WorldWideScience

Sample records for sand grain composition

  1. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  2. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  3. Sedimentary controls on modern sand grain coat formation

    Science.gov (United States)

    Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.

    2017-05-01

    Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that

  4. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Directory of Open Access Journals (Sweden)

    Duszyński Remigiusz

    2017-12-01

    Full Text Available The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  5. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Science.gov (United States)

    Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan

    2017-12-01

    The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  6. Dark grains of sand: a geological storytelling

    Science.gov (United States)

    Gallo Maresca, Magda

    2017-04-01

    In the secondary Italian school the Earth science learning begins at first year, in synergy with other natural science subjects such as Astronomy, Chemistry and Biology. Italian teachers have to focus on the landscape geomorphological aspects and often Earth processes are difficult to display since they are related to certain phenomena happened during the past and often far from the involved country. In order to better understand the environment surrounding us, very simple and poor materials, like sands, allow the teachers to create attractive lab experiences. According to the IBSE (Inquiry Based Science Education) approach, a learning unit has been implemented starting from a walking along the light carbonate beaches of the Adriatic sea: a smart look to the sands ("engage step"), stroke the students fantasy pushing them to explore some strange black grains on the sands. Dirty sands? Or rock landscape, soil degradation and Ofanto river and coastal processes (erosion, transportation and deposition)? This was the teaching challenge. Due to the youngest age, a third level, guided inquiry, was adopted so the teacher is the "guide of inquiry" encouraging the students using the research question ("Why is the sand dark?", "Do all sands look the same?", "Where does it come from?") and driving the students around their investigation plans ("How can I measure grain size?"). A procedure to answer the above questions and validate the results and explanations has been implemented to allow the students to be proactive in their study. During the learning activities will be the students to ask for field trip to elaborate their new knowledge, verify and visualize the speculated processes. The teaching skills allow to address several geosciences domains such as mineralogy, petrology, regional geology and geodynamics as well as other scientific disciplines such as mathematics (more specifically statistics), forensic science and even life sciences (the presence of bioclasts might

  7. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  8. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  9. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    Science.gov (United States)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  10. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  11. ANN modelling for the determination of moulding sand matrix grain size

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-10-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broader application in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castings and supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressure castings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were obtained by using the Statistica 9.0 program. The aim of the investigations was to select the neural network suitable for prediction the moulding sand matrix grain size on the basis of the determined sand properties such as: permeability, compactibility, and compressive strength.

  12. Holocene marine transgression as interpreted from bathymetry and sand grain size parameters off Gopalpur

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.M.; Rajamanickam, G.V.; Rao, T.C.S.

    Grain size statistical parameters of the surface sediment samples collected from the innershelf off Gopalpur were calculated using graphic and moment methods. Fine-grained sand present up to 15 m water depth shows symmetrical skewness and good...

  13. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Kohsiek, P.

    1999-01-01

    An instrument has been designed for the routine analysis of the optically stimulated luminescence signal from single grains of sand. The system is capable of analysing over 3000 individual grains in a single measurement sequence, and the OSL signal from each grain can be read in less than 3 s....... The design principles are described, along with preliminary measurements that illustrate the operation of the system and its capabilities....

  14. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  15. THE INFLUENCE OF THE FILLER GRAIN COMPOSITION ON THE PROPERTIES OF THE HEAT-RESISTANT BASALTIC CONCRETE

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhiev

    2017-01-01

    Full Text Available Objectives. The optimal granulometric composition of filler compound ensures the production of concrete having improved  physical and mechanical characteristics, as well as minimal binder  consumption. The properties of heat-resistant concrete largely  depend on the type and the ratio of its components. Taking this into  account, the aim of the study is to determine the optimal grain composition of heat-resistant concrete.Methods. Methods for optimising the properties of heatresistant basaltic concrete with a composite binder and  mechanochemical activation of the filler grains were used during the  course of the research.A simplex-centroid experiment design is  applied for this purpose. The composite binder was subjected to  mechanochemical activation. Samples were made by vibration-pressing from a concrete mix with a cone draught of 2 cm.Results. The grain composition of heat-resistant concrete is proved  to be the most important variable factor, regulating which the  properties of concrete can be varied. The compositions of heat- resistant basaltic concrete with activated composite binder having a  maximum application temperature of 700 ºС are developed. The  influence of the grain composition of the basaltic filler on the  properties of basaltic concrete using mathematical experiment planning methods is determined. The regression equations for the ultimate tensile strength and bending stress of basaltic concrete are  obtained for heating temperature of 700ºC.Conclusion. The granulometric composition of heat-resistant basaltic concrete based on the activated binder is optimised for basic physical and technical properties. The optimal granulometric  design of the composition of heat-resistant concrete indicates that as the coarse fraction (particles greater than 0.63 mm in the filler  composition increases, the ultimate tensile strength and bending  stress of heatresistant basaltic concrete is increased

  16. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  17. POSSIBILITY OF BENEFICIATION OF SILICA SAND FROM THE CROATIAN DEPOSITS USING ATTRITION SCRUBBING

    Directory of Open Access Journals (Sweden)

    Ivan Sobota

    2011-12-01

    Full Text Available To meet high quality requirements defined for specific industrial applications, the raw sand often has to be subjected to extensive physical and chemical processing. The possibility of achieving silica sand concentrate of required quality depends mostly on raw sand properties, primarily mineral impurity types and contents, and features of applied beneficiation methods. When the impurities occur in the form of oxide coatings on the surfaces of the single sand grains, attriton scrubbing is applied. By reducing the proportion of oxide coatings on the grains, the quality of sand can be improved. With the aim to determine the possibilities of the beneficiation of silica sand from significant Croatian deposits (“Vrtlinska”, “Štefanac” and “Španovica” and achieve concentrate grade complying with the requirements of domestic industry, laboratory tests were conducted on three raw sand samples with different SiO2 and impurity contents. Grain size distribution, chemical and mineral composition of raw sand samples, and the possibility of their quality improvement by applying the washing, classification and attrition scrubbing were defined by analysis of test results (the paper is published in Croatian.

  18. The composition of interstellar grain mantles

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.

    1984-01-01

    The molecular composition of interstellar grain mantles employing gas phase as well as grain surface reactions has been calculated. The calculated mixtures consist mainly of the molecules H 2 O H 2 CO, N 2 , CO, O 2 , CO 2 , H 2 O 2 , NH 3 , and their deuterated counterparts in varying ratios. The exact compositions depend strongly on the physical conditions in the gas phase. The calculated mixtures are compared to the observations by using laboratory spectra of grain mantle analogs. (author)

  19. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    Science.gov (United States)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  20. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  1. Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA

    Science.gov (United States)

    Fenton, Lori K.; Bishop, Janice L.; King, Sara; Lafuente, Barbara; Horgan, Briony; Bustos, David; Sarrazin, Philippe

    2017-06-01

    Gypsum (CaSO4·2H2O) has been identified as a major component of part of Olympia Undae in the northern polar region of Mars, along with the mafic minerals more typical of Martian dune fields. The source and age of the gypsum is disputed, with the proposed explanations having vastly different implications for Mars' geological history. Furthermore, the transport of low density gypsum grains relative to and concurrently with denser grains has yet to be investigated in an aeolian setting. To address this knowledge gap, we performed a field study at White Sands National Monument (WSNM) in New Mexico, USA. Although gypsum dominates the bulk of the dune field, a dolomite-rich [CaMg(CO3)2] transport pathway along the northern border of WSNM provides a suitable analog site to study the transport of gypsum grains relative to the somewhat harder and denser carbonate grains. We collected samples along the stoss slope of a dune and on two coarse-grained ripples at the upwind margin of the dune field where minerals other than gypsum were most common. For comparison, additional samples were taken along the stoss slope of a dune outside the dolomite transport pathway, in the center of the dune field. Visible and near-infrared (VNIR), X-ray powder diffraction (XRD), and Raman analyses of different sample size fractions reveal that dolomite is only prevalent in grains larger than ∼1 mm. Other minerals, most notably calcite, are also present in smaller quantities among the coarse grains. The abundance of these coarse grains, relative to gypsum grains of the same size, drops off sharply at the upwind margin of the dune field. In contrast, gypsum dominated the finer fraction (MCD) are consistent with the observed concentration of gypsum at dune crests. Density-driven differentiation in transport should not influence sediment fluxes of finer grains (<1 mm) as strongly on Earth, suggesting that the high ratio of fine gypsum grains to other minerals at WSNM is caused by a relatively

  2. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    Science.gov (United States)

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  3. Environmental characterization foundry sands used in sanitary landfills

    International Nuclear Information System (INIS)

    Domingues, L.G.F.; Ferreira, G.C.S.; Pires, M.S.G.; Teixeira, I.; Carnin, R.; Sarro, W.S.

    2016-01-01

    The national solid waste policy recommends reducing solid waste generation and reusing them in different applications. Preliminary studies show that the foundry sand generated from cast metal parts undercut, has excellent applicability in grain size stabilization of soils for geotechnical functions, and therefore, should not be discarded as waste. This study aimed at environmental characterization of two lots of waste foundry sand (WFS), from different industries, to the particle size stabilization of a clayey soil for use in coverage of solid waste in landfills. The methodology included physicochemical characterization tests (grain size, permeability, XRF and heavy metals) and environmental (NBR 10004: 2004, NBR 10005: 2004, NBR 10006: 20004 and acute toxicity with Vibrio fischeri). The results prove the environmental viability of using these lots of WFS as functional material in the composition of landfills. (author)

  4. Post-IR IRSL290 dating of K-rich feldspar sand grains in a wind-dominated system on Sardinia

    DEFF Research Database (Denmark)

    Andreucci, S.; Sechi, D.; Buylaert, Jan-Pieter

    2017-01-01

    The reliability of a post-IR elevated temperature IRSL (290 °C; pIRIR290) is tested on wind-blown, sand-sized (180–250 μm) K-rich feldspar grains. The pIRIR290 ages were compared with quartz SAR-OSL data, other independent age controls and historical information. Three study areas along the coast....... The pIRIR290 ages indicate an offset up to ∼1000 years. We can conclude that the pIRIR290 method on sand-sized K-feldspar grains shows great promise for samples at or beyond the quartz OSL age limit but should not be applied to Late Holocene or modern deposits....

  5. The gravel sand transition in a disturbed catchment

    Science.gov (United States)

    Knighton, A. David

    1999-03-01

    More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.

  6. Crushed and River-Origin Sands Used as Aggregates in Repair Mortars

    Directory of Open Access Journals (Sweden)

    Maria Stefanidou

    2016-04-01

    Full Text Available The systematic analysis of mortars from monuments or historic buildings and the simultaneous study of the construction environment show that it was common practice to use naturally occurring sand from local rivers or streams for the production of the mortars. There are cases though, mainly on islands, where sands of natural origin were limited, and marine or crushed sands were used possibly after elaboration. In all cases the particle size analysis of old mortar confirms the presence of even distribution of the granules. As regards the design of the repair mortars, there are criteria that should be taken into consideration in order to produce materials with compatible properties. The main properties concerning sands are the grain distribution and maximum size, the color, the content of fines, and soluble salts. The objective of this research is the study of the physical characteristics of the sands such as the sand equivalent, the gradation, the apparent density, the morphology of the grains, their mineralogical composition and the influence of these properties on the behavior of lime mortars, notably the mechanical and physical properties acquired.

  7. Study physico-chemical of the sand of the western ERG (Western South Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Allam, M.; Tafraoui, A. [Faculty of sciences and technology, University of Bechar (Algeria)], email: allammessaouda@yahoo.fr

    2011-07-01

    Silica is gaining increasing importance as it is the base for the production of pure silicon, for which several applications are under development in the electronic and solar energy sectors. The aim of this study is to characterize the sand taken from the Western Erg of Algeria to determine the percentage of silicon it contains. Characterization was done through physical analysis to determine the granulometry of the sand. A chemical analysis was next performed, using diffraction of X-rays and a scanning electron microscope to determine the chemical composition of the sand. Results showed that the sand is mainly made of quartz in the form of rounded and subbarrondis grains and that silicon is prevalent, accounting for 98% of the composition. This study demonstrated that sand from the Western Erg of Algeria is rich in silicon and could be used for silicon production.

  8. The study of the sorption capacity of mineral kasongan and sand mixture of the waste of uranium organic phase

    International Nuclear Information System (INIS)

    Budiyono, M. E.; Sardjono, D.; Sukosrono

    1996-01-01

    An experimental investigation on the sorption capacity of mineral Kasongan and sand of Progo of the waste of uranium organic phase which to be connected with a backfill material which can be used to carried out of waste transportation from uncertain unit of the wastes to process of the wastes. The aim of the investigation wastes transportation must be conducted of the anticipation, that of the wastes with safe to unit management of wastes. Therefore must be investigated of the uranium organic wastes. This investigations which influence sorption ability, so an experimental investigation on its absorbability is necessary since this nuclide can not be dispersed to the environment. This investigation was carried out by varying some parameters which influence the sorption ability or sorptive capacity of the mineral Kasongan and the sand of Progo. The variables investigated were the grains size of the backfill material. Also the composition of mineral Kasongan/sand of Progo. The grains size were varied from 10-200 mesh and the composition were varied from 100/0 to 0/100 by weight. The sorption capacity of the maximum results was also determined. It can be concluded that the sorption capacity of the mineral Kasongan was the best at the grains of size about 80 mesh. The sorption capacity was 58 x 10 -2 ml/g and the grains size of the sand of Progo about 20 to 80 mesh was 30 x 10 -2 ml/g. The best sorption capacity of 58 x 10 -2 ml/g was gained at the composition of 100 % mineral Kasongan and 0% sand Progo. (author)

  9. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  10. Chemical composition of distillers grains, a review.

    Science.gov (United States)

    Liu, KeShun

    2011-03-09

    In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.

  11. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  12. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    International Nuclear Information System (INIS)

    Alonso, M.M.; Martínez-Gaitero, R.; Gismera-Diez, S.; Puertas, F.

    2017-01-01

    The choice of a superplasticiser (SP) for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption. [es

  13. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    Directory of Open Access Journals (Sweden)

    M. M. Alonso

    2017-02-01

    Full Text Available The choice of a superplasticiser (SP for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption.

  14. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  15. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  16. Effect of sillimanite beach sand composition on mullitization and ...

    Indian Academy of Sciences (India)

    Unknown

    Effect of sillimanite beach sand composition on mullitization and properties of Al2O3–SiO2 system ... Presence of zircon in Z-variety increases the hardness and fracture toughness. Alumina addition ... The ratio of charge to grinding media was ...

  17. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    Science.gov (United States)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  18. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    Science.gov (United States)

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  19. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  20. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  1. Modelling the joint variability of grain size and chemical composition in sediments

    NARCIS (Netherlands)

    Bloemsma, M.R.; Zabel, M.; Stuut, J.B.W.; Tjallingii, R.; Collins, J.A.; Weltje, G.J.

    2012-01-01

    The geochemical composition of siliciclastic sediments correlates strongly with grain size. Hence, geochemical composition may serve as a grain-size proxy. In the absence of grain-size variations, geochemical data of siliciclastic sediments may be used to characterise size-independent processes,

  2. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  3. Improvement of composition of core sand and molding sand mixtures for power machine building castings

    International Nuclear Information System (INIS)

    Velikanov, G.F.; Primak, I.N.; Brechko, A.A.

    1982-01-01

    Considered is a problem of development and improvement of mixtures, as well as of antisticking coatings with the given parameters providing production of castings of the necessary quality. Requirements to properties of mixtures and antisticking coatings are formulated proceeding from the conditions of guaranteed production of qualitative steel castings with mass from 0.5 up to 20t and wall thickness from 60 up to 200 mm. Formation of film structure of binding compositions is studied, their marginal contact angle and surface tension are determined. In the result of work carried out on improvement of core sand and molding sand mixtures the labour productivity during the production of core and moldings has been increased in 20-25% in average, the quality has also been improved [ru

  4. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  5. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  6. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    Science.gov (United States)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  7. Valorisation du sable de concassage et du sable du désert dans la composition des bétons autoplaçants Valorization of the crushed sand and of the desert sand in the composition of the self compacting concrete

    Directory of Open Access Journals (Sweden)

    R’mili A.

    2012-09-01

    Full Text Available Les bétons autopla÷ants (BAP sont des bétons très fluides qui demandent des dosages élevés en sables et en éléments fins par rapport au béton ordinaire (BO. Le sable de concassage (SC, à granularité étalée, est un sous-produit de concassage des roches massives. Le sable du désert (SD est un sable extra-fin, caractérisé par une distribution serrée de grosseur des grains. Renfermant des teneurs importantes en fines, ces deux sables peuvent êtres des composants intéressants des BAP. Cette recherché consiste à incorporer le SC dans la composition des bétons et étudier l’effet de son remplacement progressif par le SD sur le comportement à l’état frais et durci des BAP. L’étude expérimentale montre que les paramètres d’ouvrabilité des BAP sont améliorés lorsque le SC est partiellement remplacé par le SD ( 30%, des quantités supplémentaires en eau et en superplastifiant sont nécessaires, pour répondre aux propriétés autopla÷antes. Les résistances mécaniques diminuent en ajoutant le SD au SC, mais elles atteignent des valeurs acceptables pour des dosages modérés en SD. Les performances des BAP sont nettement meilleures que celles des BO confectionnées avec les mêmes granulats. Les essais de spécification de la durabilité montrent que les coefficients d’absorption d’eau par capillarité et par immersion augmentent en ajoutant le SD au SC alors que le coefficient de perméabilité diminue. Self-compacting concretes (SCC are highly fluid concretes that require high proportions in sand and fine particles with respect to the ordinary concrete (OC. The crushed sand (CS, spread granulometry, is a by-product of crushing rock mass. The desert sand (DS is an extra fine sand, characterized by a tight distribution of grain size. Containing significant levels of fine sand, these two sands can be both interesting components of the SCC. This research is to incorporate the CS in the composition of concrete and

  8. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    is expanding our current understanding and outline the areas of advancement needed in the future. Presentation is made of current models for wind driven detachment/entrainment and the transport rates of sand and dust, including the effects of contact induced grain electrification. This ubiquitous phenomenon...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  9. Optimization the composition of sand-lime products modified of diabase aggregate

    Science.gov (United States)

    Komisarczyk, K.; Stępień, A.

    2017-10-01

    The problem of optimizing the composition of building materials is currently of great importance due to the increasing competitiveness and technological development in the construction industry. This phenomenon also applies to catalog sand-lime. The respective arrangement of individual components or their equivalents, and linking them with the main parameters of the composition of the mixture, i.e. The lime/sand/water should lead to the intended purpose. The introduction of sand-lime diabase aggregate is concluded with a positive effect of final products. The paper presents the results of optimization with the addition of diabase aggregate. The constant value was the amount of water, variable - the mass of the dry ingredients. The program of experimental studies was taken for 6 series of silicates made in industrial conditions. Final samples were tested for mechanical and physico-chemical expanding the analysis of the mercury intrusion porosimetry, SEM and XRD. The results show that, depending on the aggregate’s contribution, exhibit differences. The sample in an amount of 10% diabase aggregate the compressive strength was higher than in the case of reference sample, while modified samples absorbed less water.

  10. Effects of Moisture Content on the Foundry Properties of Yola Natural Sand

    Directory of Open Access Journals (Sweden)

    Paul Aondona IHOM

    2012-08-01

    Full Text Available The effect of moisture content of Yola natural sand has been studied. The moisture content was varied from 1 to 9%. The effect of the moisture content on the green compression strength, green permeability and bulk density was investigated. Particle size distribution of the natural sand, the grain fineness number, average grain size, grain shape and the clay content of the natural sand were also studied. 5% moisture gave the optimum green compression strength of 118.6KN/m2. The dry compression strength increased with moisture content, an optimum value of 4000KN/m2 was obtained at 9% moisture. The Yola natural sand had a grain fineness number of 88.05AFS, average grain size of 335.78 microns and a clay content of 26%. A sand mixture containing 5% moisture was prepared and used to produce a test casting with aluminium scraps, the test casting was sound.

  11. Radiation-resistant composite scintillators based on GSO and GPS grains

    Energy Technology Data Exchange (ETDEWEB)

    Boyarintsev, A.Yu. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Galunov, N.Z. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); V.N. Karasin Kharkov National University, 4 Svobody Sq., 61022 Kharkiv (Ukraine); Gerasymov, Ia.V.; Karavaeva, N.L. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Krech, A.V., E-mail: AntonKrech@gmail.com [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Levchuk, L.G.; Popov, V.F. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Sidletskiy, O.Ts. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Sorokin, P.V. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Tarasenko, O.A. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine)

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd{sub 2}SiO{sub 5}:Ce (GSO) and Gd{sub 2}Si{sub 2}O{sub 7}:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  12. A new low-cost method of reclaiming mixed foundry waste sand based on wet-thermal composite reclamation

    OpenAIRE

    Fan Zitian; Liu Fuchu; Long Wei

    2014-01-01

    A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The wast...

  13. Formula of Moulding Sand, Bentonite and Portland Cement toImprove The Quality of Al-Si Cast Alloy

    OpenAIRE

    Andoko Andoko; Poppy Puspitasari; Avita Ayu Permanasari; Didin Zakaria Lubis

    2017-01-01

    A binder is any material used to strengthen the bonding of moulding sand grains. The primary function of the binder is to hold the moulding sand and other materialstogether to produce high-quality casts. In this study, there were four binder compositions being tested, i.e. 5% bentonite + 5% Portland cement, 4% bentonite + 6% Portland cement, 6% bentonite + 4% Portland cement, and 7% bentonite + 3% Portland cement. Each specimen was measured for its compressive strength, shear strength, tensil...

  14. On the Size Distribution of Sand

    DEFF Research Database (Denmark)

    Sørensen, Michael

    2016-01-01

    A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out......-distribution, by taking into account that individual grains do not have the same travel time from the source to the deposit. The travel time is assumed to be random so that the wear on the individual grains vary randomly. The model provides an interpretation of the parameters of the NIG-distribution, and relates the mean...

  15. Study of Slow Sand Filtration in Removing Total Coliforms and E.Coli

    Directory of Open Access Journals (Sweden)

    Ekha Yogafanny

    2015-08-01

    Full Text Available This study was aimed to evaluate the performance of SSF in removing bacteria (Total Coliforms and E. Coli in regard to grain size distribution and grain shape intermittently. Two methodological approaches used in this reasearch were literature review and laboratory work. Bacteria removal was analyzed considering two different filter media (Rhine sand-spherical shape and Lava sand-angular shape with three different grain size distributions. The best performance was attained by filter column F4 which consisted of Lava sand and had the configuration C2 (d10 = 0.07 mm; Cu = 4.2. This filter column achieved 4.7log-units removal of Total Coliforms and 5.0log-units removal of E. coli. The results show that a smaller grain size and an angular shape of sand grain lead to an increase in bacteria removal.

  16. Consolidation of the formation sand by chemical methods

    Directory of Open Access Journals (Sweden)

    Mariana Mihočová

    2006-10-01

    Full Text Available The sand control by consolidation involves the process of injecting chemicals into the naturally unconsolidated formation to provide an in situ grain-to-grain cementation. The sand consolidation chemicals are available for some 30 years. Several types of consolidating material were tried. Presently available systems utilize solidified plastics to provide the cementation. These systems include phenol resin, phenol-formaldehyde, epoxy, furan and phenolic-furfuryl.The sand consolidation with the steam injection is a novel technique. This process provides a highly alkaline liquid phase and temperatures to 300 °C to geochemically create cements by interacting with the dirty sand.While the formation consolidation has widely applied, our experience has proved a high level of success.

  17. Fine sand in motion: the influence of interstitial air

    NARCIS (Netherlands)

    Homan, T.A.M.

    2013-01-01

    Sand is a granular material, and therefore it consists of individual grains arranged in a packing. The pores in-between the grains are usually filled with a fluid, in this case air. Now, is this interstitial air able to influence the behavior of the sand bed as a whole? When a ball impacts on fine,

  18. Sediment distribution and composition on the shallow water ...

    African Journals Online (AJOL)

    Sediments of the shallow water carbonate basin in Zanzibar channel were investigated for composition and grain size distribution. The surface sediment composition was dominated by carbonate sands (with CaCO3 > 30%), except in the area adjacent to mainland coastline and a thin lobe which projects from Ruvu River to ...

  19. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  20. Microbial Characterization of Qatari Barchan Sand Dunes.

    Directory of Open Access Journals (Sweden)

    Sara Abdul Majid

    Full Text Available This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64 selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%, Firmicutes (27% and Proteobacteria (15%. Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert.

  1. Fusion of arkosic sand by intrusive andesite

    Science.gov (United States)

    Bailey, Roy A.

    1954-01-01

    An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.

  2. A Threshold Continuum for Aeolian Sand Transport

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  3. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  4. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    Science.gov (United States)

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  5. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): clues for source layer identification and liquefaction regime

    Science.gov (United States)

    Fontana, D.; Lugli, S.; Marchetti Dori, S.; Caputo, R.; Stefani, M.

    2015-07-01

    In May 2012 widespread sand blows formed along buried channels in the eastern sector of the Po Plain (Northern Italy) as a consequence of a series of seismic events with main shocks of Mw 6.1 and 5.9. At San Carlo (Ferrara) a trench dug a few week after the earthquakes exposed sand dikes cutting through an old Reno River channel-levee system that was diverted in the 18th century and was deposited starting from the 14th century (unit A). This sequence overlies a Holocene muddy floodplain deposits and contains scattered sandy channel deposits (unit B) and a Pleistocene channel sand unit (unit C). Sands with inverse and normal grading, concave layering and vertical lamination coexisting along the dikes suggest multiple rhythmic opening and closing of the fractures that were injected and filled by a slurry of sand during the compression pulses, and emptied during the extension phase. The pulse mechanism may have lasted for several minutes and formed well stratified sand volcanoes structures that formed at the top of the fractures. Sands from dikes and from the various units show well defined compositional fields from lithoarenitic to quartz-feldspar-rich compositions. Sands from the old Reno levee and channel fill (unit A) have abundant lithic fragments derived from the erosion of Apennine sedimentary carbonate and terrigenous successions. Composition of the sand filling the dikes show clear affinities with sand layers of the old Reno River channel (Unit A) and clearly differ from any sand from deeper Holocene and Pleistocene layers (Unit B and C), which are richer in quartz and feldspar and poorer in sedimentary lithic fragments. Sorting related to sediment flux variations did not apparently affect the sand composition across the sedimentary structures. Textural and compositional data indicate that the liquefaction processes originated from a relatively shallow source consisting of channel sands located within Unit A at 6.8.to 7.5 m depth.

  6. Modeling and Optimization of Phenol Formaldehyde Resin Sand Mould System

    Directory of Open Access Journals (Sweden)

    Chate G. R.

    2017-06-01

    Full Text Available Chemical bonded resin sand mould system has high dimensional accuracy, surface finish and sand mould properties compared to green sand mould system. The mould cavity prepared under chemical bonded sand mould system must produce sufficient permeability and hardness to withstand sand drop while pouring molten metal through ladle. The demand for improved values of permeability and mould hardness depends on systematic study and analysis of influencing variables namely grain fineness number, setting time, percent of resin and hardener. Try-error experiment methods and analysis were considered impractical in actual foundry practice due to the associated cost. Experimental matrices of central composite design allow conducting minimum experiments that provide complete insight of the process. Statistical significance of influencing variables and their interaction were determined to control the process. Analysis of variance (ANOVA test was conducted to validate the model statistically. Mathematical equation was derived separately for mould hardness and permeability, which are expressed as a non-linear function of input variables based on the collected experimental input-output data. The developed model prediction accuracy for practical usefulness was tested with 10 random experimental conditions. The decision variables for higher mould hardness and permeability were determined using desirability function approach. The prediction results were found to be consistent with experimental values.

  7. Insights from Askja sand sheet, Iceland, as a depositional analogue for the Bagnold Dune Field, Gale Crater, Mars.

    Science.gov (United States)

    Ukstins, I.; Sara, M.; Riishuus, M.; Schmidt, M. E.; Yingst, R. A.; Berger, J.

