of hemophagocytosis. Diagnosis of dengue fever with virus-associated hemophagocytic syndrome was made according to the diagnostic criteria of the HLH 2004 protocol of the Histiocyte Society. The patient recovered with corticosteroid therapy. A review of literature revealed only a handful of case reports that showed the evidence that this syndrome is caused by dengue virus. Our patient is an interesting case of hemophagocytic syndrome associated with classic dengue fever and contributes an additional case to the existing literature on this topic. This case highlights the need for increased awareness even in infections not typically associated with hemophagocytic syndrome.

  13. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013-2015.

    Science.gov (United States)

    Palomar, Ana M; Portillo, Aránzazu; Santibáñez, Sonia; García-Álvarez, Lara; Muñoz-Sanz, Agustín; Márquez, Francisco J; Romero, Lourdes; Eiros, José M; Oteo, José A

    Crimean-Congo hemorrhagic fever (CCHF) is a viral disease, mainly transmitted through tick bite, of great importance in Public Health. In Spain, Crimean-Congo hemorrhagic fever virus (CCHFV) was detected for the first time in 2010 in Hyalomma lusitanicum ticks collected from deer in Cáceres. The aim of this study was to investigate the presence of CCHFV in ticks from Cáceres, and from other Spanish areas, and to evaluate the presence of antibodies against the virus in individuals exposed to tick bites. A total of 2053 ticks (1333 Hyalomma marginatum, 680 H. lusitanicum and 40 Rhipicephalus bursa) were analyzed using molecular biology techniques (PCR) for CCHFV detection. The determination of specific IgG antibodies against CCHFV in 228 serum samples from humans with regular contact with ticks (at risk of acquiring the infection) was performed by indirect immunofluorescence assay. The CCHFV was not amplified in ticks, nor were antibodies against the virus found in the serum samples analyzed. The absence of the CCHFV in the ticks studied and the lack of antibodies against the virus in individuals exposed to tick bites would seem to suggest a low risk of acquisition of human infection by CCHFV in Spain. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Modeled Forecasts of Dengue Fever in San Juan, PR Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, Cory; Quattrochi, Dale; Zavodsky, Bradley; Case, Jonathan

    2015-01-01

    Dengue virus is transmitted between humans and mosquitoes of the genus Aedes and causes approximately 96 million cases of disease (dengue fever) each year (Bhatet al. 2013). Symptoms of dengue fever include fever, headache, nausea, vomiting, and eye, muscle and joint pain (CDC). More sever manifestations such as abdominal pain, bleeding from nose and gums, vomiting of blood, and clammy skin occur in rare cases of dengue hemorrhagic fever (CDC). Dengue fever occurs throughout tropical and sub-tropical regions worldwide, however, the geographical range and size of epidemics is increasing. Weather and climate are drivers of dengue virus transmission dynamics (Morin et al. 2013) by affecting mosquito proliferation and the virus extrinsic incubation period (i.e. required time for the virus to replicate and disseminate within the mosquito before it can retransmit the virus).

  15. Molecular Phylogeny of Edge Hill Virus Supports its Position in the Yellow Fever Virus Group and Identifies a New Genetic Variant

    Directory of Open Access Journals (Sweden)

    Joanne Macdonald

    2010-06-01

    Full Text Available Edge Hill virus (EHV is a mosquito-borne flavivirus isolated throughout Australia during mosquito surveillance programs. While not posing an immediate threat to the human population, EHV is a taxonomically interesting flavivirus since it remains the only member of the yellow fever virus (YFV sub-group to be detected within Australia. Here we present both an antigenic and genetic investigation of collected isolates, and confirm taxonomic classification of the virus within the YFV-group. Isolates were not clustered based on geographical origin or time of isolation, suggesting that minimal genetic evolution of EHV has occurred over geographic distance or time within the EHV cluster. However, two isolates showed significant differences in antigenic reactivity patterns, and had a much larger divergence from the EHV prototype (19% nucleotide and 6% amino acid divergence, indicating a distinct subtype or variant within the EHV subgroup.

  16. Molecular epidemiology of Crimean- Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran

    DEFF Research Database (Denmark)

    Tahmasebi, F; Ghiasi, Seyed Mojtaba; Mostafavi, E

    2010-01-01

    BACKGROUND & OBJECTIVES: Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. CCHFV has been isolated from at least 31 different tick species. The virus is transmitted through the bite of an infected tick, or by direct contact with CCHFV...... to each other. Even though they clustered in the same group with the strain circulating in Iran, they had a closer relationship to the Matin strain. INTERPRETATION & CONCLUSION: Vector control programs should be applied for reducing population density of potential tick vectors in this province. Further...

  17. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  19. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa.

    Science.gov (United States)

    Stock, Nina K; Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias; Sall, Amadou A

    2013-03-01

    The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature.

  20. Effect of trapping methods on the estimation of alpha diversity of a phlebotomine sandfly assemblage in southern Mexico.

    Science.gov (United States)

    Rodríguez-Rojas, J J; Rebollar-Téllez, E A

    2017-12-01

    The aims of the study were to (a) investigate the effect of trapping methods on alpha diversity; and (b) enhance the knowledge of the sandfly assemblage in the state of Quintana Roo. Field work was undertaken in a tropical forest of southern Mexico from August 2013 to July 2014. Sampling was conducted monthly during three consecutive nights. For each trapping night, 12 different types of trap were operated from 18.00 to 24.00 hours in four transects. Measures of alpha community diversity were based on the quantification of the number of species (Chao 2, Jackknife 2, Clench's equation, Margalef's index) and the community structure, as well as the dominance (Simpson and Berger-Parker indexes) and evenness (Shannon's entropy index, true diversity of the Jost and Pielou index). With a total sampling effort of 1728 night-traps, 16 101 phlebotomine sandflies were collected; they represented two genera and 13 species. Diversity estimates of 100% (Chao 2 and Clench's equation) and 85% (Jackknife 2) of potential species in the study area were calculated. Shannon traps and CDC light traps indicated the largest number of species, but only Shannon traps showed the greatest abundance. This inventory of sandflies is an important activity to enhance our knowledge of sandfly assemblages and guilds. The ultimate goal of studying alpha diversity in sandflies would be to have a better understanding of the population dynamics and all complex networks of interactions that may, in turn, be associated with the epidemiology of the disease. © 2017 The Royal Entomological Society.

  1. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  2. Mural folliculitis and alopecia caused by infection with goat-associated malignant catarrhal fever virus in two sika deer.

    Science.gov (United States)

    Crawford, Timothy B; Li, Hong; Rosenburg, Stuart R; Norhausen, Robert W; Garner, Michael M

    2002-09-15

    Two sika deer from a zoo in Florida were examined because of chronic hair loss and skin lesions. No common causes of alopecia were identified in either deer. One deer was treated with prednisone, but the condition worsened when the dosage was decreased. Both deer were euthanatized after several months because of continued disease. The predominant histologic lesion in skin specimens was granulomatous mural folliculitis. Serologic testing and sequencing of fragments produced with a consensus polymerase chain reaction assay indicated that both deer were infected with caprine herpesvirus-2, a newly recognized member of the malignant catarrhal fever group of viruses. Disease in these deer was substantially different from that typically seen following infection with ovine herpesvirus-2, the sheep-associated malignant catarrhal fever virus. Findings in these deer establish the pathogenicity of caprine herpesvirus-2 in sika deer and illustrate the ability of this group of complex herpesviruses to cause a wide variety of clinical abnormalities in diverse species.

  3. Clinical features and patient management of Lujo hemorrhagic fever.

    Directory of Open Access Journals (Sweden)

    Nivesh H Sewlall

    Full Text Available In 2008 a nosocomial outbreak of five cases of viral hemorrhagic fever due to a novel arenavirus, Lujo virus, occurred in Johannesburg, South Africa. Lujo virus is only the second pathogenic arenavirus, after Lassa virus, to be recognized in Africa and the first in over 40 years. Because of the remote, resource-poor, and often politically unstable regions where Lassa fever and other viral hemorrhagic fevers typically occur, there have been few opportunities to undertake in-depth study of their clinical manifestations, transmission dynamics, pathogenesis, or response to treatment options typically available in industrialized countries.We describe the clinical features of five cases of Lujo hemorrhagic fever and summarize their clinical management, as well as providing additional epidemiologic detail regarding the 2008 outbreak. Illness typically began with the abrupt onset of fever, malaise, headache, and myalgias followed successively by sore throat, chest pain, gastrointestinal symptoms, rash, minor hemorrhage, subconjunctival injection, and neck and facial swelling over the first week of illness. No major hemorrhage was noted. Neurological signs were sometimes seen in the late stages. Shock and multi-organ system failure, often with evidence of disseminated intravascular coagulopathy, ensued in the second week, with death in four of the five cases. Distinctive treatment components of the one surviving patient included rapid commencement of the antiviral drug ribavirin and administration of HMG-CoA reductase inhibitors (statins, N-acetylcysteine, and recombinant factor VIIa.Lujo virus causes a clinical syndrome remarkably similar to Lassa fever. Considering the high case-fatality and significant logistical impediments to controlled treatment efficacy trials for viral hemorrhagic fever, it is both logical and ethical to explore the use of the various compounds used in the treatment of the surviving case reported here in future outbreaks

  4. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    Science.gov (United States)

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C E P; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.

  5. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos

    Science.gov (United States)

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C. E. P.; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system. PMID:26371874

  6. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    Science.gov (United States)

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  7. Presence of viral RNA and proteins in exosomes from the cellular clones resistant to Rift Valley Fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Noor eAhsan

    2016-02-01

    Full Text Available Rift Valley Fever Virus (RVFV is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent HIV-1 and HTLV-1 infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-кB pathway, leading to cell proliferation and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV. These clones contained normal markers (i.e. CD63 for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome. The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T- cells and monocytic cells showed

  8. Fatal Yellow Fever in Travelers to Brazil, 2018.

    Science.gov (United States)

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  9. Hemorrhagic Fever Caused by a Novel Bunyavirus in China: Pathogenesis and Correlates of Fatal Outcome

    NARCIS (Netherlands)

    Zhang, Yong-Zhen; He, Yong-Wen; Dai, Yong-An; Xiong, Yanwen; Zheng, Han; Zhou, Dun-Jin; Li, Juan; Sun, Qiangzheng; Luo, Xue-Lian; Cheng, Yu-Li; Qin, Xin-Cheng; Tian, Jun-Hua; Chen, Xiao-Ping; Yu, Bin; Jin, Dong; Guo, Wen-Ping; Li, Wei; Wang, Wen; Peng, Jin-Song; Zhang, Guo-Bin; Zhang, Shaomin; Chen, Xiao-Min; Wang, Yan; Li, Ming-Hui; Li, Zhenjun; Lu, Shan; Ye, Changyun; de Jong, Menno D.; Xu, Jianguo

    2012-01-01

    Background. Hemorrhagic fever-like illness caused by a novel Bunyavirus, Huaiyangshan virus (HYSV, also known as Severe Fever with Thrombocytopenia virus [SFTSV] and Fever, Thrombocytopenia and Leukopenia Syndrome [FTLS]), has recently been described in China. Methods. Patients with

  10. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Kosovo.

    Directory of Open Access Journals (Sweden)

    Luka Fajs

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is a zoonotic agent that causes severe, life-threatening disease, with a case fatality rate of 10-50%. It is the most widespread tick-borne virus in the world, with cases reported in Africa, Asia and Eastern Europe. CCHFV is a genetically diverse virus. Its genetic diversity is often correlated to its geographical origin. Genetic variability of CCHFV was determined within few endemic areas, however limited data is available for Kosovo. Furthermore, there is little information about the spatiotemporal genetic changes of CCHFV in endemic areas. Kosovo is an important endemic area for CCHFV. Cases were reported each year and the case-fatality rate is significantly higher compared to nearby regions. In this study, we wanted to examine the genetic variability of CCHFV obtained directly from CCHF-confirmed patients, hospitalized in Kosovo from 1991 to 2013. We sequenced partial S segment CCHFV nucleotide sequences from 89 patients. Our results show that several viral variants are present in Kosovo and that the genetic diversity is high in relation to the studied area. We also show that variants are mostly uniformly distributed throughout Kosovo and that limited evolutionary changes have occurred in 22 years. Our results also suggest the presence of a new distinct lineage within the European CCHF phylogenetic clade. Our study provide the largest number of CCHFV nucleotide sequences from patients in 22 year span in one endemic area.

  11. Experimental transmission of West Nile Virus and Rift Valley Fever Virus by Culex pipiens from Lebanon.

    Directory of Open Access Journals (Sweden)

    Renée Zakhia

    2018-01-01

    Full Text Available West Nile virus (WNV and Rift Valley fever virus (RVFV are two emerging arboviruses transmitted by Culex pipiens species that includes two biotypes: pipiens and molestus. In Lebanon, human cases caused by WNV and RVFV have never been reported. However, the introduction of these viruses in the country is likely to occur through the migratory birds and animal trades. In this study, we evaluated the ability of Cx. pipiens, a predominant mosquito species in urban and rural regions in Lebanon, to transmit WNV and RVFV. Culex egg rafts were collected in the West Bekaa district, east of Lebanon and adult females of Cx. pipiens were experimentally infected with WNV and RVFV Clone 13 strain at titers of 1.6×108 and 1.33×107 plaque forming units (PFU/mL, respectively. We estimated viral infection, dissemination and transmission at 3, 7, 14 and 19 days post infection (dpi. Results showed that infection was higher for WNV than for RVFV from 3 dpi to 19 dpi. Viral dissemination and transmission started from 3 dpi for WNV; and only from 19 dpi for RVFV. Moreover, Cx. pipiens were able to excrete in saliva a higher number of viral particles of WNV (1028 ± 405 PFU/saliva at 19 dpi than RVFV (42 PFU/saliva at 19 dpi. Cx. pipiens from Lebanon are efficient experimental vectors of WNV and to a lower extent, RVFV. These findings should stimulate local authorities to establish an active entomological surveillance in addition to animal surveys for both viruses in the country.

  12. The untranslated regions of classic swine fever virus RNA trigger apoptosis.

    Directory of Open Access Journals (Sweden)

    Wei-Li Hsu

    Full Text Available Classical swine fever virus (CSFV causes a broad range of disease in pigs, from acute symptoms including high fever and hemorrhages, to chronic disease or unapparent infection, depending on the virus strain. CSFV belongs to the genus Pestivirus of the family Flaviviridae. It carries a single-stranded positive-sense RNA genome. An internal ribosomal entry site (IRES in the 5' untranslated region (UTR drives the translation of a single open reading frame encoding a 3898 amino acid long polypeptide chain. The open reading frame is followed by a 3' UTR comprising four highly structured stem-loops. In the present study, a synthetic RNA composed of the 5' and 3' UTRs of the CSFV genome devoid of any viral coding sequence and separated by a luciferase gene cassette (designated 5'UTR-Luc-3'UTR triggered apoptotic cell death as early as 4 h post-transfection. The apoptosis was measured by DNA laddering analysis, TUNEL assay, annexin-V binding determined by flow cytometry, and by analysis of caspase activation. Contrasting with this, only trace DNA laddering was observed in cells transfected with the individual 5' or 3' UTR RNA; even when the 5' UTR and 3' UTR were co-transfected as separate RNA molecules, DNA laddering did not reach the level induced by the chimeric 5'UTR-Luc-3'UTR RNA. Interestingly, RNA composed of the 5'UTR and of stem-loop I of the 3'UTR triggered much stronger apoptosis than the 5' or 3'UTR alone. These results indicate that the 5' and 3' UTRs act together in cis induce apoptosis. We furthered obtained evidence that the UTR-mediated apoptosis required double-stranded RNA and involved translation shutoff possibly through activation of PKR.

  13. Serologic evidence of exposure to Rift Valley fever virus detected in Tunisia

    Directory of Open Access Journals (Sweden)

    A. Bosworth

    2016-01-01

    Full Text Available Rift Valley fever virus (RVFv is capable of causing dramatic outbreaks amongst economically important animal species and is capable of causing severe symptoms and mortality in humans. RVFv is known to circulate widely throughout East Africa; serologic evidence of exposure has also been found in some northern African countries, including Mauritania. This study aimed to ascertain whether RVFv is circulating in regions beyond its known geographic range. Samples from febrile patients (n=181 and nonfebrile healthy agricultural and slaughterhouse workers (n=38 were collected during the summer of 2014 and surveyed for exposure to RVFv by both serologic tests and PCR. Of the 219 samples tested, 7.8% of nonfebrile participants showed immunoglobulin G reactivity to RVFv nucleoprotein and 8.3% of febrile patients showed immunoglobulin M reactivity, with the latter samples indicating recent exposure to the virus. Our results suggest an active circulation of RVFv and evidence of human exposure in the population of Tunisia.

  14. International travel between global urban centres vulnerable to yellow fever transmission.

    Science.gov (United States)

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz Ug; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I; Khan, Kamran

    2018-05-01

    To examine the potential for international travel to spread yellow fever virus to cities around the world. We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers' destination cities. In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics.

  15. Yellow fever vaccine-associated neurological disease, a suspicious case.

    Science.gov (United States)

    Beirão, Pedro; Pereira, Patrícia; Nunes, Andreia; Antunes, Pedro

    2017-03-02

    A 70-year-old man with known cardiovascular risk factors, presented with acute onset expression aphasia, agraphia, dyscalculia, right-left disorientation and finger agnosia, without fever or meningeal signs. Stroke was thought to be the cause, but cerebrovascular disease investigation was negative. Interviewing the family revealed he had undergone yellow fever vaccination 18 days before. Lumbar puncture revealed mild protein elevation. Cultural examinations, Coxiella burnetti, and neurotropic virus serologies were negative. Regarding the yellow fever virus, IgG was identified in serum and cerebrospinal fluid (CSF), with negative IgM and virus PCR in CSF. EEG showed an encephalopathic pattern. The patient improved gradually and a week after discharge was his usual self. Only criteria for suspect neurotropic disease were met, but it's possible the time spent between symptom onset and lumbar puncture prevented a definite diagnosis of yellow fever vaccine-associated neurological disease. This gap would have been smaller if the vaccination history had been collected earlier. 2017 BMJ Publishing Group Ltd.

  16. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    Science.gov (United States)

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  17. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  18. Crimean-Congo haemorrhagic fever virus in Kazakhstan (1948-2013).

    Science.gov (United States)

    Nurmakhanov, Talgat; Sansyzbaev, Yerlan; Atshabar, Bakhyt; Deryabin, Pavel; Kazakov, Stanislav; Zholshorinov, Aitmagambet; Matzhanova, Almagul; Sadvakassova, Alya; Saylaubekuly, Ratbek; Kyraubaev, Kakimzhan; Hay, John; Atkinson, Barry; Hewson, Roger

    2015-09-01

    Crimean-Congo haemorrhagic fever (CCHF) is a pathogenic and often fatal arboviral disease with a distribution spanning large areas of Africa, Europe and Asia. The causative agent is a negative-sense single-stranded RNA virus classified within the Nairovirus genus of the Bunyaviridae family. Cases of CCHF have been officially recorded in Kazakhstan since the disease was first officially reported in modern medicine. Serological surveillance of human and animal populations provide evidence that the virus was perpetually circulating in a local enzoonotic cycle involving mammals, ticks and humans in the southern regions of the country. Most cases of human disease were associated with agricultural professions such as farming, shepherding and fruit-picking; the typical route of infection was via tick-bite although several cases of contact transmission associated with caring for sick patients have been documented. In total, 704 confirmed human cases of CCHF have been registered in Kazakhstan from 1948-2013 with an overall case fatality rate of 14.8% for cases with a documented outcome. The southern regions of Kazakhstan should be considered endemic for CCHF with cases reported from these territories on an annual basis. Modern diagnostic technologies allow for rapid clinical diagnosis and for surveillance studies to monitor for potential expansion in known risk areas. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    Directory of Open Access Journals (Sweden)

    Joseph W. Golden

    2015-01-01

    Full Text Available Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.

  20. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Ziying Han

    2015-10-01

    Full Text Available Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg and arenaviruses (Lassa and Junín viruses, are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1 and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.

  1. Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys

    International Nuclear Information System (INIS)

    Marchevsky, Renato S.; Freire, Marcos S.; Coutinho, Evandro S.F.; Galler, Ricardo

    2003-01-01

    The yellow fever 17D virus is attenuated and used for human vaccination. Two of its substrains, 17D-204 and 17DD, are used for vaccine production. One of the remarkable properties of this vaccine is limited viral replication in the host but with significant dissemination of the viral mass, yielding a robust and long-lived neutralizing antibody response. The vaccine has excellent records of efficacy and safety and is cheap, used as a single dose, and there are well-established production methodology and quality control procedures which include the monkey neurovirulence test (MNTV). The present study aims at a better understanding of YF 17DD virus attenuation and immunogenicity in the MNVT with special emphasis on viremia, seroconversion, clinical and histological lesions scores, and their intrinsic variability across the tests. Several MNVTs were performed using the secondary seed lot virus 17DD 102/84 totaling 49 rhesus monkeys. Viremia was never higher than the accepted limits established in international requirements, and high levels of neutralizing antibodies were observed in all animals. None of the animals showed visceral lesions. We found that the clinical scores for the same virus varied widely across the tests. There was a direct correlation between the clinical scores in animals with clinical signs of encephalitis and a higher degree of central nervous system (CNS) histological lesions, with an increase of lesions in areas of the CNS such as the substantia nigra, nucleus caudatus, intumescentia cervicalis, and intumescentia ventralis. The histological scores were shown to be less prone to individual variations and had a more homogeneous value distribution among the tests. Since 17DD 102/84 seed virus has been used for human vaccine production and immunization for 16 years with the vaccine being safe and efficacious, it demonstrates that the observed variations across the MNVTs do not influence its effect on humans

  2. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015-16: a modelling study.

    Science.gov (United States)

    Kraemer, Moritz U G; Faria, Nuno R; Reiner, Robert C; Golding, Nick; Nikolay, Birgit; Stasse, Stephanie; Johansson, Michael A; Salje, Henrik; Faye, Ousmane; Wint, G R William; Niedrig, Matthias; Shearer, Freya M; Hill, Sarah C; Thompson, Robin N; Bisanzio, Donal; Taveira, Nuno; Nax, Heinrich H; Pradelski, Bary S R; Nsoesie, Elaine O; Murphy, Nicholas R; Bogoch, Isaac I; Khan, Kamran; Brownstein, John S; Tatem, Andrew J; de Oliveira, Tulio; Smith, David L; Sall, Amadou A; Pybus, Oliver G; Hay, Simon I; Cauchemez, Simon

    2017-03-01

    Since late 2015, an epidemic of yellow fever has caused more than 7334 suspected cases in Angola and the Democratic Republic of the Congo, including 393 deaths. We sought to understand the spatial spread of this outbreak to optimise the use of the limited available vaccine stock. We jointly analysed datasets describing the epidemic of yellow fever, vector suitability, human demography, and mobility in central Africa to understand and predict the spread of yellow fever virus. We used a standard logistic model to infer the district-specific yellow fever virus infection risk during the course of the epidemic in the region. The early spread of yellow fever virus was characterised by fast exponential growth (doubling time of 5-7 days) and fast spatial expansion (49 districts reported cases after only 3 months) from Luanda, the capital of Angola. Early invasion was positively correlated with high population density (Pearson's r 0·52, 95% CI 0·34-0·66). The further away locations were from Luanda, the later the date of invasion (Pearson's r 0·60, 95% CI 0·52-0·66). In a Cox model, we noted that districts with higher population densities also had higher risks of sustained transmission (the hazard ratio for cases ceasing was 0·74, 95% CI 0·13-0·92 per log-unit increase in the population size of a district). A model that captured human mobility and vector suitability successfully discriminated districts with high risk of invasion from others with a lower risk (area under the curve 0·94, 95% CI 0·92-0·97). If at the start of the epidemic, sufficient vaccines had been available to target 50 out of 313 districts in the area, our model would have correctly identified 27 (84%) of the 32 districts that were eventually affected. Our findings show the contributions of ecological and demographic factors to the ongoing spread of the yellow fever outbreak and provide estimates of the areas that could be prioritised for vaccination, although other constraints such as vaccine

  3. Rift Valley fever virus infection in golden Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Dionna Scharton

    Full Text Available Rift Valley fever virus (RVFV is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies.

  4. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  5. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Science.gov (United States)

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  6. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  7. [Crimean-Congo hemorrhagic fever].

    Science.gov (United States)

    Saijo, Masayuki; Moriikawa, Shigeru; Kurane, Ichiro

    2004-12-01

    Crimean-Congo hemorrhagic fever (CCHF) is an acute infectious disease caused by CCHF virus (CCHFV), a member of the family Bunyaviridae, genus Nairovirus. The case fatality rate of CCHF ranges from 10-40%. Because CCHF is not present in Japan, many Japanese virologists and clinicians are not very familiar with this disease. However, there remains the possibility of an introduction of CCHFV or other hemorrhagic fever viruses into Japan from surrounding endemic areas. Development of diagnostic laboratory capacity for viral hemorrhagic fevers is necessary even in countries without these diseases. At the National Institute of Infectious Diseases, Tokyo, Japan, laboratory-based systems such as recombinant protein-based antibody detection, antigen-capture and pathological examination have been developed. In this review article, epidemiologic and clinical data on CCHF in the Xinjiang Uygur Autonomous Region, compiled through field investigations and diagnostic testing utilizing the aforementioned laboratory systems, are presented. CCHFV infections are closely associated with the environmental conditions, life styles, religion, occupation, and human economic activities. Based on these data, preventive measures for CCHFV infections are also discussed.