    2017-12-01

    Examining the compositional effect of aeolian transport and sorting processes on basaltic sands is significant for understanding the evolution of the Bagnold dune field, as well as other martian soils and sedimentary units. We use the Askja sand sheet, Iceland, as a testbed to quantify the nature of soil production and aeolian transport processes in a mafic system. Basalts from Askja and surrounding volcanic units, which can have high MgO (5-18 wt %) and high Fe2O3 (5-18 wt %), have been weathered to form mafic volcaniclastic deposits which are incorporated into a 40-km long sand sheet to the E-SE of the caldera, ranging from 10 cm to 10 m thick, and covering 240 km2. Ash and lava from the 2014-2015 Holuhraun eruption were emplaced onto the southeastern part of the sand sheet. The SW section is deflationary and defined by very fine to medium grained basaltic sand with ventifact cobbles and boulders. The central part is inflating and dominated by very fine-grained sand, relict lava fields, and small to large sand ripples (1 to 30 cm). The NE portion is also inflating but accumulation is limited to topographic depressions. Bulk chemistry of >200 sand samples are similar to Martian crust (SiO2: 48-52 wt %, MgO: 5-8 wt %, Fe2O3: 13-15 wt %). MgO concentrations vary with distance along the sand sheet, increasing by 1.5% over 10 km in the downwind direction (E, NE), then maintaining a relatively consistent concentration of 6.75 wt % over 18 km. Mean equancy of grains decreases 15 % to the E over 10 km followed by a plateau at 65 to 75 %. Material at depth tends to be of higher sphericity than material on or near the surface. Notably, MgO increases while the sphericity decreases and both data sets level off at 10 km, which suggests these two variables are related. These indicate input of material with prismoidal morphology around 10 km, and may be due to the Holuhraun eruption.

  8. The use of light weight deflectometer for in situ evaluation of sand degree of compaction

    Directory of Open Access Journals (Sweden)

    Amr F. Elhakim

    2014-12-01

    Full Text Available The light weight deflectometer (LWD, also known as the light falling weight deflectometer, light drop weight tester, and dynamic plate load test, is a hand portable device that was developed in Germany to measure the soil in situ LWD dynamic modulus. Typically, this modulus is used to evaluate the subsoil degree of compaction. Thus it is suitable for compaction quality control of soil-surfaced roads, embankments and replacement fill. As a dynamic test, the device is suited, in particular, for coarse and mixed grained soils with a maximum grain size of 63 mm. The response of poorly graded calcareous and siliceous sands is the focus of this research. First, the index soil properties of the tested soils including grain size distribution; maximum and minimum void ratios and specific gravity were obtained. Petrographic analyses of the tested sands were also performed to determine their mineralogical composition. A 1-m3 chamber was built for performing the LWD testing in the laboratory. The study was performed for relative densities of 20%, 40%, 60% and 80% to represent the behavior of very loose, loose, medium dense and dense sands. The effect of the existence of a rigid boundary beneath the tested soil on test results was also investigated to determine the zone of influence of the light weight deflectometer.

  9. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  10. Time-independent compaction behavior of quartz sands

    NARCIS (Netherlands)

    Brzesowsky, R. H.; Spiers, C. J.|info:eu-repo/dai/nl/304829323; Peach, C. J.|info:eu-repo/dai/nl/082101906; Hangx, Suzanne|info:eu-repo/dai/nl/30483579X

    Mechanisms such as grain rearrangement, coupled with elastic deformation and grain breakage, are believed to play an important role in the time-independent compaction of sands, controlling porosity and permeability reduction during burial of clastic sediments and during depletion of highly porous

  11. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  12. Composition and microstructure alteration of triticale grain surface after processing by enzymes of cellulase complex

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2016-01-01

    Full Text Available It is found that the pericarp tissue of grain have considerable strength and stiffness, that has an adverse effect on quality of whole-grain bread. Thereby, there exists the need for preliminary chemical and biochemical processing of durable cell walls before industrial use. Increasingly used in the production of bread finds an artificial hybrid of the traditional grain crops of wheat and rye - triticale, grain which has high nutritional value. The purpose of this research was to evaluate the influence of cellulose complex (Penicillium canescens enzymes on composition and microstructure alteration of triticale grain surface, for grain used in baking. Triticale grain was processed by cellulolytic enzyme preparations with different composition (producer is Penicillium canescens. During experiment it is found that triticale grain processing by enzymes of cellulase complex leads to an increase in the content of water-soluble pentosans by 36.3 - 39.2%. The total amount of low molecular sugars increased by 3.8 - 10.5 %. Studies show that under the influence of enzymes the microstructure of the triticale grain surface is changing. Microphotographs characterizing grain surface structure alteration in dynamic (every 2 hours during 10 hours of substrate hydrolysis are shown. It is found that the depth and direction of destruction process for non-starch polysaccharides of grain integument are determined by the composition of the enzyme complex preparation and duration of exposure. It is found, that xylanase involved in the modification of hemicelluloses fiber having both longitudinal and radial orientation. Hydrolysis of non-starch polysaccharides from grain shells led to increase of antioxidant activity. Ferulic acid was identified in alcoholic extract of triticale grain after enzymatic hydrolysis under the influence of complex preparation containing cellulase, xylanase and β-glucanase. Grain processing by independent enzymes containing in complex

  13. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    International Nuclear Information System (INIS)

    Adibi, Sara; Branicio, Paulo S.; Zhang, Yong-Wei; Joshi, Shailendra P.

    2014-01-01

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15 nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5 nm for Cu 36 Zr 64 and 3 nm for Cu 64 Zr 36 . The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu 36 Zr 64 yield/flow stress: 2.54 GPa/1.29 GPa and Cu 64 Zr 36 yield/flow stress: 3.57 GPa /1.58 GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  14. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.

    2009-01-01

    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable for...

  15. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Jadoon, Khan; Missimer, Thomas

    2015-01-01

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size

  16. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Heitbrink, William A. [LMK OSH Consulting LLC (United States); Lo, Li-Ming, E-mail: LLo@cdc.gov [Centers for Disease Control and Prevention (CDC), Division of Applied Research and Technology, National Institute for Occupational Safety and Health (NIOSH) (United States)

    2015-08-15

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10{sup 8} and 2.8 × 10{sup 6} fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  17. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    International Nuclear Information System (INIS)

    Heitbrink, William A.; Lo, Li-Ming

    2015-01-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10 8 and 2.8 × 10 6 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC

  18. Radio Frequencies Emitted by Mobile Granular Materials: A Basis for Remote Sensing of Sand and Dust Activity on Mars and Earth

    Science.gov (United States)

    Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.

    1999-01-01

    In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.

  19. Texture and composition of the Rosa Marina beach sands (Adriatic coast, southern Italy: a sedimentological/ecological approach

    Directory of Open Access Journals (Sweden)

    Moretti Massimo

    2016-06-01

    Full Text Available Beach sands from the Rosa Marina locality (Adriatic coast, southern Italy were analysed mainly microscopically in order to trace the source areas of their lithoclastic and bioclastic components. The main cropping out sedimentary units were also studied with the objective to identify the potential source areas of lithoclasts. This allowed to establish how the various rock units contribute to the formation of beach sands. The analysis of the bioclastic components allows to estimate the actual role of organisms regarding the supply of this material to the beach. Identification of taxa that are present in the beach sands as shell fragments or other remains was carried out at the genus or family level. Ecological investigation of the same beach and the recognition of sub-environments (mainly distinguished on the basis of the nature of the substrate and of the water depth was the key topic that allowed to establish the actual source areas of bioclasts in the Rosa Marina beach sands. The sedimentological analysis (including a physical study of the beach and the calculation of some statistical parameters concerning the grain-size curves shows that the Rosa Marina beach is nowadays subject to erosion.

  20. SPECIFIC RESISTANCE AND SPECIFIC INTENSITY OF BELT SANDING OF WOOD

    Directory of Open Access Journals (Sweden)

    Boleslaw Porankiewicz

    2010-06-01

    Full Text Available This paper examines and discusses the specific belt sanding resistance K (N·cm-2 and specific belt sanding intensity SI (g·cm-2·min-1, for wood of Pinus sylvestris L., Picea abies L., Quercus robra L., Acer pseudoplatanus L., Alnus glutinosa Gaertn., and Populus Nigra L., by different sanding pressure pS, different sanding grit NG number, and different wood grain angles Phi(v.

  1. NON-COHESIVE SOILS’ COMPRESSIBILITY AND UNEVEN GRAIN-SIZE DISTRIBUTION RELATION

    Directory of Open Access Journals (Sweden)

    Anatoliy Mirnyy

    2016-03-01

    Full Text Available This paper presents the results of laboratory investigation of soil compression phases with consideration of various granulometric composition. Materials and Methods Experimental soil box with microscale video recording for compression phases studies is described. Photo and video materials showing the differences of microscale particle movements were obtained for non-cohesive soils with different grain-size distribution. Results The analysis of the compression tests results and elastic and plastic deformations separation allows identifying each compression phase. It is shown, that soil density is correlating with deformability parameters only for the same grain-size distribution. Basing on the test results the authors suggest that compaction ratio is not sufficient for deformability estimating without grain-size distribution taken into account. Discussion and Conclusions Considering grain-size distribution allows refining technological requirements for artificial soil structures, backfills, and sand beds. Further studies could be used for developing standard documents, SP45.13330.2012 in particular.

  2. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    Science.gov (United States)

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  3. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  4. Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites

    Energy Technology Data Exchange (ETDEWEB)

    Primorac, Mladen-Mateo [Department of Materials Physics, Montanuniversität Leoben (Austria); Abad, Manuel David; Hosemann, Peter [Department of Nuclear Engineering, University of California, Berkeley (United States); Kreuzeder, Marius [Department of Materials Physics, Montanuniversität Leoben (Austria); Maier, Verena [Department of Materials Physics, Montanuniversität Leoben (Austria); Erich-Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria); Kiener, Daniel, E-mail: daniel.kiener@unileoben.ac.at [Department of Materials Physics, Montanuniversität Leoben (Austria)

    2015-02-11

    Ultra-fine grained materials exhibit outstanding properties and are therefore favorable for prospective applications. One of these promising systems is the composite assembled by the body centered cubic niobium and the face centered cubic copper. Cu–Nb composites show a high hardness and good thermal stability, as well as a high radiation damage tolerance. These properties make the material interesting for use in nuclear reactors. The aim of this work was to create a polycrystalline ultra-fine grained composite for high temperature applications. The samples were manufactured via a powder metallurgical route using high pressure torsion, exhibiting a randomly distributed oriented grain size between 100 and 200 nm. The mechanical properties and the governing plastic deformation behavior as a function of temperature were determined by high temperature nanoindentation up to 500 °C. It was found that in the lower temperature regions up to 300 °C the plastic deformation is mainly governed by dislocation interactions, such as dislocation glide and the nucleation of kink pairs. For higher temperatures, thermally activated processes at grain boundaries are proposed to be the main mechanism governing plastic deformation. This mechanistic view is supported by temperature dependent changes in hardness, strain rate sensitivity, activation volume, and activation energy.

  5. Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.

    2017-12-01

    Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain

  6. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.

    Science.gov (United States)

    Zykin, Pavel A; Andreeva, Elena A; Lykholay, Anna N; Tsvetkova, Natalia V; Voylokov, Anatoly V

    2018-04-19

    The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6) lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C) and pericarp (gene Vs) also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  7. Anthocyanin Composition and Content in Rye Plants with Different Grain Color

    Directory of Open Access Journals (Sweden)

    Pavel A. Zykin

    2018-04-01

    Full Text Available The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6 lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C and pericarp (gene Vs also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  8. A Scientific World in a Grain of Sand

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Students investigate local sand samples on a shoestring budget. This investigation reveals a fascinating Earth history that can address various interdisciplinary scientific topics, provide rich inquiry experiences, and move beyond the science classroom to integrate history, culture, and art. (Contains 3 figures and 14 online resources.)

  9. Environmental characterization foundry sands used in sanitary landfills; Caracterizacao ambiental de areias descartadas de fundicao utilizadas na cobertura de residuos em aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, L.G.F.; Ferreira, G.C.S.; Pires, M.S.G.; Teixeira, I.; Carnin, R.; Sarro, W.S., E-mail: lucienegferrari@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    The national solid waste policy recommends reducing solid waste generation and reusing them in different applications. Preliminary studies show that the foundry sand generated from cast metal parts undercut, has excellent applicability in grain size stabilization of soils for geotechnical functions, and therefore, should not be discarded as waste. This study aimed at environmental characterization of two lots of waste foundry sand (WFS), from different industries, to the particle size stabilization of a clayey soil for use in coverage of solid waste in landfills. The methodology included physicochemical characterization tests (grain size, permeability, XRF and heavy metals) and environmental (NBR 10004: 2004, NBR 10005: 2004, NBR 10006: 20004 and acute toxicity with Vibrio fischeri). The results prove the environmental viability of using these lots of WFS as functional material in the composition of landfills. (author)

  10. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  11. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    Science.gov (United States)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements

  12. Changes in active eolian sand at northern Coachella Valley, California

    Science.gov (United States)

    Katra, Itzhak; Scheidt, Stephen; Lancaster, Nicholas

    2009-04-01

    Climate variability and rapid urbanization have influenced the sand environments in the northern Coachella Valley throughout the late 20th century. This paper addresses changes in the spatial relationships among different sand deposits at northern Coachella Valley between two recent time periods by using satellite data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The approach employed here, involving multispectral thermal infrared (TIR) data and spectral mixture analysis, has shown that the major sand deposits can be spatially modeled at northern Coachella Valley. The "coarse-grained (quartz-rich) sand" deposit is associated with active eolian sand, and the "mixed sandy soil" and "fine-grained (quartz-rich) sand" deposits are associated with inactive eolian sand. The fractional abundance images showed a significant decrease between 2000 and 2006 in the percentage of active sand in the major depositional area for fluvial sediment, the Whitewater River, but also in two downwind areas: the Whitewater and Willow Hole Reserves. The pattern of the active sand appears to be related to variations in annual precipitation (wet and dry years) and river discharge in the northern Coachella Valley. We suggest here that recent human modifications to the major watercourses that supply sand affect the capability of fluvial deposition areas to restore sediments over time and consequently the responses of the sand transport system to climate change, becoming more sensitive to dry years where areas of active sand may shrink, degrade, and/or stabilize faster. The approach utilized in this study can be advantageous for future monitoring of sand in the northern Coachella Valley for management of these and similar environments.

  13. Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.

    Science.gov (United States)

    Olenchock, S A; Lewis, D M; Mull, J C

    1986-01-01

    Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474

  14. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  15. Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.; Bender, Steve; Cloutis, Edward; Ehlmann, Bethany; Fraeman, Abigail; Gasnault, Olivier; Hamilton, Victoria E.; Le Mouélic, Stéphane; Maurice, Sylvestre; Pinet, Patrick; Thompson, Lucy; Wellington, Danika; Wiens, Roger C.

    2017-12-01

    As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak 530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after 685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest 530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker 530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

  16. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    sanding and physical properties of the traction sand aggregate affect formation of road dust (ii) How do studded tires affect the formation of road dust when compared with friction tires (iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland (iv) What is the size distribution of abrasion particles from tire-road interaction. The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the

  17. Chemical composition and microstructure of Bauhinia grains.

    Science.gov (United States)

    Amonsou, Eric O; Siwela, Muthulisi; Dlamini, Nomusa

    2014-09-01

    Bauhinia is a leguminous plant species found in almost every part of the world, including southern Africa. In this study, grain composition and protein body microstructure of two indigenous southern African Bauhinia species, B. galpinii and B. petersiana were determined. Protein (38 g/100 g) and fat (23 g/100 g) were the major constituents of Bauhinia. Bauhinia grains also contained substantial amounts of zinc (6 mg/100 g) and iron (3 mg/100 g) when compared to FAO/WHO standards. The parenchyma cells of Bauhinia showed spherical protein bodies with globoids inclusions and these were surrounded by lipids. However, the protein bodies of B. petersiana were smaller in size (7 ± 3 μm) than those of B. galpinii (13 ± 4 μm). The microstructure of protein bodies in Bauhinia is very similar to that of soya, suggesting that the processing technology developed for soya protein may be adopted for Bauhinia.

  18. Sediment Sources and Transport Pathway Identification Based on Grain-Size Distributions on the SW Coast of Portugal

    Directory of Open Access Journals (Sweden)

    Xiaoqin Du

    2015-01-01

    Full Text Available Espichel-Sines is an embayed coast in SW Portugal, consisting of two capes at both extremities, a tidal inlet and associated ebb tidal delta, a barrier spit, sandy beaches, sea cliffs, and a submarine canyon. Beach berm, backshore, near shore and inner shelf sediment samples were taken. Samples were analyzed for their grain-size compositions. This study ranks the hypothetical sediment sources influences on the sediment distributions in the study area using the multivariate Empirical Orthogonal Function (EOF techniques. Transport pathways in this study were independently identified using the grain size trend analysis (GSTA technique to verify the EOF findings. The results show that the cliff-erosion sediment is composed of pebbles and sand and is the most important sediment source for the entire embayment. The sediment at the inlet mouth is a mixture of pebbles, sand, silt, and clay, which is a minor sediment source that only has local influence. The overall grain-size distributions on the shelf are dominated by the sand except for the high mud content around the tidal delta front in the northern embayment. Sediment transport patterns on the inner shelf at the landward and north sides of the canyon head are landward and northward along the barrier spit, respectively. On the south side of the canyon head, the prevailing sediment transport is seaward. Sediment transport occurs in both directions along the shore.

  19. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    Science.gov (United States)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain

  20. Russian Kefir Grains Microbial Composition and Its Changes during Production Process.

    Science.gov (United States)

    Kotova, I B; Cherdyntseva, T A; Netrusov, A I

    2016-01-01

    By combining DGGE-PCR method, classical microbiological analysis and light- and electron microscopic observations, it was found that the composition of microbial communities of central Russia regions kefir grains, starter and kefir drink include bacteria of the genera Lactobacillus, Leuconostoc and Lactococcus, and yeast anamorphs of the genera Saccharomyces, Kazachstania and Gibellulopsis. Fifteen prokaryotic and four eukaryotic pure cultures of microorganisms were isolated and identified from kefir grains. It has been shown that members of the genus Lactobacillus prevailed in kefir grains, whereas strains Leuconostoc pseudomesenteroides and Lactococcus lactis dominated in the final product - kefir drink. Yeasts contained in kefir grains in small amounts have reached a significant number of cells in the process of development of this dairy product. The possibility of reverse cell aggregation has been attempted in a mixed cultivation of all isolated pure cultures, but full formation kefir grains is not yet observed after 1.5 years of observation and reinoculations.

  1. Tidal River Elbe - a sediment budget for the grain size fraction of medium sand

    Science.gov (United States)

    Winterscheid, Axel

    2016-04-01

    Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of

  2. Failure behavior of single sand grains: theory versus experiment

    NARCIS (Netherlands)

    Brzesowsky, R.H.; Spiers, C.J.; Peach, C.J.; Hangx, S.J.T.

    2011-01-01

    Grain‐scale brittle fracture and grain rearrangement play an important role in controlling the compaction behavior of reservoir rocks during the early stages of burial. Therefore, the understanding of single‐grain failure is important. We performed constant displacement rate crushing tests

  3. Evaluating process origins of sand-dominated fluvial stratigraphy

    Science.gov (United States)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large

  4. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    Science.gov (United States)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  5. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  6. Grain size effect on Sr and Nd isotopic compositions in eolian dust. Implications for tracing dust provenance and Nd model age

    International Nuclear Information System (INIS)

    Feng Jinliang; Zhu Liping; Zhen Xiaolin; Hu Zhaoguo

    2009-01-01

    Strontium (Sr) and neodymium (Nd) isotopic compositions enable identification of dust sources and reconstruction of atmospheric dispersal pathways. The Sr and Nd isotopic compositions in eolian dust change systematically with grain size in ways not yet fully understood. This study demonstrates the grain size effect on the Sr and Nd isotopic compositions in loess and 2006 dust fall, based on analyses of seven separated grain size fractions. The analytical results indicate that Sr isotopic ratios strongly depend on the grain size fractions in samples from all types of eolian dust. In contrast, the Nd isotopic ratios exhibit little variation in loess, although they vary significantly with grain size in samples from a 2006 dust fall. Furthermore, Nd model ages tend to increase with increasing grain size in samples from all types of eolian dust. Comparatively, Sr isotopic compositions exhibit high sensitively to wind sorting, while Nd isotopic compositions show greater sensitively to dust origin. The principal cause for the different patterns of Sr and Nd isotopic composition variability with grain size appears related to the different geochemical behaviors between rubidium (Rb) and Sr, and the similar geochemical behaviors between samarium (Sm) and Nd. The Nd isotope data indicate that the various grain size fractions in loess have similar origins for each sample. In contrast, various provenance components may separate into different grain size fractions for the studied 2006 dust fall. The Sr and Nd isotope compositions further confirm that the 2006 dust fall and Pleistocene loess in Beijing have different sources. The loess deposits found in Beijing and those found on the Chinese Loess Plateau also derive from different sources. Variations between Sr and Nd isotopic compositions and Nd model ages with grain size need to be considered when directly comparing analyses of eolian dust of different grain size. (author)

  7. Controls on the abruptness of gravel-sand transitions

    Science.gov (United States)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has

  8. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan

    2014-01-01

    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  9. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    Science.gov (United States)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  10. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  11. Quenched carbonaceous composite (QCC): a likely candidate for interstellar grains

    International Nuclear Information System (INIS)

    Sakata, A.; Wada, S.; Tanabe, T.; Onaka, T.

    1984-01-01

    The authors have recently reported that a carbonaceous composite synthesized from a hydrocarbon plasma shows an extinction property quite resembling the observed average interstellar extinction curve around the 220 nm hump. This composite is synthesized by quenching the excited gas ejecting from a plasma of methane gas, so it is called 'quenched carbonaceous composite' or 'QCC'. A recent study of QCC in the infrared region has shown that QCC can also account for some of the unidentified bands in the infrared region detected in several celestial objects. These results suggest that most of the pronounced features of the interstellar grains originate from substances whose major constituent is carbon. (author)

  12. Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite

    Science.gov (United States)

    Gyngard, Frank; Amari, Sachiko; Zinner, Ernst; Marhas, Kuljeet Kaur

    2018-01-01

    We report correlated Si, and Ti isotopic compositions and elemental concentrations of 238 presolar SiC grains from the Murchison CM2 meteorite. Combined with measurements of the C and N isotopic compositions of these 238 grains, 220 were determined to be of type mainstream, 10 type AB, 4 type Y and 4 type Z. SiC grains of diameter ≳2.5 μm, to ensure enough material to attempt Ti measurements, were randomly chosen without any other prejudice. The Ti isotopic compositions of the majority of the grains are characterized by enrichments in 46Ti, 47Ti, 49Ti, and 50Ti relative to 48Ti, and show linear isotopic correlations indicative of galactic chemical evolution and neutron capture of the grains parent stars. The variability in the observed Ti signal as a function of depth in most of the grains indicates the presence of distinct subgrains, likely TiC that have been previously observed in TEM studies. Vandium-51 concentrations correlate with those of Ti, indicating V substitutes for Ti in the TiC matrix in many of the grains. No isotopic anomalies in 52Cr/53Cr ratios were observed, and Cr concentrations did not correlate with those of either Ti or V.

  13. Frac sand in the United States: a geological and industry overview

    Science.gov (United States)

    Benson, Mary Ellen; Wilson, Anna B.; Bleiwas, Donald I.

    2015-01-01

    A new mineral rush is underway in the upper Midwest of the United States, especially in Wisconsin and Minnesota, for deposits of high-quality frac sand that the mining industry calls “Northern White” sand or “Ottawa” sand. Frac sand is a specialized type of sand that is added to fracking fluids that are injected into unconventional oil and gas wells during hydraulic fracturing (fracking or hydrofracking), a process that enhances petroleum extraction from tight (low permeability) reservoirs. Frac sand consists of natural sand grains with strict mineralogical and textural specifications that act as a proppant (keeping induced fractures open), extending the time of release and the flow rate of hydrocarbons from fractured rock surfaces in contact with the wellbore.

  14. Origins of GEMS Grains

    Science.gov (United States)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  15. A comparison between corn and grain sorghum fermentation rates, distillers dried grains with solubles composition, and lipid profiles

    Science.gov (United States)

    Interest in utilization of feedstocks other than corn for fuel ethanol production has been increasing due to political as well as environmental reasons. Grain sorghum is an identified alternative that has a number of potential benefits relative to corn in both composition and agronomic traits. Compo...

  16. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface....... Preliminarily, we detected a strong relation between the amount of DNA and mineral coating mass. We hypothesized that the accumulated mineral coatings have a positive effect on amount of bacterial biomass, its spatial distribution and substrate removal rates. In this study, we combined molecular, microscopic...

  17. Rheological analysis of fine-grained natural debris-flow material

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; ,

    1990-01-01

    Experiments were conducted on large samples of fine-grained material (???2mm) from a natural debris flow using a wide-gap concentric-cylinder viscometer. The rheological behavior of this material is compatible with a Bingham model at shear rates in excess of 5 sec. At lesser shear rates, rheological behavior of the material deviates from the Bingham model, and when sand concentration of the slurry exceeds 20 percent by volume, particle interaction between sand grains dominates the mechanical behavior. Yield strength and plastic viscosity are extremely sensitive to sediment concentration.

  18. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  19. Optimization of compositions of multicomponent fine-grained fiber concretes modified at different scale levels.

    Directory of Open Access Journals (Sweden)

    NIZINA Tatyana Anatolevna,

    2017-04-01

    Full Text Available The paper deals with perspectives of modification of cement composites at different scale levels (nano-, micro-, macro-. Main types of micro- and nanomodifiers used in modern concrete technology are presented. Advantages of fullerene particles applied in nanomodification of cement concretes have been shown. Use of complex modifiers based on dispersed fibers, mineral additives and nanoparticles is proposed. These are the basic components of the fiber fine-grained concretes: cement of class CEM I 42,5R produced by JSC «Mordovcement», river sand of Novostepanovskogo quarry (Smolny settlement, Ichalkovsky district, Republic of Mordovia, densified condensed microsilica (DCM-85 produced by JSC «Kuznetskie Ferrosplavy» (Novokuznetsk, highly active metakaolin white produced by LLC «D-Meta» (Dneprodzerzhinsk, waterproofing additive in concrete mix «Penetron Admix» produced by LLC «Waterproofing materials plant «Penetron» (Ekaterinburg, polycarboxylate superplasticizer Melflux 1641 F (Construction Polymers BASF, Germany. Dispersed reinforcement of concretes was provided by injection of the fibers of three types: polypropylene multifilament fiber with cutting length of 12 mm, polyacrylonitrile synthetic fiber FibARM Fiber WВ with cutting length of 12 mm and basalt microfiber «Astroflex-MBM» modified by astralene with length about 100÷500 microns. Analysis of results of the study focused on saturated D-optimal plan was carried out by polynomial models «mixture I, mixture II, technology – properties» that considers the impact of six variable factors. Optimum fields of variation of fine-grained modified fiber concrete components have been identified by the method of experimental-statistical modeling. Polygons of distribution levels of factors of modified cement fiber concretes are constructed, that allowed tracing changes in fields of tensile in compressive strength and tensile strength in bending at age of 28 days depending on target

  20. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  1. A multiscale investigation of habitat use and within-river distribution of sympatric sand darter species

    Science.gov (United States)

    Thompson, Patricia A.; Welsh, Stuart A.; Strager, Michael P.; Rizzo, Austin A.

    2018-01-01

    The western sand darter Ammocrypta clara, and eastern sand darter Ammocrypta pellucida, are sand-dwelling fishes of conservation concern. Past research has emphasized the importance of studying individual populations of conservation concern, while recent research has revealed the importance of incorporating landscape scale processes that structure habitat mosaics and local populations. We examined habitat use and distributions of western and eastern sand darters in the lower Elk River of West Virginia. At the sandbar habitat use scale, western sand darters were detected in sandbars with greater area, higher proportions of coarse grain sand and faster bottom current velocity, while the eastern sand darter used a wider range of sandbar habitats. The landscape scale analysis revealed that contributing drainage area was an important predictor for both species, while sinuosity, which presumably represents valley type, also contributed to the western sand darter’s habitat suitability. Sandbar quality (area, grain size, and velocity) and fluvial geomorphic variables (drainage area and valley type) are likely key driving factors structuring sand darter distributions in the Elk River. This multiscale study of within-river species distribution and habitat use is unique, given that only a few sympatric populations are known of western and eastern sand darters.

  2. Geochemical characteristics of oil sands fluid petroleum coke

    International Nuclear Information System (INIS)

    Nesbitt, Jake A.; Lindsay, Matthew B.J.; Chen, Ning

    2017-01-01

    The geochemical characteristics of fluid petroleum coke from the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada were investigated. Continuous core samples were collected to 8 m below surface at several locations (n = 12) from three coke deposits at an active oil sands mine. Bulk elemental analyses revealed the coke composition was dominated by C (84.2 ± 2.3 wt%) and S (6.99 ± 0.26 wt%). Silicon (9210 ± 3000 mg kg"−"1), Al (5980 ± 1200 mg kg"−"1), Fe (4760 ± 1200 mg kg"−"1), and Ti (1380 ± 430 mg kg"−"1) were present in lesser amounts. Vanadium (1280 ± 120 mg kg"−"1) and Ni (230 ± 80 mg kg"−"1) exhibited the highest concentrations among potentially-hazardous minor and trace elements. Sequential extractions revealed potential for release of these metals under field-relevant conditions. Synchrotron powder X-ray diffraction revealed the presence of Si and Ti oxides, organically-complexed V and hydrated Ni sulfate, and provided information about the asphaltenic carbon matrix. X-ray absorption near edge structure (XANES) spectroscopy at the V and Ni K-edges revealed that these metals were largely hosted in porphyrins and similar organic complexes throughout coke grains. Minor differences among measured V and Ni K-edge spectra were largely attributed to slight variations in local coordination of V(IV) and Ni(II) within these organic compounds. However, linear combination fits were improved by including reference spectra for inorganic phases with octahedrally-coordinated V(III) and Ni(II). Sulfur and Fe K-edge XANES confirmed that thiophenic coordination and pyritic-ilmenitic coordination are predominant, respectively. These results provide new information on the geochemical and mineralogical composition of oil sands fluid petroleum coke and improve understanding of potential controls on associated water chemistry. - Highlights: • Oil sands fluid petroleum coke contains wide range of major, minor and

  3. Changes in grain boundary composition induced by neutron irradiation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Asano, K.; Nakata, K.; Fukuya, K.; Kodama, M.

    1992-01-01

    The radiation induced segregation of solutes to the grain boundary in austenitic stainless steels were studied. Type 304 and type 316 steel samples neutron irradiated at 561K up to 9.2x10 25 n/m 2 were obtained and minute compositional profiles across grain boundaries were examined using an analytical scanning transmission electron microscope equipped with a field emission electron gun. Chromium was slightly enriched at grain boundaries at the lowest irradiation dose but decreased with increasing fluence. Higher fluence irradiation resulted in depletion in chromium and molybdenum, and enrichment in nickel, silicon and phosphorus. These changes in grain boundary chemistry were limited within about 5nm of the boundary. Significant depletion of chromium and enrichment of impurities on the grain boundary occurred at fluences roughly coincidental with that of SCC susceptibility change obtained from another project

  4. Avalanches of Singing Sand in the Laboratory

    Science.gov (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  5. Colorado River sediment transport: 2. Systematic bed‐elevation and grain‐size effects of sand supply limitation

    Science.gov (United States)

    Topping, David J.; Rubin, David M.; Nelson, Jonathan M.; Kinzel, Paul J.; Corson, Ingrid C.

    2000-01-01

    The Colorado River in Marble and Grand Canyons displays evidence of annual supply limitation with respect to sand both prior to [Topping et al, this issue] and after the closure of Glen Canyon Dam in 1963. Systematic changes in bed elevation and systematic coupled changes in suspended‐sand concentration and grain size result from this supply limitation. During floods, sand supply limitation either causes or modifies a lag between the time of maximum discharge and the time of either maximum or minimum (depending on reach geometry) bed elevation. If, at a cross section where the bed aggrades with increasing flow, the maximum bed elevation is observed to lead the peak or the receding limb of a flood, then this observed response of the bed is due to sand supply limitation. Sand supply limitation also leads to the systematic evolution of sand grain size (both on the bed and in suspension) in the Colorado River. Sand input during a tributary flood travels down the Colorado River as an elongating sediment wave, with the finest sizes (because of their lower settling velocities) traveling the fastest. As the fine front of a sediment wave arrives at a given location, the bed fines and suspended‐sand concentrations increase in response to the enhanced upstream supply of finer sand. Then, as the front of the sediment wave passes that location, the bed is winnowed and suspended‐sand concentrations decrease in response to the depletion of the upstream supply of finer sand. The grain‐size effects of depletion of the upstream sand supply are most obvious during periods of higher dam releases (e.g., the 1996 flood experiment and the 1997 test flow). Because of substantial changes in the grain‐size distribution of the bed, stable relationships between the discharge of water and sand‐transport rates (i.e., stable sand rating curves) are precluded. Sand budgets in a supply‐limited river like the Colorado River can only be constructed through inclusion of the physical

  6. Texture analysis of a friction stir welded ultrafine grained Al–Al2O3 composite produced by accumulative roll-bonding

    International Nuclear Information System (INIS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Szpunar, Jerzy

    2014-01-01

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al 2 O 3 ) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm

  7. Impact of grain size and rock composition on simulated rock weathering

    Science.gov (United States)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  8. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    Science.gov (United States)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    Sandstones represent a traditional natural stones which are widely used in Czech architecture and sculpture over a long time. Thanks to their relatively easy workability, sandstones provide a wide range of stone products and also represent a popular material for architectural and sculptural purposes. In the field of restoration of artworks, they are therefore often used for manufacturing stone statue copies originally made from the same or similar type of stone. Despite a relatively common and varied occurrence of natural sandstones, the method of the artificial stone facsimiles creation in the form of various cast elements is also often applied in restoration practice. The history of application of artificial stones in civil engineering and architecture goes back to the ancient times, i.e. to Roman antiquity and possibly up to the time of ancient Egypt. The lack of appropriate natural rock, suitable in the view of colour, grain size or texture is the main reason of manufacturing copies based on synthetic mixtures. The other reason is high financial costs to create a sculpture copy from natural materials. Mixtures made from white and/or grey cements, sands, carefully selected crushed stone or well graded natural gravels, and mineral coloring pigments or mixtures with acrylate, polyester, and epoxy resins binder are the most frequently used artificial materials for cast stone manufacturing. This paper aims to bring information about composition and properties of artificial sandstones made from alkali-activated binder mixtures based on metakaolin and granulated blast furnace slag. The filler of this artificial stone is represented by fine-grained sand generated during kaolin wet processing. Used sand is mainly formed by quartz, feldspars, micas (muscovite > biotite), residual kaolin, and to a lesser extent also by Fe oxyhydroxides ("limonite"), titanium dioxide mineral (probably anatase), and carbonate mineral unidentified in detail. Annual Czech production of this

  9. Suitability of a South African silica sand for three-dimensional printing of foundry moulds and cores

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Applications of three-dimensional printing (3DP to metal casting include, among other things, the direct manufacturing of foundry moulds and cores in refractory materials such as silica sand. The main properties of silica sand that are essentially related to the traditional moulding and core-making processes are: size distribution, clay content, pH, acid demand, and refractoriness. The silica sand used for 3DP must also be appropriately selected for the layer-based manufacturing process involved in 3DP. Properties such as grain size distribution, grain surface morphology, angularity, flowability, and recoating abilities have a particular importance when determining sand suitability. Because of these extra requirements, only a limited range of available foundry silica sands can be used for 3DP processes. The latter situation explains the scarcity and high cost of suitable silica sands, thus contributing to the relatively high operational costs of the 3DP processes for the production of sand moulds and cores. This research paper investigates the suitability of a locally-available silica sand for use in a Voxeljet VX1000 3DP machine. The local silica sand was assessed and compared with an imported silica sand recommended by the manufacturer of 3DP equipment in terms of foundry characteristics and recoating behaviour. The study shows that, despite the differences between the characteristics of the two silica sands, the local sand could be considered a suitable alternative to imported sand for rapid sand casting applications.

  10. Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

    Science.gov (United States)

    Gurevich, B.; Carcione, J. M.

    The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief's velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.This difference is explained by the fact

  11. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  12. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  13. grain size analysis of beach sediment along the barrier bar lagoon

    African Journals Online (AJOL)

    PROF EKWUEME

    sediment are medium grain and deposited in a moderate energy condition hence more stable to ... The grain size and amount of sand on a beach depends on wave energy and geological ..... Recent and Pleistocene history of Southeast.

  14. Understanding Colombian Amazonian white sand forests

    NARCIS (Netherlands)

    Peñuela-Mora, M.C.

    2014-01-01

    Although progress has been made in studies on white sand forests in the Amazon, there is still a considerable gap in our knowledge of the unique species composition of white sand forests and their structure and dynamics, especially in Western Amazon. This thesis aims to fill this gap by addressing

  15. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations.

    Science.gov (United States)

    Ehlmann, B L; Edgett, K S; Sutter, B; Achilles, C N; Litvak, M L; Lapotre, M G A; Sullivan, R; Fraeman, A A; Arvidson, R E; Blake, D F; Bridges, N T; Conrad, P G; Cousin, A; Downs, R T; Gabriel, T S J; Gellert, R; Hamilton, V E; Hardgrove, C; Johnson, J R; Kuhn, S; Mahaffy, P R; Maurice, S; McHenry, M; Meslin, P-Y; Ming, D W; Minitti, M E; Morookian, J M; Morris, R V; O'Connell-Cooper, C D; Pinet, P C; Rowland, S K; Schröder, S; Siebach, K L; Stein, N T; Thompson, L M; Vaniman, D T; Vasavada, A R; Wellington, D F; Wiens, R C; Yen, A S

    2017-12-01

    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H 2 O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H 2 O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H 2 O.

  16. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2016-12-01

    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  17. 10Be in desert sands, falling dust and loess in China

    International Nuclear Information System (INIS)

    Shen, C.D.; Beer, J.; Kubik, P.W.; Sun, W.D.; Liu, T.S.; Liu, K.X.

    2010-01-01

    Cosmogenic 10 Be is produced in the atmosphere, and deposits onto the surface of the earth mainly through wet precipitation and dust. Based on the analysis of 10 Be in Chinese loess, we believe that 10 Be in loess is composed of two components: locally precipitated atmospheric 10 Be, and windblown 10 Be adsorbed on the surface of silt grains. On the Loess Plateau, 10 Be concentrations in loess and paleosol range from (1.4 to 2.8) x 10 8 atoms/g and (2.7 to 4.5) x 10 8 atoms/g, respectively. To investigate the sources of 10 Be in loess, we measured 10 Be in sand grains from deserts in western China and falling dust from the deposition regions. The results show that the 10 Be concentrations in sand and dust are (1.1-5.1) x 10 7 atoms/g and (1.3-2.8) x 10 8 atoms/g, respectively. Loess and paleosol on the Loess Plateau both contain inherited 10 Be adsorbed on silt grains from dust; most of the windblown deposited loess materials do not directly come from the Gobi and other sand deserts, but mainly from the loess-desert transitional zones, which are characterized by silt and dust holding areas.

  18. The effect of surface albedo and grain size distribution on ...

    African Journals Online (AJOL)

    Sand dams are very useful in arid and semi arid lands (ASALs) as facilities for water storage and conservation. Soils in ASALs are mainly sandy and major water loss is by evaporation and infiltration. This study investigated the effect of sand media characteristics, specifically surface albedo, grain size and stratification on ...

  19. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  20. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    Science.gov (United States)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    Carbonate mud is a major sedimentary component of modern and ancient tropical carbonate environments, yet its enigmatic origin remains debated. Early views on the origin of carbonate mud considered the abrasion of carbonate sand during sediment transport as a possible mechanism. In recent decades, however, prevailing thought has generally settled on a binary explanation: 1) precipitation of aragonite needles within the water column, and 2) post-mortem dispersal of biological aragonite, in particular from algae, and perhaps aided by fish. To test these different hypotheses, we designed a model and a set of laboratory experiments to quantify the rates of mud production associated with sediment transport. We adapted a recent model of ooid abrasion rate to predict the rate of mud production by abrasion of carbonate sand as a function of grain size and sediment transport mode. This model predicts large mud production rates, ranging from 103 to 104 g CaCO3/m2/yr for typical grain sizes and transport conditions. These rate estimates are at least one order of magnitude more rapid than the 102 g CaCO3/m2/yr estimates for other mechanisms like algal biomineralization, indicating that abrasion could produce much larger mud fluxes per area as other mechanisms. We tested these estimates using wet abrasion mill experiments; these experiments generated mud through mechanical abrasion of both ooid and skeletal carbonate sand for grain sizes ranging from 250 µm to >1000 µm over a range of sediment transport modes. Experiments were run in artificial seawater, including a series of controls demonstrating that no mud was produced via homogenous nucleation and precipitation in the absence of sand. Our experimental rates match the model predictions well, although we observed small systematic differences in rates between abrasion ooid sand and skeletal carbonate sand that likely stems from innate differences in grain angularity. Electron microscopy of the experimental products revealed

  1. The composition, functional components, and physical characteristics of grain from staygreen and senescent sorghum lines grown under variable water availability

    Science.gov (United States)

    The inclusion of sorghum into human food and feed is limited by its low digestibility compared to corn, which has been linked to the higher total kafirin levels in sorghum grain. Water stress after pollination reduced grain filling, affects the grain composition, functional components and grain phys...

  2. Detecting changes in the nutritional value and elemental composition of transgenic sorghum grain

    Energy Technology Data Exchange (ETDEWEB)

    Ndimba, R., E-mail: rminnis@tlabs.ac.za [iThemba LABS, National Research Foundation (South Africa); Institute for Plant Biotechnology, University of Stellenbosch, Matieland (South Africa); Grootboom, A.W.; Mehlo, L.; Mkhonza, N.L. [Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria (South Africa); Kossmann, J. [Institute for Plant Biotechnology, University of Stellenbosch, Matieland (South Africa); Barnabas, A.D.; Mtshali, C. [iThemba LABS, National Research Foundation (South Africa); Pineda-Vargas, C. [iThemba LABS, National Research Foundation (South Africa); Faculty of Health and Wellness Sciences, CPUT, Bellville (South Africa)

    2015-11-15

    We have previously demonstrated that poor digestibility in sorghum can be addressed by using RNA interference (RNAi) to suppress kafirin synthesis. The approach resulted in a twofold improvement in overall protein digestibility levels. In the present study, the effect of this targeted kafirin suppression on other grain quality parameters was investigated. Several significant changes in the proximate composition, amino acid profile and the bulk mineral content were detected. Importantly, the most limiting amino acid, lysine, was significantly increased in the transgenic grains by up to 39%; whilst mineral elements in the bulk, such as sulphur (S) and zinc (Zn) were reduced by up to 15.8% and 21% respectively. Elemental mapping of the grain tissue, using micro-PIXE, demonstrated a significant decrease in Zn (>75%), which was localised to the outer endosperm region, whilst TEM revealed important changes to the protein body morphology of the transgenic grains.

  3. Texture analysis of a friction stir welded ultrafine grained Al–Al{sub 2}O{sub 3} composite produced by accumulative roll-bonding

    Energy Technology Data Exchange (ETDEWEB)

    Shamanian, Morteza, E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadnezhad, Mahyar [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9 (Canada)

    2014-12-05

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al{sub 2}O{sub 3}) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm.

  4. CHEMICAL COMPOSITION OF WHOLE GRAINS IN COMMON BEANS LANDRACES AND BREEDING GENOTYPES

    Directory of Open Access Journals (Sweden)

    Gilberto Antonio Peripolli Bevilaqua

    2015-04-01

    Full Text Available The common bean has been object of breeding programs aiming the development of new cultivars adapted to varied production system and shown differentiated nutritional characteristics. Due a genetic diversity existent the landraces can be used directly for cropping, for present characteristics desirable. Little information exists about mineral content and other quality traits for those bean landraces. The aim of this paper was to verify the variability for grain nutricional caracters in breeding cultivars and landraces of bean from Rio Grande do Sul state, Brazil. The experiment was conducted in 2009/2010 in Experimental Station Cascata, of Embrapa Temperate Agriculture. In whole grain of 54 bean genotypes with black and no black coat were determined macroelements (nitrogen, phosphorus, potash, calcium, magnesium and sulfur, oligoelements (iron, manganese, zinc and cuprum, protein and ash content, insoluble fiber, digestive nutrient and antioxidant astragalina. The results shown that the landraces varieties presents nutritional composition of macro and oligoelements, fibers, protein and ash contents in whole grain similar than that of breeding lines and cultivars. The black coat grain from breeding programs showed better nutritional quality for macro and oligoelements content than coloured grain, highlighting TB 02-04 e TB 01-01. The landraces with coloured grains TB 02-26, TB 02-24 and TB 03-13 showed the high levels of astragaline.

  5. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    International Nuclear Information System (INIS)

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  6. On a grain of sand - a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean

    Science.gov (United States)

    McNeil, David H.; Neville, Lisa A.

    2018-02-01

    Hemisphaerammina apta n. sp. is an attached monothalamous agglutinated foraminifera discovered in shelf sediments of the early Eocene Arctic Ocean. It is a simple yet distinctive component of the endemic agglutinated foraminiferal assemblage that colonized the Arctic Ocean after the microfaunal turnover caused by the Paleocene-Eocene Thermal Maximum. Associated foraminifera are characterized by a high percentage of monothalamous species (up to 60 %) and are entirely agglutinated indicating a brackish (mesohaline) early Eocene Arctic Ocean. Hemisphaerammina apta occurs exclusively as individuals attached to fine detrital grains (0.2 to 1.8 mm) of sediment. It is a small species (0.06 to 0.2 mm in diameter), fine-grained, with a low hemispherical profile, no floor across the attachment area, no substantive marginal flange, no internal structures, and no aperture. Lacking an aperture, it apparently propagated and fed through minute (micrometre-sized) interstitial pores in the test wall. Attachment surfaces vary from concave to convex and rough to smooth. Grains for attachment are diverse in shape and type but are predominantly of quartz and chert. The presence of H. apta in the early Eocene was an opportunistic response to an environment with an active hydrological system (storm events). Attachment to grains of sand would provide a more stable base on a sea floor winnowed by storm-generated currents. Active transport is indicated by the relative abundance of reworked foraminifera mixed with in situ species. Contemporaneous reworking and colonization by H. apta is suggested by its attachment to a reworked specimen of Cretaceous foraminifera.

  7. The spatial distribution of microfabric around gravel grains: indicator of till formation processes

    Science.gov (United States)

    KalväNs, Andis; Saks, Tomas

    2010-05-01

    Till micromorphology studies in thin sections is an established tool in the field of glacial geology. Often the thin sections are inspected only visually with help of mineralogical microscope. This can lead to subjective interpretation of observed structures. More objective method used in till micromorphology is measurement of apparent microfabric, usually seen as preferred orientation of elongated sand grains. In theses studies only small fraction of elongated sand grains often confined to small area of thin section usually are measured. We present a method for automated measurement of almost all elongated sand grains across the full area of the thin section. Apparently elongated sand grains are measured using simple image analysis tools, the data are processed in a way similar to regular till fabric data and visualised as a grid of rose diagrams. The method allows to draw statistical information about spatial variation of microfabric preferred orientation and fabric strength with resolution as fine as 1 mm. Late Weichselian tills from several sites in Western Latvia were studied and large variations in fabric strength and spatial distribution were observed in macroscopically similar till units. The observed types of microfabric spatial distributions include strong, monomodal and uniform distribution; weak and highly variable in small distances distribution; consistently bimodal distribution and domain-like pattern of preferred sand grain orientation. We suggest that the method can be readily used to identify the basic deformation and sedimentation processes active during the final stages of till formation. It is understood that the microfabric orientation will be significant affected by nearby large particles. The till is highly heterogonous sediment and the source of microfabric perturbations observed in thin section might lie outside the section plane. Therefore we suggest that microfabric distribution around visible sources of perturbation - gravel grains cut

  8. Strain-induced grain growth of cryomilled nanocrystalline Al in trimodal composites during forging

    International Nuclear Information System (INIS)

    Yao, B.; Simkin, B.; Majumdar, B.; Smith, C.; Bergh, M. van den; Cho, K.; Sohn, Y.H.

    2012-01-01

    Highlights: ► Grain growth of cryomilled nanocrystalline aluminum during hot forging. ► Use of hollow cone dark field imaging technique in TEM for grain size measurement. ► Grain growth model of strain, strain rate and temperature for forging optimization. - Abstract: Grain growth of nanocrystalline aluminum ( nc Al) in trimodal Al metal-matrix-composites (MMCs) during hot forging was investigated. The nc Al phase formed through cryomilling of inert gas-atomized powders in liquid nitrogen has an average grain size down to 21 nm, exhibits excellent thermal stability. However, substantial grain growth of nc Al up to 63 nm was observed when the Al MMCs were thermo-mechanically processed even at relatively low temperatures. Grain growth of the cryomilled nc Al phase in trimodal Al MMCs after hot forging was documented with respect to temperature ranging from 175 °C to 287 °C, true strain ranging from 0.4 to 1.35 and strain rate ranging from 0.1 to 0.5 s −1 . Hollow cone dark field imaging technique was employed to provide statistically confident measurements of nc Al grain size that ranged from 21 to 63 nm. An increase in forging temperature and an increase in true strain were correlated with an increase in grain size of nc Al. Results were correlated to devise a phenomenological grain growth model for forging that takes strain, strain rate and temperature into consideration. Activation energy for the grain growth during thermo-mechanical hot-forging was determined to be 35 kJ/mol, approximately a quarter of activation energy for bulk diffusion of Al and a half of activation energy for static recrystallization.

  9. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  10. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    Science.gov (United States)

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  11. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  12. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  13. Radon diffusion through sandy construction materials: effect of temperature and grain size

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    Radon appears mainly by diffusion process from the point of origin, say, under ground soil and building materials used in construction of house following alpha decay of radium. The radon diffusion through different building construction materials can be compared by calculating radon diffusion coefficient for them. In the present work, we studied the effect of temperature and grain size on radon diffusion of coarse sand as construction material. The coarse sand was collected from Yamuna river bed, originated from Himalayas. For this study, a steel pipe of diameter 10 cm and length 30 cm., divided into four sectors of equal size, was filled in different sectors with different grain sized (800, 600 and 425 μm) sand as building construction material. A number LR-115 type-II particle track detectors were placed with inter-detector distance of 10 cm in the sectorial compartments. The bottom end of steel pipe assembly was fixed with a radon chamber containing radon source with upper end sealed with a cap. The whole arrangement was then placed into a sand-clay pipe wrapped around by a controlled heating filament, resulting into temperature variations from 25℃ to 60℃. After 100 days interval, the detectors were retrieved processed, and the α - tracks counted for the calculation of radon concentration. It is observed that the radon diffusion coefficient increases with the increase in temperature and decreases with decrease in grain size of the coarse sand. (author)

  14. Athabasca tar sand reservoir properties derived from cores and logs

    International Nuclear Information System (INIS)

    Woodhouse, R.

    1976-01-01

    Log interpretation parameters for the Athabasca Tar Sand Lease No. 24 have been determined by careful correlation with Dean and Stark core analysis data. Significant expansion of Athabasca cores occurs as overburden pressure is removed. In the more shaly sands the core analysis procedures remove adsorbed water from the clays leading to further overestimation of porosity and free water volume. Log interpretation parameters (R/sub w/ = 0.5 ohm . m and m = n = 1.5) were defined by correlation with the weight of tar as a fraction of the weight of rock solids (grain or dry weight fraction of tar). This quantity is independent of the water content of the cores, whereas porosity and the weight of tar as a fraction of the bulk weight of fluids plus solids (bulk weight fraction) are both dependent on water content. Charts are provided for the conversion of bulk weight fraction of fluids to porosity; grain weight fraction of fluids to porosity; log derived porosity and core grain weight tar to water saturation. Example results show that the core analysis grain weight fraction of tar is adequately matched by the log analyses. The log results provide a better representation of the reservoir fluid volumes than the core analysis data

  15. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  16. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  17. Effects of Diatomite–Limestone Powder Ratio on Mechanical and Anti-Deformation Properties of Sustainable Sand Asphalt Composite

    Directory of Open Access Journals (Sweden)

    Yongchun Cheng

    2018-03-01

    Full Text Available Diatomite has gained more and more interest as a new resource, since it has potential as a favorable alternative to mineral filler in the construction of asphalt pavement compared with ordinary limestone powder. In this paper, the mechanical and anti-deformation properties of sand asphalt composites with various proportions of diatomite were investigated by a uniaxial compression failure test, a uniaxial compression repeated creep test, and a low-temperature splitting test in order to determine the optimal replacement content of ordinary limestone powder. Five groups of sand asphalts with various volume ratios of diatomite to limestone (0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0 were determined by the simplex-lattice mixture design (SLD method. The results reveal that the compression strength, anti-deformation properties, and low-temperature crack resistance of sand asphalts are improved through the use of diatomite. Furthermore, the optimal ratio (0.327:0.673 of limestone to diatomite is determined by the SLD method, according to secant modulus and creep strain results.

  18. Grain Composition and Functional Ingredients of Barley Varieties Created in Latvia

    Directory of Open Access Journals (Sweden)

    Šterna Vita

    2015-09-01

    Full Text Available Cereals, including barley, have been recognised as functional foods that provide beneficial effect on the health of the consumer and decrease the risk of various diseases. The aim of investigation was to determine the grain composition of barley varieties and perspective breeding lines bred in Latvia and to evaluate its functional ingredients. The results of analysis showed that protein content among varieties ranged from 106.6-146.8 g·kg-1, total dietary fibre 187.4-208.2 g·kg-1, β-glucans 42.8 g-49.4 g·kg-1, and amount of α-tocopherol 6.03-8.93 mg·kg-1. The sum of essential amino acids in barley grain samples was from 32.90 g·kg-1 to 38.71 g·kg-1. All varieties of hulled and hulless barley grain were found to be sources of protein with high biological value. Comparison of barley varieties bred in Latvia suggests that variety ‘Kornelija’ outperforms others in protein, dietary fibre and micronutrient content.

  19. Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

    Czech Academy of Sciences Publication Activity Database

    Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvořák, Jiří; Bajana, O.

    2016-01-01

    Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.094, year: 2016

  20. SAP-like ultrafine-grained Al composites dispersion strengthened with nanometric AlN

    International Nuclear Information System (INIS)

    Balog, M.; Krizik, P.; Yan, M.; Simancik, F.; Schaffer, G.B.; Qian, M.

    2013-01-01

    This paper reports the development of novel Sinter-Aluminum-Pulver (SAP)-like Al–AlN nanocomposites via replacing the native Al 2 O 3 thin films on fine Al powder with a large volume fraction of in situ formed nanometric AlN dispersoids. Fine gas-atomized Al powder (d 50 =1.3 µm) compacts were first partially nitrided at 590 °C in flowing nitrogen, controlled by a small addition of Sn (0.3–0.4 wt%), and subsequently consolidated by hot direct extrusion. The resulting Al–AlN composites consisted of submicrometric Al grains reinforced with nanometric AlN dispersoids together with some nanometric Al 2 O 3 dispersoids. An Al–13 vol% AlN nanocomposite fabricated this way achieved exceptional ultimate tensile strength of 227 MPa, yield strength of 195 MPa and Young's modulus of 66 GPa at 300 °C, superior to typical SAP materials and coarse grained Al–AlN composites. In addition, the Al–13 vol% AlN nanocomposite exhibited good thermal stability up to 500 °C. The strengthening mechanism is discussed

  1. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    Science.gov (United States)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  2. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available This research study was intended to develop laboratory test procedures for advance testing and characterization of fine-grained cohesive soils and oil sand materials. The test procedures are based on typical field loading conditions and the loading...

  3. Detecting changes in the nutritional value and elemental composition of transgenic sorghum grain

    CSIR Research Space (South Africa)

    Ndimba, R

    2015-09-01

    Full Text Available Instruments and Methods in Physics Research B 363 (2015) 183–187 Detecting changes in the nutritional value and elemental composition of transgenic sorghum grain R. Ndimba a,c,, A.W. Grootboom b, L. Mehlo b, N.L. Mkhonza b, J. Kossmann c, A...

  4. Comparing spatial grain-size trends inferred from textural parameters using percentile statistical parameters and those based on the log-hyperbolic method

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Christiansen, C.; Pedersen, Jørn Bjarke Torp

    2007-01-01

    The Folk&Ward (F&W) and the log-hyperbolic methods are applied to a small - and easy to overlook - number of typical sand sized grain-size distributions from the Danish Wadden Sea. The sand originates from the same source, and the pattern of change in the grain-size distributions is, therefore...

  5. a study on silica sand quality in yazaram and mugulbu deposits

    African Journals Online (AJOL)

    ENGR. G A DUVUNA

    A STUDY ON SILICA SAND QUALITY IN YAZARAM AND MUGULBU ... the lowest percentage of silica content of 77.60% and the grain morphology was found to be angular with specific ..... things.com/articles/glass colouring.html, accessed.