  8. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark

    DEFF Research Database (Denmark)

    Boklund, Anette; Goldbach, Stine G.; Uttenthal, Åse

    2008-01-01

    of CSFV between the hypothetical wild-boar population and the domestic population. Furthermore, the economic impact is assessed taking the perspective of the Danish national budget and the Danish pig industry. We used InterSpreadPlus to model the differential classical swine fever (CSF) risk due to wild......Denmark has no free-range wild-boar population. However, Danish wildlife organizations have suggested that wild boar should be reintroduced into the wild to broaden national biodiversity. Danish pig farmers fear that this would lead to a higher risk of introduction of classical swine fever virus...

  9. Transfusion-related transmission of yellow fever vaccine virus--California, 2009.

    Science.gov (United States)

    2010-01-22

    In the United States, yellow fever (YF) vaccination is recommended for travelers and active duty military members visiting endemic areas of sub-Saharan Africa and Central/South America. The American Red Cross recommends that recipients of YF vaccine defer blood product donation for 2 weeks because of the theoretical risk for transmission from a viremic donor. On April 10, 2009, a hospital blood bank supervisor learned that, on March 27, blood products had been collected from 89 U.S. active duty trainees who had received YF vaccine 4 days before donation. This report summarizes the subsequent investigation by the hospital and CDC to identify lapses in donor deferral and to determine whether transfusion-related transmission of YF vaccine virus occurred. The investigation found that a recent change in the timing of trainee vaccination had occurred and that vaccinees had not reported recent YF vaccination status at time of donation. Despite a prompt recall, six units of blood products were transfused into five patients. No clinical evidence or laboratory abnormalities consistent with a serious adverse reaction were identified in four recipients within the first month after transfusion; the fifth patient, who had prostate cancer and end-stage, transfusion-dependent, B-cell lymphoma, died while in hospice care. Three of the four surviving patients had evidence of serologic response to YF vaccine virus. This report provides evidence that transfusion-related transmission of YF vaccine virus can occur and underscores the need for careful screening and deferral of recently vaccinated blood donors.

  10. Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay.

    Science.gov (United States)

    Wu, Wei; Zhang, Shuo; Qu, Jing; Zhang, Quanfu; Li, Chuan; Li, Jiandong; Jin, Cong; Liang, Mifang; Li, Dexin

    2014-07-17

    Viral hemorrhagic fevers (VHFs) are worldwide diseases caused by several kinds of viruses. With the emergence of new viruses, advanced diagnostic methods are urgently needed for identification of VHFs. Based on Luminex xMAP technology, a rapid, sensitive, multi-pathogen and high-throughput method which could simultaneously detect hemorrhagic fever viruses (HFVs) specific IgG antibodies was developed. Recombinant antigens of nine HFVs including Hantaan virus (HTNV), Seoul virus (SEOV), Puumala virus (PUUV), Andes virus (ANDV), Sin Nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), Severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) and dengue virus (DENV) were produced and purified from a prokaryotic expression system and the influence of the coupling amount was investigated. Cross-reactions among antigens and their rabbit immune sera were evaluated. Serum samples collected from 51 laboratory confirmed hemorrhagic fever with renal syndrome (HFRS) patients, 43 confirmed SFTS patients and 88 healthy donors were analyzed. Results showed that recombinant nucleocapsid protein of the five viruses belonging to the genus Hantavirus, had serological cross-reactivity with their corresponding rabbit immune sera, but not apparent with immune sera of other four viruses. Evaluation of this new method with clinical serum samples showed 98.04% diagnostic sensitivity for HFRS, 90.70% for SFTS detection and the specificity was ranging from 66.67% to 100.00%. The multiplexed Luminex-based immunoassay has firstly been established in our study, which provides a potentially reliable diagnostic tool for IgG antibody detection of VHFs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Immunological features underlying viral hemorrhagic fevers.

    Science.gov (United States)

    Messaoudi, Ilhem; Basler, Christopher F

    2015-10-01

    Several enveloped RNA viruses of the arenavirus, bunyavirus, filovirus and flavivirus families are associated with a syndrome known as viral hemorrhagic fever (VHF). VHF is characterized by fever, vascular leakage, coagulation defects and multi organ system failure. VHF is currently viewed as a disease precipitated by viral suppression of innate immunity, which promotes systemic virus replication and excessive proinflammatory cytokine responses that trigger the manifestations of severe disease. However, the mechanisms by which immune dysregulation contributes to disease remain poorly understood. Infection of nonhuman primates closely recapitulates human VHF, notably Ebola and yellow fever, thereby providing excellent models to better define the immunological basis for this syndrome. Here we review the current state of our knowledge and suggest future directions that will better define the immunological mechanisms underlying VHF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    Directory of Open Access Journals (Sweden)

    Pedro Paulo de Abreu Manso

    Full Text Available The yellow fever (YF 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.

  13. Co-housing of Rift Valley fever virus infected lambs with immunocompetent or immunosuppressed lambs does not result in virus transmission

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    2016-03-01

    Full Text Available Rift Valley fever virus (RVFV is transmitted among susceptible animals by mosquito vectors. Although the virus can be isolated from nasal and oral swabs of infected animals and is known to be highly infectious when administered experimentally via oral or respiratory route, horizontal transmission of the virus is only sporadically reported in literature. We considered that immunosuppression resulting from stressful conditions in the field may increase the susceptibility to horizontally transmitted RVFV. Additionally, we reasoned that horizontal transmission may induce immune responses that could affect the susceptibility of contact-exposed animals to subsequent infection via mosquito vectors. To address these two hypotheses, viremic lambs were brought into contact with sentinel lambs. One group of sentinel lambs was treated with the immunosuppressive synthetic glucocorticosteroid dexamethasone and monitored for signs of disease and presence of virus in the blood and target organs. Another group of contact-exposed sentinel lambs remained untreated for three weeks and was subsequently challenged with RVFV. We found that none of the dexamethasone-treated contact-exposed lambs developed detectable viremia, antibody responses or significant increases in cytokine mRNA levels. Susceptibility of immunocompetent lambs to RVFV infection was not influenced by previous contact-exposure. Our results are discussed in light of previous findings.

  14. Lassa fever – full recovery without ribavarin treatment: a case report ...

    African Journals Online (AJOL)

    Her close contacts showed no evidence of Lassa virus infection. Conclusion: This report adds to the literature on the natural history of Lassa fever; and that individuals may survive Lassa fever with conservative management of symptoms of the disease and its complications. Keywords: Lassa fever; viral hemorrhagic fever, ...

  15. Assessing the importance of four sandfly species (Diptera: Psychodidae) as vectors of Leishmania mexicana in Campeche, Mexico.

    Science.gov (United States)

    Pech-May, A; Peraza-Herrera, G; Moo-Llanes, D A; Escobedo-Ortegón, J; Berzunza-Cruz, M; Becker-Fauser, I; Montes DE Oca-Aguilar, A C; Rebollar-Téllez, E A

    2016-09-01

    Localized cutaneous leishmaniasis represents a public health problem in many areas of Mexico, especially in the Yucatan Peninsula. An understanding of vector ecology and bionomics is of great importance in evaluations of the transmission dynamics of Leishmania parasites. A field study was conducted in the county of Calakmul, state of Campeche, during the period from November 2006 to March 2007. Phlebotomine sandfly vectors were sampled using Centers for Disease Control light traps, baited Disney traps and Shannon traps. A total of 3374 specimens were captured in the two villages of Once de Mayo (93.8%) and Arroyo Negro (6.1%). In Once de Mayo, the most abundant species were Psathyromyia shannoni, Lutzomyia cruciata, Bichromomyia olmeca olmeca and Psychodopygus panamensis (all: Diptera: Psychodidae). The Shannon trap was by far the most efficient method of collection. The infection rate, as determined by Leishmania mexicana-specific polymerase chain reaction, was 0.3% in Once de Mayo and infected sandflies included Psy. panamensis, B. o. olmeca and Psa. shannoni. There were significant differences in human biting rates across sandfly species and month of sampling. Ecological niche modelling analyses showed an overall overlap of 39.1% for the four species in the whole state of Campeche. In addition, the finding of nine vector-reservoir pairs indicates a potential interaction. The roles of the various sandfly vectors in Calakmul are discussed. © 2016 The Royal Entomological Society.

  16. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    Science.gov (United States)

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  17. The risk of the introduction of classical swine fever virus at regional level in the European Union: a conceptual framework

    NARCIS (Netherlands)

    Vos, de C.J.; Saatkamp, H.W.; Huirne, R.B.M.; Dijkhuizen, A.A.

    2003-01-01

    Recent classical swine fever (CSF) epidemics in the European Union (EU) have clearly shown that preventing the introduction of CSF virus (CSFV) deserves high priority. Insight into all the factors contributing to the risk of CSFV introduction is a prerequisite for deciding which preventive actions

  18. MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters.

    Science.gov (United States)

    Gowen, Brian B; Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W; Nishiyama, Shoko; Wandersee, Luci; Scharton, Dionna; Jung, Kie-Hoon; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

  19. Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in two sister species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Parviz Parvizi

    2013-06-01

    Full Text Available Individual, naturally occurring Phlebotomus mongolensis and Phlebotomus caucasicus from Iran were screened for infections with the maternally inherited intracellular Rickettsia-like bacterium Wolbachia pipientis via targeting a major surface protein gene (wsp. The main objective of this study was to determine if W. pipientis could be detected in these species. The sandflies were screened using polymerase chain reaction to amplify a fragment of the Wolbachia surface protein gene. The obtained sequences were edited and aligned with database sequences to identify W. pipientis haplotypes. Two strains of Wolbachia were found. Strain Turk 54 (accession EU780683 is widespread and has previously been reported in Phlebotomus papatasi and other insects. Strain Turk 07 (accession KC576916 is a novel strain, found for first time in the two sister species. A-group strains of W. pipientis occur throughout much of the habitat of these sandflies. It is possible that Wolbachia is transferred via horizontal transmission. Horizontal transfer could shed light on sandfly control because Wolbachia is believed to drive a deleterious gene into sandflies that reduces their natural population density. With regard to our findings in this study, we can conclude that one species of sandfly can be infected with different Wolbachia strains and that different species of sandflies can be infected with a common strain.

  20. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway.

    Science.gov (United States)

    Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H

    2015-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin

  1. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control

    OpenAIRE

    Matua, Gerald Amandu; Wal, Dirk Mostert Van der; Locsin, Rozzano C.

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that o...

  2. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus.

    Science.gov (United States)

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël; Bouloy, Michèle

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines.

  3. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  4. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  5. Global emergence of Zika virus

    Directory of Open Access Journals (Sweden)

    Richard Tjan

    2016-05-01

    Full Text Available Zika virus (ZIKV belongs to the flaviviruses (family Flaviviridae, which includes dengue, yellow fever, West Nile, and Japanese encephalitis viruses. Zika virus was isolated in 1947, in the Zika forest near Kampala, Uganda, from one of the rhesus monkeys used as sentinel animals in a yellow fever research program.

  6. Visceral leishmaniasis in Teresina, state of Piauí, Brazil: preliminary observations on the detection and transmissibility of canine and sandfly infections

    Directory of Open Access Journals (Sweden)

    J. A. Vexenat

    1994-06-01

    Full Text Available A Leishmania donovani-complex specific DNA probe was usedto confirm the widespread dissemination of amastigotes in apparently normal skinof dogs with canine visceral leishmaniasis. When Lutzomyia longipalpis were fed on abnormal skin of five naturally infected dogs 57 of 163 (35 per cent fliesbecame infected: four of 65 flies (6 per cent became infected when fed on apparently normal skin. The bite of a single sandfly that had fed seven days previouslyon a naturally infected dog transmitted the infection to a young dog from a non-endemic area. Within 22 days a lesion had developed at the site of the infectivebite (inner ear: 98 days after infection organisms had not disseminated throughout the skin, bone marrow, spleen or liver and the animal was still serologically negative by indirect immunofluorescence and dot-enzyme-linked immunosorbent assay. When fed Lu. longipalpis were captured from a kennel with a sick dog known to be infected, 33 out of 49 (67 per cent of flies contained promastigotes. In contrast only two infections were detected among more than 200 sandflies captured in houses. These observations confirm the ease of transmissibility of L.chagasi from dog to sandfly to dog in Teresina. It is likely that canine VL is the major source of human VL by the transmission route dog-sandfly-human. the Lmet2 DNA probe was a useful epidemiological tool for detecting L. chagasi in sandflies.

  7. Rift Valley fever outbreak--Kenya, November 2006-January 2007.

    Science.gov (United States)

    2007-02-02

    In mid-December 2006, several unexplained fatalities associated with fever and generalized bleeding were reported to the Kenya Ministry of Health (KMOH) from Garissa District in North Eastern Province (NEP). By December 20, a total of 11 deaths had been reported. Of serum samples collected from the first 19 patients, Rift Valley fever (RVF) virus RNA or immunoglobulin M (IgM) antibodies against RVF virus were found in samples from 10 patients; all serum specimens were negative for yellow fever, Ebola, Crimean-Congo hemorrhagic fever, and dengue viruses. The outbreak was confirmed by isolation of RVF virus from six of the specimens. Humans can be infected with RVF virus from bites of mosquitoes or other arthropod vectors that have fed on animals infected with RVF virus, or through contact with viremic animals, particularly livestock. Reports of livestock deaths and unexplained animal abortions in NEP provided further evidence of an RVF outbreak. On December 20, an investigation was launched by KMOH, the Kenya Field Epidemiology and Laboratory Training Program (FELTP), the Kenya Medical Research Institute (KEMRI), the Walter Reed Project of the U.S. Army Medical Research Unit, CDC-Kenya's Global Disease Detection Center, and other partners, including the World Health Organization (WHO) and Médecins Sans Frontières (MSF). This report describes the findings from that initial investigation and the control measures taken in response to the RVF outbreak, which spread to multiple additional provinces and districts, resulting in 404 cases with 118 deaths as of January 25, 2007.

  8. Data-driven modeling to assess receptivity for Rift Valley Fever virus.

    Directory of Open Access Journals (Sweden)

    Christopher M Barker

    2013-11-01

    Full Text Available Rift Valley Fever virus (RVFV is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with [Formula: see text]1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from February-November, but would progress slowly during winter-early spring or early fall and be limited spatially to areas with early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur. To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies, models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to address the numerous remaining gaps in data and knowledge for this system.

  9. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    Directory of Open Access Journals (Sweden)

    Nagata Tatsuya

    2011-05-01

    Full Text Available Abstract Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE containing the envelope gene (env of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.

  10. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  11. Serum neutralization as a differential serological test for classical swine fever virus and other pestivirus infections

    Directory of Open Access Journals (Sweden)

    Paredes J.C.M.

    1999-01-01

    Full Text Available Serum neutralization tests (SN were performed against classical swine fever virus (CSFV, bovine viral diarrhea virus (BVDV and border disease virus (BDV on samples of swine serum collected for screening of antibodies to CSFV, in order to determine the SN value as a differential serological test. Ninety-nine sera out of a sample of 16,664 were positive for antibodies to pestiviruses in an ELISA test which did not distinguish antibodies to different pestiviruses. When submitted to SN, 81 sera were positive for CSFV antibodies only. In 17 sera, crossreactive antibodies to either CSFV, BVDV or BDV were detected. In most of these sera (13 out of 17 the differences between SN titres against the three viruses were not sufficient to estimate which was the most likely antibody-inducing virus. It was concluded that, for the SN to be useful in such differentiation, it is essential to examine a sample which must include a representative number of sera from the same farm where suspect animals were detected. When isolated serum samples are examined, such as those obtained with the sampling strategy adopted here, the SN may give rise to inconclusive results.

  12. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001-2011: a tool for prioritizing human populations for vaccination.

    OpenAIRE

    Marco A B Almeida; Jader da C Cardoso; Edmilson Dos Santos; Daltro F da Fonseca; Laura L Cruz; Fernando J C Faraco; Marilina A Bercini; Kátia C Vettorello; Mariana A Porto; Renate Mohrdieck; Tani M S Ranieri; Maria T Schermann; Alethéa F Sperb; Francisco Z Paz; Zenaida M A Nunes

    2014-01-01

    Author Summary Yellow fever (YF) is a viral hemorrhagic disease that affects humans as well as several species of non-human primates, especially New World monkeys found in South America. Yellow fever virus (YFV) is maintained in a natural cycle involving tree-hole breeding mosquitoes and non-human primates hosts. Because YF is often fatal in susceptible New World monkey populations, sudden die-offs of New World monkeys or epizootics can signal YFV circulation in an environment where humans ma...

  13. Crimean-Congo Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Emadi Koochak H

    2003-10-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF was first described in the Crimea in 1944 and then in 1956 in congo. CCHF is a viral hemorrhagic fever of the Nairovirus group that belongs to Bunyaviridae family virus. It is transmitted to human by tick bite. The most efficient and common tick that is the vectors of CCHF is a member of the Hyalomma genus which infected many mammals such as livestock, this tick is the main reservoire of virus in nature. Humans also become infected with CCHF virus by direct contact with blood or other infected tissues from livestock or human patients (nosocomial infection. Disease has been found in saharic Africa, Eastern Europe, Pakistan, India and Middle East (specially Iran and Iraq. This disease recently spread in Iran so in 1999 to 2001 at least 222 suspected case(81 definite case reported that led to the death of 15 of 81 cases. It is estimated that 30 percent of the country's cattle are contaminated with this virus."nIn humans, after a short incubation period it appears suddenly with fever, chills, myalgia and GI symptoms followed by severe bleeding and DIC that led to death .If the patient improved, has a long {2-4 weeks convalescence period. Disease diagnosed by clinical manifestations, serologic tests, viral culture and PCR and its specific treatment is oral ribavirin for 10 days, for prevention of disease personal protective measures from tick bite, spraying poison of mews to reduce of ticks crowd, isolation of patients and dis-infection of contaminated personal equipments that who suffering from CCHF is recommended.

  14. Transmission Dinamics Model Of Dengue Fever

    Science.gov (United States)

    Debora; Rendy; Rahmi

    2018-01-01

    Dengue fever is an endemic disease that is transmitted through the Aedes aegypti mosquito vector. The disease is present in more than 100 countries in America, Africa, and Asia, especially tropical countries. Differential equations can be used to represent the spread of dengue virus occurring in time intervals and model in the form of mathematical models. The mathematical model in this study tries to represent the spread of dengue fever based on the data obtained and the assumptions used. The mathematical model used is a mathematical model consisting of Susceptible (S), Infected (I), Viruses (V) subpopulations. The SIV mathematical model is then analyzed to see the solution behaviour of the system.

  15. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  16. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  17. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  18. Ebola hemorrhagic Fever.

    Science.gov (United States)

    Burnett, Mark W

    2014-01-01

    Ebola hemorrhagic fever is an often-fatal disease caused by a virus of the Filoviridae family, genus Ebolavirus. Initial signs and symptoms of the disease are nonspecific, often progressing on to a severe hemorrhagic illness. Special Operations Forces Medical Providers should be aware of this disease, which occurs in sporadic outbreaks throughout Africa. Treatment at the present time is mainly supportive. Special care should be taken to prevent contact with bodily fluids of those infected, which can transmit the virus to caregivers. 2014.

  19. Identification of Wild Boar-Habitat Epidemiologic Cycle in African Swine Fever Epizootic.

    Science.gov (United States)

    Chenais, Erika; Ståhl, Karl; Guberti, Vittorio; Depner, Klaus

    2018-04-01

    The African swine fever epizootic in central and eastern European Union member states has a newly identified component involving virus transmission by wild boar and virus survival in the environment. Insights led to an update of the 3 accepted African swine fever transmission models to include a fourth cycle: wild boar-habitat.

  20. Lassa fever or lassa hemorrhagic fever risk to humans from rodent-borne zoonoses.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2015-04-01

    Viral hemorrhagic fevers (VHFs) typically manifest as rapidly progressing acute febrile syndromes with profound hemorrhagic manifestations and very high fatality rates. Lassa fever, an acute hemorrhagic fever characterized by fever, muscle aches, sore throat, nausea, vomiting, diarrhea and chest and abdominal pain. Rodents are important reservoirs of rodent-borne zoonosis worldwide. Transmission rodents to humans occur by aerosol spread, either from the genus Mastomys rodents' excreta (multimammate rat) or through the close contact with infected patients (nosocomial infection). Other rodents of the genera Rattus, Mus, Lemniscomys, and Praomys are incriminated rodents hosts. Now one may ask do the rodents' ectoparasites play a role in Lassa virus zoonotic transmission. This paper summarized the update knowledge on LHV; hopping it might be useful to the clinicians, nursing staff, laboratories' personals as well as those concerned zoonoses from rodents and rodent control.

  1. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    Directory of Open Access Journals (Sweden)

    Mary E. Piper

    2010-03-01

    Full Text Available Rift Valley fever virus (RVFV is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  2. A novel system for identification of inhibitors of rift valley Fever virus replication.

    Science.gov (United States)

    Piper, Mary E; Gerrard, Sonja R

    2010-03-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  3. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular characterization of sandflies and Leishmania detection in main vector of zoonotic cutaneous leishmaniasis in Abarkouh district of Yazd province, Iran.

    Science.gov (United States)

    Jafari, R; Najafzadeh, N; Sedaghat, M M; Parvizi, P

    2013-10-01

    To assess molecular characterization, distribution, seasonal activities of sandfly species and Leishmania parasites infecting them for this zoonotic cutaneous leishmaniasis focus. The collections were carried out in 2009-2011 using CDC traps, Sticky Papers and manual aspirator in and around the villages in Abarkouh district. Individual sandflies were characterized by PCR amplification and sequencing of fragments of their mitochondrial cytochrome b gene. Leishmania parasite infections within sandflies were performed by targeting Cyt b, ITS-rDNA, k-DNA and microsatellite genes. The PCR assays detected only Leishmania major (L. major). All infections (30) were found in the abundant and widespread vector Phlebotomus papatasi (P. papatasi). Small numbers of other sandfly species were also screened for infections, but none was found. Sergentomyia sintoni and P. papatasi were the predominant members in all locations of this district and in all habitats throughout the trapping season. Only five other sandfly species were found, namely Phlebotomus ansari, Phlebotomus caucasicus, Phlebotomus sergenti, Sergentomyia dentata and Sergentomyia merviney. In the current survey, the only infections detected are of L. major in females of P. papatasi (30 out of 190). The rates of infection of P. papatasi by L. major are not significantly different in compare with other locations in Iran with no diversity of parasite strains. Zoonotic cutaneous leishmaniasis may have emerged only recently in Abarkouh district, and the reason may well be the instability of the transmission cycles there. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities.

    Science.gov (United States)

    Panyasing, Yaowalak; Kedkovid, Roongtham; Thanawongnuwech, Roongroje; Kittawornrat, Apisit; Ji, Ju; Giménez-Lirola, Luis; Zimmerman, Jeffrey

    2018-03-01

    Early recognition and rapid elimination of infected animals is key to controlling incursions of classical swine fever virus (CSFV). In this study, the diagnostic characteristics of 10 CSFV assays were evaluated using individual serum (n = 601) and/or oral fluid (n = 1417) samples collected from -14 to 28 days post inoculation (DPI). Serum samples were assayed by virus isolation (VI), 2 commercial antigen-capture enzyme-linked immunosorbent assays (ELISA), virus neutralization (VN), and 3 antibody ELISAs. Both serum and oral fluid samples were tested with 3 commercial real-time reverse transcription-polymerase chain reaction (rRT-PCR) assays. One or more serum samples was positive by VI from DPIs 3 to 21 and by antigen-capture ELISAs from DPIs 6 to 17. VN-positive serum samples were observed at DPIs ≥ 7 and by antibody ELISAs at DPIs ≥ 10. CSFV RNA was detected in serum samples from DPIs 2 to 28 and in oral fluid samples from DPIs 4 to 28. Significant differences in assay performance were detected, but most importantly, no single combination of sample and assay was able to dependably identify CSFV-inoculated pigs throughout the 4-week course of the study. The results show that effective surveillance for CSFV, especially low virulence strains, will require the use of PCR-based assays for the detection of early infections (<14 days) and antibody-based assays, thereafter. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Identification of Wild Boar–Habitat Epidemiologic Cycle in African Swine Fever Epizootic

    Science.gov (United States)

    Ståhl, Karl; Guberti, Vittorio; Depner, Klaus

    2018-01-01

    The African swine fever epizootic in central and eastern European Union member states has a newly identified component involving virus transmission by wild boar and virus survival in the environment. Insights led to an update of the 3 accepted African swine fever transmission models to include a fourth cycle: wild boar–habitat. PMID:29553337

  7. Concomitant outbreaks of yellow fever and hepatitis E virus in Darfur States, Sudan, 2012.

    Science.gov (United States)

    Ahmed, Sarah S; Soghaier, Mohammed A; Mohammed, Sozan; Khogali, Hayat S; Osman, Muntasir M; Abdalla, Abdalla M

    2016-01-31

    Yellow fever (YF) is a vector-borne disease transmitted to humans by infected Aedes mosquitoes, while hepatitis E virus (HEV) is a waterborne disease that is transmitted through the fecal-oral route. Both diseases have very close clinical presentation, namely fever, jaundice, malaise, and dark urine; they differ in severity and outcome. In this cross-sectional, laboratory-based study, an attempt was made to measure the correlation of concomitant YF and HEV infection in Darfur States during the previous YF outbreak in 2012. Results found concomitant outbreaks of YF and HEV at the same time with very weak statistical correlation between the two infections during the outbreak period, with Cramer's V correlation 0.05 and insignificant p value of 0.86. This correlation indicates that clinicians and care providers in tropical areas have to deal with clinical case definitions used for disease surveillance very carefully since prevalence of HEV infection is relatively common and this increases the possibility of misclassification and missing YF cases, particularly initial index cases, in a season or outbreak.