  6. Chemical composition of the semi-volatile grains of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Wurz, Peter; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; De Keyser, Johan; Fiethe, Björn; Fuselier, Stefan; Gasc, Sébastien; Gombosi, Tamas; Jäckel, Annette; Korth, Axel; Le Roy, Lena; Mall, Urs; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu

    2017-04-01

    The European Space Agency's Rosetta spacecraft (Glassmeier et al., 2007) has been in orbit of the comet 67P/Churyumov-Gerasimenko (67P/C-G) since August 2014. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite (Balsiger et al., 2007). ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF) (Scherer et al., 2006), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organic species. The pressure sensor COPS measures total gas densities, bulk velocities, and gas temperatures. ROSINA has been collecting data on the composition of the coma and activity of the comet from 3.5 AU to pericentre and out again to 3.5 AU. The Rosetta mission presents a unique opportunity to directly sample the parent species in the thin cometary atmosphere of a Kuiper-belt object at distances in excess of 2.5 AU from the Sun all the way to the pericentre of the cometary orbit at 1.24 AU. The ROSINA experiment continuously measured the chemical composition of the gases in the cometary coma. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. We will report on the first measurements of the volatile inventory of such dust grains. Volatile release from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust

  7. Wind-blown sand on beaches: an evaluation of models

    Science.gov (United States)

    Sherman, Douglas J.; Jackson, Derek W. T.; Namikas, Steven L.; Wang, Jinkang

    1998-03-01

    Five models for predicting rates of aeolian sand transport were evaluated using empirical data obtained from field experiments conducted in April, 1994 at a beach on Inch Spit, Co. Kerry, Republic of Ireland. Measurements were made of vertical wind profiles (to derive shear velocity estimates), beach slope, and rates of sand transport. Sediment samples were taken to assess characteristics of grain size and surface moisture content. Estimates of threshold shear velocity were derived using grain size data. After parsing the field data on the basis of the quality of shear velocity estimation and the occurrence of blowing sand, 51 data sets describing rates of sand transport and environmental conditions were retained. Mean grain diameter was 0.17 mm. Surface slopes ranged from 0.02 on the foreshore to about 0.11 near the dune toe. Mean shear velocities ranged from 0.23 m s -1 (just above the observed transport threshold) to 0.65 m s -1. Rates of transport ranged from 0.02 kg m -1 h -1 to more than 80 kg m -1 h -1. These data were used as input to the models of Bagnold [Bagnold, R.A., 1936. The Movement of Desert Sand. Proc. R. Soc. London, A157, 594-620], Kawamura [Kawamura, R., 1951. Study of Sand Movement by Wind. Translated (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], Zingg [Zingg, A.W., 1953. Wind tunnel studies of the movement of sedimentary material. Proc. 5th Hydraulics Conf. Bull. 34, Iowa City, Inst. of Hydraulics, pp. 111-135], Kadib [Kadib, A.A., 1965. A function for sand movement by wind. University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], and Lettau and Lettau [Lettau, K. and Lettau, H., 1977. Experimental and Micrometeorological Field Studies of Dune Migration. In: K. Lettau and H. Lettau (Eds.), Exploring the World's Driest Climate. University of Wisconsin-Madison, IES Report 101, pp. 110-147]. Correction factors to adjust predictions of the rate of transport to account

  8. Interpretation of the stiffness and permeability of Sand-Kaolin mixtures in the framework of homogenization

    Directory of Open Access Journals (Sweden)

    Claude Boutin

    2010-03-01

    Full Text Available This study deals with the behaviour of mixtures of sand and saturated kaolin paste considered as composite materials made of permeable and deformable (with non-linear behaviour matrix (the kaolin paste with rigid and impervious inclusions (the sand grains. Oedometric and permeability tests conducted on such mixtures highlight the key role of the state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences both modulus and permeability. At the light of these experiments, the usual and tangent homogenization process (with simplifying assumptions to make the problem manageable has been applied to estimate the mixture permeability and tangent compressibility. Qualitative and quantitative comparisons with experimental data point out the domain of interest and the limitations of such approaches.O estudo lida com o comportamento de misturas compostas por areia e uma pasta de caulinita considerada um material composto feito de uma matriz (caulinita permeável e deformável (com comportamento não-linear com inclusões rígidas e impermeáveis (grãos de areia. Testes de permeabilidade e odométricos conduzidos nestas misturas enfatizam o papel chave de estado da pasta argilosa e mostram a existência de uma concentração crítica de grãos de areia com efeito estruturante que influencia o módulo e a permeabilidade. Sob a luz destes experimentos o processo de homogeneização usual e tangente (com hipóteses simplificadoras para tornar o problema tratável foi aplicado para estimar a permeabilidade da mistura e a compressibilidade tangente. Comparações qualitativas e quantitativas com dados experimentais apontam o domínio de interesse bem como a limitação destas abordagens.

  9. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    Science.gov (United States)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  10. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    Science.gov (United States)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  11. Species composition and relative abundance of sand flies of the genus Lutzomyia (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia.

    Science.gov (United States)

    Ferro, C; Morrison, A C; Torres, M; Pardo, R; Wilson, M L; Tesh, R B

    1995-07-01

    Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Weekly sand fly collections were made from pigpens, houses, and natural resting sites, using hand-held aspirators, sticky (oiled) paper traps, and opossum-baited Disney traps. In total, 263,094 sand flies were collected; L. longipalpis predominated (86.1%), followed by L. trinidadensis (11.0%), L. cayennensis (2.7%), and 8 other Lutzomyia species. The species composition and sex ratio of these sand flies varied among sites and by collection method. L. longipalpis were captured most efficiently by direct aspiration from animal bait. Conversely, sticky paper traps, especially inside houses and at rock resting sites, collected a greater diversity of species, but a lower relative abundance of L. longipalpis.

  12. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  13. Influence of Reclamation Process on the Ecological Quality of Reclaim Sand

    Directory of Open Access Journals (Sweden)

    Dereń M.

    2017-12-01

    Full Text Available In this article, there were presented results of research on influence of reclamation process on the ecological quality of reclaim sand with furan resin used in nonferrous foundry. The quality of reclaimed sand is mainly define by two group of chemical substances from elution of reclaimed sand: Dissolves Organic Carbon (DOC and Total Dissolves Solids (TDS. Reclaimed sand used in test was prepared in experimental thermal reclaimer and mechanical vibration reclaimer REGMAS installed in Faculty of Foundry Engineering at University Of Science and Technology in Krakow. The reference point is molding sand shaking out and crumble in jaw crusher. Test of elution was made in accredited laboratory in Center For Research and Environmental Control in Katowice up to the standard with Dissolves Organic Carbon (DOC - PN-EN 1484:1999; Total Dissolves Solids (TDS - PN-EN 15216:2010. The standard for elution test is PN-EN 12457- 4:2006. Except that we were made loss of ignition test, to check how many resin was rest on sand grains.

  14. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  15. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  16. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    Science.gov (United States)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  17. Vulnerability of soils towards mining operations in gold-bearing sands in Chile

    Science.gov (United States)

    Jordán, Manuel Miguel; González, Irma; Bech, Jaume; Sanfeliu, Teófilo; Pardo, Francisco

    2015-04-01

    The contamination levels in handicraft mining, despite less production and processing less equipment, have high repercussions upon the environment in many cases. High-grade ore extraction, flotation, gravity concentration, acid leaching cementation and mercury amalgamation are the main metallurgical technologies employed. Gold recovery involving milling and amalgamation appears to the most contamination source of mercury. This research work is only a starting point for carrying out a risk probability mapping of pollutants of the gold bearing sands. In southern Chile, with a mild and rainy climate, high levels of pollutants have been detected in some gold placer deposits. The handicraft gold-bearing sands studied are located in X Region of "Los Lagos" in southern Chile. A great quantity of existing secondary deposits in the X Region is located in the coastal mountain range. The lithological units that are found in this range correspond with metamorphic rocks of a Paleozoic crystalline base that present an auriferous content liberated from the successive erosive processes suffered. Metasedimentary and metavolcanic rocks also make up part of this range, but their auriferous load is much smaller. The methodology used in the characterization of the associated mineralization consists of testing samples with a grain size distribution, statistical parameter analysis and mineralogical analysis using a petrographic microscope, XRD and SEM/EDX. The chemical composition was determined by means of XRF and micro-chemical analysis. The major concentrations of heavy minerals are located in areas of dynamic river energy. In the studied samples, more the 75 % of the heavy minerals were distributed among grain sizes corresponding to thin sand (0.25-0.05 mm) with good grain selection. The main minerals present in the selected analysed samples were gold, zircon, olivine, ilmenite, hornblende, hematite, garnet, choromite, augite, epidote, etc. The main heavy metals found were mercury

  18. Download this PDF file

    African Journals Online (AJOL)

    influences their usability in construction works. The grain size distributions show that ADET I is silty-clayey very gravelly sand, having 23% clay and silt. 47% sand and 30% gravel compositions. Similarly, ADET 2 could be described as gravelly silt-clayey sand with 36% clay and silt. 52% sand and 12% gravel compositions.

  19. Evaluation of sand reserves in del Plata City

    International Nuclear Information System (INIS)

    Loureiro, J.

    2014-01-01

    The purpose of this study is to evaluate the reserve of sand in the zone of del Plata city and beyond. This area is located in the S E edge of the department of San Jose near the mouth of Santa Lucia river. In this zone was identified the mantle of potentially exploitable sand which are based on their particle size, composition and depth of the limits cape. There are two powerful capes of sand separated by clay and silt

  20. Investigation of the Results of Combined Reclamation on the Particular Stages of Grain Matrix Recovery

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2016-12-01

    Full Text Available In this article, there were presented the results of research on combined mechanical and thermal regeneration of waste moulding sand with furfuryl resin originated from one of national foundries manufacturing aluminium alloys castings. Attempts of mechanical reclamation were led on the REGMAS reclaimer enabling to realize preliminary and primary reclamation with use of two modes of mechanical interactions on waste moulding sand. In the first attempt the reclaimer worked without any additional regenerating elements, and as the second solution, the reclaimer operated with additional crushing and abrasive elements to increase the result of primary reclamation. Thermal reclamation was led in the prototypic thermal reclaimer, enabling to fully control the process of grain matrix recovery. As a result of completed investigations the small efficiency of mechanical reclamation was determined. However, use of combined regeneration allowed for obtaining grain matrix of high purity. Thermal regeneration was conducted in prototypic thermal reclaimer. Evaluation of reclaim (reclaimed material quality was carried out in the way of iginition losses and grain-size analysis, surface morphology and also by executing of strength testing of moulding sand prepared on obtained grain matrix for the particular reclamation operations.

  1. Productivity of clay tailings from phosphate mining: 3. Grain crops

    International Nuclear Information System (INIS)

    Mislevy, P.; Blue, W.G.; Roessler, C.E.; Martin, F.G.

    1991-01-01

    A split-fold field experiment was conducted to study forage and grain yield, forage quality, plant nutrient concentrations, changes in soil nutrients, and 226 Ra contents of four grain crops in various rotations. The crop rotations (1) corn (Zea mays L. Jacques 247)-sunflower (Helianthus annuus L. Cargil 205), (2) sunflower-grain sorghum (Sorghum bicolor L, Moench Northrup King Savanna 5), (3) soybean (Glycine max L. Merr. Williams 80)-grain sorghum, and (4) grain sorghum-soybean (University of Florida V-1) were grown on a dry phosphatic clay with and without a 50-mm surface layer of quartz-sand tailings. Results show that corn and grain sorghum produced highest forage yields and highest grain yields per harvest, respectively. Soybean harvested for forage (Crop 1) contained the highest crude protein and in vitro organic matter digestibility. Concentrations of P, K, Ca, Mg, and Fe in most of the forages were adequate for the diets of beef cattle, while those of Mn, Cu and Zn were low. Mehlich I-extractable soil, Ca, and Mg were considered very high and changed little over the 4-yr production period. Application of 50 mm of sand tailings tended to increase Mehlich I-extractable P, Ca, Mn, Cu, Zn, and Fe. Radium-226 concentration in the forage of all grain crops averaged 8.5 Bq kg -1 , which was about 17 times higher than that in the grain of the same crops. Concentrations of 226 Ra in the forage and grain were 1.1% and 0.09% of the concentration in clay respectively. These data indicate that phosphatic clays can be a valuable resource for the production of corn and sorghum grain that contain low concentrations of 226 Ra

  2. Intertidal benthic community ecology of sand-dwelling macroinvertebrates of Goa beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.; Parulekar, A.H.

    Studies on the intertidal ecology of two sandy beaches of Goa along the western coast of India revealed the presence of 47 species of macroinvertebrates belonging to 32 families. The open beach at Candolim, characterized by coarse sand-grain size...

  3. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

    Science.gov (United States)

    Halford, Nigel G; Curtis, Tanya Y; Chen, Zhiwei; Huang, Jianhua

    2015-03-01

    The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer

    Science.gov (United States)

    Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.

    2011-01-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport

  5. Dynamics of deposited fly-ash and fine grained magnetite in sandy material of different porosity (column experiments)

    Science.gov (United States)

    Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana

    2010-05-01

    Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10μm) and fine grained Fe3O4 (grain size < 20 μm). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand

  6. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  7. Interdependence of environmental parameters and sand dwelling benthic species abundance: a multivariate approach

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.; Parulekar, A.H.

    Multivariate analysis showed dependence of distribution and abundance of sand dwelling fauna on more than one ecologically significant environmental parameters rather than one ecological master factor. Salinity, grain size, beach gradient, dissolved...

  8. Influence of the Reclaim from the Cordis Technology on the Core Sand Strength

    Directory of Open Access Journals (Sweden)

    Dańko J.

    2014-12-01

    Full Text Available The investigation results of the mechanical reclamation of spent moulding sands from the Cordis technology are presented in the paper. The quality assessment of the obtained reclaim and the influence of the reclaim fraction in a matrix on the core sand strength is given. The reclaim quality assessment was performed on the basis of the determination of losses on ignition, Na2O content on reclaim grains and pH values. The reclaim constituted 100%, 75% and 50% of the core sand matrix, for which the bending strength was determined. The matrix reclamation treatment was performed in the experimental rotor reclaimer RD-6. Spent sands were applied in as-delivered condition and after the heating to a temperature of 140 °C. Shaped samples for strength tests were made by shooting and hardening of sands in the warmbox technology.

  9. Contribution to the grain refinement of hypoeutectic aluminium-silicon casting alloys: application of a new grain refiner and experience from practice; Beitrag zur Kornfeinung von untereutektischen Aluminium-Silicium-Gusslegierungen: Anwendung eines neuen Kornfeiners und Erfahrungen aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H. [Aluminium Rheinfelden GmbH, Rheinfelden (Germany)

    2000-10-01

    This paper describes the application of a master alloy on the basis of aluminium-titanium-boron, that is designed for hypoeutectic aluminium-silicon casting alloys. The efficiency of the grain refiner was measured using thermal analysis and sand and permanent mould casted samples. The grain size was measured using metallographic technique. In addition, casting trials using a spiral sand mould were carried out to estimate the influence on the flowing behaviour of the melt. To compare the results, a standard AlTi5B1 rod was used under the same test conditions. Finally, results from practice are shown. The grain refinement mechanism is discussed. (orig.)

  10. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.

    Science.gov (United States)

    Jaworski, N W; Lærke, H N; Bach Knudsen, K E; Stein, H H

    2015-03-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn bran), and 2 coproducts from the flour milling industry (wheat middlings and wheat bran). Results indicated that grains contained more starch and less NSP compared with grain coproducts. The concentration of soluble NSP was low in all ingredients. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis), respectively, of the NSP in wheat and wheat coproducts. The concentration of lignin in grains was between 0.8 and 1.8% (DM basis), whereas coproducts contained between 2.2 and 11.5% lignin (DM basis). The in vitro ileal digestibility of NSP was close to zero or negative for all feed ingredients, indicating that pepsin and pancreas enzymes have no effect on in vitro degradation of NSP. A strong negative correlation ( = 0.97) between in vitro ileal digestibility of DM and the concentration of NSP in feed ingredients was observed. In vitro total tract digestibility of NSP ranged from 6.5% in corn bran to 57.3% in corn gluten meal. In conclusion, grains and grain coproducts contain mostly insoluble NSP and arabinoxylans make up the majority of the total NSP fraction. The in vitro

  11. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    Science.gov (United States)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  12. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  13. Gravel Mobility in a High Sand Content Riverbed

    Science.gov (United States)

    Haschenburger, J. K.

    2017-12-01

    In sand-gravel channels, sand may modify gravel transport by changing conditions of entrainment and promoting longer displacements or gravel may inhibit sand transport if concentrated into distinct deposits, which restrict sand supply with consequences for migrating bedform size or form. This study reports on gravel mobility in the lower San Antonio River, Texas, where gravel content in the bed material ranges from about 1% to more than 20%. Sediment transport observations were collected at three U.S. Geological Survey gauging stations by deploying a Helley-Smith sampler with a 0.2 mm mesh bag from which transport rates and mobile grain sizes were determined. The flow rates sampled translate into an annual exceedance expectation from 0.2% to 98%. Gravel transport rates are generally two orders of magnitude smaller than the rates of sand transport. However, the finest gravels are transported at rates on the same order of magnitude as the coarsest sands. At all sites, the 2 and 2.8 mm fractions are transported at the lowest flow rate sampled, suggesting mobility for at least 38% to as much as 98% of the year. Fractions as large as 8 mm are mobilized at flow rates that are expected between 25% and 53% of the year. The largest fractions captured in the sampling (16 to 32 mm) require flows closer to bankfull conditions that occur no more than 0.8% of the year. Results document that some gravel sizes can be frequently transported in low gradient riverbeds with high sand content.

  14. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    Science.gov (United States)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure

  15. Determination of compositional ordering at grain boundaries in boron-doped Ni3Al

    International Nuclear Information System (INIS)

    Mills, M.J.

    1989-01-01

    The effects of crystal thickness and defocus on the superlattice contrast from HRTEM images have been demonstrated. The results indicate that fine, FCC fringe spacings in the vicinity of these grain boundaries can be produced if the boundary is slightly inclined to the electron beam, creating the false impression that the region is compositionally disordered. For properly chosen defocus conditions and boundary orientation, contrast typical of the ordered structure extends up to the estimated position of the boundary plane. The lack of a distinct disordered region suggests that microplasticity near grain boundaries is not significantly affected by the presence of B, and that its influence must be highly localized to the boundaries

  16. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    International Nuclear Information System (INIS)

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  17. Grain size influence on residual stresses in alumina/zirconia composites

    International Nuclear Information System (INIS)

    Sergo, V.; Sbaizero, O.; Pezzotti, G.; Nishida, T.

    1998-01-01

    The grain size (GS) and volume fraction of alumina have been systematically varied in composites with a zirconia matrix and the corresponding residual stresses have been assessed by means of piezospectroscopy. The compressive stress in alumina depends on the volume fraction and it is well predicted by a stochastic model based on information theory. No dependence with GS has been detected, except at the highest volume content (20% vol. alumina). Conversely the stress distribution is independent from the volume fraction and depends on GS: intermediate values of GS exhibit the wider stress distribution. The tensile stress in zirconia shows no clear correlation with the volume fraction and increases with increasing zirconia GS. This latter behavior has been compared with a model based on diffusion relaxation of stresses. The model reproduces correctly the stress change due to different alumina contents, but it diverges from the experimental data at smaller GSs, overestimating the residual stress. It is suggested that grain boundary sliding may also contribute to the relaxation of stresses

  18. Using Sieving and Unknown Sand Samples for a Sedimentation-Stratigraphy Class Project with Linkage to Introductory Courses

    Science.gov (United States)

    Videtich, Patricia E.; Neal, William J.

    2012-01-01

    Using sieving and sample "unknowns" for instructional grain-size analysis and interpretation of sands in undergraduate sedimentology courses has advantages over other techniques. Students (1) learn to calculate and use statistics; (2) visually observe differences in the grain-size fractions, thereby developing a sense of specific size…

  19. Study on Modified Sand Filtration Towards Water Quality of Wet Market Waste Water

    Directory of Open Access Journals (Sweden)

    Saad F.N.M.

    2016-01-01

    Full Text Available Investigation on the potential of sand filter as a pre-treatment of waste water was done in Kangar wet market, Perlis. Besides, the best composition of filter in order to treat wastewater based on BOD, COD, SS, AN, turbidity and pH levels are further examined. In this study, there are four types of sand filter composition which the medias consist of fine sand and coarse sand while the modified sand filter are consist of sand, course sand and activated carbon prepared from rice husk and coconut shells. After 10 weeks of treatment, the results show that the concentration of BOD, COD, SS, AN, turbidity and pH were reduced up to 86%, 84%, 63%, 88%, 73%, respectively while pH nearly to neutral with 6.83. Moreover, the result also revealed that the sand filter added with rice husk almost complied with Standard B of Malaysia Environmental Quality (Sewage Regulations 2009 as well as gives the highest number of WQI with 36.81. Overall, WQI obtained in this study are ranged from 12.77 to 36.81.

  20. Effect on the Grain Size Distribution when Preparing Sand Using Poker Vibrators

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam

    2017-01-01

    At Aalborg University and other research institutions, model tests are performed on small -scale foundations. These foundations are often installed in sand which has to be prepared in a reproductive way. At Aalborg University the preparation is done by using poker vibrators. This paper investigat...

  1. Biodegradation of gasoline compounds (BTEX) in a water works sand filter

    DEFF Research Database (Denmark)

    Arvin, Erik; Engelsen, P.; Sebber, U.

    2004-01-01

    Various chemical compounds including aromatic gasoline compounds frequently contaminate drinking water wells in urban areas. Because ground water treatment is simple, usually consisting of aeration/stripping and sand-filtration, it is of significant interest to know the ability of the conventional...... treatment to remove the chemical contaminants. The removal of gasoline compounds was investigated in a two-stage pilot scale sand filter, each with a filter depth of 0.8-1 m and with a filtration rate of 7.6 m/h. The concentrations of aromatic compounds were in the range 7-15 mu g/L, which are realistically...... sand grains). Influent iron concentrations in the range 0-4 mg/L and backwashing did not adversely affect the biodegradation of hydrocarbons. This study has shown that a conventional biological active sand filter can act as an efficient barrier against gasoline compounds, thereby saving the consumer...

  2. Radon, radionuclides and the Cretaceous Folkestone Sands - gamma spectroscopy and geochemical analysis of silver sands and associated deposits in the SE of England.

    Science.gov (United States)

    Gillmore, Gavin; Al-Rafai, Yousef; Flowers, Alan

    2017-04-01

    cement holding the grains together (typical porosity being around 30%). Microscope analysis shows that this material contains mostly angular to sub-angular quartz grains, some with undulose extinction under cross-polarised light. This suggests a metamorphic origin for the quartz. There are also some relatively rare rock fragments present. These silver sands are a mixture of fine to medium grain sizes (0.10 to 0.5 mm) with small proportions of finer and coarser grades and are in the order of 30 - 36 metres thick at Reigate. These beds show lateral and vertical variability in their grain size, mineralogy and geochemical make up such as iron oxide content and are heavily faulted in places. In view of these radon results, in order to determine whether these levels are supported or unsupported, samples were collected and subjected to laboratory-based Gamma spectrometry. This indicated the presence of U235 (186keV) and Pb212 (238keV) in sands from these caves. We will shortly be in a position to also report in-situ gamma spectrometry and ICPMS analysis of samples taken from these beds.

  3. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available of the three oil sand samples. Oil Sand ID w [%] wb [%] D10 D30 D50 D60 Cu Cc SE-09 1.4 8.5 0.07 0.12 0.17 0.19 2.9 1.17 SE-14 3.2 13.3 0.08 0.14 0.18 0.21 2.8 1.24 AU-14 2.2 14.5 0.09 0.17 0.22 0.27 3.0 1.19 w = water content; wb = bitumen content; Di... = grain size (mm) corresponding to i-percent passing by mass; Cu = coefficient of uniformity; Cc = coefficient of curvature. Sample Preparation The oil sand samples were prepared for the laboratory testing program using an Industrial Process...

  4. Compaction creep of sands due to time-dependent grain failure : Effects of chemical environment, applied stress, and grain size

    NARCIS (Netherlands)

    Brzesowsky, R. H.; Hangx, S. J. T.|info:eu-repo/dai/nl/30483579X; Brantut, N.; Spiers, C. J.|info:eu-repo/dai/nl/304829323

    2014-01-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical

  5. Effect of Gamma Irradiation on Polymer Modified White Sand Cement Mortar Composites

    International Nuclear Information System (INIS)

    Khattab, M.M.

    2012-01-01

    This study focuses on the substitution effect of standard sand of conventional cement mortar made from ordinary Portland cement (OPC) and standard sand (SS) OPC/SS 1:3; by different ratios of white sand (WS) powder to prepare three types of white sand cement mortar designated as 1OPC:2SS:1WS, 1OPC:1SS:2WS and 1OPC:0SS:3WS. The prepared samples were first cured under tap water for different time intervals namely 3, 7, 28 and 90 days. The effect of addition of 10% styrene-acrylic ester (SAE) as well as the effect of different doses of gamma rays (10, 20, 30 and 50 kGy) on the physicomechanical properties of polymer modified white sand cement mortar specimens also discussed. Compression strength test, total porosity and water absorption percentages were measured according to standard specifications. The obtained data indicated that, the cement mortar samples containing different ratios of white sand have lower values of compressive strength as compared to the conventional cement mortar while, the percentages of total porosity and water absorption increased. On the other hand, the polymer modified mortar specimens showed a noticeably enhancement in the physico-mechanical properties under the effect of gamma-radiation than those of untreated samples. These results were confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) studies

  6. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  7. Assessment Method of Overheating Degree of a Spent Moulding Sand with Organic Binder, After the Casting Process

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2013-06-01

    Full Text Available A proper management of sand grains of moulding sands requires knowing basic properties of the spent matrix after casting knocking out. This information is essential from the point of view of the proper performing the matrix recycling process and preparing moulding sands with reclaimed materials. The most important parameter informing on the matrix quality - in case of moulding sands with organic binders after casting knocking out - is their ignition loss. The methodology of estimating ignition loss of spent moulding sands with organic binder - after casting knocking out - developed in AGH, is presented in the paper. This method applies the simulation MAGMA software, allowing to determine this moulding sand parameter already at the stage of the production preparation.

  8. A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply

    Science.gov (United States)

    Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.

    2014-12-01

    A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.

  9. Interpretation of single grain De distributions and calculation of De

    International Nuclear Information System (INIS)

    Jacobs, Z.; Duller, G.A.T.; Wintle, A.G.

    2006-01-01

    Recent development of an instrument for measuring the optically stimulated luminescence signal from individual mineral grains has made it practicable to measure the equivalent dose (D e ) from many hundreds or thousands of single mineral grains from a sample. Such measurements can potentially be used to address issues such as sample integrity, and to make it possible to obtain ages from samples that consist of mixtures of grains, enlarging the range of materials to which luminescence dating can be applied. However, for reliable ages to be obtained, the characteristics of the equipment and the sample being analysed need to be understood. Using sensitised sedimentary quartz grains, the instrumental uncertainty in repeated optically stimulated luminescence measurements made using a single grain laser luminescence unit attached to a conventional luminescence reader was evaluated; a value of 1.2% was obtained. Grains from this sample were then used to investigate the uncertainty in a measured dose distribution obtained using the single aliquot measurement protocol on each grain that had previously received a known laboratory dose; after systematic rejection of grains that did not pass defined acceptance criteria, overdispersion of 7% was found. Additional spread in data was found when uniform aeolian sands were examined, resulting in overdispersion of ∼12%; this was attributed to a combination of factors relating to differences in field and laboratory conditions. A similar value was found for an archaeological horizon below this sand. For another sample from the same section, a significantly larger value was found, ∼29%; on this basis the finite mixture model was applied to obtain the likely dose components. The paper demonstrates the importance of correct assessment of error terms when analysing single grain D e distributions and a number of rejection criteria that are vital to avoid the inclusion of data that could lead to misinterpretation of the degree of

  10. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  11. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    OpenAIRE

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  12. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments

    International Nuclear Information System (INIS)

    Seigel, M.D.; Ward, D.B.; Bryan, C.R.

    1995-09-01

    A processed quartz sand (Wedron 510), mined from the St. Peter sandstone, has been characterized by a variety of chemical and physical methods for use as a reference porous media in transport model validation experiments. Wedron 510 sand was used in an intermediate-scale experiment involving migration of Ni, Li and Br through a 6-m high x 3-m diameter caisson. Ni and Li adsorption/desorption, and Li/Ni site-competition experiments yielded information on the importance of the trace mineral phases to adsorption of Li and Ni by the sand. The presence of an iron hydroxide coating similar to goethite on the sand grains is suggested by visual observation and leaching experiments. Kaolinite was identified by SEM and XRD as a significant trace mineral phase in the sand and occurs as small particles coating the sand grains. Quartz, the predominant constituent of the sand by weight, does not appear to contribute significantly to the adsorption properties of the sand. Qualitatively, the adsorption properties of the sand can be adequately modeled as a two-mineral system (goethite and kaolinite). The studies described in this report should provide a basis for understanding transport of Ni, Li and Br through porous media similar to the reference sand. Techniques were developed for obtaining parameter values for surface complexation and kinetic adsorption models for the sand and its mineral components. These constants can be used directly in coupled hydrogeochemical transport codes. The techniques should be useful for characterization of other natural materials and elements in high-level nuclear waste in support of coupled hydrogeochemical transport calculations for Yucca Mountain

  13. Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence

    DEFF Research Database (Denmark)

    Berger, G.W.; Murray, A.S.; Thomsen, Kristina Jørkov

    2010-01-01

    the Antarctic Peninsula, sediment-water-interface (“zero-age” analogs), silt-rich short cores were collected in 2001–2003, originally only for fine silt dating tests. Later access to suitable instrumentation also permitted testing the potential of single-grain quartz (SGQ) dating of sand grains from these cores...

  14. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Science.gov (United States)

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  15. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  16. Optical dating of single sand-sized grains of quartz: Sources of variability

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    of measuring single grains it is feasible to routinely measure the equivalent dose from many hundreds of grains from each sample. Analysis of such datasets requires assessment of the uncertainties on each equivalent dose since these may vary significantly. This paper assesses the significance of signal...... intensity, dose saturation characteristics and instrument uncertainty in equivalent dose calculation. (C) 2000 Elsevier Science Ltd. All rights reserved....

  17. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    Science.gov (United States)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud

  18. The Rosseland mean opacity of interstellar grain

    International Nuclear Information System (INIS)

    Ali, A.; El Shalaby, M.A.; El-Nawawy, M.S.

    1990-10-01

    We have calculated the opacity of interstellar grains in the temperature range 10 deg. K - 1500 deg. K. Two composite grain models have been considered. One of them consists of silicate coated with ice mantle and the second has a graphite core coated also with ice mantle. These models are compared with isolated grain models. An exact analytical and computational development of Guettler's formulae for composite grain models has been used to calculate the extinction coefficient. It has been found that the thickness of the mantle affects the opacity of the interstellar grains. The opacity of composite models differs from that of the isolated models. The effect of the different species (ice, silicate and graphite) is also clear. (author). 22 refs, 4 figs, 1 tab

  19. Physicochemical composition and glycemic index of whole grain bread produced from composite flours of quality protein maize and wheat

    Directory of Open Access Journals (Sweden)

    C. T. Akanbi

    2016-01-01

    Full Text Available This study entails quality assessment of whole grain bread produced from composite flours of quality protein maize and wheat. Quality protein maize and wheat were processed into flours and mixed at various ratios for bread production. The proximate compositions, physical properties, glycemic response, functional and sensory properties of the samples were evaluated using standard methods. The result showed no significant difference (p<0.05 in the proximate composition parameters of the bread samples. The loaf height (2.50 - 3.95 cm, volume (291.00 - 415.00 cm3 and specific volume(1.72 - 2.42 cm3/g decreased significantly with increasing level of quality protein maize, however, loaf length was not affected by the substitution of quality protein maize. The result of the functional properties showed that final viscosity, water absorption and swelling capacity increased with increasing level of quality protein maize. The result of the glycemic response showed that the inclusion of quality protein maize resulted in decline in the blood glucose content (glycemic index of the products. The bread samples were generally acceptable however; bread with 100% wheat was the most preferred. The result of the sensory properties showed that there was significant difference (p<0.05 in the texture and taste of 100% wheat bread and the other samples. The study concluded that substitution of quality protein maize with wheat produced acceptable whole grain loaves that have positive effect on the reduction of blood glucose level.

  20. POROUS MICROSTRUCTURE OF THE INTERFACIAL TRANSITION ZONE IN GEOPOLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Steinerová M.

    2013-12-01

    Full Text Available The study deals with a comparison of the differences in the structure, composition and micromechanical properties of a metakaolinite geopolymer composite matrix, inside and outside of the interfacial transition zone (ITZ with quartz grains of added silica sand. The microstructure is investigated by a measurement of the mercury porosimetry, microscopy and by a measurement in SEM and AFM, completed by Raman spectroscopy. Weaker mechanical properties, micropores in the ITZ, a higher concentration of Al atoms and hydroxyl groups than in the ambient matrix were detected. The water transport is probably the reason for the micropore formation, caused by disequilibrium in the course of solid-phase building from geopolymer dispersion.

  1. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  2. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  3. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    Science.gov (United States)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  4. Mineralogical characterization of beach sand minerals: traditional and modern approaches

    International Nuclear Information System (INIS)

    Krishnamurthy, P.

    2016-01-01

    Precise identification of beach sand minerals is an essential prerequisite for the reserve estimation of a given deposit and also in the subsequent evaluation of the process flow sheet for its optimal recovery. Traditional methods that are used for the identification of the beach sand minerals such as magnetite, hematite, ilmenite, rutile, anatase, zircon, garnet, sillimanite, monazite, quartz and others include heavy liquid separation (bromoform and methylene iodide) and studying the optical properties of the grains from different fractions so as to identify the specific phases in a sample. Grain counting of specific minerals from a given sievefraction under a petrological microscope to estimate the mode and their subsequent conversion in to weight percent fractions forms the critical second stage that is followed by the reserve estimates. These methodologies are tedious and time consuming often involving a few days for a single sample. The paper introduces the numerous instrumental methods (XRF, XRD - Rietveld and CCSEM) of mineral speciation and their qualification in with case studies from the west coast deposits in India

  5. A study of global sand seas

    Science.gov (United States)

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems

  6. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    Science.gov (United States)

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  7. Heterogeneous Nitrification in a Full Scale Rapid Sand Filter Treating Groundwater

    DEFF Research Database (Denmark)

    Lopato, Laure; Röttgers, Nina; Binning, Philip John

    2013-01-01

    Experiments were conducted to determine ammonium removal kinetics in an operating biologically active sand filter at a waterworks treating anaerobic groundwater. The ammonium load varied between 0.7 and 3 g N/h/m2 (concentration ranged from 0.23 to 0.78 mg N/l) and the inlet water flux varied...... nitrification rate constant was closely related to the water pore velocity which implies that the rate is strongly determined by the resistance to mass transport in the diffusion boundary layer around the sand grains. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000653...

  8. Flowability in crushed sand mortar

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.

    2010-12-01

    Full Text Available The present experimental study explored the relationship between mortar flowability and the voids content in crushed sand to determine the effect of grain shape and surface texture as well as dust content on the behaviour of fresh mortar. The findings revealed a close correlation between voids content and the volume of paste needed for mortar to begin to flow as a continuous material, mortar flowability and the water content needed to attain a given flowability. The comparison of the empirical findings to the results obtained with the Larrard (1, 2 model provided further information on the effect of sand grain morphology on fresh mortars.

    En el presente trabajo se plantea un estudio experimental de la fluidez de morteros basado en el contenido de vacíos de arenas machacadas, para comprender la influencia de la forma y textura superficial de los granos de arena y del contenido de polvo de las mismas sobre el estado fresco de morteros. Los resultados muestran la estrecha relación entre el contenido de vacíos entre granos y los volúmenes de pasta necesarios para iniciar el escurrimiento como un material continuo, la fluidez de los morteros, el contenido de agua para alcanzar una determinada fluidez, etc. El comportamiento evaluado se compara con resultados obtenidos aplicando el modelo de F. de Larrard (1, 2, permitiendo de este modo obtener mayor información de la influencia de la morfología de los granos de la arena sobre el estado fresco de los morteros.

  9. Synthesis of cristobalite from silica sands of Tuban and Tanah Laut

    Science.gov (United States)

    Nurbaiti, U.; Pratapa, S.

    2018-03-01

    Synthesis of SiO2 cristobalite powders has been successfully carried out by a coprecipitation method by making use of local silica sands from districts of Tuban and Tanah Laut, Indonesia. Cristobalite is a phase of SiO2 polymorphs which can be used as a composite filler, a coating material, a surface finishing media, and structural ceramics. In the first stage of the synthesis, the as-received sands were processed by a magnetic separation, grinding, and soaking with HCl to increase the purity of silica content. X-ray fluorescence (XRF) spectroscopy showed that the atomic content of Si (excluding oxygen) in both powders reached 95.3 and 97.4%. A coprecipitation process was then performed by dissolving the silica powders in a 7M NaOH solution followed by a titration with 2M HCl to achieve a normal pH and to form a gel. Furthermore, the silica gel is washed, dried and then calcined at a temperature of between 950-1200 °C with a variation of holding time for 1, 4 dan 10 hrs to produce white powders. X-ray diffraction (XRD) data analyses showed that the powder with calcination temperature of 1150 °C for 4 hrs exhibited the highest cristobalite content of up to 95wt%. Its scanning electron microscopy (SEM) image showed that its grain morphology was relatively homogeneous.

  10. The jammed-to-mobile transition in frozen sand under stress

    Science.gov (United States)

    Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.

    2009-12-01

    microscopy shows that fracturing of sand grains occurs in ice-undersaturated samples, but gradually disappears as saturation is reached. There are no fractured sand grains in deforming mobile frozen sand packs. One application of this work is to the regolith of Mars at mid-latitudes and poleward, where significant ice is expected to be present. Partially relaxed (“softened”) landforms such as craters require the presence of ice, but also suggest strengths far higher than that of ice. The extreme sensitivity of viscosity to ice content near the mobility boundary, and the near coincidence of mobility and saturation at MDPD together suggest a plausible explanation for partial landform softening on Mars that does not require a fortuitous ice content or an unrealistically brief period of saturation; namely, that the water content of the Martian regolith lies at or near saturation. If true, we can estimate the historical water content of the Martian regolith for reasonable soil densities as being between 120 and 240 global meters of water for the upper kilometer of crust. This is somewhat lower than previous estimates.

  11. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  12. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand

    Science.gov (United States)

    Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna

    2018-02-01

    Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.

  13. Wear and microstructural characteristics of spray atomized zircon sand reinforced LM13 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, K.; Pandey, O.P. [School of Physics and Materials Science, Thapar University Patiala, Punjab (India)

    2010-07-15

    The requirement of the high performance light weight materials demands the development of varieties of materials within the economical range to get it commercialized. Light weight aluminium alloys are used in several structural applications like automotive, aerospace, defense industry and other fields of engineering. The ceramic particle reinforced aluminium metal matrix composites (AMCs) have emerged as a suitable candidate for commercial applications. A variety of processing routes have been adopted to manufacture AMCs. In the present work LM13 alloy reinforced with zircon sand is formed via spray forming. During experimentation a self prepared convergent-divergent nozzle is used for inert gas atomization of the melt which is subsequently deposited on copper substrate placed vertically below the atomizer. The zircon sand particles are injected in the atomization zone by external injectors aligned perpendicular to the gas atomization axis. Zircon sand has been found to have new promising economical commercial candidate due to its easy availability and good mechanical properties like high hardness, high modulus of elasticity and good thermal stability. The microhardness of cast alloy and spray formed composite shows that the spray formed zircon sand reinforced composite has higher hardness. Also the lower wear rate has been observed in case of the zircon sand reinforced AMC as compared to LM13 alloy. This behaviour is further analyzed in light of microstructural features of the spray deposited composite using optical and scanning electron microscope (SEM). A comparative study of this material (LM13/Zircon sand) with the parent alloy (LM13) is presented in this work. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Mechanics of Granular Materials: Experimentation and Simulations for Determining the Compressive and Shear Behaviors of Sand at Granular and Meso Scales

    Science.gov (United States)

    2011-09-30

    successfully applied to characterize polymers [47], ceramics [15], borosilicate glass [14] and concrete [21]. 3.2 Experimental Procedure A self-aligning...respectively. 54 4.1 Results 4.1.1 Sand Specimen Assembly The color of individual Eglin sand grains are yellow (either transparent or translucent ) under an

  15. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  16. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  17. PROSPECTS FOR APPLICATION OF COMPLEX-MODIFIED SAND ASPHALT CONCRETE IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov

    2017-01-01

    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  18. Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-06-01

    Full Text Available The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces. This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

  19. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    cementation of sand grains within the discrete layers that explains the increase in velocity and decrease in porosity. The subsurface layering may influence the speed of dune migration and therefore have important consequences on desertification. The positive qualitative and quantitative correlation between the subsurface layering in the dune and the manifestation of the booming sound implies a close relation between environmental factors and the booming emission. In this thesis, the frequency of booming is correlated with the depth of the waveguide and the seismic velocities. The variability on location and season suggests that the waveguide theory successfully unravels the phenomenon of booming sand dunes.

  20. THE COMPOSITION OF INTERSTELLAR GRAINS TOWARD ζ OPHIUCHI: CONSTRAINING THE ELEMENTAL BUDGET NEAR THE DIFFUSE-DENSE CLOUD TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Poteet, Charles A.; Whittet, Douglas C. B. [New York Center for Astrobiology, Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Draine, Bruce T., E-mail: charles.poteet@gmail.com [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-03-10

    We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O are inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.

  1. Sedimentology, geochemistry and rock magnetic properties of beach sands in Galapagos Islands - implications for nesting marine turtles

    Science.gov (United States)

    Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.

    2007-12-01

    Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum

  2. Sedimentological and Scanning Electron Miscroscopic Descriptions of Afowo Oil Sand Deposits, South Western Nigeria

    Directory of Open Access Journals (Sweden)

    Akinmosin A

    2017-12-01

    Full Text Available Sedimentological and scanning electron microscopic analyses of some shallow reservoir tar sand samples in parts of Southwestern Nigeria were carried out with the aim of characterizing the reservoir properties in relation to bitumen saturation and recovery efficiency. The production of impregnated tar from the sands requires the reservoir to be of good quality. A total of thirty samples were collected at different localities within the tar sand belt (ten out of these samples were selected for various reservoir quality analyses based on their textural homogeneity. The result of particle size distribution study showed that bulk of the sands is medium – coarse grained and moderately sorted. The grain morphologies are of low to high sphericity with shapes generally sub-angular to sub-rounded, implying that the sands have undergone a fairly long transportation history with depositional energy having a moderate to high velocity. The quartz content was made up of about 96% of the total mineralogical components; the sediments of the Afowo Formation can be described to be mineralogically and texturally stable. The result of the scanning electron microscopy (SEM analysis revealed that the oil sands contained minerals which had been precipitated and occurred as pore filling cement; these minerals include sheet kaolinite, block kaolinite, vermiform kaolinite, pyrite crystals and quartz. The SEM images also showed micro-pores ranging from 0.057µm to 0.446µm and fractures. The study showed that the clay minerals contained in the Afowo reservoir rocks were mainly kaolinite. Kaoline unlike some other clays (e.g Montimorillonite does not swell with water, hence it is not expected to have any negative effects on the reservoir quality, especially during enhanced oil recovery operations.

  3. Effect of substrate size on sympatric sand darter benthic habitat preferences

    Science.gov (United States)

    Thompson, Patricia A.; Welsh, Stuart A.; Rizzo, Austin A.; Smith, Dustin M.

    2017-01-01

    The western sand darter, Ammocrypta clara, and the eastern sand darter, A. pellucida, are sand-dwelling fishes that have undergone range-wide population declines, presumably owing to habitat loss. Habitat use studies have been conducted for the eastern sand darter, but literature on the western sand darter remains sparse. To evaluate substrate selection and preference, western and eastern sand darters were collected from the Elk River, West Virginia, one of the few remaining rivers where both species occur sympatrically. In the laboratory, individuals were given the choice to bury into five equally available and randomly positioned substrates ranging from fine sand to granule gravel (0.12–4.0 mm). The western sand darter selected for coarse and medium sand, while the eastern sand darter was more of a generalist selecting for fine, medium, and coarse sand. Substrate selection was significantly different (p = 0.02) between species in the same environment, where the western sand darter preferred coarser substrate more often compared to the eastern sand darter. Habitat degradation is often a limiting factor for many species of rare freshwater fish, and results from this study suggest that western and eastern sand darters may respond differently to variations in benthic substrate composition.

  4. Carbohydrate composition and in vitro digestibility of dry matter and non-starch polysaccharides in corn, sorghum, and wheat, and co-products from these grains

    DEFF Research Database (Denmark)

    Jaworski, N. A.; Lærke, Helle Nygaard; Knudsen, Knud Erik Bach

    2015-01-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was deter......The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients...... was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn...... up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis...

  5. Problems of bentonite rebonding of synthetic system sands in turbine mixers

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-12-01

    Full Text Available Turbine (rotor mixers are widely used in foundries for bentonite rebonding of synthetic system sands. They form basic equipment in modern sand processing plants. Their major advantage is the short time of the rebond mixing cycle.Until now, no complete theoretical description of the process of mixing in turbine mixers has been offered. Neither does it seem reasonable to try to adapt the theoretical backgrounds of the mixing process carried out in mixers of other types, for example, rooler mixers [1], to the description of operation of the turbine mixers. Truly one can risk the statement that the individual fundamental operations of mixing in rooler mixers, like kneading, grinding, mixing and thinning, are also performed in turbine mixers. Yet, even if so, in turbine mixers these processes are proceeding at a rate and intensity different than in the roller mixers. The fact should also be recalled that the theoretical backgrounds usually relate to the preparation of sand mixtures from new components, and this considerably restricts the field of application of these descriptions when referred to rebond mixing of the system sand. The fundamentals of the process of the synthetic sand rebonding with bentonite require determination and description of operations, like disaggregation, even distribution of binder and water within the entire volume of the rebonded sand batch, sand grains coating, binder activation and aeration.This study presents the scope of research on the sand rebonding process carried out in turbine mixers. The aim has been to determine the range and specific values of the designing and operating parameters to get optimum properties of the rebonded sand as well as energy input in the process.

  6. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  7. Shoreline accretion and sand transport at groynes inside the Port of Richards Bay.

    CSIR Research Space (South Africa)

    Schoonees, JS

    2006-01-01

    Full Text Available on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while...

  8. Effect of substitution of sand stone dust for quartz and clay in triaxial ...

    Indian Academy of Sciences (India)

    Few quartz grains (20–40μm) are associated with circumferential cracks around them. Keywords. Environmental pollutant; sand stone dust; ceramic tiles; pavement block; vitrification; ... increased risk of tuberculosis. Moreover, exposure ..... Health. 14 94. Hamano K, Nakagawa Z and Hasegawa M 1992 J. Ceram. Soc. Jap.

  9. Study of sandy soil grain-size distribution on its deformation properties

    Science.gov (United States)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  10. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  11. Sorption of europium by Haro river sand in aqueous solution

    International Nuclear Information System (INIS)

    Syed Moosa Hasany; Syed Javaid Khurshid

    1997-01-01

    The sorption of Eu(III) on Haro river sand has been investigated. Influences include composition of the sorptive medium, the concentration of sorbent and sorbate, and shaking time. Haro river sand can be exploited for the preconcentration and removal of europium from very dilute solutions, for the decontamination and treatment of radioactive waste water and effluents from nuclear installations. (Author)

  12. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  13. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  14. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    DEFF Research Database (Denmark)

    Subedi, S; Kawamoto, K; Jayarathna, L

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied...

  15. Potential building sand deposits in Songkhla province area

    Directory of Open Access Journals (Sweden)

    Kooptarnond, K.

    2002-10-01

    Full Text Available An investigation of potential building sand deposits in Songkhla province area subdivided them into four regions according to their accumulation in various alluvial plains, meanders throughout alluvial deposits and residual soils. Four selected deposits, were Rattaphum-Khuan Niang, U-Taphao river, Na Mom, and Chana-Thepha regions. Information obtained from these deposits revealed a good correlation between the geomorphological features as interpreted from aerial photographs and those identified from vertical electrical resistivity sounding results. Sand samples were analysed for their physical and chemical properties. Petrographic studies were also undertaken to characterize the composition types, texture and shapes. An overview of the sand properties was used them to be within the acceptable limits for building sand. However, relatively high organic impurities and soundness were found in sand from Khuan Niang and Na Mom deposits. The result indicated a potential reconnaissance mineral resource of about 46 square kilometres.A reserve evaluation for natural building sand was carried out by using Geographic Information System (GIS. Maps of the various parameters considered were constructed in digital database format with the aid of Arc/Info and ArcView software. Overlay mapping and buffer zone modules were performed to evaluate inferred resources of building sand. The key parameters of analysis included the distance from transportation, distance from streams, lithology and thickness of sand layers. The remaining inferred sand total was of about 386 million cubic metres or about 1,021 million metric tons was therefore estimated, of which 60 percent lies in the Rattaphum-Khuan Niang region and 40 percent in the other regions.

  16. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  17. Origin of amphibole-rich beach sands from Tila-Mati, Karwar, central-west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    The pocket beach at Tila-Mati, Karwar, central west coast of India, is characterised by the occurrence of amphibole-rich (chiefly tremolite-actinolite) coarse sand in the zone of minimal impact of waves and currents. In the total sediment, grain...

  18. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    Science.gov (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  19. Study of backfill material composition for shallow land radioactive wastes disposal

    International Nuclear Information System (INIS)

    Sukarman-Aminjoyo; Sukrosono; Supardi

    1996-01-01

    The composition of back fill material for shallow land radioactive wastes disposal has been investigated by using bentonite, magnetic and quartz sands. The aim of this research is to observe the kind of mineral suitable for back fill material. The research was done for each mineral material and for the mixture of those three minerals. Firstly 2 grams of bentonite. magnetite or quartz sand was put into a glass column of 1.2 cm in diameter. Then the Sr-90 liquid waste was flown through out the column. In this experiment the adsorption velocity, through velocity, adsorption capacity and decontamination factor were determined for the grain size of 10 up to 100 mesh. By the same method the experiment was done for the mix of those three minerals. The experiment result indicated that the grain size mineral influenced the parameter of adsorption velocity, through velocity, adsorption capacity and decontamination factor. The relatively good result was obtained for the grain size of 80 mesh. Among the three kinds of minerals, bentonite had the highest of adsorption capacity and decontamination factor, while its adsorption velocity and through velocity were the lowest. The mixture of that three minerals gave better result than that mixture of two mineral component. The usage of the mineral mixture with the grain size of 80 mesh and the weight ratio between that component of 1:1:1, resulted in the decontamination factor of 68.44, the adsorption capacity of 235 ml/g, the adsorption velocity of 31x10 -3 ml/sec. and the through velocity of 1.82x10 -3 ml/sec

  20. Isochron measurements of naturally irradiated K-feldspar grains

    International Nuclear Information System (INIS)

    Li Bo; Li Shenghua; Wintle, Ann G.; Zhao Hui

    2007-01-01

    The equivalent doses of K-feldspar grains in a range of grain sizes from 90 to 250μm diameter were measured using a single-aliquot regenerative-dose protocol for the infrared stimulated luminescence (IRSL) signals for two samples of desert sand. The equivalent doses for each sample were compared with that for the 125-150μm grains of quartz from the same samples. The results suggested that the K-feldspar equivalent doses were underestimated because of anomalous fading. Measurements of the decay of the IRSL signals following laboratory irradiation for these two samples, and an additional one from a previously published isochron study, showed anomalous fading during the period of laboratory storage. The decay rate was about 3% per decade for all samples and was independent of the grain size used. Using plots of equivalent doses for K-feldspars as a function of their calculated internal dose rate, and the quartz equivalent dose as a function of grain size, it was concluded that the IRSL signal derived from the internal dose rate had not faded over the 13,000 years that had elapsed since the grains were deposited

  1. The Effect of Grain-refinement on Zn-10Al Alloy Damping Properties

    Directory of Open Access Journals (Sweden)

    Piwowarski G.

    2014-12-01

    Full Text Available The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn. The system examined was sand cast Zn- 10 wt. %. Al binary alloy (Zn-10Al doped with commercial Al-3 wt. % Ti - 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR. Basing on the measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping decreases only by about 10 - 20%. The following examinations should establish the influence of the mentioned grain-refinement on strength and ductility of MAl-Zn cast alloys.

  2. Performance of sand and shredded rubber tire mixture as a natural base isolator for earthquake protection

    Science.gov (United States)

    Bandyopadhyay, Srijit; Sengupta, Aniruddha; Reddy, G. R.

    2015-12-01

    The performance of a well-designed layer of sand, and composites like layer of sand mixed with shredded rubber tire (RSM) as low cost base isolators, is studied in shake table tests in the laboratory. The building foundation is modeled by a 200 mm by 200 mm and 40 mm thick rigid plexi-glass block. The block is placed in the middle of a 1m by 1m tank filled with sand. The selected base isolator is placed between the block and the sand foundation. Accelerometers are placed on top of the footing and foundation sand layer. The displacement of the footing is also measured by LVDT. The whole setup is mounted on a shake table and subjected to sinusoidal motions with varying amplitude and frequency. Sand is found to be effective only at very high amplitude (> 0.65 g) of motions. The performance of a composite consisting of sand and 50% shredded rubber tire placed under the footing is found to be most promising as a low-cost effective base isolator.

  3. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: Implications for ensialic Andean orogeny

    International Nuclear Information System (INIS)

    Basu, A.R.; Sharma, M.; DeCelles, P.G.

    1990-01-01

    Nd and Sr isotopes and the trace element contents, including the rare earths, were determined for fluvial sands of lithic arenite composition from the Madre de Dios foreland basin of Bolivia and Peru. On standard petrologic ternary diagrams, the sands fall in the recycled orogen provenance field and thus are similar to typical ancient foreland basin composition. The average rare earth elemental pattern of the sands is identical to the upper continental crustal average, as estimated from post-Archean composite shales of different continents. Ratio of Th/U, Co/Th, La/Sc and Th/Sc of the fluvial sands are intermediate between an average magmatic arc and an upper crustal average compositions. The dispersion of some trace elemental patterns in the sands can be attributed to fractionation of dense minerals, including zircon, during the sedimentation process. The variations of Nd isotopes in conjunction with the petrographic parameters of lithic metamorphic (Lm) and volcanic (Lv) fragments allow a two-fold classification of the sands. These two sand types can be interpreted in terms of mixing among three different provenances: one volcanic rock-suit with less negative ε Nd (O) parameter than the other volcanic suite, and a third metasedimentary source with ε Nd (O) value of around -12, which is considered to be similar to the average western Brazilian shield composition. Thus the overall compositions of the sands has been modeled as mechanical mixtures of two components, an Andean magmatic arc and the Brazilian shield-derived metasediments. The model is strongly supported by a plot of ε Nd (O) versus ε Sr (O) of the sands. In this plot, the Type 1 and 2 sands define two coherent hyperbolic trends contiguous with two different portions of the Andean magmatic trend. (orig./WB)

  4. Spinodal decomposition in fine grained materials

    Indian Academy of Sciences (India)

    Unknown

    ηηi has a value of unity inside the ith grain, decreases smoothly through the grain boundary region to zero out- side the grain. For a symmetric alloy of composition, c = 0⋅⋅5, our results show that microstructural evolution depends largely on the difference in the grain boundary energies, γγgb, of A-rich (αα) and B-rich (ββ) ...

  5. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea

    2017-06-01

    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  6. Statistical Analysis of 3-Point Bending Properties of Polymer Concretes Made From Marble Powder Waste, Sand Grains, and Polyester Resin

    Science.gov (United States)

    Benzannache, N.; Bezazi, A.; Bouchelaghem, H.; Boumaaza, M.; Amziane, S.; Scarpa, F.

    2018-01-01

    The mechanical performance of concrete polymer beams subjected to 3-point bending was investigated. The polymer concrete incorporates marble powder waste and quarry sand. The results obtained showed that the type of sand, and amount of marble powder and sand aggregate affected the resistance of the polymer concrete beams significantly. The marble waste increased their bending strength by reducing the porosity of polymer concrete.

  7. Sediment sorting along tidal sand waves: A comparison between field observations and theoretical predictions

    Science.gov (United States)

    Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries

    2013-07-01

    A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.

  8. Benthic faunal sampling adjacent to the Sand Island ocean outfall, Oahu, Hawaii, 1986-2010 (NODC Accession 9900088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic fauna in the vicinity of the Sand Island ocean outfall were sampled from 1986-2010. To assess the environmental quality, sediment grain size and sediment...

  9. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching.

    Science.gov (United States)

    Nazarov, Denis V; Zemtsova, Elena G; Solokhin, Alexandr Yu; Valiev, Ruslan Z; Smirnov, Vladimir M

    2017-01-13

    In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed.