  8. Isolation and whole-genome sequencing of a Crimean-Congo hemorrhagic fever virus strain, Greece.

    Science.gov (United States)

    Papa, Anna; Papadopoulou, Elpida; Tsioka, Katerina; Kontana, Anastasia; Pappa, Styliani; Melidou, Ageliki; Giadinis, Nektarios D

    2018-03-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) was isolated from a pool of two adult Rhipicephalus bursa ticks removed from a goat in 2015 in Greece. The strain clusters into lineage Europe 2 representing the second available whole-genome sequenced isolate of this lineage. CCHFV IgG antibodies were detected in 8 of 19 goats of the farm. Currently CCHFV is not associated with disease in mammals other than humans. Studies in animal models are needed to investigate the pathogenicity level of lineage Europe 2 and compare it with that of other lineages. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Classical swine fever virus infection modulates serum levels of INF-α, IL-8 and TNF-α in 6-month-old pigs

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Lohse, Louise; Nielsen, Jens

    2013-01-01

    Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture i...

  10. [Microbiological surveillance: viral hemorrhagic fever in Central African Republic: current serological data in man].

    Science.gov (United States)

    Nakounné, E; Selekon, B; Morvan, J

    2000-01-01

    An investigation was conducted between 1994 and 1997 in forested areas of the Central African Republic (CAR) to determine the seroprevalence of IgG antibodies against several haemorrhagic fever viruses present in the region. Sera were obtained from 1762 individuals in two groups (Pygmy and Bantu locuted populations) living in 4 forested areas in the south of the country. Sera were tested for IgG antibodies against Ebola, Marburg, Rift Valley fever (RVF), Yellow fever (YF) and Hantaviruses by enzyme immunoassay (EIA), and against Lassa virus by immunofluorescent assay. The prevalence of IgG antibodies was 5.9% for Ebola, 2% for Marburg, 6.9% pour RVF, 6.5% for YF, 2% for Hantaan. No antibodies were detected against Lassa, Seoul, Puumala and Thottapalayam viruses. No IgM antibodies were detected against RVF and YF viruses. The distribution of antibodies appears to be related to tropical rain forest areas. This study indicates that several haemorrhagic fever viruses are endemic in forested areas of the CAR and could emerge due to environmental modification.

  11. Virus isolation for diagnosing dengue virus infections in returning travelers

    NARCIS (Netherlands)

    Teichmann, D.; Göbels, K.; Niedrig, M.; Sim-Brandenburg, J.-W.; Làge-Stehr, J.; Grobusch, M. P.

    2003-01-01

    Dengue fever is recognized as one of the most frequent imported acute febrile illnesses affecting European tourists returning from the tropics. In order to assess the value of virus isolation for the diagnosis of dengue fever, 70 cases of dengue fever confirmed in German travelers during the period

  12. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.

    Science.gov (United States)

    Grau, Frederic R; Schroeder, Megan E; Mulhern, Erin L; McIntosh, Michael T; Bounpheng, Mangkey A

    2015-03-01

    African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations. © 2015 The Author(s).

  13. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    Science.gov (United States)

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M.; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G.

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218), Dermacentor marginatus (n = 98), and Haemaphysalis spp. (n = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum (n = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa (n = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean–Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus, two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus, but also in D. marginatus, in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established. PMID:29560357

  14. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    Directory of Open Access Journals (Sweden)

    Kurtesh Sherifi

    2018-03-01

    Full Text Available Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE. Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218, Dermacentor marginatus (n = 98, and Haemaphysalis spp. (n = 24 were collected from the environment by flagging (all from Kosovo, while Hyalomma marginatum (n = 199 from Kosovo, all from Kosovo and Rhipicephalus bursa (n = 130, 126 from Albania could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean–Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle from the Prishtina region (Kosovo. B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus, two I. ricinus one female and one male from the Mitrovica region (Kosovo. Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus, but also in D. marginatus, in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established.

  15. Crimean-Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania.

    Science.gov (United States)

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean-Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus ( n  = 218), Dermacentor marginatus ( n  = 98), and Haemaphysalis spp. ( n  = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum ( n  = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa ( n  = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean-Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus , two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus , but also in D. marginatus , in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established.

  16. T cell Receptor Alpha Variable 12-2 bias in the immunodominant response to Yellow fever virus

    OpenAIRE

    Bovay, Amandine; Zoete, Vincent; Dolton, Garry; Bulek, Anna M.; Cole, David K.; Rizkallah, Pierre J.; Fuller, Anna; Beck, Konrad; Michielin, Olivier; Speiser, Daniel E.; Sewell, Andrew K.; Fuertes Marraco, Silvia A.

    2018-01-01

    The repertoire of human αβ T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8 javax.xml.bind.JAXBElement@714aac...

  17. The early use of yellow fever virus strain 17D for vaccine production in Brazil - a review

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Post

    2001-08-01

    Full Text Available The use of yellow fever (YF virus 17D strain for vaccine production adapted in Brazil since its introduction in 1937 was reviewed. This was possible due to the availability of official records of vaccine production. The retrieved data highlight the simultaneous use of several serially passaged 17D substrain viruses for both inocula and vaccine preparation that allowed uninterrupted production. Substitution of these substrain viruses became possible with the experience gained during quality control and human vaccination. Post-vaccinal complications in humans and the failure of some viruses in quality control tests (neurovirulence for monkeys indicated that variables needed to be reduced during vaccine production, leading to the development of the seed lot system. The 17DD substrain, still used today, was the most frequently used substrain and the most reliable in terms of safety and efficacy. For this reason, it is possible to derive an infectious cDNA clone of this substrain combined with production in cell culture that could be used to direct the expression of heterologous antigens and lead to the development of new live vaccines.

  18. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    Science.gov (United States)

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  19. Dengue fever outbreak: a clinical management experience

    International Nuclear Information System (INIS)

    Ahmed, S.; Illyas, M.

    2008-01-01

    To determine the frequency of dengue as a cause of fever and compare the clinical and haematological characteristics of Dengue-probable and Dengue-proven cases. All patients with age above 14 years, who were either hospitalized or treated in medical outdoor clinic due to acute febrile illness, were evaluated for clinical features of Dengue Fever (DF), Dengue haemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS). Patients showing typical clinical features and haematological findings suggestive of Dengue fever (As per WHO criteria) were evaluated in detail for comparison of probable and confirmed cases of Dengue fever. All other cases of acute febrile illness, not showing clinical features or haematological abnormalities of Dengue fever, were excluded. The clinical and laboratory features were recorded on SPSS 11.0 programme and graded where required, for descriptive and statistical analysis. Out of 5200 patients with febrile illness, 107 (2%) presented with typical features of DF, 40/107 (37%) were Dengue-proven while 67/107 (63%) were Dengue-probable. Out of Dengue-proven cases, 38 were of DF and 2 were of DHF. Day 1 temperature ranged from 99-105 degreeC (mean 101 degree C). Chills and rigors were noticed in 86 (80%), myalgia in 67%, headache in 54%, pharyngitis in 35%, rash in 28%, and bleeding manifestations in 2% cases. Hepatomegaly in 1(0.5%), lymphadenopathy in 1 (0.5%) and splenomegaly in 12 (11.2%) cases. Leucopoenia (count 40 U/L in 57% cases. Frequency of clinically suspected dengue virus infection was 107 (2%), while confirmed dengue fever cases were 40 (0.8%) out of 5200 fever cases. Fever with chills and rigors, body aches, headache, myalgia, rash, haemorrhagic manifestations, platelet count, total leukocyte count, and ALT, are parameters to screen the cases of suspected dengue virus infection, the diagnosis cannot be confirmed unless supported by molecular studies or dengue specific IgM. (author)

  20. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  1. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted...... recombination within E. coli. RNA transcripts were produced in vitro and introduced into cells by electroporation. The translation and replication of the replicon RNAs could be followed by the accumulation of luciferase (from Renilla reniformis or Gaussia princeps) protein expression (where appropriate......), as well as by detection of the CSFV NS3 protein production within the cells. Inclusion of the viral E2 coding region within the replicon was advantageous for the replication efficiency. Production of chimeric RNAs, substituting the NS2 and NS3 coding regions (as a unit) from the Paderborn strain...

  2. Molecular detection of Crimean-Congo hemorrhagic fever virus in ticks, Greece, 2012-2014.

    Science.gov (United States)

    Papa, Anna; Kontana, Anastasia; Tsioka, Katerina; Chaligiannis, Ilias; Sotiraki, Smaragda

    2017-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans mainly through the bite of infected ticks. In Greece, only one clinical case has been observed, in 2008, but the seroprevalence in humans is relatively high (4.2%). To have a first insight into the circulation of CCHFV in Greece, 2000 ticks collected from livestock during 2012-2014 were tested. CCHFV was detected in 36 of the 1290 (2.8%) tick pools (1-5 ticks per pool). Two genetic lineages were identified: Europe 1 and Europe 2. Most Europe 1 sequences were obtained from Rhipicephalus sanguineus sensu lato ticks, while most Europe 2 sequences were recovered from Rhipicephalus bursa ticks. The number of collected Hyalomma marginatum ticks (the principal vector of CCHFV) was low (0.5% of ticks) and all were CCHFV negative. Since it is not known how efficient ticks of the Rhipicephalus genus are as vectors of the virus, laboratory studies will be required to explore the role of Rhipicephalus spp. ticks in CCHFV maintenance and transmission.

  3. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  4. [Viruses and civilization].

    Science.gov (United States)

    Chastel, C

    1999-01-01

    A few million years ago, when primates moved from the east African forest to the savannah, they were already infected with endogenous viruses and occultly transmitted them to the prime Homo species. However it was much later with the building of the first large cities in Mesopotamia that interhuman viral transmission began in earnest. Spreading was further enhanced with the organization of the Egyptian, Greek, Roman, and Arab empires around the Mediterranean. Discovery of the New World in 1492 led to an unprecedented clash of civilizations and the destruction of pre-Columbian Indian civilizations. It also led to a rapid spread of viruses across the Atlantic Ocean with the emergence of yellow fever and appearance of smallpox and measles throughout the world. However the greatest opportunities for worldwide viral development have been created by our present, modern civilization. This fact is illustrated by epidemic outbreaks of human immunodeficiency virus, Venezuela hemorrhagic fever, Rift valley fever virus, and monkey pox virus. Close analysis underscores the major role of human intervention in producing these events.

  5. Phlebotomus Sandflies of the Paloich Area in the Sudan (Diptera, Psychodidae)

    Science.gov (United States)

    1964-10-01

    Hamster, Cricetus auratus Toad, Bufo regularis (?) Gecko, H. turicus Skink, M. striata Puff adder Snake, CMNH HH-9111’ Snake, CMNH HH-9112’ Hedgehog ...Pharynx unarmed distally or only with few, smail spines ; pigment patch not dark enough to obscure teeth .................. 8 Pharynx heavily...armed distally with numerous, dark spines ; pigment patch very dark, 1964 Quate: Sudanese sandflies 237 often obscuring teeth unless specimen well

  6. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease.

    Science.gov (United States)

    Velazquez-Salinas, Lauro; Risatti, Guillermo R; Holinka, Lauren G; O'Donnell, Vivian; Carlson, Jolene; Alfano, Marialexia; Rodriguez, Luis L; Carrillo, Consuelo; Gladue, Douglas P; Borca, Manuel V

    2016-07-01

    Controlling classical swine fever (CSF) mainly involves vaccination with live attenuated vaccines (LAV). Experimental CSFV LAVs has been lately developed through reverse genetics using several different approaches. Here we present that codon de-optimization in the major CSFV structural glycoprotein E2 coding region, causes virus attenuation in swine. Four different mutated constructs (pCSFm1-pCSFm4) were designed using various mutational approaches based on the genetic background of the highly virulent strain Brescia (BICv). Three of these constructs produced infectious viruses (CSFm2v, CSFm3v, and CSFm4v). Animals infected with CSFm2v presented a reduced and extended viremia but did not display any CSF-related clinical signs. Animals that were infected with CSFm2v were protected against challenge with virulent parental BICv. This is the first report describing the development of an attenuated CSFV experimental vaccine by codon usage de-optimization, and one of the few examples of virus attenuation using this methodology that is assessed in a natural host. Published by Elsevier Inc.

  7. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  8. Serological survey of severe fever with thrombocytopenia syndrome virus infection in Sika deer and rodents in Japan

    OpenAIRE

    Lundu, Tapiwa; Yoshii, Kentaro; Kobayashi, Shintaro; Morikawa, Shigeru; Tsubota, Toshio; Misawa, Naoaki; Hayasaka, Daisuke; Kariwa, Hiroaki

    2018-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is a newly recognized zoonosis that occurs in China, Japan, and South Korea and is caused by the SFTS virus (SFTSV), which is in the genus Phlebovirus, family Phenuiviridae. Since its discovery in Japan in 2013, SFTS has been reported in the western parts of the country. To elucidate the distribution of SFTSV, we conducted a serological survey of deer and rodents. Serum was screened using enzyme-linked immunosorbent assay (ELISA) and suspecte...

  9. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  10. Oropouche Fever: A Review.

    Science.gov (United States)

    Sakkas, Hercules; Bozidis, Petros; Franks, Ashley; Papadopoulou, Chrissanthy

    2018-04-04

    Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV), an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and sylvatic transmission cycles, with the primary vector in the urban cycle being the anthropophilic biting midge Culicoides paraensis . Currently, there is no evidence of direct human-to-human OROV transmission. OROV fever is usually either undiagnosed due to its mild, self-limited manifestations or misdiagnosed because its clinical characteristics are similar to dengue, chikungunya, Zika and yellow fever, including malaria as well. At present, there is no specific antiviral treatment, and in the absence of a vaccine for effective prophylaxis of human populations in endemic areas, the disease prevention relies solely on vector control strategies and personal protection measures. OROV fever is considered to have the potential to spread across the American continent and under favorable climatic conditions may expand its geographic distribution to other continents. In view of OROV's emergence, increased interest for formerly neglected tropical diseases and within the One Health concept, the existing knowledge and gaps of knowledge on OROV fever are reviewed.

  11. Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever.

    Science.gov (United States)

    Bray, Mike; Geisbert, Thomas W

    2005-08-01

    Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.

  12. Estimation of the transmission dynamics of African swine fever virus within a swine house

    DEFF Research Database (Denmark)

    Nielsen, J. P.; Larsen, T. S.; Hisham Beshara Halasa, Tariq

    2017-01-01

    The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans......·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would...

  13. Rift Valley fever virus seroprevalence in human rural populations of Gabon.

    Directory of Open Access Journals (Sweden)

    Xavier Pourrut

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols or tissues (placenta, stillborn of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan, east (Kenya, Tanzania, Somalia, west (Senegal, Mauritania and south (South Africa, but also in the Indian Ocean (Madagascar, Mayotte and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. METHODOLOGY/PRINCIPAL FINDINGS: We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages. RVFV-specific IgG was found in a total of 145 individuals (3.3% suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8% and the seroprevalence increased gradually with age in males but not in females. CONCLUSIONS/SIGNIFICANCE: Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and

  14. Advanced Vaccine Candidates for Lassa Fever

    Directory of Open Access Journals (Sweden)

    Igor S. Lukashevich

    2012-10-01

    Full Text Available Lassa virus (LASV is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF. LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  15. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses.

    Science.gov (United States)

    Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G

    2018-06-01

    Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Emerging diseases. Crimean-Congo hemorrhagic fever].

    Science.gov (United States)

    Kuljić-Kapulica, Nada

    2004-01-01

    Recognized for many years in central Asia and Eastern Europe, Crimean-Congo hemorrhagic fever (CCHF) is a severe zoonotic disease which affects people coming into contact with livestock or ticks. The range of the CCHF virus is now known to extend form central Asia to India, Pakistan, Afghanistan, Iran, Iraq, the Middle East, Eastern Europe, and to most of Saharan and sub-Saharan Africa. CCHF virus is a member of the Bunyavirus family, and is classified as a Nairovirus. After an incubation period of approximately 3 to 6 days the abrupt onset of acute febrile illness occurs. The first symptoms are similar to severe influenza and include fever, headache, severe back and abdominal pain. The hemorrhagic fever manifestations occur after several days of illnesses and include petechial rash, ecchymoses, hematemmesis, and melenna. Cases typically present with some form of hepatitis. The mortality rate is 10-50% in different outbreaks with deaths typically occurring during the second week of illness. The genus Hyalomma of ixodid ticks is the most important vector of the CCHF virus. Vertebrates including birds and small animals provide excellent amplifier hosts of both the virus and the tick. The virus can be transmitted to humans by direct contact with infected animals and from person to person. Early diagnosis is possible in special laboratories using antigen detection by imunofluorescence or ELISA tests or molecular methods as PCR and antibody detection. Tick control measures need to be emphasized and utilized to prevent CCHF. This includes spraying camp sites, clothing and danger areas with acaricides or repellent. Strict isolation of patients with CCHF and a focus on barrier nursing would help to prevent nosocomial spread. Presently the vaccine is a dangerous mouse brain-derived version. Future development of a vaccine would help to prevent human infection.

  17. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    Science.gov (United States)

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  18. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania

    OpenAIRE

    Mweya, Clement N.; Kimera, Sharadhuli I.; Mellau, Lesakit S. B.; Mboera, Leonard E. G.

    2015-01-01

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective: To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods: A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mos...

  19. Dengue fever with rectus sheath hematoma: A case report

    Directory of Open Access Journals (Sweden)

    Anurag Sharma

    2014-01-01

    Full Text Available Dengue fever, also known as breakbone fever, is an infectious tropical disease caused by the Dengue virus. It is associated with a number of complications, which are well documented. However, Dengue fever associated with rectus sheath hematoma (RSH is a very rare complication. Only one case report has been published prior supporting the association of Dengue fever with RSH. We report a case of Dengue fever who presented with RSH and was successfully treated conservatively. RSH is also an uncommon cause of acute abdominal pain. It is accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear.

  20. IDENTIFICATION OF SANDFLIES (Diptera: Psychodidae: Phlebotominae BLOOD MEALS IN AN ENDEMIC LEISHMANIASIS AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Aline TANURE

    2015-08-01

    Full Text Available SUMMARY The aim of this study was to identify blood meals of female sandflies captured in the municipality of Governador Valadares, an endemic area of visceral and cutaneous leishmaniasis, in the State of Minas Gerais, Brazil. From May 2011 to January 2012, captures were performed using HP light traps in four districts. There were 2,614 specimens (2,090 males and 524 females captured; 97 engorged females were identified belonging to the species Lutzomyia longipalpis (82.1% and Lutzomyia cortelezzii (17.9%. Considering simple and mixed feeding, the enzyme-linked immunosorbent assay revealed a predominance of chicken blood (43.6% in Lutzomyia longipalpis, showing the important role that chickens exert around the residential areas of Governador Valadares. This finding increases the chances of sandflies contact with other vertebrates and consequently the risk of leishmaniasis transmission.

  1. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  2. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs,, influence of different promoters on gene expression and on protection

    NARCIS (Netherlands)

    Hooft, van B.J.L.; Wind, de N.; Wensvoort, G.; Kimman, T.G.; Gielkens, A.L.J.; Moormann, R.J.M.

    1996-01-01

    The glycoprotein E (gE) locus in the genome of pseudorabies virus (PRV) was used as an insertion site for the expression of glycoprotein E1 of classical swine fever virus (CSFV). Transcription of E1 in the recombinants M401, M402 or M403 was regulated by the gD promoter of PRV, the immediate early

  3. Experimental transmission of Crimean-Congo hemorrhagic fever virus by west African wild ground-feeding birds to Hyalomma marginatum rufipes ticks.

    Science.gov (United States)

    Zeller, H G; Cornet, J P; Camicas, J L

    1994-06-01

    Hyalomma (H.) marginatum rufipes ticks commonly infest birds and are potential vectors of Crimean-Congo hemorrhagic fever (CCHF) virus in west Africa. An experimental model for investigating the role of birds in the CCHF virus transmission cycle was developed. Following CCHF virus inoculation, antibodies were detected by enzyme-linked immunosorbent assay in one red-beaked hornbill and one glossy starling, but not in two laughing doves and six domestic chickens. None of the birds showed a detectable viremia. Hyalomma marginatum rufipes larvae were placed on three red-beaked hornbills and one glossy starling. These birds were then inoculated with CCHF virus (10(1.5) 50% mouse intracerebral lethal doses). Virus transmission to larvae or nymphs was obtained and seroconversions in birds were recorded. Virus was also detected in 90% of the individually tested nymphs, as well as in adults. The virus was then successfully transmitted by adult ticks to rabbits and the engorged females were allowed to oviposit. Progeny larvae were placed on another group of birds and one of three birds showed seroconversion. The cycle of transmission of virus between ticks and aviremic ground-feeding birds represent a potential reservoir and amplification mechanism of CCHF virus in west Africa.

  4. Yellow Fever Outbreak - Kongo Central Province, Democratic Republic of the Congo, August 2016.

    Science.gov (United States)

    Otshudiema, John O; Ndakala, Nestor G; Mawanda, Elande-Taty K; Tshapenda, Gaston P; Kimfuta, Jacques M; Nsibu, Loupy-Régence N; Gueye, Abdou S; Dee, Jacob; Philen, Rossanne M; Giese, Coralie; Murrill, Christopher S; Arthur, Ray R; Kebela, Benoit I

    2017-03-31

    On April 23, 2016, the Democratic Republic of the Congo's (DRC's) Ministry of Health declared a yellow fever outbreak. As of May 24, 2016, approximately 90% of suspected yellow fever cases (n = 459) and deaths (45) were reported in a single province, Kongo Central Province, that borders Angola, where a large yellow fever outbreak had begun in December 2015. Two yellow fever mass vaccination campaigns were conducted in Kongo Central Province during May 25-June 7, 2016 and August 17-28, 2016. In June 2016, the DRC Ministry of Health requested assistance from CDC to control the outbreak. As of August 18, 2016, a total of 410 suspected yellow fever cases and 42 deaths were reported in Kongo Central Province. Thirty seven of the 393 specimens tested in the laboratory were confirmed as positive for yellow fever virus (local outbreak threshold is one laboratory-confirmed case of yellow fever). Although not well-documented for this outbreak, malaria, viral hepatitis, and typhoid fever are common differential diagnoses among suspected yellow fever cases in this region. Other possible diagnoses include Zika, West Nile, or dengue viruses; however, no laboratory-confirmed cases of these viruses were reported. Thirty five of the 37 cases of yellow fever were imported from Angola. Two-thirds of confirmed cases occurred in persons who crossed the DRC-Angola border at one market city on the DRC side, where ≤40,000 travelers cross the border each week on market day. Strategies to improve coordination between health surveillance and cross-border trade activities at land borders and to enhance laboratory and case-based surveillance and health border screening capacity are needed to prevent and control future yellow fever outbreaks.

  5. Development of a membrane adsorber based capture step for the purification of yellow fever virus.

    Science.gov (United States)

    Pato, Tânia P; Souza, Marta Cristina O; Silva, Andréa N M R; Pereira, Renata C; Silva, Marlon V; Caride, Elena; Gaspar, Luciane P; Freire, Marcos S; Castilho, Leda R

    2014-05-19

    Yellow fever (YF) is an endemic disease in some tropical areas of South America and Africa that presents lethality rate between 20 and 50%. There is no specific treatment and to control this disease a highly effective live-attenuated egg based vaccine is widely used for travelers and residents of areas where YF is endemic. However, recent reports of rare, sometimes fatal, adverse events post-vaccination have raised concerns. In order to increase safety records, alternative strategies should be considered, such as developing a new inactivated vaccine using a cell culture based technology, capable of meeting the demands in cases of epidemic. With this goal, the production of YF virus in Vero cells grown on microcarriers and its subsequent purification by chromatographic techniques was studied. In this work we investigate the capture step of the purification process of the YF virus. At first, virus stability was studied over a wide pH range, showing best results for the alkaline region. Considering this result and the pI of the envelope protein previously determined in silico, a strong anion exchanger was considered most suitable. Due to the easy scalability, simplicity to handle, absence of diffusional limitations and suitability for virus handling of membrane adsorbers, a Q membrane was evaluated. The amount of antigen adsorbed onto the membrane was investigated within the pH range for virus stability, and the best pH for virus adsorption was considered to be 8.5. Finally, studies on gradient and step elution allowed to determine the most adequate salt concentration for washing (0.15M) and virus elution (0.30 M). Under these operating conditions, it was shown that this capture step is quite efficient, showing high product recovery (93.2±30.3%) and efficient DNA clearance (0.9±0.3 ng/dose). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. History of U.S. Military Contributions to the Study of Viral Hemorrhagic Fevers

    National Research Council Canada - National Science Library

    Thomas, Stephen J; Lawler, James V; Endy, Timothy P

    2005-01-01

    .... The characteristics of the viral hemorrhagic fever viruses as arthropod or rodent-borne viruses that can result in human illnesses with high morbidity and mortality rates make these viruses a unique...

  7. [Birds, mosquitoes and West Nile virus: little risk of West Nile fever in the Netherlands].

    Science.gov (United States)

    Duijster, Janneke W; Stroo, C J Arjan; Braks, Marieta A H

    2016-01-01

    Due to increased incidence of West Nile fever (WNF) in Europe and the rapid spread of West Nile virus (WNV) in the US, it is commonly thought that it will only be a matter of time before WNV reaches the Netherlands. However, assessing whether WNV is really a threat to the Dutch population is challenging, due to the numerous factors affecting transmission of the virus. Some of these factors are known to limit the risk of WNF in the Netherlands. This risk is determined by the interaction between the pathogen (WNV), the vectors (Culex mosquitoes), the reservoirs (birds) and the exposure of humans to infected mosquitoes. In this paper, we discuss the factors influencing introduction, establishment and spread of WNV in the Netherlands. The probability that each of these three phases will occur in the Netherlands is currently relatively small, as is the risk of WNF infection in humans in the Netherlands.

  8. Seroepidemiological Studies of Crimean-Congo Hemorrhagic Fever Virus in Domestic and Wild Animals.

    Directory of Open Access Journals (Sweden)

    Jessica R Spengler

    2016-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is a widely distributed, tick-borne viral disease. Humans are the only species known to develop illness after CCHF virus (CCHFV infection, characterized by a nonspecific febrile illness that can progress to severe, often fatal, hemorrhagic disease. A variety of animals may serve as asymptomatic reservoirs of CCHFV in an endemic cycle of transmission. Seroepidemiological studies have been instrumental in elucidating CCHFV reservoirs and in determining endemic foci of viral transmission. Herein, we review over 50 years of CCHFV seroepidemiological studies in domestic and wild animals. This review highlights the role of livestock in the maintenance and transmission of CCHFV, and provides a detailed summary of seroepidemiological studies of wild animal species, reflecting their relative roles in CCHFV ecology.

  9. Yellow fever

    Directory of Open Access Journals (Sweden)

    Marcelo Nóbrega Litvoc

    Full Text Available Summary The yellow fever (YF virus is a Flavivirus, transmitted by Haemagogus, Sabethes or Aedes aegypti mosquitoes. The disease is endemic in forest areas in Africa and Latin America leading to epizootics in monkeys that constitute the reservoir of the disease. There are two forms of YF: sylvatic, transmitted accidentally when approaching the forests, and urban, which can be perpetuated by Aedes aegypti. In Brazil, the last case of urban YF occurred in 1942. Since then, there has been an expansion of transmission areas from the North and Midwest regions to the South and Southeast. In 2017, the country faced an important outbreak of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, its reach extended from Minas Gerais toward São Paulo. Yellow fever has an incubation period of 3 to 6 days and sudden onset of symptoms with high fever, myalgia, headache, nausea/vomiting and increased transaminases. The disease ranges from asymptomatic to severe forms. The most serious forms occur in around 15% of those infected, with high lethality rates. These forms lead to renal, hepatic and neurological impairment, and bleeding episodes. Treatment of mild and moderate forms is symptomatic, while severe and malignant forms depend on intensive care. Prevention is achieved by administering the vaccine, which is an effective (immunogenicity at 90-98% and safe (0.4 severe events per 100,000 doses measure. In 2018, the first transplants in the world due to YF were performed. There is also an attempt to evaluate the use of active drugs against the virus in order to reduce disease severity.

  10. Recurrent paratyphoid fever A co-infected with hepatitis A reactivated chronic hepatitis B.

    Science.gov (United States)

    Liu, Yanling; Xiong, Yujiao; Huang, Wenxiang; Jia, Bei

    2014-05-12

    We report here a case of recurrent paratyphoid fever A with hepatitis A co-infection in a patient with chronic hepatitis B. A 26-year-old male patient, who was a hepatitis B virus carrier, was co-infected with Salmonella enterica serovar Paratyphi A and hepatitis A virus. The recurrence of the paratyphoid fever may be ascribed to the coexistence of hepatitis B, a course of ceftriaxone plus levofloxacin that was too short and the insensitivity of paratyphoid fever A to levofloxacin. We find that an adequate course and dose of ceftriaxone is a better strategy for treating paratyphoid fever. Furthermore, the co-infection of paratyphoid fever with hepatitis A may stimulate cellular immunity and break immunotolerance. Thus, the administration of the anti-viral agent entecavir may greatly improve the prognosis of this patient with chronic hepatitis B, and the episodes of paratyphoid fever and hepatitis A infection prompt the use of timely antiviral therapy.

  11. Dengue fever outbreak: a clinical management experience.

    Science.gov (United States)

    Ahmed, Shahid; Ali, Nadir; Ashraf, Shahzad; Ilyas, Mohammad; Tariq, Waheed-Uz-Zaman; Chotani, Rashid A

    2008-01-01

    To determine the frequency of dengue as a cause of fever and compare the clinical and haematological characteristics of Dengue-probable and Dengue-proven cases. An observational study. The Combined Military Hospital, Malir Cantt., Karachi, from August 2005 to December 2006. All patients with age above 14 years, who were either hospitalized or treated in medical outdoor clinic due to acute febrile illness, were evaluated for clinical features of Dengue Fever (DF), Dengue haemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS). Patients showing typical clinical features and haematological findings suggestive of Dengue fever (As per WHO criteria) were evaluated in detail for comparison of probable and confirmed cases of Dengue fever. All other cases of acute febrile illness, not showing clinical features or haematological abnormalities of Dengue fever, were excluded. The clinical and laboratory features were recorded on SPSS 11.0 programme and graded where required, for descriptive and statistical analysis. Out of 5200 patients with febrile illness, 107(2%) presented with typical features of DF, 40/107(37%) were Dengue-proven while 67/107(63%) were Dengue-probable. Out of Dengue-proven cases, 38 were of DF and 2 were of DHF. Day 1 temperature ranged from 99-1050C (mean 1010C). Chills and rigors were noticed in 86 (80%), myalgia in 67%, headache in 54%, pharyngitis in 35%, rash in 28%, and bleeding manifestations in 2% cases. Hepatomegaly in 1(0.5%), lymphadenopathy in 1(0.5%) and splenomegaly in 12 (11.2%) cases. Leucopoenia (count40 U/L in 57% cases. Frequency of clinically suspected dengue virus infection was 107 (2%), while confirmed dengue fever cases were 40 (0.8%) out of 5200 fever cases. Fever with chills and rigors, body aches, headache, myalgia, rash, haemorrhagic manifestations, platelet count, total leukocyte count, and ALT, are parameters to screen the cases of suspected dengue virus infection; the diagnosis cannot be confirmed unless supported by

  12. Blood Meal Analysis of and Virus Detection in Mosquitoes Collected during a Rift Valley fever Epizootic/Epidemic: Implications for epidemic disease transmission dynamics

    Science.gov (United States)

    Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Bloodfed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the bloodmeals. Bloodmeals from individual mosquito abdomens were screened for v...

  13. Oropouche Fever: A Review

    Directory of Open Access Journals (Sweden)

    Hercules Sakkas

    2018-04-01

    Full Text Available Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV, an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and sylvatic transmission cycles, with the primary vector in the urban cycle being the anthropophilic biting midge Culicoides paraensis. Currently, there is no evidence of direct human-to-human OROV transmission. OROV fever is usually either undiagnosed due to its mild, self-limited manifestations or misdiagnosed because its clinical characteristics are similar to dengue, chikungunya, Zika and yellow fever, including malaria as well. At present, there is no specific antiviral treatment, and in the absence of a vaccine for effective prophylaxis of human populations in endemic areas, the disease prevention relies solely on vector control strategies and personal protection measures. OROV fever is considered to have the potential to spread across the American continent and under favorable climatic conditions may expand its geographic distribution to other continents. In view of OROV’s emergence, increased interest for formerly neglected tropical diseases and within the One Health concept, the existing knowledge and gaps of knowledge on OROV fever are reviewed.

  14. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Directory of Open Access Journals (Sweden)

    Annika Brinkmann

    2017-11-01

    Full Text Available We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS-based identification of viral hemorrhagic fever (VHF agents and assess the feasibility of this approach in diagnostics.An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients.The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  15. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Science.gov (United States)

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  16. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  17. A model of dengue fever

    Directory of Open Access Journals (Sweden)

    Boutayeb A

    2003-02-01

    Full Text Available Abstract Background Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous. Methods The present paper deals with a succession of two epidemics caused by two different viruses. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations. Results Stability of the equilibrium points is given and a simulation is carried out with different values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for different values of the parameters. Conclusion The proposed model allows for better understanding of the disease dynamics. Environment and vaccination strategies are discussed especially in the case of the succession of two epidemics with two different viruses.

  18. Genomic Characterization of Crimean-Congo Hemorrhagic Fever Virus in Hyalomma Tick from Spain, 2014.

    Science.gov (United States)

    Cajimat, Maria N B; Rodriguez, Sergio E; Schuster, Isolde U E; Swetnam, Daniele M; Ksiazek, Thomas G; Habela, Miguel A; Negredo, Ana Isabel; Estrada-Peña, Agustín; Barrett, Alan D T; Bente, Dennis A

    2017-10-01

    Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne disease caused by CCHF virus (CCHFV). Ticks in the genus Hyalomma are the main vectors and reservoirs of CCHFV. In Spain, CCHFV was first detected in Hyalomma ticks from Cáceres in 2010. Subsequently, two autochthonous CCHF cases were reported in August 2016. In this study, we describe the characterization of the CCHFV genome directly from Hyalomma lusitanicum collected in Cáceres in 2014. Phylogenetic analyses reveal a close relationship with clade III strains from West Africa, with an estimated divergence time of 50 years. The results of this work suggest that CCHFV has been circulating in Spain for some time, and most likely originated from West Africa.

  19. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  20. Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda

    Science.gov (United States)

    Towner, Jonathan S.; Sealy, Tara K.; Khristova, Marina L.; Albariño, César G.; Conlan, Sean; Reeder, Serena A.; Quan, Phenix-Lan; Lipkin, W. Ian; Downing, Robert; Tappero, Jordan W.; Okware, Samuel; Lutwama, Julius; Bakamutumaho, Barnabas; Kayiwa, John; Comer, James A.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.

    2008-01-01

    Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, Côte d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed random-primed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the Côte d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines. PMID:19023410

  1. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  2. Mild Clinical Course of Severe Fever with Thrombocytopenia Syndrome Virus Infection in an Elderly Japanese Patient

    Directory of Open Access Journals (Sweden)

    Yuko Ohagi

    2014-01-01

    Full Text Available Severe fever with thrombocytopenia syndrome (SFTS is an emerging infectious and hemorrhagic disease recently described in China and western Japan. A 71-year-old healthy Japanese woman noticed a tick biting her after harvesting in an orchard and removed it herself. She developed diarrhea, anorexia, and chills eight days later. Because these symptoms continued, she visited a primary care physician 6 days after the onset. Laboratory data revealed thrombocytopenia, leukocytopenia, and elevated liver enzymes. She was then referred to our hospital. Although not completely fulfilling the diagnostic criteria used in a retrospective study in Japan, SFTS was suspected, and we detected SFTS virus in the patient’s blood using RT-PCR. However, she recovered without intensive treatment and severe complications 13 days after the onset. In this report, we present a mild clinical course of SFTS virus infection in Japan in detail.

  3. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya

    Directory of Open Access Journals (Sweden)

    Alfred O. Ochieng

    2016-11-01

    Full Text Available Background: Rift Valley fever (RVF is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV. Objectives: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. Methodology: The study used data on vector presence and ecological niche modelling (MaxEnt algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000 and future (2050 Bioclim climate databases to model the vector distribution. Results: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Conclusion: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

  4. Landscape Genetics of Aedes mcintoshi (Diptera: Culicidae), an Important Vector of Rift Valley Fever Virus in Northeastern Kenya.

    Science.gov (United States)

    Campbell, Lindsay P; Alexander, Alana M

    2017-09-01

    Rift Valley fever virus (RVFV) is a vector-borne, zoonotic disease that affects humans, wild ungulates, and domesticated livestock in Africa and the Arabian Peninsula. Rift Valley fever virus exhibits interepizootic and epizootic phases, the latter defined by widespread virus occurrence in domesticated livestock. Kenya appears to be particularly vulnerable to epizootics, with 11 outbreaks occurring between 1951 and 2007. The mosquito species Aedes mcintoshi (subgenus Neomelaniconion) is an important primary vector for RVFV in Kenya. Here, we investigate associations between genetic diversity and differentiation of one regional subclade of Ae. mcintoshi in Northeastern Kenya with environmental variables, using a multivariate statistical approach. Using CO1 (cytochrome oxidase subunit 1) sequence data deposited in GenBank, we found no evidence of isolation by distance contributing to genetic differentiation across the study area. However, we did find significant CO1 subpopulation structure and associations with recent mean precipitation values. In addition, variation in genetic diversity across our seven sample sites was associated with both precipitation and percentage clay in the soil. The large number of haplotypes found in this data set indicates that a great deal of diversity remains unsampled in this region. Additional sampling across a larger geographic area, combined with next-generation sequencing approaches that better characterize the genome, would provide a more robust assessment of genetic diversity and differentiation. Further understanding of the genetic structure of Ae. mcintoshi could provide useful information regarding the potential for RVFV to spread across East African landscapes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  6. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  7. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  8. Investigation of a possible yellow fever epidemic and serosurvey for flavivirus infections in northern Cameroon, 1984.

    Science.gov (United States)

    Tsai, T F; Lazuick, J S; Ngah, R W; Mafiamba, P C; Quincke, G; Monath, T P

    1987-01-01

    A cluster of fatal hepatitis cases in northern Cameroon in 1984 stimulated a field investigation to rule out an epidemic of yellow fever. A serosurvey of villages in the extreme north of the country, in a Sudan savanna (SS) phytogeographical zone, disclosed no evidence of recent yellow fever infection. However, further south, in a Guinea savanna (GS) phytogeographical zone, serological evidence was found of endemic yellow fever virus transmission. The results indicate a potential for epidemic spread of yellow fever virus from the southern GS zone to the nothern SS zone of Cameroon, where immunity in the population was low.

  9. Limited replication of yellow fever 17DD and 17D-Dengue recombinant viruses in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Gisela F. Trindade

    2008-06-01

    Full Text Available For the development of safe live attenuated flavivirus vaccines one of the main properties to be established is viral replication. We have used real-time reverse transcriptase-polymerase chain reaction and virus titration by plaque assay to determine the replication of yellow fever 17DD virus (YFV 17DD and recombinant yellow fever 17D viruses expressing envelope proteins of dengue virus serotypes 2 and 4 (17D-DENV-2 and 17D-DENV-4. Serum samples from rhesus monkeys inoculated with YFV 17DD and 17D-DENV chimeras by intracerebral or subcutaneous route were used to determine and compare the viremia induced by these viruses. Viral load quantification in samples from monkeys inoculated by either route with YFV 17DD virus suggested a restricted capability of the virus to replicate reaching not more than 2.0 log10 PFU mL-1 or 3.29 log10 copies mL-1. Recombinant 17D-dengue viruses were shown by plaquing and real-time PCR to be as attenuated as YF 17DD virus with the highest mean peak titer of 1.97 log10 PFU mL-1 or 3.53 log10 copies mL-1. These data serve as a comparative basis for the characterization of other 17D-based live attenuated candidate vaccines against other diseases.Uma das principais propriedades a serem estabelecidas para o desenvolvimento de vacinas seguras e atenuadas de flavivirus,é a taxa de replicação viral. Neste trabalho, aplicamos a metodologia de amplificação pela reação em cadeia da polimerase em tempo real e titulação viral por plaqueamento para determinação da replicação do vírus 17DD (FA 17DD e recombinantes, expressando proteínas do envelope de dengue sorotipos 2 e 4 (17D-DENV-2 e 17D-DENV-4. As amostras de soros de macacos inoculados por via intracerebral ou subcutânea com FA 17DD ou 17D-DENV foram usadas para determinar e comparar a viremia induzida por estes vírus. A quantificação da carga viral em amostras de macacos inoculados por ambas as vias com FA 17DD sugere restrita capacidade de replicação com

  10. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    Science.gov (United States)

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  11. Effect of mouse antisera targeting the Phlebotomus papatasi midgut chitinase PpChit1 on sandfly physiology and fitness

    Directory of Open Access Journals (Sweden)

    Maricela Robles-Murguia

    2014-12-01

    Full Text Available In sandflies, the absence of the peritrophic matrix (PM affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.

  12. Detection of Rift Valley Fever Virus Interepidemic Activity in Some Hotspot Areas of Kenya by Sentinel Animal Surveillance, 2009–2012

    Directory of Open Access Journals (Sweden)

    Jacqueline Kasiiti Lichoti

    2014-01-01

    Full Text Available Rift Valley fever virus causes an important zoonotic disease of humans and small ruminants in Eastern Africa and is spread primarily by a mosquito vector. In this region, it occurs as epizootics that typically occur at 5–15-year intervals associated with unusual rainfall events. It has hitherto been known that the virus is maintained between outbreaks in dormant eggs of the mosquito vector and this has formed the basis of understanding of the epidemiology and control strategies of the disease. We show here that seroconversion and sporadic acute disease do occur during the interepidemic periods (IEPs in the absence of reported cases in livestock or humans. The finding indicates that previously undetected low-level virus transmission during the IEPs does occur and that epizootics may also be due to periodic expansion of mosquito vectors in the presence of both circulating virus and naïve animals.

  13. Seroprevalence of Infections with Dengue, Rift Valley Fever and Chikungunya Viruses in Kenya, 2007.

    Directory of Open Access Journals (Sweden)

    Caroline Ochieng

    Full Text Available Arthropod-borne viruses are a major constituent of emerging infectious diseases worldwide, but limited data are available on the prevalence, distribution, and risk factors for transmission in Kenya and East Africa. In this study, we used 1,091 HIV-negative blood specimens from the 2007 Kenya AIDS Indicator Survey (KAIS 2007 to test for the presence of IgG antibodies to dengue virus (DENV, chikungunya virus (CHIKV and Rift Valley fever virus (RVFV.The KAIS 2007 was a national population-based survey conducted by the Government of Kenya to provide comprehensive information needed to address the HIV/AIDS epidemic. Antibody testing for arboviruses was performed on stored blood specimens from KAIS 2007 through a two-step sandwich IgG ELISA using either commercially available kits or CDC-developed assays. Out of the 1,091 samples tested, 210 (19.2% were positive for IgG antibodies against at least one of the three arboviruses. DENV was the most common of the three viruses tested (12.5% positive, followed by RVFV and CHIKV (4.5% and 0.97%, respectively. For DENV and RVFV, the participant's province of residence was significantly associated (P≤.01 with seropositivity. Seroprevalence of DENV and RVFV increased with age, while there was no correlation between province of residence/age and seropositivity for CHIKV. Females had twelve times higher odds of exposure to CHIK as opposed to DENV and RVFV where both males and females had the same odds of exposure. Lack of education was significantly associated with a higher odds of previous infection with either DENV or RVFV (p <0.01. These data show that a number of people are at risk of arbovirus infections depending on their geographic location in Kenya and transmission of these pathogens is greater than previously appreciated. This poses a public health risk, especially for DENV.

  14. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  15. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    Science.gov (United States)

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  16. Determination of the sequence of the complete open reading frame and the 5 ' NTR of the Paderborn isolate of classical swine fever virus

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Rasmussen, Thomas Bruun; Normann, Preben

    2003-01-01

    The classical swine fever (CSF) epidemic in the Netherlands in 1997-1998 lasted 14 months, during which 429 infected and 1300 at risk herds were culled, at an estimated economical cost of 2 billion US dollars. Despite the overwhelming scale of the epizootic, the CSF virus (CSFV) strain causing th...

  17. Dengue fever and dengue haemorrhagic fever in adolescents and adults

    OpenAIRE

    Tantawichien, Terapong

    2012-01-01

    Dengue fever (DF) is endemic in tropical and subtropical zones and the prevalence is increasing across South-east Asia, Africa, the Western Pacific and the Americas. In recent years, the spread of unplanned urbanisation, with associated substandard housing, overcrowding and deterioration in water, sewage and waste management systems, has created ideal conditions for increased transmission of the dengue virus in tropical urban centres. While dengue infection has traditionally been considered a...

  18. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  19. Comparison of two Next Generation sequencing platforms for full genome sequencing of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Höper, Dirk

    2013-01-01

    to the consensus sequence. Additionally, we got an average sequence depth for the genome of 4000 for the Iontorrent PGM and 400 for the FLX platform making the mapping suitable for single nucleotide variant (SNV) detection. The analysis revealed a single non-silent SNV A10665G leading to the amino acid change D......Next Generation Sequencing (NGS) is becoming more adopted into viral research and will be the preferred technology in the years to come. We have recently sequenced several strains of Classical Swine Fever Virus (CSFV) by NGS on both Genome Sequencer FLX (GS FLX) and Iontorrent PGM platforms...

  20. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    Science.gov (United States)

    Ly, Hoai J; Ikegami, Tetsuro

    2016-07-02

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.

  1. CLINICAL AND LABORATORY PROFILE OF DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Farhan Fazal

    2015-02-01

    Full Text Available AIM: Dengue is a major health problem in many parts of India and Gulbarga (North Karnataka was previously not a known endemic area f or dengue. Infection with dengue virus can cause a spectrum of three clinical syndromes , classic dengue fever (DF , dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The present study was undertaken to determine the disease profile of dengue virus infection in hospitalized patients. METHODS AND MATERIAL: One hundred patients admitted in Basaveshwar Teaching and General hospital with fever more than 38.5 degree Celsius and IgM dengue positive were selected. They were followed from the onset of fever to twelve days or till they are recovered according to WHO discharge criteria whichever is earlier. They underwent relevant investigations to identify specific organ dysfunction and categorize them into the spectrum of Dengue fever in accordance to W HO criteria . RESULTS: Out of 100 cases in this study 70 cases belongs to DF , 23 cases to DHF and 7 cases to DSS based on WHO criteria. All the cases had fever (100%. Other common symptoms noted were myalgia (61% , joint pain (54% , headache (66% , vomitin g (55% , pain abdomen (48% , rash (41% , hepatomegaly (20% , bleeding (21% and shock (8%. Hess test was positive in 24% patients. Low platelet count of less than 100 , 000/cu mm according to WHO criteria was present in 73% patients. Deranged liver functio n test and renal parameters were seen in 26 and 8 patients respectively . Mortality documented was 7 patients due to delayed presentation. The average duration of hospital stay was 4.65 days. CONCLUSION: Dengue fever was a more common manifestation than DHF or DSS. During aepidemic , dengue should be strongly considered on the differential diagnosis of any patient with fever. The treatment of dengue is mainly fluid management and supportive. Early recognition and management of alarm symptoms is the key to bet ter outcome

  2. Mayaro virus: the jungle flu

    Directory of Open Access Journals (Sweden)

    Izurieta RO

    2018-04-01

    Full Text Available Ricardo O Izurieta,1 David A DeLacure,1 Andres Izurieta,2 Ismael A Hoare,1 Miguel Reina Ortiz,1,3 1Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA; 2Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL, USA; 3Fundación Raíces, Esmeraldas, Ecuador Abstract: Mayaro fever is an emerging acute viral disease endemic in Central and South America. Mayaro virus (MAYV is classified in the Semliki Forest virus antigenic complex and shares similarities with the alphavirus Chikungunya virus and the flavivirus Dengue virus. MAYV is an arbovirus transmitted by Haemagogus janthinomys, with competence also demonstrated in Aedes aegypti, Aedes scapularis, and Anopheles quadrimaculatus. Outbreaks and small epidemics of Mayaro fever have occurred in several countries in northern South America and the Caribbean. In addition, travel-associated cases have been reported in European nationals returning from endemic areas. Clinical features of Mayaro fever include fever, chills, persistent arthralgia, retro-orbital pain, maculopapular rash, itching, dizziness, and, rarely, lymphadenopathy. Methods of control for MAYV are similar to those used for other sylvatic arboviruses. Although MAYV was discovered as long ago as the 1950s and continues to be prevalent in the tropical areas of the Americas, it remains neglected and under-studied. This paper provides a thorough and current review of the published MAYV literature ranging from its original description to modern outbreaks, and from the basic virus characteristics to the clinical and epidemiological aspects of this disease. Keywords: Mayaro virus, emerging arbovirus, dengue-like virus, arthrogenic virus

  3. Zika Virus Fact Sheet

    Science.gov (United States)

    ... is caused by a virus transmitted primarily by Aedes mosquitoes. People with Zika virus disease can have symptoms including mild fever, skin ... framework. Q&A: Zika virus and complication ... mosquito from the Aedes genus, mainly Aedes aegypti in tropical regions. Aedes ...

  4. CD8+ T Cells Complement Antibodies in Protecting against Yellow Fever Virus

    DEFF Research Database (Denmark)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A

    2015-01-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model...... of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune...... response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination...

  5. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  6. Mechanism of fever induction in rabbits.

    Science.gov (United States)

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  7. Efficacy and evaluation of environmental management system to control sandfly vector of Kala-azar.

    Science.gov (United States)

    Dinesh, D S; Kumari, S; Hassan, F; Kumar, V; Singh, V P; Das, P

    2017-10-01

    The established vector for visceral leishmaniasis, Phlebotomus argentipes (Diptera: Psychodidae) breeds inside the human dwellings and cattle shed under crevices at the base of the wall. P. argentipes was controlled by plastering the base of wall (9″height × 9″base). The study was conducted in two phases: (i) Screening of plastering materials (ii) validation of the most suitable material. During the first phase (2014); four intervention materials were evaluated in four different arms: (i) cement (ii) brick chimney fly ash (BCFA i.e. waste material from an oven for backing raw earthen brick in charcoal) mixed with lime (95:5) (iii) wire mesh (25 holes/cm 2 ) and (iv) glazed tiles. Ten houses were selected as test and same as control in four different villages for each arm having similar ecotype and similar density of sandflies. The pre and post intervention density of sandflies were evaluated. Significant reduction in sandfly density was found with cement (46.2%) and BCFA (29.6%) plastering (P < 0.05). In the second phase of the study (2015); the two most effective interventions were validated at village level with one control. A significant reduction in the density of P. argentipes was found with cement; 60.2% (Mean ± S.D. = 2.48 ± 2.78, 95% CI = 1.93-3.02) and BCFA; 48.2% (Mean ± S.D. = 1.98 ± 2.20, 95% CI = 1.55-2.41) (P < 0.05). BCFA was found easily accessible, acceptable and cost effective that can be used in any type of wall materials at own cost. This can be implemented as one of the integrated vector control approach in the programme. Copyright © 2017. Published by Elsevier Ltd.