  10. Effect of Sulphur Fertilization on Grain Quality and Protein Composition of Durum Wheat (Triticum durum Desf.

    Directory of Open Access Journals (Sweden)

    Marianna Pompa

    2009-12-01

    Full Text Available The reduction of atmosphere emission of SO2 and the massive use of fertilizers high in nitrogen and phosphorus resulted in a decrease of the sulphur content in the soil. In durum wheat cultivation, sulphur supply plays a key role not only for plant growth, but also for grain quality. Sulphur is an essential macronutrient primarily used to synthesize methionine and cysteine and it is also involved in establishing protein structures by disulphide bonds. The aim of this study was to evaluate the effect of sulphur nutrition on grain quality and protein composition of durum wheat cultivars grown under water deficit conditions, typical of Mediterranean areas. To this purpose, in the 2003-2004 and 2004-2005 crop seasons a field trial was carried out by comparing two water regimes (irrigated and rainfed, two sulphur fertilizer levels and two durum wheat cultivars. Under our experimental conditions, an increase in protein and gluten content in the rainfed treatment and a positive effect of sulphur fertilization on quality parameters were observed. Few changes were observed in protein composition in response to sulphur fertilization.

  11. Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material

    Science.gov (United States)

    Liu, Xin; Tie, Shengnian

    2017-07-01

    Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.

  12. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Science.gov (United States)

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  13. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  14. Using ICP and micro-PIXE to investigate possible differences in the mineral composition of genetically modified versus wild-type sorghum grain

    Science.gov (United States)

    Ndimba, R.; Cloete, K.; Mehlo, L.; Kossmann, J.; Mtshali, C.; Pineda-Vargas, C.

    2017-08-01

    In the present study, possible differences in the mineral composition of transgenic versus non-transgenic sorghum grains were investigated using inductively coupled atomic emission spectroscopy (ICP-AES); and, in-tissue elemental mapping by micro Proton-Induced X-ray Emission (micro-PIXE) analysis. ICP AES was used to analyse the bulk mineral content of the wholegrain flour derived from each genotype; whilst micro-PIXE was used to interrogate localised differences in mineral composition specific to certain areas of the grain, such as the bran layer and the central endosperm tissue. According to the results obtained, no significant difference in the average Fe, Zn or Ca content was found to differentiate the transgenic from the wild-type grain using ICP-AES. However, using micro-PIXE, a significant reduction in zinc could be detected in the bran layer of the transgenic grains relative to wild-type. Although it is difficult to draw firm conclusions, as a result of the small sample size used in this study, micro-PIXE has nonetheless proven itself as a useful technique for highlighting the possibility that there may be reduced levels of zinc accumulation in the bran layer of the transgenic grains. Given that the genetic modification targets proteins that are highly concentrated in certain parts of the bran tissue, it seems plausible that the reduced levels of zinc may be an unintended consequence of the silencing of kafirin proteins. Although no immediate health or nutritional concerns emerge from this preliminary finding, it is noted that zinc plays an important biological role within this part of the grain as a structural stabiliser and antioxidant factor. Further study is therefore needed to assess more definitively the extent of the apparent localised reduction in zinc in the transgenic grains and how this may affect other important grain quality characteristics.

  15. Dunes Around Khnifiss Lagoon (Tarfaya, SW of Morocco): Composition, Itinerary In Dune Fields, Effects on Dunes' Colours and Morphodynamic

    Science.gov (United States)

    Adnani, M.; Azzaoui, M. A.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2015-12-01

    Dunes around Khnifiss lagoon (28° 3'N, 12°13'W) show different colors ranging from black at the beach, whitish yellow in transverse dunes near the beach to reddish at the mega barchans situated few kilometers in the SW. The scientific question is about the abundance of different dunes in the same environmental conditions. The present work aims to investigate the factors that influence dunes color change, and then at which degree these factors could control dunes stability. To highlight the difference in color observed at the dune fields then to characterize dunes mineralogy, Landsat TM images were used in addition to mineralogical analysis that was carried out for the black grains samples originated from megabarchans. Optic Microscope and SEM- EDS data was adopted, in addition to physico-chemical analysis provided by Electronic Microprobe. Grain size and shape analysis were conducted to characterize the different types of grains of sand. 3/1 Landsat image band ratio allowed iron oxide distinction, the results revealed the importance of iron oxide concentration. Furthermore, mineralogical and physico-chemical analysis revealed (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The grain size analysis of the sand originated from the megabarchans reveals that there are three populations of sand. Black grains with a diameter less than 100μm and dominated by the magnetite, red ones composed mainly by the quartz with diameter between 100 and 180 μm and grains with diameter more than 180 μm are white and composed by carbonates. The threshold of motion of these different grains was calculated. It shows that these different grains have the same threshold of motion, which means that the grain size compensates the density. This explains the abundance of different populations of sand in the same environment. The dominance of iron

  16. AN EXPERIMENTAL STUDY ON STRENGTH PARAMETRES OF CONCRETE WITH REPLACMENT OF FINE AGGREGATE BY ROBO SAND

    OpenAIRE

    T.Dilip Kumar *1 & G.Kalyan 2

    2018-01-01

    Concrete is the most widely used composite construction material. Fine aggregate plays a very important role for imparting better properties to concrete in its fresh and hardened state. Generally, river sand was used as fine aggregate for construction. Due to the continuous mining of sand from riverbed led to the depletion of river sand and it became a scarce material. Also, samining from river bed caused a lot of environmental issues. As a substitute to river sand, Robo sand has been used. I...

  17. Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg–C composites

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, A., E-mail: anne.mertens@ulg.ac.be [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium); Simar, A. [Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (Belgium); Adrien, J.; Maire, E. [Institut National des Sciences Appliquées de Lyon (INSA Lyon), MATEIS Laboratory (France); Montrieux, H.-M. [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium); Delannay, F. [Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (Belgium); Lecomte-Beckers, J. [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium)

    2015-09-15

    Short C fibres–Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of Mg alloy AZ31B or AZ91D. This novel processing technique can allow the easy production of large-scale metal matrix composites. The paper investigates the microstructure of FSPed C fibre–Mg composites in relation with the fragmentation of the C fibres during FSP and their influence on the tensile properties. 3D X-ray tomography reveals that the fibres orient like onion rings and are more or less fragmented depending on the local shear stress during the process. The fibre volume fraction can be increased from 2.3% to 7.1% by reducing the nugget volume, i.e. by using a higher advancing speed in AZ31B alloy or a stronger matrix alloy, like AZ91D alloy. A higher fibre volume fraction leads to a smaller grain size which brings about an increase of the composite yield strength by 15 to 25%. However, a higher fibre volume fraction also leads to a lower fracture strain. Fracture surface observations reveal that damage occurs by fibre/matrix decohesion along fibres oriented perpendicularly to the loading direction. - Graphical abstract: Display Omitted - Highlights: • C–Mg MMCs were produced by FSP sandwiches made of a C fabric between Mg sheets. • Fibre fragmentation and erosion is larger when the temperature reached during FSP is lower. • A lower advancing speed brings a lower fibre volume fraction and a lower grain size. • X-ray tomography reveals that fibres orient along the FSP material flow. • The fibres and grain size reduction increase the yield strength by 15 to 25%.

  18. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  19. Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite

    Directory of Open Access Journals (Sweden)

    Markus Alfreider

    2016-08-01

    Full Text Available The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt% Ti and 25 vol% (11.4 wt% Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

  20. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States

    Science.gov (United States)

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.

    2016-01-01

    The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.

  1. Experimental Study of Dust Grain Charging

    Science.gov (United States)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  2. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  3. Formulating Fine to Medium Sand Erosion for Suspended Sediment Transport Models

    Directory of Open Access Journals (Sweden)

    François Dufois

    2015-08-01

    Full Text Available The capacity of an advection/diffusion model to predict sand transport under varying wave and current conditions is evaluated. The horizontal sand transport rate is computed by vertical integration of the suspended sediment flux. A correction procedure for the near-bed concentration is proposed so that model results are independent of the vertical resolution. The method can thus be implemented in regional models with operational applications. Simulating equilibrium sand transport rates, when erosion and deposition are balanced, requires a new empirical erosion law that involves the non-dimensional excess shear stress and a parameter that depends on the size of the sand grain. Comparison with several datasets and sediment transport formulae demonstrated the model’s capacity to simulate sand transport rates for a large range of current and wave conditions and sand diameters in the range 100–500 μm. Measured transport rates were predicted within a factor two in 67% of cases with current only and in 35% of cases with both waves and current. In comparison with the results obtained by Camenen and Larroudé (2003, who provided the same indicators for several practical transport rate formulations (whose means are respectively 72% and 37%, the proposed approach gives reasonable results. Before fitting a new erosion law to our model, classical erosion rate formulations were tested but led to poor comparisons with expected sediment transport rates. We suggest that classical erosion laws should be used with care in advection/diffusion models similar to ours, and that at least a full validation procedure for transport rates involving a range of sand diameters and hydrodynamic conditions should be carried out.

  4. Structure and chemistry of the sorghum grain

    Science.gov (United States)

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  5. Sensitivity of tidal sand wave characteristics to environmental parameters: A combined data analysis and modelling approach

    NARCIS (Netherlands)

    van Santen, R.B.; de Swart, H.E.; van Dijk, T.A.G.P.

    2011-01-01

    An integrated field data-modelling approach is employed to investigate relationships between the wavelength of tidal sand waves and four environmental parameters: tidal current amplitude, water depth, tidal ellipticity and median grain size. From echo sounder data at 23 locations on the Dutch

  6. Rapid sensory profiling and hedonic rating of whole grain sorghum-cowpea composite biscuits by low income consumers.

    Science.gov (United States)

    Dovi, Koya Ap; Chiremba, Constance; Taylor, John Rn; de Kock, Henriëtta L

    2018-02-01

    The challenges of malnutrition and urbanization in Africa demand the development of acceptable, affordable, nutritious complementary-type foods. Biscuits (i.e. cookies; a popular snack) from whole grain staples are an option. The present study aimed to relate check-all-that-applies (CATA) sensory profiles of sorghum-cowpea composite biscuits compared to economic commercial refined wheat biscuits with hedonic ratings by low income consumers. In addition, the nutritional composition and protein quality, L * a * b * colour and texture of the biscuits were determined. The CATA method is suitable for rapidly determining which attributes consumers perceive in food products and relating these to acceptability. Consumers preferred the lighter, more yellow wheat biscuits with ginger, vanilla, sweet and cinnamon flavours compared to the stronger flavours (sorghum, beany and nutty) and harder but brittle, grittier, dry and rough textured sorghum or sorghum-cowpea biscuits. However, a substantial proportion of consumers also liked the latter biscuits. The composite biscuits had higher dietary fibre content and a similar protein quality to the standards. Whole grain sorghum-cowpea biscuits could serve as acceptable value-added nutritious complementary snacks for consumers in sub-Saharan Africa. The biscuits are simple to produce for the creation of viable small enterprises. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Winds pick up and transport grains from nearby beach sands and alluvial deposits into a wide Red Sea coastal plain at the border of the beach. The mineralogical (Qt–Ft–Lt) and geochemical composition of the sands, indicate that SF and QS coastal dune sands are mature and influenced by quartz-rich sands. The average ...

  8. NUTRITIONAL CHARACTERIZATION OF GRAIN AMARANTH ...

    African Journals Online (AJOL)

    IBUKUN

    children; increased body mass index of people formerly wasted by HIV/AIDS; ... and market acceptability of Amaranth cruentus based products in order to ... Peru, grain amaranth also used the grains as food; preparation of local beverage; added ... initiated to know the proximate composition, mineral and vitamin contents of ...

  9. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  10. Assessment of recycled PET properties for application on oil wells as sand control agents; Avaliacao de propriedades de PET reciclado para aplicacao em pocos de petroleo como agente de contencao de areia

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Alexandre Zacarias Ignacio [PETROBRAS, Rio de Janeiro, RJ (Brazil); Delpech, Marcia Cerqueira [Universidade do Estado do Rio de Janeiro (IQ/UERJ), RJ (Brazil). Inst. de Quimica], e-mail: mcd@uerj.br

    2008-07-01

    The Sand Control is fundamental for oil production in unconsolidated sandstone formations. It consists of the installation of a filter made of stainless steel screens and grained materials (sand control agents) which are, normally, high density inorganic substances (sand, ceramic, bauxite). Shallow formations, near to the sea bed, are more sensitive and need different kinds of sand control agents with low density. The objective of this work was the evaluation of recycled poly(ethylene terephthalate), PET, as sand control agent for oil wells. Pack permeability and thermal stability tests results, after up to six months of exposure to sea water and crude oil, have indicated that the recycled PET kept the necessary characteristics for the proposed application. Also, it was observed that the PET grain pack did not presented significant property modifications in the exposure conditions, when compared to the non-exposed samples. (author)

  11. Water management challenges and perspective for surface oil sands operations in North Eastern Alberta

    International Nuclear Information System (INIS)

    MacKinnon, M.

    2009-01-01

    Oil sands waters has many sources, such as raw water inputs (import water and hydrologic waters); oil sands ore water such as formation water; and oil sands process-affected water (OSPW) such as produced water and released water from tailings. This presentation demonstrated the importance of water to oil sands operations and indicated how oil sands processing affects water quality. Water imports to meet oil sands needs is a topic of particular interest. Other topics that were presented included water properties changing during oil sands operations; tailings management and the effects on water quality; oil sands tailings and water management and the impact on water quality of the region; how oil sands processing affected water quality; and current tailings approach and proposed new tailings methods and the effects on water composition. Post extraction changes in OSPW and the potential impacts of engineered tailings were also discussed. It was concluded that water treatment options must meet water management objectives. figs.

  12. Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures

    International Nuclear Information System (INIS)

    Fultz, B.; Frase, H.N.

    2000-01-01

    Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be

  13. Optimisation and Evaluation of the Effect of Bambara Groundnut Addition on the Nutritional Quality and Functional Properties of Amaranth Grain-Based Composite Flour

    Directory of Open Access Journals (Sweden)

    Awolu Olugbenga Olufemi

    2017-12-01

    Full Text Available Nutritional quality and functional properties of composite flour consisting amaranth grain, bambara groundnut, carrot and rice bran flours were evaluated. The dependent variables were optimized using optimal mixture model of response surface methodology. Amaranth grain flour (70 – 80.75%, bambara groundnut flour (15-25%, carrot flour (2-5% and rice bran (2-10% were the independent variables. From the results, very high protein content (about 40% was obtained when the bambara content inclusion was 25%. Bambara groundnut flour inclusion up to 15% also resulted in high protein contents (≤ 37%. Supplementation of the composite flour with high carrot flour content (up to 10% also enhanced the protein content when the bambara groundnut content was low. High carrot flour inclusion had the highest positive effect on the crude fibre content (3.7-3.9% followed by rice bran and bambara groundnut flours in that order. Bambara groundnut had highest positive effect on the ash content; followed by carrot and rice flours. While amaranth grain, carrot and rice bran significantly (p≤0.05 affect the proximate and functional compositions, bambara groundnut had the highest and best effect on the proximate, functional, mineral properties as well as the amino acid profile of the composite flour.

  14. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2017-01-01

    Full Text Available In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions and the etching time on the morphology and surface relief of ultrafine grained (UFG and coarse grained (CG titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM, atomic force microscopy (AFM, and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF and X-ray Photoelectron Spectroscopy (XPS. Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed.

  16. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  17. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  18. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  19. Seismic stochastic inversion identify river channel sand body

    Science.gov (United States)

    He, Z.

    2015-12-01

    The technology of seismic inversion is regarded as one of the most important part of geophysics. By using the technology of seismic inversion and the theory of stochastic simulation, the concept of seismic stochastic inversion is proposed.Seismic stochastic inversion can play an significant role in the identifying river channel sand body. Accurate sand body description is a crucial parameter to measure oilfield development and oilfield stimulation during the middle and later periods. Besides, rational well spacing density is an essential condition for efficient production. Based on the geological knowledge of a certain oilfield, in line with the use of seismic stochastic inversion, the river channel sand body in the work area is identified. In this paper, firstly, the single river channel body from the composite river channel body is subdivided. Secondly, the distribution of river channel body is ascertained in order to ascertain the direction of rivers. Morever, the superimposed relationship among the sand body is analyzed, especially among the inter-well sand body. The last but not at the least, via the analysis of inversion results of first vacuating the wells and continuous infilling later, it is meeted the most needs well spacing density that can obtain the optimal inversion result. It would serve effective guidance for oilfield stimulation.

  20. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  1. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    Science.gov (United States)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  2. Effect of Duration on Ti Grain Refinement of A356 and Melt Quality

    Science.gov (United States)

    Gürsoy, Özen; Erzi, Eray; Yüksel, Çağlar; Dispinar, Derya

    Grain refinement of aluminium alloys increases fluidity and feedability; and thus higher mechanical properties and decreased porosity is achieved. Typically, various ratios of Ti-B is used as grain refiner. It is well known that due to the sedimentation, the effectiveness of the grain refinement decreases which is called the fading effect. In this work, this effect has been investigated by means of melt quality. Two different melting temperatures were selected (725 and 750C) and samples were cast into die and sand mould. After the addition of grain refiners, samples were collected at 10 minutes of interval. Metallographic examinations were carried out where microstructural change and porosity distribution were investigated. The results were correlated with bifilm index (i.e. melt quality).

  3. Sand-mediated divergence between shallow reef communities on ...

    African Journals Online (AJOL)

    Sand-mediated divergence between shallow reef communities on horizontal and vertical substrata in the western Indian Ocean. SN Porter, GM Branch, KJ Sink. Abstract. Distinctions are rarely made between vertical and horizontal surfaces when assessing reef community composition, yet physical differences are expected ...

  4. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    International Nuclear Information System (INIS)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J.

    2013-01-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10 –8 to 10 –10 M ☉ yr –1 , the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10 –4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system

  5. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building., Ann Arbor, MI 48109 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán (Mexico); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sargent, B. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Hernández, J., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: cespaillat@cfa.harvard.edu, E-mail: baspci@rit.edu, E-mail: dmw@pas.rochester.edu, E-mail: hernandj@cida.ve [Centro de Investigaciones de Astronomía (CIDA), Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  6. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality.

    Science.gov (United States)

    Thitisaksakul, Maysaya; Tananuwong, Kanitha; Shoemaker, Charles F; Chun, Areum; Tanadul, Orn-u-ma; Labavitch, John M; Beckles, Diane M

    2015-03-04

    The aim of this work was to examine agronomic, compositional, and functional changes in rice (Oryza sativa L. cv. Nipponbare) grains from plants grown under low-to-moderate salinity stress in the greenhouse. Plants were grown in sodium chloride-containing soil (2 or 4 dS/m(2) electrical conductivity), which was imposed 4-weeks after transplant (called Seedling EC2 and EC4) or after the appearance of the anthers (called Anthesis EC2 and EC4). The former simulates field conditions while the latter permits observation of the isolated effect of salt on grain filling processes. Key findings of this study are the following: (i) Plants showed adaptive responses to prolonged salt treatment with no negative effects on grain weight or fertility. Seedling EC2 plants had more panicles and enhanced caryopsis dimensions, while surprisingly, Seedling EC4 plants did not differ from the control group in the agronomic parameters measured. (ii) Grain starch increased in Seedling EC4 (32.6%) and Anthesis EC2 (39%), respectively, suggesting a stimulatory effect of salt on starch accumulation. (iii) The salinity treatment of 2 dS/m(2) was better tolerated at anthesis than the 4 dS/m(2) treatment as the latter led to reduced grain weight (28.8%) and seed fertility (19.4%) and compensatory increases in protein (20.1%) and nitrogen (19.8%) contents. (iv) Although some salinity treatments led to changes in starch content, these did not alter starch fine structure, morphology, or composition. We observed no differences in reducing sugar and amylose content or starch granule size distribution among any of the treatments. The only alterations in starch were limited to small changes in thermal properties and glucan chain distribution, which were only seen in the Anthesis EC4 treatment. This similarity of compositional and functional features was supported by multivariate analysis of all variables measured, which suggested that differences due to treatments were minimal. Overall, this study

  7. Coastal geology and recent origins for Sand Point, Lake Superior

    Science.gov (United States)

    Fisher, Timothy G.; Krantz, David E.; Castaneda, Mario R.; Loope, Walter L.; Jol, Harry M.; Goble, Ronald J.; Higley, Melinda C.; DeWald, Samantha; Hansen, Paul

    2014-01-01

    Sand Point is a small cuspate foreland located along the southeastern shore of Lake Superior within Pictured Rocks National Lakeshore near Munising, Michigan. Park managers’ concerns for the integrity of historic buildings at the northern periphery of the point during the rising lake levels in the mid-1980s greatly elevated the priority of research into the geomorphic history and age of Sand Point. To pursue this priority, we recovered sediment cores from four ponds on Sand Point, assessed subsurface stratigraphy onshore and offshore using geophysical techniques, and interpreted the chronology of events using radiocarbon and luminescence dating. Sand Point formed at the southwest edge of a subaqueous platform whose base is probably constructed of glacial diamicton and outwash. During the post-glacial Nipissing Transgression, the base was mantled with sand derived from erosion of adjacent sandstone cliffs. An aerial photograph time sequence, 1939–present, shows that the periphery of the platform has evolved considerably during historical time, infl uenced by transport of sediment into adjacent South Bay. Shallow seismic refl ections suggest slump blocks along the leading edge of the platform. Light detection and ranging (LiDAR) and shallow seismic refl ections to the northwest of the platform reveal large sand waves within a deep (12 m) channel produced by currents fl owing episodically to the northeast into Lake Superior. Ground-penetrating radar profi les show transport and deposition of sand across the upper surface of the platform. Basal radiocarbon dates from ponds between subaerial beach ridges range in age from 540 to 910 cal yr B.P., suggesting that Sand Point became emergent during the last ~1000 years, upon the separation of Lake Superior from Lakes Huron and Michigan. However, optically stimulated luminescence (OSL) ages from the beach ridges were two to three times as old as the radiocarbon ages, implying that emergence of Sand Point may have begun

  8. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  9. Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2014-03-01

    Full Text Available The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these sands (bending strength, tensile strength, permeability and grindability. In addition, the final strength of moulding sands of the selected compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest hardener (SA 72 were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

  10. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  11. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  12. Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys

    Science.gov (United States)

    Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.

    2017-07-01

    It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.

  13. Composition and Nutrient Value Proposition of Brewers Spent Grain.

    Science.gov (United States)

    Ikram, Sana; Huang, LianYan; Zhang, Huijuan; Wang, Jing; Yin, Meng

    2017-10-01

    Brewer's spent grain (BSG), a major brewing industry byproduct, is generated in large quantities annually. This review summarizes research into the composition and preservation of BSG, different extraction techniques for BSG proteins and phenolic acids, and the bioactivities of these phenolic components. Moreover, this article also highlights BSG integration into foodstuff for human consumption and animal feed supplements. BSG is considered a rich source of fiber, protein, and phenolic compounds. The phenolic acids present in BSG are hydroxycinnamic acids (ferulic, p-coumaric, and caffeic acids), which have many biofunctions, such as antioxidant, anticarcinogenic, antiatherogenic, and antiinflammatory activities. Previously, attempts have been made to integrate BSG into human food, such as ready-to-eat snacks, cookies and bread, to increase fiber and protein contents. The addition of BSG to animal feed leads to increased milk yields, higher fat contents in milk, and is a good source of essential amino acids. Therefore, many studies have concluded that integrating the biofunctional compounds in BSG into human food and animal feed has various health benefits. © 2017 Institute of Food Technologists®.

  14. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  15. A First Assessment of the Elemental Composition of Atmospheric Aerosols in the Canadian Oil Sands Region

    Directory of Open Access Journals (Sweden)

    Dabek-Zlotorzynska E.

    2013-04-01

    Full Text Available Canadian Oil Sands, which comprise 97% of Canada’s 176 billion barrels of proven oil reserves, are located beneath 140,200 km2 of boreal forests, prairies and wetlands, and are the second largest known deposit of crude oil in the world. As such, this region has experienced rapid industrial development, which resulted also in increasing industrial air emissions, primarily from bitumen upgrading and mine vehicle fleet operations. This rapid development has led to concerns regarding health risk to humans, and other terrestrial and aquatic wildlife associated with exposure to toxic contaminants, especially metals and polycyclic aromatic compounds (PACs particularly along the Athabasca River and its watershed. Canada’s Minister of the Environment announced that Environment Canada (EC will jointly lead, in collaboration with Government of Alberta and relevant stakeholders, the development and implementation of an enhanced monitoring system in the Oil Sands region to provide information on the state of the air, water, land andbiodiversity. This work presents preliminary data on the first assessment of elemental composition of fine particulate matter (particles<2.5 mm in diameter; PM2.5 at 3 air quality sites in close proximity to Oil Sands processing activities. Since December 2010, integrated 24 hour air samples were collected every sixth day on a 47-mm Teflon filters using Thermo Fisher Partisol 2000-FRM samplers operated by the National Air Pollution Surveillance (NAPS network that involves EC and the Canadian provinces and territories. All samples including laboratory, travel and field blanks were subjected to gravimetric determination of PM2.5 mass and energy dispersive X-ray fluorescence (ED-XRF analysis for 46 elements. Since ED-XRF is a non-destructive technique, PM2.5 samples were subsequently analyzed for 37 trace elements including rare earth elements using inductively-coupled plasma mass spectrometry (ICP-MS combined with microwave

  16. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    Directory of Open Access Journals (Sweden)

    Anna Maria de Leonardis

    2015-12-01

    Full Text Available Durum wheat (Triticum turgidum (L. subsp. turgidum (L. convar. durum (Desf. is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry were carried out on immature (14 days after flowering and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  17. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  18. Influence of the Reclaim Addition on Properties of Moulding Sands with the Geopol Binder

    Directory of Open Access Journals (Sweden)

    Drożyński D.

    2015-03-01

    Full Text Available The investigation results of the influence of the reclaim additions on the properties of moulding sands with the GEOPOL geopolymer binder developed by the SAND TEAM Company were presented. Two brands of hardeners were applied in the tested compositions, the first one was developed by the SAND TEAM Company, marked SA72 and the new hardener offered by the KRATOS Company, marked KR72. The main purpose of investigations was to determine the influence of reclaim fractions and the applied hardener on the basic moulding sands properties, such as: bending and tensile strength, permeability and grindability. The unfavourable influence of the reclaim additions into moulding sands on the tested properties as well as an increased hardening rate, were found. Moulding sands, in which the hardener KR72 of the KRATOS Company was used, were less sensitive to the reclaim additions

  19. Flow and suspended-sand behavior in large rivers after dredging.

    Science.gov (United States)

    Yuill, B. T.; Wang, Y.; Allison, M. A.; Meselhe, E. A.

    2017-12-01

    Dredging is commonly used in large rivers to promote navigation and provide sediment for engineering projects. Channel bars typically have thicker, coarser sediment deposits than elsewhere on the channel bed and are often the focus of dredging projects. Bar dredging may create deep pits ("borrow pits") that significantly alter flow and sediment transport. Locally, the pit acts as a large bedform, contracting and expanding the flow field and enhancing turbulence. At the reach scale, the pit acts as a new sediment sink and disrupts the sediment budget which may have consequences for channel stability and aquatic ecosystem health. In this study, we focus on the local impact of the borrow pit and how it, similar to dunes, creates a turbulent wake within the downstream flow column. We hypothesize that this wake may have implications for the overlapping suspended-sediment transport fields. Efficient dredging operations requires the ability to predict channel infilling/recovery timescales and in large, sandy rivers, a substantial fraction of the sediment infilling results from the settling of suspended sediment. However, if the turbulent wake significantly alters pathways of sediment settling within the borrow pit, typical models of sediment deposition that do not account for the wake effects may not apply. To explore this problem, we use numerical modelling to predict sand behavior with and without resolving the effects of wake turbulence. Wake turbulence is resolved using detached-eddy simulation and sand settling is simulated using Lagrangian particle tracking. Our study area is a >1 km2 channel bar in the lower Mississippi River, which was dredged in October 2016. We used vessel-based measurements (MBES, ADCP) to characterize the post-dredge hydrodynamic environment. Study results indicate that the turbulent wake significantly impacted suspended-sand behavior as it entered the borrow pit and large eddies increased the vertical grain velocities, mean grain settling was

  20. Sediment monitoring and benthic faunal sampling adjacent to the Sand Island ocean outfall, Oahu, Hawaii, 1986-2010 (NODC Accession 9900088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic fauna and sediment in the vicinity of the Sand Island ocean outfall were sampled from 1986-2010. To assess the environmental quality, sediment grain size and...

  1. Semi-automated petrographic assessment of coal by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Jenkins, B.; Ofori, P.; Ferguson, K. [CSIRO Exploration and Mining, Pullenvale, Qld. (Australia)

    2007-04-15

    A new classification method, coal grain analysis, which uses optical imaging techniques for the microscopic characterisation of the individual grains present in coal samples is discussed. This differs from other coal petrography imaging methods in that a mask is used to remove the pixels of mounting resin to obtain compositional information of the maceral (vitrinite, inertinite and liptinite) and mineral abundances on each individual grain within each image. Experiments were conducted to establish the density of individual constituents in order to enable the density of each grain to be determined and the results reported on a mass basis. The grains were sorted into eight grain classes of liberated (single component) and composite grains. By analysing all streams (feed, concentrate and tailings) of the flotation circuit at a coal washing plant, the flotation response of the individual grain classes was tracked. This has implications for flotation process diagnostics and optimisation.