  8. Geographic distribution of phlebotomine sandfly species (Diptera: Psychodidae) in Central-West Brazil

    Science.gov (United States)

    de Almeida, Paulo Silva; de Andrade, Andrey José; Sciamarelli, Alan; Raizer, Josué; Menegatti, Jaqueline Aparecida; Hermes, Sandra Cristina Negreli Moreira; de Carvalho, Maria do Socorro Laurentino; Gurgel-Gonçalves, Rodrigo

    2015-01-01

    This study updates the geographic distributions of phlebotomine species in Central-West Brazil and analyses the climatic factors associated with their occurrence. The data were obtained from the entomology services of the state departments of health in Central-West Brazil, scientific collections and a literature review of articles from 1962-2014. Ecological niche models were produced for sandfly species with more than 20 occurrences using the Maxent algorithm and eight climate variables. In all, 2,803 phlebotomine records for 127 species were analysed. Nyssomyia whitmani, Evandromyia lenti and Lutzomyia longipalpis were the species with the greatest number of records and were present in all the biomes in Central-West Brazil. The models, which were produced for 34 species, indicated that the Cerrado areas in the central and western regions of Central-West Brazil were climatically more suitable to sandflies. The variables with the greatest influence on the models were the temperature in the coldest months and the temperature seasonality. The results show that phlebotomine species in Central-West Brazil have different geographical distribution patterns and that climate conditions in essentially the entire region favour the occurrence of at least one Leishmania vector species, highlighting the need to maintain or intensify vector control and surveillance strategies. PMID:26018450

  9. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  10. [The fourth horseman: The yellow fever].

    Science.gov (United States)

    Vallejos-Parás, Alfonso; Cabrera-Gaytán, David Alejandro

    2017-01-01

    Dengue virus three, Chikunguya and Zika have entered the national territory through the south of the country. Cases and outbreaks of yellow fever have now been identified in the Americas where it threatens to expand. Although Mexico has a robust epidemiological surveillance system for vector-borne diseases, our country must be alert in case of its possible introduction into the national territory. This paper presents theoretical assumptions based on factual data on the behavior of yellow fever in the Americas, as well as reflections on the epidemiological surveillance of vector-borne diseases.

  11. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    Science.gov (United States)

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish.

    Science.gov (United States)

    Rakus, Krzysztof; Ronsmans, Maygane; Forlenza, Maria; Boutier, Maxime; Piazzon, M Carla; Jazowiecka-Rakus, Joanna; Gatherer, Derek; Athanasiadis, Alekos; Farnir, Frédéric; Davison, Andrew J; Boudinot, Pierre; Michiels, Thomas; Wiegertjes, Geert F; Vanderplasschen, Alain

    2017-02-08

    Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term "behavioral fever." We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C-32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Dengue fever with hepatitis E and hepatitis A infection.

    Science.gov (United States)

    Yakoob, Javed; Jafri, Wasim; Siddiqui, Shaheer; Riaz, Mehmood

    2009-03-01

    Infection with dengue viruses produces a spectrum of clinical illness ranging from a nonspecific viral syndrome to severe and fatal haemorrhagic disease. Important risk factors include the strain and serotype of the infecting virus, as well as the age, immune status, and genetic predisposition of the patient. The teaching point in this case study was Dengue fever which occurred concomitantly with Hepatitis A and Hepatitis E virus infection.

  14. Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014.

    Science.gov (United States)

    Lumley, S; Atkinson, B; Dowall, Sd; Pitman, Jk; Staplehurst, S; Busuttil, J; Simpson, Aj; Aarons, Ej; Petridou, C; Nijjar, M; Glover, S; Brooks, Tj; Hewson, R

    2014-07-31

    Crimean-Congo haemorrhagic fever (CCHF) was diagnosed in a United Kingdom traveller who returned from Bulgaria in June 2014. The patient developed a moderately severe disease including fever, headaches and petechial rash. CCHF was diagnosed following identification of CCHF virus (CCHFV) RNA in a serum sample taken five days after symptom onset. Sequence analysis of the CCHFV genome showed that the virus clusters within the Europe 1 clade, which includes viruses from eastern Europe.

  15. Phlebotomine sandflies (Diptera: Psychodidae from Lábrea, state of Amazonas, Brazil, with a description of Evandromyia (Aldamyia apurinan Shimabukuro, Figueira & Silva, sp. nov.

    Directory of Open Access Journals (Sweden)

    Elder Augusto Guimarães Figueira

    2013-05-01

    Full Text Available An entomological survey was conducted from July-December 2009 and September-December 2010, as part of the epidemiological monitoring of American cutaneous leishmaniasis (ACL in the municipality of Lábrea, state of Amazonas (AM, Brazil. Sandflies were collected using CDC light traps installed in intra and peridomiciliary locations, as well as the border of forested areas around houses where autochthonous cases of ACL were recorded. A total of 510 sandflies belonging to 26 species were collected. The most abundant species was Nyssomyia antunesi (44.5% followed by Evandromyia walkeri (10.6% and Micropygomyia rorotaensis (9.8%. Here we also describe Evandromyia (Aldamyia apurinan sp. nov. and report new records for Trichophoromyia flochi and Evandromyia sipani in AM and Brazil, respectively. Our results describe the composition of the sandfly fauna in the south of AM and suggest Ny. antunesi as the putative vector in the transmission of Leishmania in this area of the Amazon Region.

  16. Phlebotomine sandflies (Diptera: Psychodidae) from Lábrea, state of Amazonas, Brazil, with a description of Evandromyia (Aldamyia) apurinan Shimabukuro, Figueira & Silva, sp. nov.

    Science.gov (United States)

    Figueira, Elder Augusto Guimarães; Silva, Glacicleide; Chagas, Erica Cristina da Silva; Shimabukuro, Paloma Helena Fernandes

    2013-05-01

    An entomological survey was conducted from July-December 2009 and September-December 2010, as part of the epidemiological monitoring of American cutaneous leishmaniasis (ACL) in the municipality of Lábrea, state of Amazonas (AM), Brazil. Sandflies were collected using CDC light traps installed in intra and peridomiciliary locations, as well as the border of forested areas around houses where autochthonous cases of ACL were recorded. A total of 510 sandflies belonging to 26 species were collected. The most abundant species was Nyssomyia antunesi (44.5%) followed by Evandromyia walkeri (10.6%) and Micropygomyia rorotaensis (9.8%). Here we also describe Evandromyia (Aldamyia) apurinan sp. nov. and report new records for Trichophoromyia flochi and Evandromyia sipani in AM and Brazil, respectively. Our results describe the composition of the sandfly fauna in the south of AM and suggest Ny. antunesi as the putative vector in the transmission of Leishmania in this area of the Amazon Region.

  17. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance.

    Science.gov (United States)

    Anderson, G W; Rosebrock, J A; Johnson, A J; Jennings, G B; Peters, C J

    1991-05-01

    A congenic rat strain (WF.LEW) was derived from the susceptible Wistar-Furth (WF) (background strain) and the resistant LEW (donor strain) inbred strains and was used to evaluate the phenotypic expression of a dominant Mendelian gene that confers resistance to fatal hepatic disease caused by the ZH501 strain of Rift Valley fever virus (RVFV). Resistance to hepatic disease developed gradually with age, with full expression at approximately 10 weeks in the WF.LEW and LEW rat strains. The ZH501 strain caused fatal hepatitis in WF rats regardless of age. However, resistance to the SA75 RVFV strain (relatively non-pathogenic for adult rats), was age- and dose-dependent in both WF and LEW rats. The resistance gene transferred to the newly derived WF.LEW congenic rat strain appears to amplify age-dependent resistance of adult rats, resulting in protection against fatal hepatic disease caused by the virulent ZH501 strain. The congenic rat strain will be a valuable asset in elucidating the mechanism of resistance to Rift Valley fever virus governed by the dominant Mendelian gene.

  18. Serologic assessment of yellow fever immunity in the rural population of a yellow fever-endemic area in Central Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Wolff Machado

    2013-04-01

    Full Text Available Introduction The yellow fever epidemic that occurred in 1972/73 in Central Brazil surprised the majority of the population unprotected. A clinical-epidemiological survey conducted at that time in the rural area of 19 municipalities found that the highest (13.8% number of disease cases were present in the municipality of Luziânia, State of Goiás. Methods Thirty-eight years later, a new seroepidemiological survey was conducted with the aim of assessing the degree of immune protection of the rural population of Luziânia, following the continuous attempts of public health services to obtain vaccination coverage in the region. A total of 383 volunteers, aged between 5 and 89 years and with predominant rural labor activities (75.5%, were interviewed. The presence of antibodies against the yellow fever was also investigated in these individuals, by using plaque reduction neutralization test, and correlated to information regarding residency, occupation, epidemiological data and immunity against the yellow fever virus. Results We found a high (97.6% frequency of protective titers (>1:10 of neutralizing antibodies against the yellow fever virus; the frequency of titers of 1:640 or higher was 23.2%, indicating wide immune protection against the disease in the study population. The presence of protective immunity was correlated to increasing age. Conclusions This study reinforces the importance of surveys to address the immune state of a population at risk for yellow fever infection and to the surveillance of actions to control the disease in endemic areas.

  19. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo.

    Science.gov (United States)

    Makiala-Mandanda, Sheila; Ahuka-Mundeke, Steve; Abbate, Jessica L; Pukuta-Simbu, Elisabeth; Nsio-Mbeta, Justus; Berthet, Nicolas; Leroy, Eric Maurice; Becquart, Pierre; Muyembe-Tamfum, Jean-Jacques

    2018-05-16

    For more than 95% of acute febrile jaundice cases identified through surveillance for yellow fever, a reemerging arthropod-borne viral disease, no etiological exploration is ever done. The aim of this study was to test for other arthropod-borne viruses that can induce the same symptoms in patients enrolled in the yellow fever surveillance in the Democratic Republic of the Congo (DRC). Of 652 patients included in the surveillance of yellow fever in DRC from January 2003 to January 2012, 453 patients that tested negative for yellow fever virus (YFV) immunoglobulin M (IgM) antibodies were selected for the study. Real-time polymerase chain reaction was performed for the detection of dengue, West Nile, Chikungunya, O'nyong-nyong, Rift Valley fever, Zika, and YFV. The average age of patients was 22.1 years. We reported 16 cases (3.5%; confidence interval [CI]: 0.8-5.2) of dengue (serotypes 1 and 2) and 2 cases (0.4%; CI: 0.0-1.0) of Chikungunya. Three patients were co-infected with the two serotypes of dengue virus. Three cases of dengue were found in early July 2010 from the city of Titule (Oriental province) during a laboratory-confirmed outbreak of yellow fever, suggesting simultaneous circulation of dengue and yellow fever viruses. This study showed that dengue and Chikungunya viruses are potential causes of acute febrile jaundice in the DRC and highlights the need to consider dengue and Chikungunya diagnosis in the integrated disease surveillance and response program in the DRC. A prospective study is necessary to establish the epidemiology of these diseases.

  20. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  1. Marburg hemorrhagic fever associated with multiple genetic lineages of virus

    DEFF Research Database (Denmark)

    Bausch, D G; Nichol, S T; Muyembe-Tamfum, J J

    2006-01-01

    Background An outbreak of Marburg hemorrhagic fever was first observed in a gold-mining village in northeastern Democratic Republic of the Congo in October 1998. Methods We investigated the outbreak of Marburg hemorrhagic fever most intensively in May and October 1999. Sporadic cases and short ch...

  2. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    Science.gov (United States)

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH.

  3. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    Science.gov (United States)

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  4. Identification of insecticidal principals from cucumber seed oil against the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    The yellow fever mosquito, Aedes aegypti, is one of the most medically important mosquito species due to its ability to spread viruses of yellow fever, dengue fever and Zika in humans. In this study, the insecticidal activity of seventeen plant essential oils were evaluated to toxicity by topical a...

  5. Development of a Colloidal Gold Kit for the Diagnosis of Severe Fever with Thrombocytopenia Syndrome Virus Infection

    Directory of Open Access Journals (Sweden)

    Xianguo Wang

    2014-01-01

    Full Text Available It is critical to develop a cost-effective detection kit for rapid diagnosis and on-site detection of severe fever with thrombocytopenia syndrome virus (SFTSV infection. Here, an immunochromatographic assay (ICA to detect SFTSV infection is described. The ICA uses gold nanoparticles coated with recombinant SFTSV for the simultaneous detection of IgG and IgM antibodies to SFTSV. The ICA was developed and evaluated by using positive sera samples of SFTSV infection (n=245 collected from the CDC of China. The reference laboratory diagnosis of SFTSV infection was based on the “gold standard”. The results demonstrated that the positive coincidence rate and negative coincidence rate were determined to be 98.4% and 100% for IgM and 96.7% and 98.6% for IgG, respectively. The kit showed good selectivity for detection of SFTSV-specific IgG and IgM with no interference from positive sera samples of Japanese encephalitis virus infection, Dengue virus infection, Hantavirus infection, HIV infection, HBV surface antigen, HCV antibody, Mycobacterium tuberculosis antibody, or RF. Based on these results, the ICS test developed may be a suitable tool for rapid on-site testing for SFTSV infections.

  6. Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations.

    Science.gov (United States)

    Sang, Rosemary; Kioko, Elizabeth; Lutomiah, Joel; Warigia, Marion; Ochieng, Caroline; O'Guinn, Monica; Lee, John S; Koka, Hellen; Godsey, Marvin; Hoel, David; Hanafi, Hanafi; Miller, Barry; Schnabel, David; Breiman, Robert F; Richardson, Jason

    2010-08-01

    In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa.

  7. A review of mosquitoes associated with Rift Valley fever virus in Madagascar.

    Science.gov (United States)

    Tantely, Luciano M; Boyer, Sébastien; Fontenille, Didier

    2015-04-01

    Rift Valley fever (RVF) is a viral zoonotic disease occurring throughout Africa, the Arabian Peninsula, and Madagascar. The disease is caused by a Phlebovirus (RVF virus [RVFV]) transmitted to vertebrate hosts through the bite of infected mosquitoes. In Madagascar, the first RVFV circulation was reported in 1979 based on detection in mosquitoes but without epidemic episode. Subsequently, two outbreaks occurred: the first along the east coast and in the central highlands in 1990 and 1991 and the most recent along the northern and eastern coasts and in the central highlands in 2008 and 2009. Despite the presence of 24 mosquitoes species potentially associated with RVFV transmission in Madagascar, little associated entomological information is available. In this review, we list the RVFV vector, Culex antennatus, as well as other taxa as candidate vector species. We discuss risk factors from an entomological perspective for the re-emergence of RVF in Madagascar. © The American Society of Tropical Medicine and Hygiene.

  8. Dengue virus markers of virulence and pathogenicity

    OpenAIRE

    Rico-Hesse, Rebeca

    2009-01-01

    The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1–4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever pa...

  9. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    Science.gov (United States)

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  10. Evaluation of classical swine fever virus antibody detection assays with an emphasis on the differentiation of infected from vaccinated animals

    DEFF Research Database (Denmark)

    Schroeder, S.; von Rosen, Tanya; Blome, S.

    2012-01-01

    vaccinated animals (DIVA). The Chekit* CSF-Sero and the HerdChek* CSFV Ab, both of which detect antibodies against the E2 protein of classical swine fever virus (CSFV), had the highest sensitivity. Both tests were practicable and showed good reproducibility. Comparable sensitivity was shown by the Chekit......The aim of this study was to evaluate the general characteristics of commercially available enzyme-linked immunosorbent assays (ELISAs) to detect antibody against classical swine fever (CSF), as well as to assess their potential use as accompanying marker tests able to differentiate infected from......* CSF-Marker, an Erns ELISA. However, this test does not allow differentiation between antibodies directed against ruminant pestiviruses and those against CSFV. Therefore, it is not suitable for use with the chimeric marker vaccines tested. The PrioCHECK® CSFV Erns was the only ELISA suitable for use...

  11. Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Ruining WANG,Yubao ZHI,Junqing GUO,Qingmei LI,Li WANG,Jifei YANG,Qianyue JIN,Yinbiao WANG,Yanyan YANG,Guangxu XING,Songlin QIAO,Mengmeng ZHAO,Ruiguang DENG,Gaiping ZHANG

    2015-09-01

    Full Text Available Large-scale production of cell culture-based classical swine fever virus (CSFV vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF and size-exclusion chromatography (SEC, and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM, infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR. TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10-4.25 TCID50·mL-1 to 3.0×10-6.25 TCID50·mL-1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40—60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05. The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses.

  12. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001-2011: a tool for prioritizing human populations for vaccination.

    Directory of Open Access Journals (Sweden)

    Marco A B Almeida

    2014-03-01

    Full Text Available In Brazil, epizootics among New World monkey species may indicate circulation of yellow fever (YF virus and provide early warning of risk to humans. Between 1999 and 2001, the southern Brazilian state of Rio Grande do Sul initiated surveillance for epizootics of YF in non-human primates to inform vaccination of human populations. Following a YF outbreak, we analyzed epizootic surveillance data and assessed YF vaccine coverage, timeliness of implementation of vaccination in unvaccinated human populations. From October 2008 through June 2009, circulation of YF virus was confirmed in 67 municipalities in Rio Grande do Sul State; vaccination was recommended in 23 (34% prior to the outbreak and in 16 (24% within two weeks of first epizootic report. In 28 (42% municipalities, vaccination began more than two weeks after first epizootic report. Eleven (52% of 21 laboratory-confirmed human YF cases occurred in two municipalities with delayed vaccination. By 2010, municipalities with confirmed YF epizootics reported higher vaccine coverage than other municipalities that began vaccination. In unvaccinated human populations timely response to epizootic events is critical to prevent human yellow fever cases.

  13. Aceites esenciales de plantas colombianas inactivan el virus del dengue y el virus de la fiebre amarilla Essential oils from Colombian plants inactive dengue virus and yellow fever virus

    Directory of Open Access Journals (Sweden)

    Rocío Meneses

    2009-12-01

    Full Text Available Introducción: Un antiviral contra el virus del dengue (VDEN y el virus de la fiebre amarilla (VFA para tratamiento de los enfermos, no está disponible en el mercado a pesar de numerosas investigaciones con compuestos sintéticos. Objetivo: Evaluar el efecto inhibitorio in vitro sobre el VDEN y el VFA del aceite esencial obtenido de plantas cultivadas en Colombia. Materiales y métodos: Los virus se incubaron con el aceite esencial (100 μg/mL 2 h a 37°C antes de la adsorción a la célula y el efecto inhibitorio fue determinado por el método de reducción de placa. Resultados: El aceite esencial obtenido de 10 y 8 plantas redujo desde 74 hasta 100% placas del VDEN y del VFA, respectivamente. Los aceites de Lippia citriodora (verbena y Pimenta racemosa (laurel fueron más activos contra ambos virus reduciendo 100% las placas. La magnitud del efecto inhibitorio se relacionó con el método de extracción del aceite y la parte de la planta seleccionada. Conclusiones: El aceite esencial de plantas colombianas puede inhibir la replicación in vitro del VDEN y VFA. Se requieren más estudios para determinar la concentración mínima inhibitoria y el índice de selectividad para considerar estas plantas como fuente de compuestos antivirales. Salud UIS 2009; 41: 236-243Introduction: Products obtained from plants can inhibit in vitro viruses that cause human diseases. An antiviral drug against dengue virus (DENV and yellow fever virus (YFV does not exist despite extensive research exploring synthetic compounds. Objective: To evaluate the inhibitory effect on DENV and YFV of essential oils obtained from Colombian plants. Materials and methods: Viruses were incubated with essential oil (100 μg/mL 2 h at 37°C before cell adsorption and the inhibitory effect was determined by plaque reduction assay. Results: The essential oil obtained from 10 and 8 plants reduced from 74 to 100% DENV and YFV plaques, respectively. Essential oils from Lippia citriodora

  14. Systematic Epstein-Barr virus-positive T-cell lymphoproliferative disease presenting as a persistent fever and cough: a case report.

    Science.gov (United States)

    Ameli, Fereshteh; Ghafourian, Firouzeh; Masir, Noraidah

    2014-08-27

    Systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease is an extremely rare disorder and classically arises following primary acute or chronic active Epstein-Barr virus infection. It is characterized by clonal proliferation of Epstein-Barr virus-infected T-cells with an activated cytotoxic phenotype. This disease has a rapid clinical course and is more frequent in Asia and South America, with relatively few cases being reported in Western countries. The clinical and pathological features of the disease overlap with other conditions including infectious mononucleosis, chronic active Epstein-Barr virus infection, hemophagocytic lymphohistiocytosis and natural killer cell malignancies. We describe the rare case of systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease in a 16-year-old Malay boy. He presented with a six-month history of fever and cough, with pulmonary and mediastinal lymphadenopathy and severe pancytopenia. Medium- to large-sized, CD8+ and Epstein-Barr virus-encoded RNA-positive atypical lymphoid cells were present in the bone marrow aspirate. He subsequently developed fatal virus-associated hemophagocytic syndrome and died due to sepsis and multiorgan failure. Although systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease is a disorder which is rarely encountered in clinical practice, our case report underlines the importance of a comprehensive diagnostic approach in the management of this disease. A high level of awareness of the disease throughout the diagnosis process for young patients who present with systemic illness and hemophagocytic syndrome may be of great help for the clinical diagnosis of this disease.

  15. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  16. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    Science.gov (United States)

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rotavirus infection as a frequent cause of neonatal fever.

    Science.gov (United States)

    Kang, Ha-Na; Park, Hyun Kyung; Lee, Hyun-Ju; Moon, Jin-Hwa; Oh, Jae Won; Kim, Chang-Ryul

    2018-04-01

    Fever rather than diarrhea or vomiting was the most common symptom of neonatal rotavirus (RV) infection in our previous study. We investigated whether RV infection is a major cause of neonatal fever and compared the clinical characteristics of bacterial infection, viral infection and unknown causes of neonatal fever. We reviewed the electronic medical records of 48 newborns aged ≤28 days who were admitted to the Special Care Nursery of Hanyang University Guri Hospital for fever (≥38°C) from 2005 to 2009. All the newborns underwent complete blood count, urinalysis, C-reactive protein, cultures of blood, urine, and cerebrospinal fluid as well as stool RV enzyme-linked immunosorbent assay. Respiratory virus polymerase chain reaction for cough or rhinorrhea, and stool culture for diarrhea were also done. All the babies were term, with mean age 13 ± 8 days and peak body temperature 38.5 ± 0.5°C. The causes of neonatal fever were viral (44%), bacterial (10%) and unknown (46%). The viral infections included RV (n = 12), enterovirus (n = 6), respiratory syncytial virus (n = 2), and rhinovirus (n = 1). All the rotavirus genotypes were G4P[6]. Only three of 12 RV-infected febrile newborns had diarrhea. The bacterial infections included three cases of urinary tract infection (Escherichia coli, n = 2; Klebsiella pneumoniae, n = 1), and two cases of sepsis complicated with meningitis (all Streptococcus agalactiae). RV infection is the most common single cause of neonatal fever. It may be necessary to include stool RV tests for febrile newborns. © 2017 Japan Pediatric Society.

  18. CD8+ T cells complement antibodies in protecting against yellow fever virus.

    Science.gov (United States)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A; Fenger, Christina; Rasmussen, Michael; Skjødt, Karsten; Finsen, Bente; Stryhn, Anette; Buus, Søren; Christensen, Jan P; Thomsen, Allan R

    2015-02-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  20. African Swine Fever Virus, Siberia, Russia, 2017.

    Science.gov (United States)

    Kolbasov, Denis; Titov, Ilya; Tsybanov, Sodnom; Gogin, Andrey; Malogolovkin, Alexander

    2018-04-01

    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017.

  1. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    2016-08-01

    Full Text Available The bunyavirus genome comprises a small (S, medium (M, and large (L RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH, the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process.

  2. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.

    Science.gov (United States)

    Ogawa, Motohiko; Shirasago, Yoshitaka; Ando, Shuji; Shimojima, Masayuki; Saijo, Masayuki; Fukasawa, Masayoshi

    2018-04-05

    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC 50 ) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC 50  = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC 50  = 0.18 mM) than at a high MOI of 1 per cell (IC 50  > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent Protein Kinase PKR

    OpenAIRE

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V.; Lokugamage, Nandadeva; Head, Jennifer A.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV) encodes one major virulence factor, the NSs protein. NSs suppresses host general transcription, including interferon (IFN)-β mRNA synthesis, and promotes degradation of the dsRNA-dependent protein kinase (PKR). We generated a novel RVFV mutant (rMP12-NSsR173A) specifically lacking the function to promote PKR degradation. rMP12-NSsR173A infection induces early phosphorylation of eIF2α through PKR activation, while retaining the function to inhibit host general tr...

  4. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.

    Directory of Open Access Journals (Sweden)

    Rianka P M Vloet

    2017-12-01

    Full Text Available Rift Valley fever virus (RVFV is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx. pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied.Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells.We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both

  5. TRAINING PROGRAM FOR NURSING STAFF REGARDING VIRAL HEMORRHAGIC FEVERS IN A MILITARY HOSPITAL.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Megahed, Laila Abdel-Mawla; Saleh, Halla Ahmed Abdullah; Abdelfattah, Magda Abdelhamid; Morsy, Tosson Aly

    2015-08-01

    Viral hemorrhagic fevers (VHFs) refer to a group of illnesses caused by several distinct families of viruses. In general, the term "viral hemorrhagic fever" is used to describe a severe multisystem syndrome (multisystem in that multiple organ systems in the bpdy are affected). Characteristically, the overall vascular system is damaged, and the body's ability to regulate itself is impaired. These symptoms are often accompanied by hemorrhage (bleeding); however, the bleeding is it rarely life-threatening. While some types of hemorrhagic fever viruses can cause relatively mild illnesses, many of these viruses cause severe, life-threatening disease. The selected disaster diseases for this study included: 1-Crimean-Congo hemorrhagic Fever, 2-Dengue Fever, 3-Ebola Fever, 4-Hem-orrhagic Fever with renal syndrome (HFRS), 5-Hantavirus Pulmonary Syndrome, 6-Lassa Fever, 7-Marburg Fever, 8-Rift Valley Fever and 9-Yellow Fever. The educational training program was given over ten sessions to a group of Staff Nurses. The results showed that the program succeeded in enhancing nurse' knowledge, awareness, responsibility, and obligations toward patients with the Viral Hemorrhagic Fevers The results showed a significant impact of training sessions illuminated in the follow-up test on the knowledge score of nurses in all types of diseases except for the Congo hemorrhagic fever, while, statistical significance varied in some diseases in the study when it comes to the comparison between pretest and post-test. All results confirmed on the positive impact of the training program in enhancing the knowledge of nurses toward VHFs patients and their relevant. There was a significant positive impact of the training sessions on changing the attitude of nurses toward patients with VHFs. This result was confirmed on the collective level since the total scores on tests revealed significant positive impact of the study on changing the attitude of nurses toward relevant patients. The relationship

  6. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew F van den Hurk

    Full Text Available Incidence of disease due to dengue (DENV, chikungunya (CHIKV and yellow fever (YFV viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  7. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    Science.gov (United States)

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  8. Identification of a new genotype of African swine fever Virus in domestic pigs from Ethiopia

    International Nuclear Information System (INIS)

    Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; Chibssa, T.R.; Belaye, A.; Loitsch, A.; Forsa, M.; Yami, M.; Diallo, A.; Soler, A.; Lamien, C.E.

    2016-01-01

    Full text: African swine fever (ASF) is an important emerging transboundary animal disease (TAD), which currently has an impact on many countries in Africa, Eastern Europe, the Caucasus and the Russian Federation. The current situation in Europe shows the ability of the virus to rapidly spread, which stands to threaten the global swine industry. At present, there is no viable vaccine to minimize spread of the disease and stamping out is the main source of control. In February 2011, Ethiopia had reported its first suspected outbreaks of ASF. Genomic analyses of the collected ASF virus (ASFV) strains were undertaken using 23 tissue samples collected from domestic swine in Ethiopia from 2011 to 2014. The analysis of Ethiopian ASFVs partial p72 gene sequence showed the identification of a new genotype, genotype XXIII that shares a common ancestor with genotypes IX and X, which comprise isolates circulating in Eastern African countries and the Republic of Congo. Analysis of the p54 gene also followed the p72 pattern and the deduced amino acid sequence of the central variable region (CVR) of the B602L gene showed novel tetramer repeats not previously characterized. (author)

  9. Spatiotemporal analysis of sandfly fauna (Diptera: Psychodidae) in an endemic area of visceral leishmaniasis at Pantanal, central South America.

    Science.gov (United States)

    Casaril, Aline Etelvina; Monaco, Neiva Zandonaide Nazario; de Oliveira, Everton Falcão; Eguchi, Gabriel Utida; Paranhos Filho, Antonio Conceição; Pereira, Luciana Escalante; Oshiro, Elisa Teruya; Galati, Eunice Aparecida Bianchi; Mateus, Nathália Lopes Fontoura; de Oliveira, Alessandra Gutierrez

    2014-08-15

    Environmental changes caused by urbanization can cause alterations in the ecology and behavior of sandflies and in the epidemiology of leishmaniasis. Geotechnological tools allow the analysis and recognition of spatiotemporal patterns by monitoring and mapping risk areas of this vector-borne disease. This study aims to describe the sandfly fauna in the municipality of Corumbá and to compare it with the data described in a three-year period from 1984 to 1986 by Galati. A further aim was to analyze the influence of environmental changes on the composition of the fauna. Captures were conducted weekly from April 2012 to March 2013, in intra and peridomicile areas with automatic light traps, from 6:00 pm to 6:00 am. The following indices were calculated for both periods analyzed: Standardized Index of Species Abundance (SISA), Shannon's diversity index (H) and Pielou's index (J). The Normalized Difference Vegetation Index (NDVI) was extracted from a remote sensing LANDSAT-5 image. In total, 7,370 specimens (6,169 males and 1,201 females) were collected, distributed among 12 species. Lutzomyia cruzi was the most frequent species (93,79%) and the first in the ranking of standardized species abundance index in both studies. The dominance of the species Lu. cruzi in the neighborhoods of Maria Leite and Centro was demonstrated by the low equitability index. The neighborhood of Cristo Redentor had the greatest diversity of sandflies in the present study and the second greatest in the study performed by Galati et al. (Rev Saúde Pública 31:378-390, 1997). Analyzing the satellite images and the NDVI from 1984 and 2010, the largest amount of dense vegetation was found in the neighborhood of Cristo Redentor. It was, therefore, possible to show how changes caused due to urbanization have affected the density and distribution of Lu. cruzi and other species over time. Moreover, the data suggest that different populations of sandflies adapt in different ways according to

  10. Recent progress in West Nile virus diagnosis and vaccination

    Directory of Open Access Journals (Sweden)

    De Filette Marina

    2012-03-01

    Full Text Available Abstract West Nile virus (WNV is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus. Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV, yellow fever virus (YFV, Japanese encephalitis virus (JEV and West Nile virus (WNV, as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV. Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections.

  11. Zika virus infection acquired during brief travel to Indonesia.

    Science.gov (United States)

    Kwong, Jason C; Druce, Julian D; Leder, Karin

    2013-09-01

    Zika virus infection closely resembles dengue fever. It is possible that many cases are misdiagnosed or missed. We report a case of Zika virus infection in an Australian traveler who returned from Indonesia with fever and rash. Further case identification is required to determine the evolving epidemiology of this disease.

  12. Acute gingival bleeding as a complication of dengue hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2013-01-01

    Full Text Available Dengue fever is mosquito borne disease caused by dengue virus (DENV of Flaviviridae family. The clinical manifestations range from fever to severe hemorrhage, shock and death. Here, we report a case of 20-year-old male patient undergoing orthodontic treatment presenting with acute gingival bleeding with a history of fever, weakness, backache, retro orbital pain and ecchymosis over his right arm. The hematological investigations revealed anemia, thrombocytopenia and positive dengue non-structural protein-1 antigen and also positive immunoglobulin M and immunoglobulin G antibodies for DENV. Patient was diagnosed as a case of dengue hemorrhagic fever and was immediately referred for appropriate management. This case report emphasizes the importance of taking correct and thorough medical history.

  13. Rift Valley fever virus infections in Egyptian cattle and their prevention.

    Science.gov (United States)

    Mroz, C; Gwida, M; El-Ashker, M; Ziegler, U; Homeier-Bachmann, T; Eiden, M; Groschup, M H

    2017-12-01

    Rift Valley fever virus (RVFV) causes consistently severe outbreaks with high public health impacts and economic losses in livestock in many African countries and has also been introduced to Saudi Arabia and Yemen. Egypt with its four large outbreaks in the last 40 years represents the northernmost endemic area of RVFV. The purpose of this study was to provide an insight into the current anti-RVFV antibody status in immunized as well as non-immunized dairy cattle from the Nile Delta of Egypt. During 2013-2015, a total of 4,167 dairy cattle from four governorates including Dakahlia, Damietta, Gharbia and Port Said were investigated. All cattle were born after 2007 and therewith after the last reported Egyptian RVFV outbreak in 2003. The samples derived from vaccinated animals from 26 different dairy farms as well as non-immunized cattle from 27 different smallholding flocks. All samples were examined following a three-part analysis including a commercially available competition ELISA, an in-house immunofluorescence assay and a virus neutralization test. Additionally, a subset of samples was analysed for acute infections using IgM ELISA and real-time reverse transcriptase PCR. The results indicated that the RVFV is still circulating in Egypt as about 10% of the non-immunized animals exhibited RVFV-specific antibodies. Surprisingly, the antibody prevalence in immunized animals was not significantly higher than that in non-vaccinated animals which points out the need for further evaluation of the vaccination programme. Due to the substantial role of livestock in the amplification and transmission of RVFV, further recurrent monitoring of the antibody prevalence in susceptible species is highly warranted. © 2017 Blackwell Verlag GmbH.

  14. Molecular detection of severe fever with thrombocytopenia syndrome virus (SFTSV) in feral cats from Seoul, Korea.

    Science.gov (United States)

    Hwang, Jusun; Kang, Jun-Gu; Oh, Sung-Suck; Chae, Jeong-Byoung; Cho, Yun-Kyung; Cho, Young-Sun; Lee, Hang; Chae, Joon-Seok

    2017-01-01

    This study tested serum samples of feral cats from a highly urbanized habitat, Seoul, Korea to determine the infection to severe fever with thrombocytopenia syndrome virus (SFTSV). From 126 samples tested, SFTSV was detected by RT-PCR in 22 (17.5%) cats from various sites of Seoul. Sequences identified from this study were grouped with clusters from China and Japan. Our result provides data that SFTSV may have been circulating in settings that were suspected to have relatively low risk, such as highly urbanized habitats. Thus it warrants further study to investigate the ecology of SFTSV in urban-dwelling animals including ticks, human and other potential host species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Laboratory safe detection of nucleocapsid protein of Rift Valley fever virus in human and animal specimens by a sandwich ELISA.

    Science.gov (United States)

    Jansen van Vuren, P; Paweska, J T

    2009-04-01

    A safe laboratory procedure, based on a sandwich ELISA (sAg-ELISA), was developed and evaluated for the detection of nucleocapsid protein (NP) of Rift Valley fever virus (RVFV) in specimens inactivated at 56 degrees C for 1h in the presence of 0.5% Tween-20 (v/v) before testing. Polyclonal capture and detection immune sera were generated respectively in sheep and rabbits immunized with recombinant NP antigen. The assay was highly repeatable and specific; it detected strains of RVFV from the entire distributional range of the disease, isolated over a period of 53 years; no cross-reactivity with genetically related African phleboviruses or other members of the family Bunyaviridae was observed. In specimens spiked with RVFV, including human and animal sera, homogenates of liver and spleen tissues of domestic ruminants, and Anopheles mosquito homogenates, the sAg-ELISA detection limit ranged from log(10)10(2.2) to 10(3.2) TCID(50)/reaction volume. The ELISA detected NP antigen in spiked bovine and sheep liver homogenates up to at least 8 days of incubation at 37 degrees C whereas infectious virus could not be detected at 48h incubation in these adverse conditions. Compared to virus isolation from sera from RVF patients and sheep infected experimentally, the ELISA had 67.7% and 70% sensitivity, and 97.97% and 100% specificity, respectively. The assay was 100% accurate when testing tissues of various organs from mice infected experimentally and buffalo foetuses infected naturally. The assay was able to detect NP antigen in infective culture supernatants 16-24h before cytopathic effects were observed microscopically and as early as 8h after inoculation with 10(5.8) TCID(50)/ml of RVFV. This ability renders the assay for rapid identification of the virus when its primary isolation is attempted in vitro. As a highly specific, safe and simple assay format, the sAg-ELISA represents a valuable diagnostic tool for use in less equipped laboratories in Africa, and for routine

  16. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  17. Crimean-Congo hemorrhagic fever: Risk factors and control measures for the infection abatement

    Science.gov (United States)

    ASLAM, SAADIA; LATIF, MUHAMMAD SHAHZAD; DAUD, MUHAMMAD; RAHMAN, ZIA UR; TABASSUM, BUSHRA; RIAZ, MUHAMMAD SOHAIL; KHAN, ANWAR; TARIQ, MUHAMMAD; HUSNAIN, TAYYAB

    2016-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne viral disease, widely distributed in different regions of the world. The fever is caused by the CCHF virus (CCHFV), which belongs to the Nairovirus genus and Bunyaviridae family. The virus is clustered in seven genotypes, which are Africa-1, Africa-2, Africa-3, Europe-1, Europe-2, Asia-1 and Asia-2. The virus is highly pathogenic in nature, easily transmissible and has a high case fatality rate of 10–40%. The reservoir and vector of CCHFV are the ticks of the Hyalomma genus. Therefore, the circulation of this virus depends upon the distribution of the ticks. The virus can be transmitted from tick to animal, animal to human and human to human. The major symptoms include headache, high fever, abdominal pain, myalgia, hypotension and flushed face. As the disease progresses, severe symptoms start appearing, which include petechiae, ecchymosis, epistaxis, bleeding gums and emesis. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, antigen detection, serum neutralization and isolation of the virus by cell culture are the diagnostic techniques used for this viral infection. There is no specific antiviral therapy available thus far. However, ribavirin has been approved by the World Health Organization for the treatment of CCHFV infection. Awareness campaigns regarding the risk factors and control measures can aid in reducing the spread of this disease to a greater extent, particularly in developing countries. PMID:26870327

  18. Zika virus infection: a public health emergency!

    OpenAIRE

    Qureshi, Muhammad Salman Haider; Qureshi, Bakhtawar Wajeeha; Khan, Ramsha

    2017-01-01

    Zika virus belongs to the family of Flaviviridae. The Flaviviridae family also includes other human pathogens like West Nile virus (WNV), Yellow fever virus (YFV), mosquito transmitted Dengue virus (DENV), Tick borne encephalitic virus (TBEV) and Japanese encephalitis virus (JEV). Zika virus is a mosquito-borne disease and is transmitted by Aedes aegypti mosquito.

  19. Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects.

    Science.gov (United States)

    Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E

    2010-01-01

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.

  20. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus.

    Science.gov (United States)

    Takehara, K; Min, M K; Battles, J K; Sugiyama, K; Emery, V C; Dalrymple, J M; Bishop, D H

    1989-04-01

    The M RNA species of a candidate vaccine strain of Rift Valley fever virus (RVFV ZH-548M12), derived by consecutive high level mutagenesis using 5-fluorouracil (H. Caplen, C. J. Peters, and D. H. L. Bishop, J. Gen. Virol., 66, 2271-2277, 1985), has been cloned and the cDNA sequenced. The data have been compared to those obtained for the parent virus strain RVFV ZH-548 as well as the previously published data for RVFV ZH-501 (M. S. Collett, A. F. Purchio, K. Keegan, S. Frazier, W. Hays, D. K. Anderson, M. D. Parker, C. Schmaljohn, J. Schmidt, and J. M. Dalrymple, Virology, 144, 228-245, 1985). Some eight nucleotide and three amino acid differences were identified between the M RNAs of ZH-501 and ZH-548. Between the M RNAs of ZH-548 and that of the M12 mutant there were 12 nucleotide and 7 amino acid changes. Unique to the mutant virus is a new AUG codon upstream of that which initiates the open reading frame of the RVFV M gene product (the viral glycoprotein precursor). The significance of this and other differences in the mutant RNA with regard to the derivation and potential attenuation of the candidate vaccine is discussed.

  1. Differential application of lambda-cyhalothrin to control the sandfly Lutzomyia longipalpis.

    Science.gov (United States)

    Kelly, D W; Mustafa, Z; Dye, C

    1997-01-01

    To study the impact of residual pyrethroid insecticide on the abundance and distribution of peridomestic Lutzomyia longipalpis, the sandfly vector of visceral leishmaniasis in Brazil, lambda-cyhalothrin was applied at 20 mg a.i.m-2 in the following interventions: (i) spraying of all animal pens in a village (blanket coverage); (ii) treatment of a subset of animal pens, either by spraying, or by installation of insecticide-impregnated 1 m2 cotton sheets as 'targets' (focal coverage). By sampling with CDC light traps, and using a novel analytical approach, we detected a 90% reduction in Lu.longipalpis abundance in sprayed sheds of the focal intervention. However, there was no discernible effect on the abundance of other phlebotomines trapped in sheds, or on the abundance of Lu.longipalpis in untreated dining-huts and houses. This differential impact on Lu.longipalpis abundance is explained in terms of the disruption of male pheromone production. Treated targets were approximately half as effective as residual spraying in reducing the abundance of Lu.longipalpis in sheds. Following blanket intervention, the abundance of Lu.longipalpis in traps fell by only 45% (not significant): catches at untreated dining-huts actually increased, possibly because the blanket coverage diverted Lu.longipalpis away from major aggregation sites at animal pens. It is recommended that care be taken during vector control programmes to ensure that all potential aggregation sites are treated. The possible consequences of leaving some sites untreated include poor control of peridomestic sandfly abundance and an increase in the biting rate on dogs and humans.

  2. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2009-10-01

    Full Text Available Abstract Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV is a giant virus (girus with a ~356-kbp double-stranded DNA (dsDNA genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs, though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae, one mostly infecting terrestrial animals (Poxviridae, another isolated from fish, amphibians and insects (Iridoviridae, and the last one (Asfarviridae exclusively represented by the animal pathogen African swine fever virus (ASFV, the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi, suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

  3. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  4. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    Directory of Open Access Journals (Sweden)

    Rajini Mudhasani

    2014-08-01

    Full Text Available High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362, which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their

  5. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    2009-02-01

    Full Text Available Rift Valley fever virus (RVFV (genus Phlebovirus, family Bunyaviridae is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR-mediated eukaryotic initiation factor (eIF2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  6. Habitats of the sandfly vectors of Leishmania tropica and L. major in a mixed focus of cutaneous leishmaniasis in southeast Tunisia.

    Science.gov (United States)

    Tabbabi, Ahmed; Ghrab, Jamila; Aoun, Karim; Ready, Paul Donald; Bouratbine, Aïda

    2011-08-01

    From 2009 to 2010, 3129 sandflies were caught in CDC light traps placed in various habitats in Ghomrassen, Tataouine governorate, southeast Tunisia, a mixed focus of human cutaneous leishmaniasis caused by Leishmania tropica and Leishmania major. Species diversity was quantified in anthropogenic, semi-anthropogenic and semi-natural locations. Sandflies were identified according to morphological characters and also by the comparative sequence analysis of a fragment of the mitochondrial cytochrome b gene to distinguish between two putative local vectors of L. tropica, namely Phlebotomus chabaudi and Phlebotomus riouxi. The lowest sandfly diversities were found in L. major sites, where the incriminated vector P. papatasi predominated in the burrows of the rodent reservoir hosts (Meriones) as well as inside and outside houses of human cases. In L. tropica sites, the incriminated peri-domestic vector Phlebotomus sergenti was the most abundant species inside houses, whereas P. riouxi or P. chabaudi was the dominant species in the semi-natural rocky habitats favoured by the putative rodent reservoir, Ctenodactylus gundi. All specimens of P. chabaudi identified molecularly had the diagnostic cytochrome b characters of P. riouxi, indicating either that the latter represents only a geographical variant of P. chabaudi or that these two species may sometimes hybridize. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Is it time for a new yellow fever vaccine?

    Science.gov (United States)

    Hayes, Edward B

    2010-11-29

    An inexpensive live attenuated vaccine (the 17D vaccine) against yellow fever has been effectively used to prevent yellow fever for more than 70 years. Interest in developing new inactivated vaccines has been spurred by recognition of rare but serious, sometimes fatal adverse events following live virus vaccination. A safer inactivated yellow fever vaccine could be useful for vaccinating people at higher risk of adverse events from the live vaccine, but could also have broader global health utility by lowering the risk-benefit threshold for assuring high levels of yellow fever vaccine coverage. If ongoing trials demonstrate favorable immunogenicity and safety compared to the current vaccine, the practical global health utility of an inactivated vaccine is likely to be determined mostly by cost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks.

    Directory of Open Access Journals (Sweden)

    Rita Ribeiro

    Full Text Available African swine fever (ASF is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present.

  9. Evidence for the Inhibition of Dengue Virus Binding in the Presence of Silver Nanoparticles

    Science.gov (United States)

    2015-03-26

    with DENV are known to increase in severity from Dengue Fever to Dengue Hemorrhagic Fever or Dengue Shock Syndrome. Currently, no vaccines or...DENV is a member of the Flavivirus family, as is the yellow fever virus (the family’s prototype), West Nile, Japanese encephalitis virus, and many...perspective/2013/10/ researchers - identify-fifth-dengue-subtype. [20] C. Moore, “UTMB Galveston Researchers Discover First New Dengue Fever Serotype In 50

  10. Persistent spiking fever in a child with acute myeloid leukemia and disseminated infection with enterovirus

    NARCIS (Netherlands)

    Murk, J. L.; de Vries, A. C.; GeurtsvanKessel, C. H.; Aron, G.; Osterhaus, A. D.; Wolthers, K. C.; Fraaij, P. L.

    2014-01-01

    We here report a 7 year old acute myeloid leukemia patient with persistent spiking fever likely caused by chronic echovirus 20 infection. After immunoglobulin substitution fevers subsided and the virus was cleared. Enterovirus infection should be considered in immunocompromised patients with

  11. Assessment of PCR in the detection of Leishmania spp in experimentally infected individual phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae

    Directory of Open Access Journals (Sweden)

    MICHALSKY Érika M.

    2002-01-01

    Full Text Available DNA amplification by the polymerase chain reaction (PCR was applied in the investigation of the presence of Leishmania (Kinetoplastida: Trypanosomatidae parasites in single phlebotomine sandflies. Three phlebotomine/parasite pairs were used: Lutzomyia longipalpis/Leishmania chagasi, Lutzomyia migonei/Leishmania amazonensis and Lutzomyia migonei/Leishmania braziliensis, all of them incriminated in the transmission of visceral or cutaneous leishmaniasis. DNA extraction was performed with whole insects, with no need of previous digestive tract dissection or pooling specimens. The presence of either mouse blood in the digestive tract of the sandflies or the digestive tract itself did not interfere in the PCR. Infection by as few as 10 Leishmania sp. per individual were sufficient for DNA amplification with genus-specific primers. Using primers for L. braziliensis and L. mexicana complexes, respectively, it was possible to discriminate between L. braziliensis and L. amazonensis in experimentally infected vectors (L. migonei.

  12. Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations.

    Science.gov (United States)

    Nabeth, P; Kane, Y; Abdalahi, M O; Diallo, M; Ndiaye, K; Ba, K; Schneegans, F; Sall, A A; Mathiot, C

    2001-01-01

    A Rift Valley fever outbreak occurred in Mauritania in 1998. Seroepidemiologic and virologic investigation showed active circulation of the Rift Valley fever virus, with 13 strains isolated, and 16% (range 1.5%-38%) immunoglobulin (Ig) M-positivity in sera from 90 humans and 343 animals (sheep, goats, camels, cattle, and donkeys). One human case was fatal.

  13. The influence of moonlight and lunar periodicity on the efficacy of CDC light trap in sampling Phlebotomus (Larroussius) orientalis Parrot, 1936 and other Phlebotomus sandflies (Diptera: Psychodidae) in Ethiopia.

    Science.gov (United States)

    Gebresilassie, Araya; Yared, Solomon; Aklilu, Essayas; Kirstein, Oscar David; Moncaz, Aviad; Tekie, Habte; Balkew, Meshesha; Warburg, Alon; Hailu, Asrat; Gebre-Michael, Teshome

    2015-02-15

    Phlebotomus orientalis is the main sandfly vector of visceral leishmaniasis in the north and northwest of Ethiopia. CDC light traps and sticky traps are commonly used for monitoring sandfly populations. However, their trapping efficiency is greatly influenced by various environmental factors including moonlight and lunar periodicity. In view of that, the current study assessed the effect of moonlight and lunar periodicity on the performance of light traps in collecting P. orientalis. Trapping of P. orientalis and other Phlebotomus spp. was conducted for 7 months between December 2012 and June 2013 using CDC light traps and sticky traps from peri-domestic and agricultural fields. Throughout the trapping periods, collections of sandfly specimens were carried out for 4 nights per month, totaling 28 trapping nights that coincided with the four lunar phases (viz., first quarter, third quarter, new and full moon) distributed in each month. In total, 13,533 sandflies of eight Phlebotomus species (P. orientalis, P. bergeroti, P. rodhaini, P. duboscqi, P. papatasi, P. martini, P. lesleyae and P. heischi) were recorded. The predominant species was P. orientalis in both trapping sites and by both methods of collection in all lunar phases. A significant difference (P lunar phases. The highest mean number (231.13 ± 36.27 flies/trap/night) of P. orientalis was collected during the new moon phases, when the moonlight is absent. Fewer sandflies were attracted to light traps during a full moon. However, the number of P. orientalis and the other Phlebotomus spp. from sticky traps did not differ in their density among the four lunar phases (P = 0.122). Results of the current study demonstrated that the attraction and trapping efficiency of CDC light traps is largely influenced by the presence moonlight, especially during a full moon. Therefore, sampling of sandflies using light traps to estimate population density and other epidemiological studies in the field should take

  14. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.

    Directory of Open Access Journals (Sweden)

    Sara Muñoz-González

    Full Text Available It is well established that trans-placental transmission of classical swine fever virus (CSFV during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs

  16. Molecular diagnostics for lassa fever at Irrua specialist teaching hospital, Nigeria: lessons learnt from two years of laboratory operation.