  2. Coliquefaction of coal, tar sand bitumen and plastic (interaction among coal, bitumen and plastic); Sekitan/tar sand bitumen/plastic no kyoekika ni okeru kyozon busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Okuyama, Y.; Matsubara, K. [NKK Corp., Tokyo (Japan); Kamo, T.; Sato, Y. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    For the improvement of economy, coliquefaction of coal, tar sand bitumen and plastic was performed under low hydrogen pressure, to investigate the influence of interaction among these on the liquefaction characteristics. For comparison, coliquefaction was also performed under the hydrogen pressure same as the NEDOL process. In addition, for clarifying its reaction mechanism, coliquefaction of dibenzyl and plastic was performed as a model experiment, to illustrate the distribution of products and composition of oil, and to discuss the interaction between dibenzyl and various plastics, and between various plastics. Under direct coal liquefaction conditions, coprocessing of Tanito Harum coal, Athabasca tar sand and plastic was carried out under low hydrogen pressure with an autoclave. The observed value of oil yield was higher than the calculated value based on the values from separate liquefaction of coal and plastic, which suggested the interaction between coal and the mixed plastic. The results of coliquefaction of coal, tar sand bitumen and plastic could be explained from the obtained oil yield and its composition by the coliquefaction of dibenzyl and plastic. 2 refs., 3 tabs.

  3. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    Science.gov (United States)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand

  4. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    International Nuclear Information System (INIS)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-01-01

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments – which involve moderate to extensive levels of particle damage – are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 × 105 grains are presented.

  5. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  6. Tritium profiles in Kalahari sands as a measure of rain water recharge

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Smith, P.E.; McGeorge, I.; Dziembowski, Z.

    1978-01-01

    This paper attempts to relate recharge measurements in the Kalahari by tritium profiles in the unsaturated zone to isotopic, hydrochemical and hydrologic data from an underlying, semi-confined aquifer. Auger holes into the sand cover were drilled along a line of experimental deeper holes penetrating the saturated zone. A further line of auger holes was drilled into the dune sand cover of a control area. Variable moisture contents, apparently indepent of grain size distribution and indicating transients are observed in the different profiles. 3 H and 18 O measurements on the moisture contents allow for the identification of the 1962/63 bomb tritium rise and successive drier and wetter periods. Infiltration, or potential recharge as percentage of infiltration was found to be strongly dependent on the annual rainfall. The distribution of 14 C, 13 C, 3 H and chemistry in the shallower of two underlying aquifers leads to the consideration of three possible mechanisms of recharge. Arguments favouring vertical recharge are presented, which lead to possible extrapolations into the sand covered areas of the Kalahari in general. (orig.) [de

  7. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    Science.gov (United States)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    The Athabasca region of northern Alberta, Canada, is home to deposits of oil sands containing vast amounts (~ 173 billion barrels) of heavily biodegraded petroleum. Oil sands are recovered by surface mining or by in situ steam injection. The extraction of bitumen from oil sands by caustic hot water processing results in large volumes of fluid tailings, which are stored in on-site settling basins. There the tailings undergo a compaction and dewatering process, producing a slowly densifying suspension. The released water is recycled for extraction. The fine tailings will be reclaimed as either dry or wet landscapes. [1] To produce 1 barrel of crude oil, 2 tons of oil sand and 2 - 3 tons of water (including recycled water) are required. [2] Open pit mining and the extraction of the bitumen from the oil sands create large and intense disturbances of different landscapes. The area currently disturbed by mining operations covers about 530 km2 and the area of tailing ponds surpasses 130 km2. An issue of increasing importance is the land remediation and reclamation of oil sand areas in Canada and the reconstruction of these disturbed landscapes back to working ecosystems similar to those existing prior to mining operations. An important issue in this context is the identification of oil sand-derived organic compounds in the tailings, their environmental behaviour and the resulting chances and limitations with respect to land reclamation. Furthermore the biodegradation processes that occur in the tailings and that could lead to a decrease in hazardous organic compounds are important challenges, which need to be investigated. This presentation will give a detailed overview of our compositional and quantitative characterisation of the organic matter in oil sand, unprocessed and processed mature fine tailings samples as well as in tailings sands used as part of land reclamation. The analytical characterisation is based on the extraction of the soluble organic matter, its

  8. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  9. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Nagashima, K.; Jones, R.H.

    aluminium rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine... to the major components of meteorites such as chondrules and calcium-aluminium-rich inclusions (CAIs). CAIs, the first solar system objects in the solar nebula, are formed by condensation of refractory minerals at high temperatures. They are 16O...

  10. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  11. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  12. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Oliver M. Lopez

    2015-11-01

    Full Text Available Planning for use of a dune field aquifer for managed aquifer recharge (MAR requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness. The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  13. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2015-11-12

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  14. Investigations of the Quality of the Reclaim of Spent Moulding Sands with Organic Binders

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2012-09-01

    Full Text Available Modern investigation methods and equipment for the quality estimation of the moulding sands matrices with organic binders, in theircirculation process, are presented in the paper. These methods, utilising the special equipment combined with the authors investigationmethods developed in the Faculty of Foundry Engineering, AGH the University of Science and Technology, allow for the better estimationof the matrix quality. Moulding sands systems with organic binders require an in-depth approach to factors deciding on the matrixtechnological suitability as well as on their environmental impact. Into modern methods allowing for the better assessment of the matrixquality belongs the grain size analysis of the reclaimed material performed by means of the laser diffraction and also the estimation of the moulding sand gas evolution rate and identification of the emitted gases and their BTEX group gases content, since they are specially hazardous from the point of view of the Occupational Safety and Health.

  15. Investigations of the Quality of The Reclaim of Spent Moulding Sands with Organic Binders

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2012-09-01

    Full Text Available Modern investigation methods and equipment for the quality estimation of the moulding sands matrices with organic binders, in their circulation process, are presented in the paper. These methods, utilising the special equipment combined with the authors investigation methods developed in the Faculty of Foundry Engineering, AGH the University of Science and Technology, allow for the better estimation of the matrix quality. Moulding sands systems with organic binders require an in-depth approach to factors deciding on the matrix technological suitability as well as on their environmental impact. Into modern methods allowing for the better assessment of the matrix quality belongs the grain size analysis of the reclaimed material performed by means of the laser diffraction and also the estimation of the moulding sand gas evolution rate and identification of the emitted gases and their BTEX group gases content, since they are specially hazardous from the point of view of the Occupational Safety and Health.

  16. Remediation Technologies Screening Matrix and Reference Guide, Second Edition

    Science.gov (United States)

    1994-10-01

    grained sand and guar gum gel is then injected as the fracture grows away from the well. After pumping, the sand grains hold the fracture open...Administration OSW EPA Office of Solid Waste OSWER EPA Office of Solid Waste and Emergency Response PACT Powdered -Activated Carbon Technology PAH...binder, and ammonium perchlorate (AP) oxidizer, and a powdered aluminum (Al) fuel; or Hazard Class 1.1 composites, which are based on a nitrate

  17. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  18. A grain of sand or a handful of dust?

    Science.gov (United States)

    Wagner, Fabian

    2013-03-01

    The recent paper by Girod et al (2013) analyses the implications of stringent global GHG mitigation targets for the intensities of, inter alia , broad consumption categories like food, shelter and transport. This type of scenario modeling analysis and inverse reasoning helps us to better understand the potential or required contribution of changes in consumption patterns to mitigation. This is welcome because while there is a growing literature on the behavioral and consumption dimensions of mitigation, there is still no widely accepted framework for studying systematically the interactions between supply and demand, behavior and technology, production and consumption. So we are left with the question: what do we need to do exactly to stabilize GHG concentrations? Intuitively, we take our cue from Aristotelian logic: if A implies B, then in order to avoid B we had better prevent A. At this level it is clear that we need either to decarbonize our energy systems to start with, or to suck out CO2 from the atmosphere. When multiple causes are at work, however, our neat Aristotelian picture is no longer appropriate (Cartwright 2003). Leaving capturing and storage aside, we need to decarbonize our systems, but we also need to reduce the energy intensity, change our personal habits, eat less meat, use more public transportation, etc. What is the right balance between these factors? Can we do just one thing, say, eat less meat, but not another, and still achieve some pretty ambitious mitigation goals? In other words, what are necessary and what are sufficient sets of measures to reach these goals? Let us first look at the question of necessary measures. This gets tricky when applied to individual consumers: it is somewhat akin to the notorious question whether a heap of sand is still a heap when you take away one grain (Sainsbury 2011). If you are inclined to say yes, think once more. What happens when you take away another one, and another one, and another one, and so

  19. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi fan

    Science.gov (United States)

    Nelson, C.H.; Twichell, D.C.; Schwab, W.C.; Lee, H.J.; Kenyon, Neil H.

    1992-01-01

    Cores from a Mississippi outer-fan depositional lobe demonstrate that sublobes at the distal edge contain a complex local network of channelized-turbidite beds of graded sand and debris-flow beds of chaotic silt. Off-lobe basin plains lack siliciclastic coarse-grained beds. The basin-plain mud facies exhibit low acoustic backscatter on SeaMARC IA sidescan sonar images, whereas high acoustic backscatter characteristic of the lobe sand and silt facies. The depth of the first sand-silt layer correlates with relative backscatter intensity and stratigraphic age of the distal sublobes (i.e., shallowest sand = highest backscatter and youngest sublobe). The high proportion (>50%) of chaotic silt compared to graded sand in the distal, outer-fan sublobes may be related to the unstable, muddy, canyon-wall source areas of the extensive Mississippi delta-fed basin slope. A predominace of chaotic silt in cores or outcrops from outer-fan lobes thus may predict similar settings for ancient fans.

  20. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations

    Science.gov (United States)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi

    2015-04-01

    Sand seas are large basins in deserts that are mantled by wind-swept sand and that exhibit varying degrees of vegetation cover. Wilson (1973) was the first to globally map and classify sand seas. Beyond Wilson's maps, however, little research has been published regarding the Karakum and Kyzylkum sand seas of Central Asia. Wilson's maps delineate active ergs from inactive ergs based solely on precipitation. His assumption of annual average rainfall as a factor determining mobility vs. stability of sand seas is too simplistic and does not take into consideration other factors such as biogenic soil crusts and wind power, both of which are known to have major effects on the dynamics of sand dunes. Literature related to mapping and classifying the Central Asian ergs by remote sensing or sand sea classification state (stable/active) is lacking. Moreover, the palaeoclimatic significance of dunes in Central Asia is difficult to assess, as there has been few studies of dune stratigraphy and numerical ages are lacking. Optically stimulated luminescence (OSL) is a firm optical dating method that is used to determine the elapsed time since quartz grains were last exposed to sunlight, thus, their burial. Yet, absolute ages indicating mobilization and stabilization of these sands, are still inadequately known and are here under discussion. The broad concern of this research was to determine the dynamics of the Central Asian sand seas and study the palaeoclimatic changes that brought to their stabilization. As there are no reliable maps or aeolian discussion of these sands, establishment of a digital data base was initially conducted, focusing on identifying and mapping these sand seas. The vast area and inaccessibility make traditional mapping methods virtually impossible. A variety of space-borne imagery both optical and radar, with varying spectral and spatial resolutions was used. These images provided the basis for mapping sand distribution, dune forms, and vegetation cover

  1. Valorization of post-consumer waste plastic in cementitious concrete composites

    International Nuclear Information System (INIS)

    Marzouk, O. Yazoghli; Dheilly, R.M.; Queneudec, M.

    2007-01-01

    The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5 mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy

  2. Species Composition of Sand Flies (Diptera: Psychodidae) and Modeling the Spatial Distribution of Main Vectors of Cutaneous Leishmaniasis in Hormozgan Province, Southern Iran.

    Science.gov (United States)

    Hanafi-Bojd, Ahmad Ali; Khoobdel, Mehdi; Soleimani-Ahmadi, Moussa; Azizi, Kourosh; Aghaei Afshar, Abbas; Jaberhashemi, Seyed Aghil; Fekri, Sajjad; Safari, Reza

    2018-02-28

    Cutaneous Leishmaniasis (CL) is one of the main neglected vector-borne diseases in the Middle East, including Iran. This study aimed to map the spatial distribution and species composition of sand flies in Hormozgan Province and to predict the best ecological niches for main CL vectors in this area. A database that included all earlier studies on sand flies in Hormozgan Province was established. Sand flies were also collected from some localities across the province. Prediction maps for main vectors were developed using MaxEnt model. A total of 27 sand fly species were reported from the study area. Phlebotomus papatasi Scopoli, Phlebotomus sergenti s.l. Parrot, Phlebotomus alexandri Sinton, Sergentomyia sintoni Pringle, Sergentomyia clydei Sinton, Sergentomyia tiberiadis Adler, and Sergentomyia baghdadis Adler (Diptera: Psychodidae) had the widest distribution range. The probability of their presence as the main vectors of CL was calculated to be 0.0003-0.9410 and 0.0031-0.8880 for P. papatasi and P. sergenti s.l., respectively. The best ecological niches for P. papatasi were found in the central south, southeast, and a narrow area in southwest, whereas central south to northern area had better niches for P. sergenti s.l. The endemic areas are in Bandar-e Jask, where transmission occurs, whereas in Bastak, the cases were imported from endemic foci of Fars province. In conclusion, proven and suspected vectors of CL and VL were recorded in this study. Due to the existence of endemic foci of CL, and favorite ecological niches for its vectors, there is potential risk of emerging CL in new areas.

  3. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  4. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension

    Science.gov (United States)

    Kupiainen, Kaarle J.; Pirjola, Liisa

    2011-08-01

    In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.

  5. Laboratory observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.

    2018-04-27

    Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.

  6. The effects of cytoplasmic male sterility and xenia on the chemical composition of maize grain

    Directory of Open Access Journals (Sweden)

    Vančetović Jelena

    2009-01-01

    Full Text Available Sterile hybrids often outyield their fertile counterparts, especially if pollinated by a genetically unrelated pollinator. The combined effect of cms and xenia is referred to as the Plus-hybrid effect. The objective of this study was to determine the individual, as well as, combining effect of cms and xenia on the maize grain chemical composition. The percent of oil, protein and starch in the grain was also observed. Two sterile hybrids, their fertile counterparts and five fertile pollinator-hybrids were selected for the studies. The three-replicate trial set up according to the split-plot experimental design was performed at Zemun Polje in 2008. The obtained results show that the effects of cms on the oil percent was not significant in the studied hybrid ZP 341, while it increased at the significance level of P = 0.1 in the second observed hybrid ZP 360. The effect of this factor on the protein and starch percent was also significant (P = 0.01 in some hybrid combinations. Xenia effects on all three chemical parameters were significant (P = 0.01 in some hybrid combinations. The gained results indicate that the identification of a good combination of two hybrids, in which one would be a sterile female component, and the other a pollinator, would end up not only in the increased yield, but also in the improved maize grain quality.

  7. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  8. Gravity flow and solute dispersion in variably saturated sand

    Science.gov (United States)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  9. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  10. Species composition of sand flies and bionomics of Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) in cutaneous leishmaniasis endemic foci, Morocco.

    Science.gov (United States)

    Boussaa, Samia; Kahime, Kholoud; Samy, Abdallah M; Salem, Abdelkrim Ben; Boumezzough, Ali

    2016-02-02

    Cutaneous Leishmaniasis (CL) is one of the most neglected tropical diseases in Morocco. Leishmania major and L. tropica are the main culprits identified in all endemic foci across the country. These two etiological agents are transmitted by Phlebotomus papatasi and P. sergenti, the two most prevalent sand fly species in Morocco. Previous studies reflected gaps of knowledge regarding the environmental fingerprints that affect the distribution of these two potential vectors across Morocco. The sand flies were collected from 48 districts across Morocco using sticky paper traps. Collected specimens were preserved in 70% ethanol for further processing and identification. Male and female densities were calculated in each site to examine their relations to the environmental conditions across these sites. The study used 19 environmental variables including precipitation, aridity, elevation, soil variables and a composite representing maximum, minimum and mean of day- and night-time Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI). A total of 11,717 specimens were collected during this entomological survey. These specimens represented 11 species of two genera; Phlebotomus and Sergentomyia. Correlations of the sand fly densities with the environmental variables were estimated to identify the variables which influence the distribution of the two potential vectors, Phlebotomus papatasi and P. sergenti, associated with all CL endemic foci across the country. The density of P. papatasi was most affected by temperature changes. The study showed a significant positive correlation between the densities of both sexes of P. papatasi and night-time temperatures. Both P. papatasi and P. sergenti showed a negative correlation with aridity, but, such correlation was only significant in case of P. papatasi. NDVI showed a positive correlation only with densities of P. sergenti, while, soil PH and soil water stress were negatively correlated with the

  11. Composition of forage and grain from second-generation insect-protected corn MON 89034 is equivalent to that of conventional corn (Zea mays L.).

    Science.gov (United States)

    Drury, Suzanne M; Reynolds, Tracey L; Ridley, William P; Bogdanova, Natalia; Riordan, Susan; Nemeth, Margaret A; Sorbet, Roy; Trujillo, William A; Breeze, Matthew L

    2008-06-25

    Insect-protected corn hybrids containing Cry insecticidal proteins derived from Bacillus thuringiensis have protection from target pests and provide effective management of insect resistance. MON 89034 hybrids have been developed that produce both the Cry1A.105 and Cry2Ab2 proteins, which provide two independent modes of insecticidal action against the European corn borer ( Ostrinia nubilalis ) and other lepidopteran insect pests of corn. The composition of MON 89034 corn was compared to conventional corn by measuring proximates, fiber, and minerals in forage and by measuring proximates, fiber, amino acids, fatty acids, vitamins, minerals, antinutrients, and secondary metabolites in grain collected from 10 replicated field sites across the United States and Argentina during the 2004-2005 growing seasons. Analyses established that the forage and grain from MON 89034 are compositionally comparable to the control corn hybrid and conventional corn reference hybrids. These findings support the conclusion that MON 89034 is compositionally equivalent to conventional corn hybrids.

  12. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-03-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  13. Test study on relation between thaw-collapse displacement of medium sand and negative friction of single pile

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, G.; Yang, W. [China University of Mining and Technology, Xuzhou (China). College of Architecture and Civil Engineering

    1999-11-01

    Based on simulation tests, the change of thaw-collapse displacement of saturated medium sand and the relation between negative friction of single pile and thaw-collapse displacement are investigated . In the separating ice and thawing stages, the relation between separating ice surface displacement of sample and time is similarly linear, but the displacement is too small in the redistribution stage of grains. Corresponding to these two stages, the displacement of sample grain framework surface can be divided into similarly linear and non-linear factions. The contribution of the non-linear section comes from grain redistribution after thawing. The negative friction of single pile shows good linear relation following the thawing process. But the producing and increasing mechanisms of negative friction are not the same in the two stages. During the stage of grain redistribution, the displacement of sample grain framework surface occupies only 9.7% of the total displacement, while the negative friction has increased by 18% or so. 6 refs., 7 figs.

  14. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2015-06-01

    Full Text Available We present results of research into fluvial to aeolian successions at four sites in the foreland of the Last Glacial Maximum, i.e., the central part of the “European Sand Belt”. These sites include dune fields on higher-lying river terraces and alluvial fans. Sediments were subjected to detailed lithofacies analyses and sampling for morphoscopic assessment of quartz grains. Based on these results, three units were identified in the sedimentary succession: fluvial, fluvio-aeolian and aeolian. Material with traces of aeolian origin predominate in these sediments and this enabled conclusions on the activity of aeolian processes during the Pleniglacial and Late Glacial, and the source of sediment supply to be drawn. Aeolian processes played a major role in the deposition of the lower portions of the fluvial and fluvio-aeolian units. Aeolian material in the fluvial unit stems from aeolian accumulation of fluvial sediments within the valley as well as particles transported by wind from beyond the valley. The fluvio-aeolian unit is composed mainly of fluvial sediments that were subject to multiple redeposition, and long-term, intensive processing in an aeolian environment. In spite of the asynchronous onset of deposition of the fluvio-aeolian unit, it is characterised by the greatest homogeneity of structural and textural characteristics. Although the aeolian unit was laid down simultaneously, it is typified by the widest range of variation in quartz morphoscopic traits. It reflects local factors, mainly the origin of the source material, rather than climate. The duration of dune-formation processes was too short to be reflected in the morphoscopy of quartz grains.

  15. Comparison of the forage and grain composition from insect-protected and glyphosate-tolerant MON 88017 corn to conventional corn (Zea mays L.).

    Science.gov (United States)

    McCann, Melinda C; Trujillo, William A; Riordan, Susan G; Sorbet, Roy; Bogdanova, Natalia N; Sidhu, Ravinder S

    2007-05-16

    The next generation of biotechnology-derived products with the combined benefit of herbicide tolerance and insect protection (MON 88017) was developed to withstand feeding damage caused by the coleopteran pest corn rootworm and over-the-top applications of glyphosate, the active ingredient in Roundup herbicides. As a part of a larger safety and characterization assessment, MON 88017 was grown under field conditions at geographically diverse locations within the United States and Argentina during the 2002 and 2003-2004 field seasons, respectively, along with a near-isogenic control and other conventional corn hybrids for compositional assessment. Field trials were conducted using a randomized complete block design with three replication blocks at each site. Corn forage samples were harvested at the late dough/early dent stage, ground, and analyzed for the concentration of proximate constituents, fibers, and minerals. Samples of mature grain were harvested, ground, and analyzed for the concentration of proximate constituents, fiber, minerals, amino acids, fatty acids, vitamins, antinutrients, and secondary metabolites. The results showed that the forage and grain from MON 88017 are compositionally equivalent to forage and grain from control and conventional corn hybrids.

  16. Influence de divers traitements physico-chimiques de graines de Mucuna pruriens sur leur composition chimique en nutriments

    Directory of Open Access Journals (Sweden)

    Dossa, CS.

    1999-01-01

    Full Text Available Influence of Various Physicochemical Treatments of Mucuna pruriens Seeds on the Nutrient Chemical Composition. Mucuna pruriens is being intensively used to fight off couch grass Imperata cylindrica and restore washed out lithosol fertility, in most of the agro ecological zones of Benin. From the huge amount of grains harvested, only a small part is used as seeds. This study was made to determine the effects of different ways of processing Mucuna pruriens var. utilis and M. pruriens var. cochichennensis grains on the toxic factor contents such as L-dopa and other antinutritionnal factors. Of the different physical and chemical treatment tested, grilling remarkably increased the potential nutritional content while boiling gave lower nutrient values. While awaiting assessment of the residual L-dopa level, the following treatment could be advised : after a preliminary soaking of the grains in cold water during 24 hours, they were dehulled and grilled for one hour. That procedure offered higher dry matter, higher crude protein and higher nitrogen-free extract in the preparations. The chemical contents of the two cultivars are not identical but dry matter and phosphorus contents are comparable.

  17. Relationship between casting modulus and grain size in cast A356 aluminium alloys

    International Nuclear Information System (INIS)

    Niklas, A; Abaunza, U; Fernández-Calvo, A I; Lacaze, J

    2012-01-01

    Microstructure of Al-Si alloy castings depends most generally on melt preparation and on the cooling rate imposed by the thermal modulus of the component. In the case of Al-Si alloys, emphasis is put during melt preparation on refinement of pro-eutectic (Al) grains and on modification of the Al-Si eutectic. Thermal analysis has been used since long to check melt preparation before casting, i.e. by analysis of the cooling curve during solidification of a sample cast in an instrumented cup. The conclusions drawn from such analysis are however valid for the particular cooling conditions of the cups. It thus appeared of interest to investigate how these conclusions could extrapolate to predict microstructure in complicated cast parts showing local changes in the solidification conditions. For that purpose, thermal analysis cups and instrumented sand and die castings with different thermal moduli and thus cooling rates have been made, and the whole set of cooling curves thus recorded has been analysed. A statistical analysis of the characteristic features of the cooling curves related to grain refinement in sand and die castings allowed determining the most significant parameters and expressing the cube of grain size as a polynomial of these parameters. After introduction of a further parameter quantifying melt refining an excellent correlation, with a R 2 factor of 0.99 was obtained.

  18. Recovering byproduct heavy minerals from sand and gravel, placer gold, and industrial mineral operations

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.M.; Martinez, G.M.; Wong, M.M.

    1979-01-01

    The Bureau of Mines, as part of an effort to maximize minerals and metals recovery from domestic resources, has investigated the feasibility of recovering heavy minerals as byproducts from sand and gravel, placer gold, and industrial mineral operations in northern California. Sand samples from about 50 locations were treated by gravity separation to yield heavy-mineral cocentrates (black sands). Mineral compositions of the concentrates were determined by chemical analysis and mineralogical examination. Individual zircon, ilmenite, magnetite, platinum-group metals, thoria, and silica products were prepared from heavy-mineral concentrates by selective separation using low- and high-intensity magnetic, high-tension, and flotation equipment.

  19. Application of surface-geophysical methods to investigations of sand and gravel aquifers in the glaciated Northeastern United States

    Science.gov (United States)

    Haeni, F.P.

    1995-01-01

    Combined use of seismic-refraction, direct-current resistivity, very-low-frequency terrain-resistivity, and inductive terrain-conductivity methods were demonstrated at sites in Connecticut, New York, and Maine. Although no single method can define both the hydrogeologic boundaries and general grain-size characteristics of sand and gravel aquifers, a combination of these methods can. Comparisons of measured electrical properties of aquifers with logs of test holes and wells indicate that, for a given conductivity of ground water, the bulk electrical resistivity of aquifers in the glaciated Northeast increases with grain size.

  20. Liquefaction susceptibility of fine-grained soils: preliminary study report. Final report, September 1985-March 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.Y.

    1987-09-01

    Soil liquefaction, a hazardous ground failure induced by strong motion earthquakes, can cause catastrophic damage to structures such as dams, bridges, power plants, and water-front structures and may involve great losses of life. Examples of liquefaction and resulting damage were observed during the Alaska (1964), Niigata, Japan (1964), and Tangshan, China (1976), earthquakes. Ground failure due to earthquake-induced soil liquefaction may manifest itself as excessive settlement, loss of bearing capacity, sand boiling, and flow slides. The liquefaction potential of clean sands has been studied extensively for the last two decades. However, case histories revealed that liquefied sands were seldom clean. They may contain various percentages of silt or clay or both. In fact, the Chinese observation in the Tansghan earthquake indicated that some cohesive soils may have liquefied. If this indeed had happened, then structures underlain by fine-grained soils, with a marginal safety factor based on the liquefaction criteria normally applied to sands, may actually be unsafe. Thus there is an urgent need for establishing new criteria for the liquefaction susceptibility of soils to include those identified as fine-grained. The author, Professor N.Y. Chang of the University of Colorado at Denver, visited several Chinese agencies and and universities in and near Beijing, China, in the summer of 1985 in an attempt to investigate and verify reported data on the liquefaction of cohesive soils during the Tangshan earthquake of 1976 and to negotiate cooperative research into the problem. This report presents the result of supportive literature review and the findings of the China trip.

  1. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models

  2. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  3. Variability of grain sizes in a beach nourishment programme for the Danish West Caost

    DEFF Research Database (Denmark)

    Frigaard, Peter; Wahl, Niels Arne

    2007-01-01

    of naturally shaped beaches while at the same time the risk for erosion is reduced. For this reason beach nourishment is used widely along the Danish North Sea coast (called West Coast) and this method is preferred in preference to put up solid constructions. Beach nourishment is the primary method used...... is shaped. The aim of the present investigation was to examine how to extract sand samples of an actual beach nourishment to obtain a satisfactory description of the sedimentary composition. In specific the goal was a description of the variation of the sand characteristics in space. The reason...... for this is that the compositions of sand affect the erosion and the shaping of the beach. The results show that by collecting 13-15 sand samples it is possible to obtain a description of d50 with a precision of 0.1 mm within a confidence interval of 95-99 %. If a precision of 0.05 mm is wanted, it is necessary to collect 67...

  4. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA

    Science.gov (United States)

    Forman, S. L.; Spaeth, M.; Marín, L.; Pierson, J.; Gómez, J.; Bunch, F.; Valdez, A.

    2006-07-01

    The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the "Great Drought", a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.