    Directory of Open Access Journals (Sweden)

    Danny A Asogun

    Full Text Available BACKGROUND: Lassa fever is a viral hemorrhagic fever endemic in West Africa. However, none of the hospitals in the endemic areas of Nigeria has the capacity to perform Lassa virus diagnostics. Case identification and management solely relies on non-specific clinical criteria. The Irrua Specialist Teaching Hospital (ISTH in the central senatorial district of Edo State struggled with this challenge for many years. METHODOLOGY/PRINCIPAL FINDINGS: A laboratory for molecular diagnosis of Lassa fever, complying with basic standards of diagnostic PCR facilities, was established at ISTH in 2008. During 2009 through 2010, samples of 1,650 suspected cases were processed, of which 198 (12% tested positive by Lassa virus RT-PCR. No remarkable demographic differences were observed between PCR-positive and negative patients. The case fatality rate for Lassa fever was 31%. Nearly two thirds of confirmed cases attended the emergency departments of ISTH. The time window for therapeutic intervention was extremely short, as 50% of the fatal cases died within 2 days of hospitalization--often before ribavirin treatment could be commenced. Fatal Lassa fever cases were older (p = 0.005, had lower body temperature (p<0.0001, and had higher creatinine (p<0.0001 and blood urea levels (p<0.0001 than survivors. Lassa fever incidence in the hospital followed a seasonal pattern with a peak between November and March. Lassa virus sequences obtained from the patients originating from Edo State formed--within lineage II--a separate clade that could be further subdivided into three clusters. CONCLUSIONS/SIGNIFICANCE: Lassa fever case management was improved at a tertiary health institution in Nigeria through establishment of a laboratory for routine diagnostics of Lassa virus. Data collected in two years of operation demonstrate that Lassa fever is a serious public health problem in Edo State and reveal new insights into the disease in hospitalized patients.

  17. Chikungunya virus-like particle vaccine

    NARCIS (Netherlands)

    Metz, S.W.H.

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus (family Togaviridae) and is the causative agent of chikungunya fever. This disease is characterised by the sudden onset of high fever and long-lasting arthritic disease. First identified in Tanzania in 1952,

  18. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Directory of Open Access Journals (Sweden)

    Kathryn C Meier

    2009-10-01

    Full Text Available Mosquito-borne yellow fever virus (YFV causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129 or the STAT1 signaling molecule (STAT129 were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129

  19. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Science.gov (United States)

    Meier, Kathryn C; Gardner, Christina L; Khoretonenko, Mikhail V; Klimstra, William B; Ryman, Kate D

    2009-10-01

    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT

  20. Molecular Diagnostics of Hemorrhagic Fever with Renal Syndrome during a Dobrava Virus Infection Outbreak in the European Part of Russia ▿

    Science.gov (United States)

    Dzagurova, Tamara K.; Klempa, Boris; Tkachenko, Evgeniy A.; Slyusareva, Galina P.; Morozov, Vyacheslav G.; Auste, Brita; Kruger, Detlev H.

    2009-01-01

    A large outbreak of hemorrhagic fever with renal syndrome (HFRS) occurred in the winter of 2006-2007 in a region southeast of Moscow in Central European Russia. Of the 422 patients with HFRS investigated in this study, 58 patients were found to be infected by Puumala virus, whereas as many as 364 were infected by Dobrava-Belgrade virus (DOBV). Early serum samples from 10 DOBV-infected patients were used for nucleic acid amplification, which was successful for 5 patients. Molecular analyses demonstrated that the causative hantavirus belongs to the DOBV-Aa genetic lineage, which is carried by the striped field mouse (Apodemus agrarius) as the natural reservoir host. Neutralization assays with convalescent-phase sera from these patients confirmed infection by DOBV-Aa; related viruses, such as the Dobrava-Slovenia virus (DOBV-Af) and the Dobrava-Sochi virus (DOBV-Ap), were neutralized at lower efficiencies. The clinical courses of the 205 patients enrolled in the study were found to be mostly mild to moderate; however, an unexpectedly high fraction (27%) of patients exhibited severe illness. One patient died from kidney failure and showed symptoms of generalized subcutaneous hemorrhage. The results provide molecular, serodiagnostic, and clinical evidence that DOBV-Aa is a common pathogen in East Europe that causes large outbreaks of HFRS. PMID:19828747

  1. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs.

    Science.gov (United States)

    Yuan, Jin; Zhu, Mengjiao; Deng, Shaofeng; Fan, Shuangqi; Xu, Hailuan; Liao, Jiedan; Li, Peng; Zheng, Jingfang; Zhao, Mingqiu; Chen, Jinding

    2018-05-02

    Classical swine fever virus (CSFV) causes a highly lethal disease in pigs, which is characterized by immunosuppression. Leukopenia is known to be a possible mechanism of immunosuppression during CSFV infection. As a new and specialized form of cell death, pyroptosis is the key response of the innate immune system to pathogens, and is widely involved in the occurrence and development of infectious diseases. However, the relationship between CSFV and pyroptosis has not been explored. In this study, we investigated the occurrence of pyroptosis in pigs following CSFV infection. According to qRT-PCR assay results, the prevalence of this virus in peripheral lymphoid organs (tonsils, lymph nodes, and spleen) was much higher than that in other organs. Severe bleeding, necrosis, and a significant reduction in lymphocytes were found in the peripheral lymphoid organs of CSFV-infected pigs based on histological examination. In-depth studies showed that an increased ratio of deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells were present in the peripheral lymphoid organs of the CSFV-infected group according to immunohistochemistry. Meanwhile, the p10 subunit and activity of caspase-1, which is a regulator of pyroptosis, the N-terminal domain of gasdermin D, which is an executor of pyroptosis, and the cleavage and secretion of IL-1b, which is a product of pyroptosis were increased in the peripheral lymphoid organs of the CSFV-infected group. Together, these results demonstrated that pyroptosis is involved in CSFV-induced cell death in vivo, which provides a new understanding of the mechanism associated with lymphocyte depletion and immunosuppression in pigs infected with this virus. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    Science.gov (United States)

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  3. Potential for North American mosquitoes (Diptera: Culicidae) to transmit rift valley fever virus.

    Science.gov (United States)

    Turell, Michael J; Wilson, William C; Bennett, Kristine E

    2010-09-01

    To determine which arthropods should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America, we evaluated Culex erraticus (Dyar and Knab), Culex erythrothorax Dyar, Culex nigripalpus Theobald, Culex pipiens L., Culex quinquefasciatus Say, Culex tarsalis Coquillett, Aedes dorsalis (Wiedemann), Aedes vexans (Meigen), Anopheles quadrimaculatus Say, and Culicoides sonorensis Wirth and Jones from the western, midwestern, and southern United States for their ability to transmit RVFV. Female mosquitoes were allowed to feed on adult hamsters inoculated with RVFV, after which engorged mosquitoes were incubated for 7-21 d at 260C, then allowed to refeed on susceptible hamsters, and tested to determine infection, dissemination, and transmission rates. Other specimens were inoculated intrathoracically, held for 7 d, and then allowed to feed on a susceptible hamster to check for a salivary gland barrier. When exposed to hamsters with viremias > or =10(8.8) plaque-forming units/ml blood, Cx. tarsalis transmitted RVFV efficiently (infection rate = 93%, dissemination rate = 56%, and estimated transmission rate = 52%). In contrast, when exposed to the same virus dose, none of the other species tested transmitted RVFV efficiently. Estimated transmission rates for Cx. erythrothorax, Cx. pipiens, Cx. erraticus, and Ae. dorsalis were 10, 8, 4, and 2%, respectively, and for the remaining species were feeding preference, longevity, and foraging behavior should be considered when determining the potential role that these species could play in RVFV transmission.

  4. Reverse transcription PCR-based detection of Crimean-Congo hemorrhagic fever virus isolated from ticks of domestic ruminants in Kurdistan province of Iran.

    Science.gov (United States)

    Fakoorziba, Mohammad Reza; Golmohammadi, Parvaneh; Moradzadeh, Rahmatollah; Moemenbellah-Fard, Mohammad Djaefar; Azizi, Kourosh; Davari, Behrooz; Alipour, Hamzeh; Ahmadnia, Sara; Chinikar, Sadegh

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal viral vector-borne zoonosis which has a mortality rate of up to 30% without treatment in humans. CCHF virus is transmitted to humans by ticks, predominantly from the Hyalomma genus. Following the report of two confirmed and one suspected death due to CCHF virus in Kurdistan province of Iran in 2007, this study was undertaken to determine the fauna of hard ticks on domestic ruminants (cattle, sheep, and goats) and their possible infection with CCHF virus using reverse transcription PCR technique. This is the first detection of CCHF virus in ticks from the Kurdistan province of Iran. Overall, 414 ixodid ticks were collected from two districts in this province. They represented four genera from which 10 separate species were identified. The Hyalomma genus was the most abundant tick genus (70%). It was the only genus shown to be infected with the CCHF virus using RT-PCR technique. The number of ticks positive for CCHF virus was 5 out of 90 (5.6%) adult ticks. The three remaining genera (Haemaphysalis, Rhipicephalus, and Dermacentor) were all negative following molecular survey. Four of the five virally-infected ticks were from cattle mainly in the Sanandaj district. We concluded that CCHF virus is present in the Hyalomma ticks on domestic ruminants (cattle) in Kurdistan province of Iran.

  5. The sandfly fauna, anthropophily and the seasonal activities of Pintomyia spinicrassa (Diptera: Psychodidae: Phlebotominae in a focus of cutaneous leishmaniasis in northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Fredy Galvis Ovallos

    2013-05-01

    Full Text Available This study was conducted to identify the sandfly fauna and the anthropophilic species in a coffee-growing area of Villanueva, Norte de Santander, Colombia, a focus of American cutaneous leishmaniasis, and to analyse the relationship between the most frequent species and rainfall, relative humidity and temperature, with the aim of contributing to epidemiological surveillance in the area. Sandfly collections were performed fortnightly between February 2006-September 2007 using automatic light traps, Shannon traps, protected human bait and aspiration in resting places. A total of 7,051 sandflies belonging to 12 species were captured. Pintomyia spinicrassa (95.7% predominated. Pintomyia oresbia and Lutzomyia sp. of Pichinde were found in the state of Norte de Santander for the first time. Pi. spinicrassa, Pintomyia nuneztovari, Micropygomyia venezuelensis, Lutzomyia (Helcocyrtomyia scorzai and Lu. (Helcocyrtomyia sp. were captured on the protected human bait. A significant association between Pi. spinicrassa abundance and the total rainfall and the average temperature and humidity 10 days before the collection was observed. The dominance of Pi. spinicrassa, a recognised vector of Leishmania braziliensis, especially during the dry periods, indicates that the risk of parasite transmission may increase.

  6. The sandfly fauna, anthropophily and the seasonal activities of Pintomyia spinicrassa (Diptera: Psychodidae: Phlebotominae) in a focus of cutaneous leishmaniasis in northeastern Colombia.

    Science.gov (United States)

    Ovallos, Fredy Galvis; Silva, Yanis Ricardo Espinosa; Fernandez, Nelson; Gutierrez, Reynaldo; Galati, Eunice Aparecida Bianchi; Sandoval, Claudia Magaly

    2013-05-01

    This study was conducted to identify the sandfly fauna and the anthropophilic species in a coffee-growing area of Villanueva, Norte de Santander, Colombia, a focus of American cutaneous leishmaniasis, and to analyse the relationship between the most frequent species and rainfall, relative humidity and temperature, with the aim of contributing to epidemiological surveillance in the area. Sandfly collections were performed fortnightly between February 2006-September 2007 using automatic light traps, Shannon traps, protected human bait and aspiration in resting places. A total of 7,051 sandflies belonging to 12 species were captured. Pintomyia spinicrassa (95.7%) predominated. Pintomyia oresbia and Lutzomyia sp. of Pichinde were found in the state of Norte de Santander for the first time. Pi. spinicrassa, Pintomyia nuneztovari, Micropygomyia venezuelensis, Lutzomyia (Helcocyrtomyia) scorzai and Lu. (Helcocyrtomyia) sp. were captured on the protected human bait. A significant association between Pi. spinicrassa abundance and the total rainfall and the average temperature and humidity 10 days before the collection was observed. The dominance of Pi. spinicrassa, a recognised vector of Leishmania braziliensis, especially during the dry periods, indicates that the risk of parasite transmission may increase.

  7. Presence of the fire ant Solenopsis invicta (Westwood) (Hymenoptera: Formicidae) stimulates burrowing behavior by larvae of the sandfly Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae).

    Science.gov (United States)

    Harvey, Jeffrey A; Hamilton, James G C; Ward, Richard D

    2010-01-01

    The sandfly Lutzomyia longipalpis (Lutz & Neiva) vectors leishmaniasis in the neotropics. Although much is known about the biology of adult flies, little is known about interactions with its natural enemies. Here, we examined behavior of larvae of L4 L.longipalpis on a soil substrate when exposed to the fire ant Solenopsis invicata (Westwood). When ants were absent, most larvae tended to remain at or close to the soil surface, but when ants were present the larvae burrowed into the soil. Sandflies seek refuges in the presence of generalist predators, thus rendering them immune to attack from many potential enemies.

  8. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  9. Zika virus infection.

    Science.gov (United States)

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  10. Association between nasal shedding and fever that influenza A (H3N2) induces in dogs.

    Science.gov (United States)

    Song, Daesub; Moon, Hyoungjoon; Jung, Kwonil; Yeom, Minjoo; Kim, Hyekwon; Han, Sangyoon; An, Dongjun; Oh, Jinsik; Kim, Jongman; Park, Bongkyun; Kang, Bokyu

    2011-01-05

    Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5 °C (geometric mean temperature of 39.86 °C ± 0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID₅₀/ml, which was significantly higher than the viral titer detected in the non fever. The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  11. Association between nasal shedding and fever that influenza A (H3N2 induces in dogs

    Directory of Open Access Journals (Sweden)

    Oh Jinsik

    2011-01-01

    Full Text Available Abstract Background Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. Methods An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. Results The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49 were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever. Conclusions The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  12. Recurrent fevers and failure to thrive in an infant.

    Science.gov (United States)

    Scott, David R; Chan, Sarah; Chang, Johanna; Broderick, Lori; Hoffman, Hal M

    2013-01-01

    We describe a 2-year old boy with consanguineous parents who recently emigrated from India and presented with oral ulcers and lymphadenopathy. He also had a history of recurrent fevers, polyarticular arthritis, chronic diarrhea, failure to thrive, and developmental delay. Infectious workup revealed herpes simplex virus 1 viremia and radiological evaluation revealed osteopenia and erosions involving multiple joints. We describe the immunologic and genetic evaluation of this patient and discuss the diagnostic and therapeutic approach to an infant with recurrent fevers.

  13. Rift valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals.

    Science.gov (United States)

    Bird, Brian H; Albariño, César G; Hartman, Amy L; Erickson, Bobbie Rae; Ksiazek, Thomas G; Nichol, Stuart T

    2008-03-01

    Rift Valley fever (RVF) virus is a mosquito-borne human and veterinary pathogen associated with large outbreaks of severe disease throughout Africa and more recently the Arabian peninsula. Infection of livestock can result in sweeping "abortion storms" and high mortality among young animals. Human infection results in self-limiting febrile disease that in approximately 1 to 2% of patients progresses to more serious complications including hepatitis, encephalitis, and retinitis or a hemorrhagic syndrome with high fatality. The virus S segment-encoded NSs and the M segment-encoded NSm proteins are important virulence factors. The development of safe, effective vaccines and tools to screen and evaluate antiviral compounds is critical for future control strategies. Here, we report the successful reverse genetics generation of multiple recombinant enhanced green fluorescent protein-tagged RVF viruses containing either the full-length, complete virus genome or precise deletions of the NSs gene alone or the NSs/NSm genes in combination, thus creating attenuating deletions on multiple virus genome segments. These viruses were highly attenuated, with no detectable viremia or clinical illness observed with high challenge dosages (1.0 x 10(4) PFU) in the rat lethal disease model. A single-dose immunization regimen induced robust anti-RVF virus immunoglobulin G antibodies (titer, approximately 1:6,400) by day 26 postvaccination. All vaccinated animals that were subsequently challenged with a high dose of virulent RVF virus survived infection and could be serologically differentiated from naïve, experimentally infected animals by the lack of NSs antibodies. These rationally designed marker RVF vaccine viruses will be useful tools for in vitro screening of therapeutic compounds and will provide a basis for further development of RVF virus marker vaccines for use in endemic regions or following the natural or intentional introduction of the virus into previously unaffected areas.

  14. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.

  15. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity

    Science.gov (United States)

    Sargsyan, M. A.; Voskanyan, H. E.; Karalova, E. M.; Hakobyan, L. H.; Karalyan, Z. A.

    2018-01-01

    Aim: First cases of clinically uncommon African swine fever (ASF), caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. Materials and Methods: The isolation and identification of ASF virus (ASFV) were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. Results: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. Conclusion: Our data allow assuming that new nosological form of ASF (genotype II) may present as a transitional form of the disease with the possibility of chronization. PMID:29479149

  16. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  17. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity

    Directory of Open Access Journals (Sweden)

    M. A. Sargsyan

    2018-01-01

    Full Text Available Aim: First cases of clinically uncommon African swine fever (ASF, caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. Materials and Methods: The isolation and identification of ASF virus (ASFV were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. Results: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. Conclusion: Our data allow assuming that new nosological form of ASF (genotype II may present as a transitional form of the disease with the possibility of chronization.

  18. Emergence of Lassa Fever Disease in Northern Togo: Report of Two Cases in Oti District in 2016

    Directory of Open Access Journals (Sweden)

    Akouda Akessiwe Patassi

    2017-01-01

    Full Text Available Background. Lassa fever belongs to the group of potentially fatal hemorrhagic fevers, never reported in Togo. The aim of this paper is to report the first two cases of Lassa fever infection in Togo. Case Presentation. The two first Lassa fever cases occurred in two expatriate’s health professionals working in Togo for more than two years. The symptoms appeared among two health professionals of a clinic located in Oti district in the north of the country. The absence of clinical improvement after antimalarial treatment and the worsening of clinical symptoms led to the medical evacuation. The delayed diagnosis of the first case led to a fatal outcome. The second case recovered under ribavirin treatment. Conclusion. The emergence of this hemorrhagic fever confirms the existence of Lassa fever virus in Togo. After a period of intensive Ebola virus transmission from 2013 to 2015, this is an additional call for the establishment and enhancement of infection prevention and control measures in the health care setting in West Africa.

  19. A REVIEW ON ZIKA VIRUS (ZIKV) -A DREADFUL MEMBER OF THE VIRUS FAMILY FLAVIVIRIDAE

    OpenAIRE

    1Rafiya Begum, 2 Raafia Aseena, 3Nuha Rasheed and 4 Abdul Saleem Mohammad

    2017-01-01

    Research on zika virus examine the virus that is spread to humans through a mosquito bite, with symptoms that include fever, rash, joint pain, and conjuctivities. For most people zika virus is not necessarily anything to worry, as it is not fatal and symptoms are generally mild for period up to a week. Hospitalization because of zika virus is almost always not necessary. However, the zika virus can be extremely dangerous to pregnant womes. Key Words: Zika, virus, transmission, fatal, flavivir...

  20. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis.

    Science.gov (United States)

    Liu, Quan; He, Biao; Huang, Si-Yang; Wei, Feng; Zhu, Xing-Quan

    2014-08-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging haemorrhagic fever that was first described in rural areas of China. The causative agent, SFTS virus (SFTSV), is a novel phlebovirus in the Bunyaviridae family. Since the first report in 2010, SFTS has been found in 11 provinces of China, with about 2500 reported cases, and an average case-fatality rate of 7·3%. The disease was also reported in Japan and Korea in 2012; Heartland virus, another phlebovirus genetically closely related to SFTSV, was isolated from two patients in the USA. The disease has become a substantial risk to public health, not only in China, but also in other parts of the world. The virus could undergo rapid evolution by gene mutation, reassortment, and homologous recombination in tick vectors and vertebrate reservoir hosts. No specific treatment of SFTS is available, and avoiding tick bites is an important measure to prevent the infection and transmission of SFTSV. This Review provides information on the molecular characteristics and ecology of this emerging tick-borne virus and describes the epidemiology, clinical signs, pathogenesis, diagnosis, treatment, and prevention of human infection with SFTSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Rift Valley fever: could re-emerge in Egypt again?

    Science.gov (United States)

    El-Bahnasawy, Mamdouh; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2013-04-01

    The Rift Valley fever (RVF) is a neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health and economy. RVF is caused by RVF virus of the family of Bunyaviridae, genus Phlebovirus. RVF is an acute, febrile disease affecting humans and a wide range of animals. The virus is trans-mitted through the bites from mosquitoes and exposure to viremic blood, body fluids, or contact with tissues of infected animals or by inhaling natural virus aerosols, also possibly by consumption of infected unpasteurized milk. The RVF-virus replicate at the site introduction and in local lymphatic followed by viremia and spread to other organs as the liver and central nervous system, causing the hepatic necrosis and eosinophilia cytoplasmic degeneration. The main signs and symptoms are fever, headache, myalgia, arthralgia, photophobia, bradycardia, conjunctivitis and flushing face. Main complications include jaundice, hemorrhagic, meningoencephalitis and retinal lesions. Generally speaking, in the 21st Century, the vector-borne infectious diseases, was accepted as the disaster issues with the considerable significant morbidity and mortality. These facts should be considered by the public health, veterinary and agricultural authorities

  2. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Science.gov (United States)

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  3. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  4. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    Science.gov (United States)

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  5. Facing dengue fever - our first experience

    Directory of Open Access Journals (Sweden)

    Cvjetković Dejan

    2017-01-01

    Full Text Available Introduction. Dengue fever is a mosquito-borne disease caused by dengue virus, endemic in tropical and subtropical regions, where it is mostly imported from. The most common clinical form is classic dengue fever. We presented the first dengue case microbiologically confirmed in Serbia. Case report. A 34-year-old male got classic dengue fever after arrival from Cuba. The disease occurred suddenly with fever, myalgias, skin rash, hepatosplenomegaly, cytopenia, abnormal aminotransferase and creatine kinase levels. The diagnosis was confirmed with virological diagnostic methods. Significant leukopenia and thrombocytopenia as well as elevation of serum creatine kinase activity were recorded from the very beginning of hospitalization, but were gradually normalized. The whole duration of hospitalization was accompanied by laboratory signs of liver lesion. The disease had favourable outcome. At hospital discharge, the patient was afebrile, asymptomatic, with discrete erythematous rash on torso and arms, normal hemathological values and creatine kinase level and moderately elevated alanine-aminotransferase level. Conclusion. Considering global climate changes and growing international traffic, our health care service needs to be ready for possible massive outbreaks of dengue and other tropical infectious diseases in forthcoming years.

  6. Métodos usados en Colombia para el estudio del virus de la fiebre amarilla

    Directory of Open Access Journals (Sweden)

    Manuel Roca García

    1946-07-01

    Full Text Available The object of this article is to describe techniques used for the study and maintenance of the virus of yellow fever in the laboratory at Villavicencio, Colombia. The characteristics of ye- Howfever virus are briefly described. The susceptibility of white mice of the "Swiss" strain is discussed, and the technique of their routine use for tests of the presence of virus described. The methods of virus titration, specificity tests and protection tests are explained in some detail. The susceptibility of Colombian monkeys to yellow fever virus and their use as laboratory animals in virus studies are described. The isolation of yellow fever virus from suspected cases of human infection is discussed and the technique of preserving virus by desiccation described. Methods of handling mosquitoes in the laboratory are described, with special reference to techniques adapted to transmission studies with Haemagogus mosquitoes.

  7. An unexpected recurrent transmission of Rift Valley fever virus in cattle in a temperate and mountainous area of Madagascar.

    Directory of Open Access Journals (Sweden)

    Veronique Chevalier

    2011-12-01

    Full Text Available Rift Valley fever is an acute, zoonotic viral disease of domestic ruminants, caused by a phlebovirus (Bunyaviridae family. A large outbreak occurred in Madagascar in 2008-2009. The goal of the present study was to evaluate the point prevalence of antibodies against Rift Valley Fever Virus (RVFV in cattle in the Anjozorobe district, located in the wet and temperate highland region of Madagascar and yet heavily affected by the disease, and analyse environmental and trade factors potentially linked to RVFV transmission. A serological study was performed in 2009 in 894 bovines. For each bovine, the following variables were recorded: age, location of the night pen, minimum distance from the pen to the nearest water point and the forest, nearest water point type, and herd replacement practices. The serological data were analyzed using a generalized linear mixed model. The overall anti-RVFV IgG seroprevalence rate was 28% [CI95% 25-31]. Age was statistically linked to prevalence (p = 10(-4, being consistent with a recurrent RVFV circulation. Distance from the night pen to the nearest water point was a protective factor (p = 5.10(-3, which would be compatible with a substantial part of the virus transmission being carried out by nocturnal mosquito vectors. However, water point type did not influence the risk of infection: several mosquito species are probably involved. Cattle belonging to owners who purchase animals to renew the herd were significantly more likely to have seroconverted than others (p = 0.04: cattle trade may contribute to the introduction of the virus in this area. The minimum distance of the night pen to the forest was not linked to the prevalence. This is the first evidence of a recurrent transmission of RVFV in such an ecosystem that associates a wet, temperate climate, high altitude, paddy fields, and vicinity to a dense rain forest. Persistence mechanisms need to be further investigated.

  8. Phylogenetic characterization of circulating Dengue and Alkhumra Hemorrhagic Fever viruses in western Saudi Arabia and lack of evidence of Zika virus in the region: A retrospective study, 2010-2015.

    Science.gov (United States)

    Al-Saeed, Moneerah S; El-Kafrawy, Sherif A; Farraj, Suha A; Al-Subhi, Tagreed L; Othman, Norah A; Alsultan, Arwa; Ben Helaby, Huda G; Alshawdari, Mustafa M; Hassan, Ahmed M; Charrel, Remi N; Azhar, Esam I; Hashem, Anwar M

    2017-08-01

    Flaviviruses represent a global public health concern. They consist of ∼70 viruses with almost half of them causing human diseases with unspecified febrile illnesses. Cities in western Saudi Arabia are endemic for viruses (DENV) with sporadic infections due to Alkhumra hemorrhagic fever virus (AHFV). They also represent a major destination for travelers coming for annual religious pilgrimages (Hajj and Umrah) from all over the world. However, whether other flaviviruses are circulating is not known because of the limited number of surveillance studies. Here, we retrospectively screened 690 samples for flaviviruses in samples from patients with unexplained febrile illnesses between 2010 and 2015 in western Saudi Arabia using a pan-flaviviruses RT-PCR assay. Despite Zika virus RNA was not detected, this study confirms circulation and/or sporadic spread of DENV-2, DENV-3, and AHFV, higher prevalence of DENV-2, and a role for visitors from DENV endemic countries in DENV importation into the Kingdom. Further analysis also showed very low genetic diversity of AHFV confirming its slow microevolution. Accordingly, continuous and prospective surveillance for flaviviruses using such assay are warranted in Saudi Arabia which receives millions of Muslims annually to implement effective control measures in light of the global widespread and outbreaks of several flaviviruses. © 2017 Wiley Periodicals, Inc.

  9. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus

    International Nuclear Information System (INIS)

    Reimann, Ilona; Depner, Klaus; Trapp, Sascha; Beer, Martin

    2004-01-01

    A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7 E 2alf. After transfection of in vitro-transcribed CP7 E 2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7 E 2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7 E 2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and 'marker vaccine' properties of the generated chimeric CP7 E 2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 10 7 TCID 50 , CP7 E 2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-E RNS -specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7 E 2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7 E 2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV 'marker vaccine'

  10. Hard ticks (Ixodidae and Crimean-Congo hemorrhagic fever virus in south west of Iran.

    Directory of Open Access Journals (Sweden)

    Narges Sharifinia

    2015-03-01

    Full Text Available Ticks are vectors of some important arthropod-borne diseases in both fields of veterinary and medicine, such as Lyme, tularemia, Rocky Mountain spotted fever, and some types of encephalitis as well as Crimean Congo hemorrhagic fever (CCHF. Iran is known as one of the main foci of CCHF in west of Asia. This study was conducted in DarrehShahr County because of the development of animal husbandry in this area to detect the fauna and viral infection of the hard ticks of livestock. A cross-sectional survey was conducted during 2011-2012 with random sampling in four villages. A sample of ticks was subjected to RT-PCR method for detection of viral infection. During the study period, 592 Ixodidae ticks were collected and identified as seven species of Hyalomma asiaticum, Hy. marginatum, Hy. anatolicum, Hy. dromedarii, Hy. detritum, Rhipicephalus bursa and Rh. sanguineus. More than 20% of these ticks were examined to detect the genome of CCHF virus while 6.6% were positive. All species of Hyalomma were found to be positive. A high rate of livestock was found to be infected with hard ticks, which can act as the vectors of the CCHF disease. Regarding infection of all five Hyalomma species captured in this area, this genus should be considered as the main vector of CCHF. Planning control program can be performed based on the obtained data on seasonal activity of Ixodidae to prevent animal infestation as well as to reduce the risk of CCHF transmission.

  11. Accelerating vaccine development for African swine fever virus ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Photo: IDRC / Bartay The challenge African swine fever (ASF) is a highly infectious hemorrhagic viral disease that wipes out entire herds of infected pigs. ASF is widespread in at least half of sub-Saharan Africa, and threatens food security due to devastating economic losses.

  12. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    International Nuclear Information System (INIS)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W.; Bertolotti-Ciarlet, Andrea

    2006-01-01

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by β-galactosidase α-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion

  13. Presence of the fire ant Solenopsis invicta (Westwood) (Hymenoptera: Formicidae) stimulates burrowing behavior by larvae of the sandfly Lutzomyia longipalpis (Lutz and Neiva) (Diptera: Psychodidae)

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Jeffrey A. [Netherlands Institute of Ecology, Heteren (Netherlands). Dept. of Terrestrial Ecology; Hamilton, James G.C.; Ward, Richard D. [University of Keele, Staffordshire (United Kingdom). Centre for Applied Entomology and Parasitology. Dept. of Biological Sciences

    2010-01-15

    The sandfly Lutzomyia longipalpis (Lutz and Neiva) vectors leishmaniasis in the neotropics. Although much is known about the biology of adult flies, little is known about interactions with its natural enemies. Here, we examined behavior of larvae of L4 L. longipalpis on a soil substrate when exposed to the fire ant Solenopsis invicata (Westwood). When ants were absent, most larvae tended to remain at or close to the soil surface, but when ants were present the larvae burrowed into the soil. Sandflies seek refuges in the presence of generalist predators, thus rendering them immune to attack from many potential enemies. (author)

  14. Presence of the fire ant Solenopsis invicta (Westwood) (Hymenoptera: Formicidae) stimulates burrowing behavior by larvae of the sandfly Lutzomyia longipalpis (Lutz and Neiva) (Diptera: Psychodidae)

    International Nuclear Information System (INIS)

    Harvey, Jeffrey A.; Hamilton, James G.C.; Ward, Richard D.

    2010-01-01

    The sandfly Lutzomyia longipalpis (Lutz and Neiva) vectors leishmaniasis in the neotropics. Although much is known about the biology of adult flies, little is known about interactions with its natural enemies. Here, we examined behavior of larvae of L4 L. longipalpis on a soil substrate when exposed to the fire ant Solenopsis invicata (Westwood). When ants were absent, most larvae tended to remain at or close to the soil surface, but when ants were present the larvae burrowed into the soil. Sandflies seek refuges in the presence of generalist predators, thus rendering them immune to attack from many potential enemies. (author)

  15. The puzzle of new etiological agents in the Americas: Punta del Toro virus another piece?

    Directory of Open Access Journals (Sweden)

    Salim Mattar V

    2017-01-01

    Full Text Available In a recent study of undifferentiated tropical fevers in an endemic area of Colombia, it was shown that not all acute fevers are caused by the dengue virus (1. The complex clinical-epidemiological panorama of tropical fevers has become a puzzle of difficult resolution due to the appearance of new etiological agents in the Americas such as Chikungunya and Zika. For the differential diagnosis Hantavirus, Arenavirus, Orupuche, tick thrombocytopenic virus, Heartland virus, leptospira and malaria should be considered.

  16. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Azzedine Bounamous

    2014-07-01

    Full Text Available A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b, t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.

  17. Marburg haemorrhagic fever: A rare but fatal disease

    African Journals Online (AJOL)

    The causative virus is the Marburgvirus of the Filoviridae family. The disease is clinically indistinguishable from Ebola haemorrhagic fever though the latter's causative agent is unrelated. Transmission of the Marburgvirus is via close contact with blood or other body fluids (faeces, vomitus, urine and respiratory secretions) ...

  18. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    Science.gov (United States)

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  19. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  20. What a rheumatologist needs to know about yellow fever vaccine.

    Science.gov (United States)

    Oliveira, Ana Cristina Vanderley; Mota, Licia Maria Henrique da; Santos-Neto, Leopoldo Luiz Dos; Tauil, Pedro Luiz

    2013-04-01

    Patients with rheumatic diseases are more susceptible to infection, due to the underlying disease itself or to its treatment. The rheumatologist should prevent infections in those patients, vaccination being one preventive measure to be adopted. Yellow fever is one of such infectious diseases that can be avoided.The yellow fever vaccine is safe and effective for the general population, but, being an attenuated live virus vaccine, it should be avoided whenever possible in rheumatic patients on immunosuppressive drugs. Considering that yellow fever is endemic in a large area of Brazil, and that vaccination against that disease is indicated for those living in such area or travelling there, rheumatologists need to know that disease, as well as the indications for the yellow fever vaccine and contraindications to it. Our paper was aimed at highlighting the major aspects rheumatologists need to know about the yellow fever vaccine to decide about its indication or contraindication in specific situations. 2013 Elsevier Editora Ltda. All rights reserved.

  1. HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers.

    Directory of Open Access Journals (Sweden)

    Katarina Resman Rus

    2016-06-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and Crimean-Congo hemorrhagic fever (CCHF are common representatives of viral hemorrhagic fevers still often neglected in some parts of the world. Infection with Dobrava or Puumala virus (HFRS and Crimean-Congo hemorrhagic fever virus (CCHFV can result in a mild, nonspecific febrile illness or as a severe disease with hemorrhaging and high fatality rate. An important factor in optimizing survival rate in patients with VHF is instant recognition of the severe form of the disease for which significant biomarkers need to be elucidated. To determine the prognostic value of High Mobility Group Box 1 (HMGB1 as a biomarker for disease severity, we tested acute serum samples of patients with HFRS or CCHF. Our results showed that HMGB1 levels are increased in patients with CCHFV, DOBV or PUUV infection. Above that, concentration of HMGB1 is higher in patients with severe disease progression when compared to the mild clinical course of the disease. Our results indicate that HMGB1 could be a useful prognostic biomarker for disease severity in PUUV and CCHFV infection, where the difference between the mild and severe patients group was highly significant. Even in patients with severe DOBV infection concentrations of HMGB1 were 2.8-times higher than in the mild group, but the difference was not statistically significant. Our results indicated HMGB1 as a potential biomarker for severe hemorrhagic fevers.

  2. Identification of phlebotomine sandfly bloodmeals from Baringo District, Kenya, by direct enzyme-linked immunosorbent assay (ELISA).

    Science.gov (United States)

    Ngumbi, P M; Lawyer, P G; Johnson, R N; Kiilu, G; Asiago, C

    1992-10-01

    Direct enzyme-linked immunosorbent assay (ELISA) was used to identify the sources of bloodmeals in phlebotomine sandflies from Baringo District, Rift Valley Province, Kenya. Some bloodmeals had been stored for over 4 years before being analysed. Among 356 sandflies identified, 62.9% were Phlebotomus martini, 14.8% Sergentomyia antennatus, 10% S.schwetzi, 6% S.clydei, 1.9% S.adleri, 1.6% P.duboscqi, 1.4% S.africanus and 0.8% S.bedfordi. Out of 224 P.martini bloodmeals, host source was identified for 69. The order of host preference for P.martini was: goat 28.5%, rabbit 22.7%, human 8.9% and others 8.9%. Evidence of mixed feeding was shown by four species comprising sixteen specimens, twelve of which were P.martini. The most effective methods for trapping bloodfed P. martini were sticky paper traps in termite hills, followed by light-traps. Of the 224 P.martini trapped, 58.9% were collected with traps in termite hills, and 22.7% with light traps. Roles of the three most popular hosts for P.martini should be investigated to ascertain whether they act as reservoirs in the transmission of Leishmania donovani causing visceral leishmaniasis in Kenya.

  3. Wolbachia Effects on Rift Valley Virus Infection in Culex tarsalis Mosquitoes

    Science.gov (United States)

    2017-04-25

    Wolbachia density in mosquitoes. 109" 110" Materials and Methods 111" Ethics statement 112" TR-17-113 Mosquitoes were maintained on commercially available...fever virus. 379" Vet Med Today. 2009; 883–893. 380" 29. Wilson M. Rift Valley fever virus ecology and the epidemiology of disease emergence. 381

  4. Rift Valley Fever, Mayotte, 2007–2008

    Science.gov (United States)

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  5. Surge of Dengue Virus Infection and Chikungunya Fever in Bali in 2010: The Burden of Mosquito-Borne Infectious Diseases in a Tourist Destination

    Science.gov (United States)

    Yoshikawa, Minako Jen; Kusriastuti, Rita

    2013-01-01

    Labor flow and travelers are important factors contributing to the spread of Dengue virus infection and chikungunya fever. Bali Province of Indonesia, a popular resort and tourist destination, has these factors and suffers from mosquito-borne infectious diseases. Using area study approach, a series of fieldwork was conducted in Bali to obtain up-to-date primary disease data, to learn more about public health measures, and to interview health officers, hotel personnel, and other resource persons. The national data including information on two other provinces were obtained for comparison. The health ministry reported 5,810 and 11,697 cases of dengue hemorrhagic fever in Bali in 2009 and 2010, respectively. Moreover, two densely populated tourist areas and one district have shown a particularly high incidence and sharp increases in 2010. Cases of chikungunya fever reported in Bali more than doubled in 2010 from the previous year. Our findings suggest that Bali can benefit from a significant reduction in vector populations and dissemination of disease preventive knowledge among both local residents and foreign visitors. This will require a concerted and trans-border approach, which may prove difficult in the province. PMID:23874141

  6. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    OpenAIRE

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type ...

  7. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus

    Directory of Open Access Journals (Sweden)

    Zaven Karalyan

    2016-12-01

    Full Text Available Aim: The research was conducted to understand more profoundly the pathogenetic aspects of the acute form of the African swine fever (ASF. Materials and Methods: A total of 10 pigs were inoculated with ASF virus (ASFV (genotype II in the study of the red blood cells (RBCs, blood and urine biochemistry in the dynamics of disease. Results: The major hematological differences observed in ASFV infected pigs were that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrits were significantly decreased compared to controls, and the levels of erythropoietin were significantly increased. Also were detected the trends of decrease in RBC count at terminal stages of ASF. Analysis of blood biochemistry revealed that during ASF development, besides bilirubinemia significantly elevated levels of lactate dehydrogenase, and aspartate aminotransferase were detected. Analysis of urine biochemistry revealed the presence of bilirubinuria, proteinuria during ASF development. Proteinuria, especially at late stages of the disease reflects a severe kidney damage possible glomerulonefritis. Conclusion: The results of this study indicate the characteristics of developing hemolytic anemia observed in acute ASF (genotype II.

  8. Lymphocyte subset analyses in healthy adults vaccinated with yellow fever 17DD virus

    Directory of Open Access Journals (Sweden)

    Ana Paula dos Santos

    2005-05-01

    Full Text Available In this study the kinetics of humoral and cellular immune responses in first-time vaccinees and re-vaccinees with the yellow fever 17DD vaccine virus was analyzed. Flow cytometric analyses were used to determine percentual values of T and B cells in parallel to the yellow fever neutralizing antibody production. All lymphocyte subsets analyzed were augmented around the 30th post vaccination day, both for first-time vaccinees and re-vaccinees. CD3+ T cells increased from 30.8% (SE ± 4% to 61.15% (SE ± 4.2%, CD4+ T cells from 22.4% (SE ± 3.6% to 39.17% (SE ± 2% with 43% of these cells corresponding to CD4+CD45RO+ T cells, CD8+ T cells from 15.2% (SE ± 2.9% to 27% (SE ± 3% with 70% corresponding to CD8+CD45RO+ T cells in first-time vaccinees. In re-vaccinees, the CD3+ T cells increased from 50.7% (SE ± 3% to 80% (SE ± 2.3%, CD4+ T cells from 24.9% (SE ± 1.4% to 40% (SE ± 3% presenting a percentage of 95% CD4+CD45RO+ T cells, CD8+ T cells from 19.7% (SE ± 1.8% to 25% (SE ± 2%. Among CD8+CD38+ T cells there could be observed an increase from 15 to 41.6% in first-time vaccinees and 20.7 to 62.6% in re-vaccinees. Regarding neutralizing antibodies, the re-vaccinees presented high titers even before re-vaccination. The levels of neutralizing antibodies of first-time vaccinees were similar to those presented by re-vaccinees at day 30 after vaccination, indicating the success of primary vaccination. Our data provide a basis for further studies on immunological behavior of the YF 17DD vaccine.

  9. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2010-10-01

    Full Text Available Abstract Background Lassa fever is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. Treatment of acute Lassa fever infections has successfully utilized intravenous administration of ribavirin, a nucleotide analogue drug, but this is not an approved use; efficacy of oral administration has not been demonstrated. To date, several potential new vaccine platforms have been explored, but none have progressed toward clinical trials and commercialization. Therefore, the development of a robust vaccine platform that could be generated in sufficient quantities and at a low cost per dose could herald a subcontinent-wide vaccination program. This would move Lassa endemic areas toward the control and reduction of major outbreaks and endemic infections. To this end, we have employed efficient mammalian expression systems to generate a Lassa virus (LASV-like particle (VLP-based modular vaccine platform. Results A mammalian expression system that generated large quantities of LASV VLP in human cells at small scale settings was developed. These VLP contained the major immunological determinants of the virus: glycoprotein complex, nucleoprotein, and Z matrix protein, with known post-translational modifications. The viral proteins packaged into LASV VLP were characterized, including glycosylation profiles of glycoprotein subunits GP1 and GP2, and structural compartmentalization of each polypeptide. The host cell protein component of LASV VLP was also partially analyzed, namely glycoprotein incorporation, though the identity of these proteins remain unknown. All combinations of LASV Z, GPC, and NP proteins that generated VLP did not incorporate host cell ribosomes, a known component of native arenaviral particles, despite detection of small RNA species packaged into pseudoparticles. Although VLP did not contain the same host cell components as the native

  10. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  11. Febre amarela Yellow fever

    Directory of Open Access Journals (Sweden)

    Pedro Fernando da Costa Vasconcelos

    2003-04-01

    Full Text Available A febre amarela é doenca infecciosa não-contagiosa causada por um arbovírus mantido em ciclos silvestres em que macacos atuam como hospedeiros amplificadores e mosquitos dos gêneros Aedes na África, e Haemagogus e Sabethes na América, são os transmissores. Cerca de 90% dos casos da doença apresentam-se com formas clínicas benignas que evoluem para a cura, enquanto 10% desenvolvem quadros dramáticos com mortalidade em torno de 50%. O problema mostra-se mais grave em África onde ainda há casos urbanos. Nas Américas, no período de 1970-2001, descreveram-se 4.543 casos. Os países que mais diagnosticaram a doença foram o Peru (51,5%, a Bolívia (20,1% e o Brasil (18,7%. Os métodos diagnósticos utilizados incluem a sorologia (IgM, isolamento viral, imunohistoquímica e RT-PCR. A zoonose não pode ser erradicada, mas, a doença humana é prevenível mediante a vacinação com a amostra 17D do vírus amarílico. A OMS recomenda nova vacinação a cada 10 anos. Neste artigo são revistos os principais conceitos da doença e os casos de mortes associados à vacina.Yellow fever is an infectious and non-contagious disease caused by an arbovirus, the yellow fever virus. The agent is maintained in jungle cycles among primates as vertebrate hosts and mosquitoes, especially Aedes in Africa, and Haemagogus and Sabethes in America. Approximately 90% of the infections are mild or asymptomatic, while 10% course to a severe clinical picture with 50% case-fatality rate. Yellow fever is largely distributed in Africa where urban epidemics are still reported. In South America, between 1970-2001, 4,543 cases were reported, mostly from Peru (51.5%, Bolivia (20.1% and Brazil (18.7%. The disease is diagnosed by serology (detection of IgM, virus isolation, immunohistochemistry and RT-PCR. Yellow fever is a zoonosis and cannot be eradicated, but it is preventable in man by using the 17D vaccine. A single dose is enough to protect an individual for at least

  12. Effective oral favipiravir (T-705 therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever.

    Directory of Open Access Journals (Sweden)

    Michelle Mendenhall

    2011-10-01

    Full Text Available Lassa and Junín viruses are the most prominent members of the Arenaviridae family of viruses that cause viral hemorrhagic fever syndromes Lassa fever and Argentine hemorrhagic fever, respectively. At present, ribavirin is the only antiviral drug indicated for use in treatment of these diseases, but because of its limited efficacy in advanced cases of disease and its toxicity, safer and more effective antivirals are needed.Here, we used a model of acute arenaviral infection in outbred guinea pigs based on challenge with an adapted strain of Pichindé virus (PICV to further preclinical development of T-705 (Favipiravir, a promising broad-spectrum inhibitor of RNA virus infections. The guinea pig-adapted passage 19 PICV was uniformly lethal with an LD(50 of ∼5 plaque-forming units and disease was associated with fever, weight loss, thrombocytopenia, coagulation defects, increases in serum aspartate aminotransferase (AST concentrations, and pantropic viral infection. Favipiravir (300 mg/kg/day, twice daily orally for 14 days was highly effective, as all animals recovered fully from PICV-induced disease even when therapy was initiated one week after virus challenge when animals were already significantly ill with marked fevers and thrombocytopenia. Antiviral activity and reduced disease severity was evidenced by dramatic reductions in peak serum virus titers and AST concentrations in favipiravir-treated animals. Moreover, a sharp decrease in body temperature was observed shortly after the start of treatment. Oral ribavirin was also evaluated, and although effective, the slower rate of recovery may be a sign of the drug's known toxicity.Our findings support further development of favipiravir for the treatment of severe arenaviral infections. The optimization of the experimental favipiravir treatment regimen in the PICV guinea pig model will inform critical future studies in the same species based on challenge with highly pathogenic arenaviruses

  13. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    Science.gov (United States)

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  14. Sensitive detection of African swine fever virus using real-time PCR with a 5' conjugated minor groove binding probe

    DEFF Research Database (Denmark)

    McKillan, John; McMenamy, Michael; Hjertner, Bernt

    2010-01-01

    sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 × 101 to 2 × 1010. The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs......The design of a 5′ conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does...

  15. Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea.

    Science.gov (United States)

    Park, Sun-Whan; Song, Bong Gu; Shin, E-Hyun; Yun, Seok-Min; Han, Myung-Guk; Park, Mi Yeoun; Park, Chan; Ryou, Jungsang

    2014-10-01

    Haemaphysalis longicornis a vector that harbors severe fever with thrombocytopenia syndrome virus (SFTSV) is a major species of tick in South Korea. To investigate the existence and prevalence of SFTSV in Korea, we collected ticks from nine provinces in South Korea for detecting SFTSV. In all, we collected 13,053 ticks, and H. longicornis (90.8%, 11,856/13,053) was the most abundant among them. The minimum infection rate (MIR) of SFTSV in H. longicornis was 0.46% (55 pools). SFTSV was detected in ticks during all the developmental stages, showing MIR in larvae (2/350, 0.57%), nymphs (38/10,436, 0.36%), males (2/221, 0.90%), and females (13/849, 1.53%), respectively. Viruses were detected in ticks collected between April and September. A higher MIR was detected in ticks from the southern part of the country. We amplified the M and S segment partial genes from a sample and analyzed the nucleotide sequence. The results showed a 93-98% homology to Chinese and Japanese strains registered in Genbank. In this study, we confirmed the existence of SFTSV for the first time in South Korea. The SFTSV prevalence data from the studies are essential for raising the awareness of SFTS in South Korea. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  17. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation.

    Science.gov (United States)

    Head, Jennifer A; Kalveram, Birte; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV), belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN)-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR). NSs self-associates at the C-terminus 17 aa., while NSs at aa.210-230 binds to Sin3A-associated protein (SAP30) to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s) can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6-30, 31-55, 56-80, 81-105, 106-130, 131-155, 156-180, 181-205, 206-230, 231-248 or 249-265 lack functions of IFN-β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81-105, 106-130, 131-155, 156-180, 181-205, 206-230 or 231-248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.

  18. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation.

    Directory of Open Access Journals (Sweden)

    Jennifer A Head

    Full Text Available Rift Valley fever virus (RVFV, belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR. NSs self-associates at the C-terminus 17 aa., while NSs at aa.210-230 binds to Sin3A-associated protein (SAP30 to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6-30, 31-55, 56-80, 81-105, 106-130, 131-155, 156-180, 181-205, 206-230, 231-248 or 249-265 lack functions of IFN-β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81-105, 106-130, 131-155, 156-180, 181-205, 206-230 or 231-248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.

  19. Tri-phasic fever in dengue fever.

    Science.gov (United States)

    D, Pradeepa H; Rao, Sathish B; B, Ganaraj; Bhat, Gopalakrishna; M, Chakrapani

    2018-04-01

    Dengue fever is an acute febrile illness with a duration of 2-12 days. Our observational study observed the 24-h continuous tympanic temperature pattern of 15 patients with dengue fever and compared this with 26 others with fever due to a non-dengue aetiology. A tri-phasic fever pattern was seen among two-thirds of dengue fever patients, but in only one with an inflammatory disease. One-third of dengue fever patients exhibited a single peak temperature. Continuous temperature monitoring and temperature pattern analysis in clinical settings can aid in the early differentiation of dengue fever from non-dengue aetiology.

  20. Serious adverse events associated with yellow fever vaccine.

    Science.gov (United States)

    de Menezes Martins, Reinaldo; Fernandes Leal, Maria da Luz; Homma, Akira

    2015-01-01

    Yellow fever vaccine was considered one of the safest vaccines, but in recent years it was found that it could rarely cause invasive and disseminated disease in some otherwise healthy individuals, with high lethality. After extensive studies, although some risk factors have been identified, the real cause of causes of this serious adverse event are largely unknown, but findings point to individual host factors. Meningoencephalitis, once considered to happen only in children less than 6 months of age, has also been identified in older children and adults, but with good prognosis. Efforts are being made to develop a safer yellow fever vaccine, and an inactivated vaccine or a vaccine prepared with the vaccine virus envelope produced in plants are being tested. Even with serious and rare adverse events, yellow fever vaccine is the best way to avoid yellow fever, a disease of high lethality and should be used routinely in endemic areas, and on people from non-endemic areas that could be exposed, according to a careful risk-benefit analysis.