  5. Genetic variability in Cynara cardunculus L. domestic and wild types for grain oil production and fatty acids composition

    International Nuclear Information System (INIS)

    Raccuia, Salvatore Antonino; Piscioneri, Ilario; Sharma, Neeta; Melilli, Maria Grazia

    2011-01-01

    This paper aimed to study the genetic variability within different types of Cynara cardunculus L., domestic and wild types, for their grain oil amount and oil fatty acid composition. The grain oils were extracted from 8 domestic cardoons and 4 wild cardoons, by Soxhlet method, and obtained oils were characterized for palmitic, stearic, oleic and linoleic acids by gas chromatography. The oil amount, resulted on average of accessions 216 g kg -1 DM with a good range of variability (CV = 11.7%). Unsaturated acids (oleic and linoleic) predominated over saturated ones (stearic and palmitic acids), the chemical characterization of extracted oil, showed the main compound (as % of analysed fatty acids), averaged for all populations, was linoleic acid (44.5%), followed by oleic acid (42.6%), palmitic acid (9.8%) and stearic acid (3.1%). In particular referring the oleic acid wild cardoon populations showed a mean value of 289 g kg -1 oil, against a mean value of 472 g kg -1 oil showed by domestic cardoon accessions. Three of the studied domestic cardoon ('DC1', 'DC3' and 'DC7') showed values higher than 795 g kg -1 oil, while all the other accessions had concentration lower than 370 g kg -1 oil. The three types of domestic cardoon 'DC1', 'DC3' and 'DC7' showed a fatty acids profile similar to genetic modified sunflower oil, representing new genetic material that potentially could be used for high quality biodiesel production, characterised by a low Iodine Number. -- Highlights: → The grain oils from 12 cardoons were characterized for fatty acids composition. → The oil amount, resulted on average of accessions 216 g kg -1 DM. → Oleic and linoleic acids predominated over stearic and palmitic acids. → Three domestic cardoons grain oil showed high oleic acid content (795 g kg -1 oil). → This oil could be used for high quality biodiesel production, with a low IN.

  6. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Martins Pilegis

    2016-06-01

    Full Text Available Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN. The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA and the concrete mix composition.

  7. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete.

    Science.gov (United States)

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-06-02

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition.

  8. Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA

    International Nuclear Information System (INIS)

    Singh, M.P.; Erickson, J.E.; Sollenberger, L.E.; Woodard, K.R.; Vendramini, J.M.B.; Fedenko, J.R.

    2012-01-01

    Biomass yield and tissue mineral composition can affect total energy yield potential, conversion efficiencies and environmental impacts, but relatively few data are available for sweet sorghum [Sorghum bicolor (L.) Moench] grown in the southeastern USA. Therefore, a study was conducted at two locations in North and Central Florida on marginal sand soils comparing the effects of planting date (PD) on dry biomass yield and mineral composition of leaf, stem, and grain heads for ‘M-81E’ and ‘Dale’ sweet sorghum cultivars. Overall tissue mineral concentrations were relatively low for sweet sorghum, attributable to low K and Ca concentrations. Ash and mineral concentrations were generally greater for Dale, especially for the early PD. Leaf and grain heads were greater in mineral concentrations compared to stems. Dry biomass yield averaged 19.4 Mg ha −1 and was greater for M-81E and the early PD. Stems accounted for 73% of the total biomass compared to leaves (13%) across all treatments. Total N, P, and K removals averaged 136, 27.6, and 81.4 kg ha −1 , respectively. Overall, leaves removed 30, 23, and 19% of total N, P, and K compared to 34, 34, and 61% by stem, respectively. Considering lower biomass but greater mineral concentrations in leaf and grain heads compared to stems, returning leaf residues and possibly grain heads to the soil have the potential to offset nutrient and energy inputs needed on these marginal soils and enhance the sustainability of sweet sorghum cropping systems.

  9. The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C

    Science.gov (United States)

    Zeghichi, L.; Benghazi, Z.; Baali, L.

    The sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened self-compacting concrete (SCC). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which are influencing the workability of concrete. The amount of dune sand varies from (0% 50%, to 100%) by weight of fine aggregates. The effect of additions is also treated (blast furnace slag and lime stone) The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand.

  10. Behavior of Hollow Thin Welded Tubes Filled with Sand Slag Concrete

    Directory of Open Access Journals (Sweden)

    Noureddine Ferhoune

    2016-01-01

    Full Text Available This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load; the cross section dimensions were 100 × 70 × 2 mm. A total of 20 stubs have been tested, as follows: 4 hollow thin welded tubes were tested to axial and eccentric load compression, 4 were filled with ordinary concrete appointed by BO columns, 6 were filled with concrete whose natural sand was completely substituted by a crystallized sand slag designated in this paper by BSI, and 6 were tucked in concrete whose natural sand was partially replaced by a crystallized sand slag called BSII. The main parameters studied are the height of the specimen (300 mm–500 mm, eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex local buckling of steel section due to the outward thrust of the concrete; it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

  11. Nivelstein sandstone, weakly lithified pure silica sands from the Dutch-German border area, intermittently used in architecture for two millennia

    Science.gov (United States)

    Nijland, Timo G.; Wim Dubelaar, C.

    2017-04-01

    The current paper provides a concise overview of the geological setting of the Nivelstein sandstone in broad sense, its petrographic and physical characteristics, and its use as natural stone. Miocene pure silica sands occur around Heerlen in the southeastern part of the Dutch province of Limburg and Herzogenrath in adjacent Germany, as well as in the Belgian province of Limburg near Opgrimbie. In Dutch Limburg and in Germany are three large active exploitations, quarrying the sands for industrial purposes. On top of the unconsolidated sands in the Herzogenrath quarry, lithified banks of sandstone occur, known as Nivelstein (or more rarely Herzogenrath) sandstone. This sandstone has been used as dimension stone and ornamental stone since Roman times. In the 11th century the quarry was reopened and after a long period of disuse sandstone blocks were again quarried in the second half of the 19th century. The lithification of the Nivelstein sandstone usually is very weak, with grain to grain contacts and some newly formed quartz rims only. The clay content is extremely low and is restricted to tiny booklets of kaolinite. Despite the weak cementation the Nivelstein sandstone has proved to be very time-resistant building stone that forms a major element in the stone cultural heritage of the Dutch- German border area.

  12. ANALYSIS OF DEFORMED STATE STRUCTURES OF THE KYIV METRO RUNNING TUNNELS ON A TRANSITION ZONE FROM SPONDYLOV’S CLAY TO BUCHATSKIY SANDS

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-07-01

    Full Text Available Purpose. In the section of changes geotechnical conditions of spondylov’s clay to buchatskiy sands may have significant structural deformation of running tunnels. It is necessary to identify the cause of deformities develop ways to minimize and based modeling and calculations to prove the effectiveness of measures to reduce deformation.Methodology. To solve the analysis problem of the stress-strain state (SSS of the system «structure array» it was conducted the numerical simulation using the finite element method (FEM. On the basis of the obtained results the graphs were constructed and the dependencies were determined. Findings. The presence of weak water-saturated soils in tray of the tunnel on an area of transition from spondylov’s clay to buchatskiy sand causes significant increasing in strain construction of tunnels and general vibration liquefaction in soil basis. Also change the physical and mechanical characteristics of soils within the frames of tunnels influences on the level of strain state of most frames. Improved strain state settings of tunnels in areas of change soil characteristics of the array (especially at the bottom of casing can be achieved by chemical consolidation of weak soils. Composition of solutions for fixing the weak soils should be determined based on the study of grain size, porosity, and other parameters of physical and mechanical and physical and chemical characteristics of soils.Originality.The basic cause significant strain on transition zone from spondylov’s clay to buchatskiy sands is found, that is explained by saturated phenomenon vibration liquefaction basis under the tunnel.Practical value.The approaches to reduce the strain in the construction of running tunnels in the transition zone from spondylov’s clay to buchatskiy sands are developed, as well as in the area ofthe station «Glybochytska»the Kyiv Metro.

  13. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer Inst. for Ceramic Technologies and Sintered Materials, Dresden (Germany); Klaffke, D. [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  14. Moving sands along a headland-embayed beach system (Algarve, Southern Portugal)

    Science.gov (United States)

    Oliveira, Sónia; Horta, João; Nascimento, Ana; Gomes, Ana; Veiga-Pires, Cristina; Moura, Delminda

    2015-04-01

    laboratory, sediment was characterized concerning the grain size distribution and the marked grains (MG) which were identified and counted with the use of a black light. After statistical analysis, several maps were developed in a Geographical Information System in order to quantify and interpret the direction and velocity of the movement of the sand induced by the observed waves and currents. The results of this work showed that: (i) when the existing shore platforms between adjacent embayed beaches are exposed, their surface is topographically higher than the beach face and strongly dissected by channels (e.g., joints) and karstic cavities, and thus the transference of sand between the adjacent beaches is almost nil, (ii) when a topographic continuity was observed between the beach face and the surface of the shore platforms, the transference of sand between adjacent cells is effective. The two reported situations depend on the beach morphosedimentary processes driven by the angle between the waves and the shoreline. This work is a contribution to the PTDC/GEO-GEO/3981/2012 funded by the Portuguese Foundation for Science and Technology. The authors would like to thank the collaborators of the November campaign: A. Rosa; A. Portugal; A. Silva; C. Correia, J. Cunha e L. Castilho.

  15. Attaining provenance proxies from OSL and TL sensitivities: Coupling with grain size and heavy minerals data from southern Brazilian coastal sediments

    International Nuclear Information System (INIS)

    Zular, André; Sawakuchi, André O.; Guedes, Carlos C.F.; Giannini, Paulo C.F.

    2015-01-01

    In the São Francisco do Sul (SFS) barrier in southern Brazil, the optically stimulated luminescence (OSL) and thermoluminescence (TL) sensitivities of coastal sands vary according to geomorphological units. Sands from older beach ridges (ages older than 2000 years ago) show higher OSL and TL sensitivities than younger units (ages younger than 2000 years). Geomorphological units in the SFS attest to changes in provenance as a result of a coastal climate shift evidenced through grain size and heavy mineral analysis. We argue that in the SFS barrier sands, OSL and TL sensitivity signals provide an additional proxy to climate events and can be used as an alternative method to assess changes in provenance and tracking source-to-sink systems to monitor past and future environmental changes. - Highlights: • OSL and TL sensitivities are confronted with grain size and heavy minerals data. • We report OSL and 110 °C TL sensitivities as provenance proxies. • 110 °C TL sensitivity outlines environmental changes better than OSL sensitivity data.

  16. Effect of crushed sand on mortar and concrete rheology

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.

    2011-09-01

    Full Text Available This article describes an experimental study conducted on fresh mortars and concretes made with crushed sand. The aim of this research was to assess the effect of aggregate particle shape and surface texture as well as dust content on mortar and concrete rheology. The experimental programme also addressed the impact of angular grains on chemical admixture performance and concrete bleeding. The findings showed that the use of crushed sand induces rheological behaviour that differs from the behaviour observed in natural sand and that superplasticisers can improve this behaviour considerably.

    En el presente trabajo se plantea un estudio experimental del estado fresco de morteros y hormigones con arenas de machaqueo, orientado a la evaluación de la incidencia de la forma y textura superficial de los granos del árido fino y del contenido de polvo sobre la reología de las mezclas. El programa experimental comprendió el estudio del estado fresco de hormigones con arenas con partículas angulares, la influencia de este tipo de partículas sobre la efectividad de los aditivos químicos y la evaluación de la influencia de las características físicas del árido fino sobre la exudación. Los resultados muestran que el empleo de arenas de machaqueo provoca un comportamiento reológico diferente al de hormigones con arenas naturales, y que el efecto de los aditivos superfluidificantes mejora notablemente este comportamiento.

  17. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    Science.gov (United States)

    Blake, D. F.; Morris, R. V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; Madsen, M. B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A. H.; McLennan, S. M.; Yen, A. S.; Grotzinger, J.; Vaniman, D. T.; Chipera, S. J.; Achilles, C. N.; Rampe, E. B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L. A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R. A.; Kah, L. C.; Bridges, N.; Lewis, K. W.; Bristow, T. F.; Farmer, J. D.; Crisp, J. A.; Stolper, E. M.; Des Marais, D. J.; Sarrazin, P.; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Blanco Avalos, Juan Jose; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Brinckerhoff, William; Brinza, David; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; Dietrich, William; Dingler, Robert; Donny, Christophe; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Geffroy, Claude; Genzer, Maria; Godber, Austin; Goesmann, Fred; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McNair, Sean; Melikechi, Noureddine; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Dobrea, Eldar Noe; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; Pablo, Hernández; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J.; Rowland, Scott; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Sucharski, Bob; Summons, Roger; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge Loes; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B.; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-09-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  18. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  19. Effect of water content on the water repellency for hydrophobized sands

    Science.gov (United States)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  20. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers

    Science.gov (United States)

    Cabrera, Laura L.; Alonso, Ignacio

    2010-03-01

    Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.

  1. A note on the effects of phosphorus and nitrogen fertilizers on chemical composition of Pearl Millet (Pennisetum glaucum L.) grains

    International Nuclear Information System (INIS)

    Hago, T. E. M; Eltilib, A. M. A.; Ali, S. A. M.

    2004-01-01

    A filed experiment was conducted for two consecutive seasons (1999/2000 and 2000/2001) at the University of Zalengi, Western Darfur State, Sudan, to study the effects of phosphorus and nitrogen fertilizers on chemical composition of pearl millet (Pennisetum glaucum L.) grains. A local pearl millet cultivar (Darmassa) was used as a test crop. The treatments consisted of four nitrogen (0, 30, 60,80 kg N/ha) and four phosphorus (0, 15, 30, 60 kg p 2 O 5 /ha) rates, using urea (46% N) and triple superphosphate (48% P 2 O 5 ) as sources of nitrogen and phosphorus, respectively. The experimental design was split plot with five replicates, allocating nitrogen to the main and phosphorus to the subplots. The results showed that nitrogen significantly increased grain protein content in both seasons, while phosphorus caused a consistent increase in grain protein and phosphorus contents in both seasons, but the increase was significant in the second season only. As for the other grain constituents (K, Ca, Mg), they were not effected by any of the treatment. Moreover, there were no significant interactions between the treatments.(Author)

  2. Luminescence dose of sand by the huguangyan maar lake

    International Nuclear Information System (INIS)

    Xiong Zhengye; Chen Jinmin; Ding Ping; Shi Wenqing; Ma Weijiang; Zhu Jinhan

    2010-01-01

    Sand samples were collected at different locations from the Huguangyan Maar Lake region in Zhanjiang, Guangdong province in south China. Thermoluminescence (TL) and optical stimulated luminescence (OSL) were measured with coarse grain technique. The TL and OSL dose response were analyzed and their ancient doses were calculated. The result shows that ancient doses measured with TL technique differ from those measured with OSL technique for the same sample, whereas for the samples whose TL ancient dose is close to the veraciousness, there were no evident degree of difference between the ancient doses by OSL and TL. The experiments and analyses can be used for reference in Quaternary period volcano dating. (authors)

  3. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    Science.gov (United States)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the

  4. Use of coal ash in production of concrete containing contaminated sand

    International Nuclear Information System (INIS)

    Ezeldin, A.S.

    1991-01-01

    There are between 2 to 3.5 million underground storage tanks located throughout the nation. Most of these tanks, which store oils and gasolines, are leaking making them one of the primary sources of soil contamination. Adding coal ash or cement to contaminated soil has been used to obtain stationary and inert wastecrete. By using this procedure, stabilization (limiting the solubility and mobility of the contaminants) and solidification (producing a solid waste block) of contaminated soils are successfully achieved. This paper investigates another re-use option of coal ash and contaminated soils. An experimental study evaluating the effectiveness of using coal ash with oil contaminated sand in concrete production is presented. A control mix made of clean sand was designed to yield 500 psi of compressive strength. Sand, artificially contaminated with 3% by weight of motor oil, was used as clean sand replacement. Six concrete mixtures were tested in compression and flexure. The six mixtures were obtained by increasing the ratio of contaminated sand to clean sand, namely; 10%, 20% and 40% and by introducing coal ash to the concrete mixture, namely; 20% of the cement weight. The test results indicate that the inclusion of oil contaminated sand in concrete reduces the compressive and flexural strengths. However, this decrease in strength is compensated by introducing coal ash in the mixture. Regaining that strength offers the possibility of using such concrete as a construction material in special structural applications. More research is required to establish better understanding of that composite and suggest feasible applications

  5. New generation expandable sand screens

    OpenAIRE

    Syltøy, Christer

    2014-01-01

    Master's thesis in Petroleum engineering This thesis aims to give a general insight into sand control and various sorts of sand control measures and applications of sand control tools. Special focus will be given to expandable sand screens – a technology which came about in the late 1990’s through the use of flexible, expandable tubulars as base pipe in sand screens. More specifically Darcy’s Hydraulic Endurance Screens, a compliant sand screen system using hydraulic activation, and the fu...

  6. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    Science.gov (United States)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  7. Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium pachyphyllum Fruits against Two Grain Storage Insects

    OpenAIRE

    Liu, Peng; Liu, Xin-Chao; Dong, Hui-Wen; Liu, Zhi-Long; Du, Shu-Shan; Deng, Zhi-Wei

    2012-01-01

    The aim of this research was to determine chemical composition and insecticidal activity of the essential oil of Illicium pachyphyllum fruits against two grain storage insects, Sitophilus zeamais and Tribolium castaneum, and to isolate any insecticidal constituents from the essential oil. The essential oil of I. pachyphyllum fruits was obtained by hydrodistillation and analyzed by GC-MS. A total of 36 components of the essential oil were identified, with the principal compounds in the essenti...

  8. A comparative study of the adsorption of uranium on commercial and natural (Cypriot) sea sand samples

    International Nuclear Information System (INIS)

    Maria Efstathiou; Ioannis Pashalidis

    2013-01-01

    The adsorption of hexavalent uranium on two different types of sea sand [e.g. a local, Cypriot (N S S) and a commercially available marine sediment (C S S)] has been investigated as a function of pH, initial metal concentration, ionic strength and contact time under normal atmospheric conditions. Before carrying out the adsorption experiments, the sea sand samples have been characterized by XRD, XRF, N 2 -adsorption, acid/base titrations and FTIR spectroscopy. Sample characterization showed clearly that the two sea sand types differ significantly in their composition, particularly in their calcite and FeOOH content. According to experimental data obtained from acid/base titrations and adsorption batch experiments sea sand composition affects the acid/base and the adsorption properties of the adsorbents. The extraordinary high affinity of N S S for hexavalent uranium in the alkaline pH region can be attributed to the formation of mixed U(VI)-carbonato surface species on the FeOOH crystal phases present in N S S, which effectively compete the formation of U(VI)-carbonato complexes in solution. On the other hand, data obtained by adsorption experiments carried out in solution of different ionic strengths don't differ significantly from one another indicating the formation of inner-sphere complexes. Finally, the adsorption on sea sands is a relatively fast two-step process. (author)

  9. DECODING THE MESSAGE FROM METEORITIC STARDUST SILICON CARBIDE GRAINS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-01-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  10. Graded substitution of grains with bakery by-products modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    Science.gov (United States)

    Humer, E; Aditya, S; Kaltenegger, A; Klevenhusen, F; Petri, R M; Zebeli, Q

    2018-04-01

    A new segment of feed industry based on bakery by-products (BBP) has emerged. Yet, information is lacking regarding the effects of inclusion of BBP in ruminant diets on ruminal fermentation and microbiota. Therefore, the aim of this study was to evaluate the effect of the gradual replacement of grains by BBP on ruminal fermentation, nutrient degradation, and microbial community composition using the rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 42:58 (dry matter basis), but differed in the concentrate composition with either 45% cereal grains or BBP, whereby 15, 30, or 45% of BBP were used in place of cereal grains. The inclusion of increasing levels of BBP in the diet linearly enhanced ruminal degradation of starch from 84% (control) to 96% (45% BBP), while decreasing degradation of crude protein and fiber. The formation of methane was lowered in the 45% BBP diet compared with all other diets. Whereas the ammonia concentration was similar in the control and 15% BBP, a significant decrease was found in 30% BBP (-23%) and 45% BBP (-33%). Also, BBP feeding shifted fermentation profile toward propionate at the expense of acetate. Moreover, isobutyrate linearly decreased with increasing BBP inclusion. Bacterial 16S rRNA Illumina MiSeq (Microsynth AG, Balach, Switzerland) sequencing revealed a decreased microbial diversity for the 45% BBP diet. Furthermore, the replacement of cereal grains with BBP went along with an increased abundance of the genera Prevotella, Roseburia, and Megasphaera, while decreasing Butyrivibrio and several OTU belonging to Ruminococcaceae. In conclusion, the inclusion of BBP at up to 30% of the dry matter had no detrimental effects on pH, fiber degradability, and microbial diversity, and enhanced propionate production. However, a higher replacement level (45%) impaired ruminal fermentation traits and fiber degradation and is not recommended. Copyright © 2018 American Dairy Science Association

  11. Comparative evaluation of six storage methods for postharvest preservation of cowpea grain

    KAUST Repository

    Baoua, I. B.

    2012-04-01

    Several technologies reputedly minimize losses of stored cowpea grain to bruchid beetles on low resource farms in Africa. Side by side comparison of these different postharvest storage methods can provide the basis for deciding which performs best. We compared six different technologies for cowpea storage: (1) grain mixed with ash; (2) mixed with sand; (3) fumigated with phostoxin; (4) admixed with the stems and leaves of . Boscia senegalensis (Pers) Lam ex Poir, a potential botanical insecticide; (5) disinfested using a solar heater, and; (6) hermetically sealed in triple-layer plastic bags. Sampling was done at thirty-day intervals over five months of storage. Counts were made of (i) adult emergence holes, (ii) dead larvae and (iii) surviving bruchid larvae and adults. Controls, which consisted of infested cowpea grain stored in cloth bags, were damaged extensively. . Boscia senegalensis-treated grain suffered similar severe damage. All other treatments suppressed bruchid population increases as was evident from the much lower counts of emergence holes and lower numbers of surviving or dead insects. © 2012 Elsevier Ltd.

  12. Comparative evaluation of six storage methods for postharvest preservation of cowpea grain

    KAUST Repository

    Baoua, I. B.; Amadou, L.; Margam, V.; Murdock, L. L.

    2012-01-01

    Several technologies reputedly minimize losses of stored cowpea grain to bruchid beetles on low resource farms in Africa. Side by side comparison of these different postharvest storage methods can provide the basis for deciding which performs best. We compared six different technologies for cowpea storage: (1) grain mixed with ash; (2) mixed with sand; (3) fumigated with phostoxin; (4) admixed with the stems and leaves of . Boscia senegalensis (Pers) Lam ex Poir, a potential botanical insecticide; (5) disinfested using a solar heater, and; (6) hermetically sealed in triple-layer plastic bags. Sampling was done at thirty-day intervals over five months of storage. Counts were made of (i) adult emergence holes, (ii) dead larvae and (iii) surviving bruchid larvae and adults. Controls, which consisted of infested cowpea grain stored in cloth bags, were damaged extensively. . Boscia senegalensis-treated grain suffered similar severe damage. All other treatments suppressed bruchid population increases as was evident from the much lower counts of emergence holes and lower numbers of surviving or dead insects. © 2012 Elsevier Ltd.

  13. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  14. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  15. Statistics of grain misorientations in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Rybin, V V; Titovets, Yu F; Teplitskij, D M; Zolotorevskij, N Yu

    1982-03-01

    Sets of misorientations between neighbouring grains for three recrystallized molybdenum polycrystals differing in purity, phase composition and prehistory are experimentally determined. The data obtained are analyzed according to modern representations of intergrain boundary structure. In the two materials among the three mentioned above the share of boundaries close to special boundaries with high density of coinciding points turned to be 1.5 times higher than in the polycrystal with chaotic distribution of grains by orientations.

  16. Radiometric Characterization of Sand in Northeast Sinai

    International Nuclear Information System (INIS)

    Ramadan, Kh.A.; Badran, H.M.; Ramadan, Kh.A.; Seddeek, M.K.; Sharshar, T.

    2009-01-01

    Thirty-eight locations covering an area of 350 km 2 in northeast Sinai were investigated by gamma-ray spectroscopy using a 50% HPGe detector. The limits of area are Al-Arish North, El-Hasana South, El-Oga East, and El- Gifgafa West. The range of activity concentrations of 238 U, 234 Th, 226 Ra, 232 Th and 40 K are 0.6-35.2, 3.9-22.6, 4.7-29.6, 4.7-23.9, and 108-295 Bq/kg for sands, respectively. 137 Cs in the region ranged from 0.1-8.0 Bq/kg. No major difference between the studied area and that previously investigated in the costal area in North Sinai. Reliable correlations (R2 = 0.8-0.9) among 238 U, 234 Th, and 226 Ra isotopes was obtained. On the other hand, low correlation (R 2 = 0.6-0.7) was obtained from the analysis of the isotopes of 238 U-seies and 232 Th. No evidence of correlation between the concentrations of radioisotopes and pH contents, TOM, and grain size were found. The soil-plant transfer factor are 226 Ra and 232 Th, 40 K, and 137 Cs, respectively. The wild vegetations collected from the studied area have average concentrations of 1.9, 1.4, 1.3, 254, and 0.3 for 234 Th, 226 Ra, 232 Th, 40 K, and 137 Cs, respectively. The average concentrations of 226 Ra, 232 Th, and 40 K in water samples collected from five wells are 0.02, 0.02, and 1.1 Bq/l, respectively. The average absorbed dose rate for the sand samples were calculated to be 19.4 n Gy h-1. The Raeq activities of the sands are lower than the recommended maximum value of 370 Bq kg-1 criterion limit of Raeq activity for building materials

  17. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  18. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.

    Directory of Open Access Journals (Sweden)

    Satyan Sharma

    Full Text Available The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.

  19. Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf

    Science.gov (United States)

    Bliss, James D.; Williams, S. Jeffress; Arsenault, Matthew A.

    2009-01-01

    geographic, economic, preemptive use, environmental, geologic and political factors. In addition, offshore sand resources should only be considered if the area is seaward of the active zone of significant nearshore sediment transport, about 10 to 12 m in depth, and in sufficiently shallow water so that sand can be extracted within U.S. dredging equipment limits, currently about 40 m in depth. If the material is to be used for beach nourishment, material must be of an appropriate sediment texture and character (grain size, sorting, shape, and color) to match the native beach and have mineralogical properties important to its use. Extraction of sand can disturb or alter the benthic habitat and seafloor ecology, so these factors and other site-specific effects will need to be evaluated for any intended use. These and other factors are not considered in this report but can be expected to reduce the total net volume of sand resources available for production. The purpose of this report is to describe and present results from a probabilistic mineral modeling technique previously applied to onshore mineral resources. This modeling and assessment procedure is being used for the first time to assess and estimate offshore aggregate resources; this study is part of the U.S. Geological Survey (USGS) Marine Aggregates Resources and Processes Project (http://woodshole.er.usgs.gov/project-pages/aggregates/).

  20. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing.

    Science.gov (United States)

    Monteiro, Carolina Cunha; Villegas, Luis Eduardo Martinez; Campolina, Thais Bonifácio; Pires, Ana Clara Machado Araújo; Miranda, Jose Carlos; Pimenta, Paulo Filemon Paolucci; Secundino, Nagila Francinete Costa

    2016-08-31

    Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing

  1. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    International Nuclear Information System (INIS)

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  2. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics.

    Science.gov (United States)

    de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet

    2015-08-15

    We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    influence the bacterial biomass production. A sand column system with partial circulation of the waste water was constructed for the treatment of toxic waste waters. Using this experimental set-up a resistant biofilm was built up by continuous increase of waste water concentration. With this biofilm-system it is possible to treat waste waters, which completely inhibit bacterial growth with freely suspended cells in batch culture. The selection of suitable nutrients for the bacteria turned out to be crucial for the efficiency of the metal removal process too. From all essential macro- and micro-elements only C, N and P had to be added to the waste waters, in some cases the addition of a carbon source was sufficient. All other nutrients were already present in the waste waters. In order to optimize the nutrient supplementation, various carbon and nitrogen sources were checked concerning biomass production and metal removal. Some nutrient sources strongly supported bacterial growth, but simultaneously reduced metal removal by unfavorable chemical interactions with heavy metals. From all nutrient sources tested, Na-acetate turned out to be the best choice for carbon supply of the bacteria. If the addition of nitrogen to the waste water is necessary, nitrate, ammonia or urea are suitable sources for bacterial growth and metal removal. In experiments with single fixed bed columns (100 cm 3 sand) and subsequent tests in the lab-scale (10 dm 3 sand) and pilot scale sand filter (1,7 m 3 sand), a suitable procedure for the inoculation of the sand filter and the formation of biofilm on the sand grains was developed. The maintenance of stock cultures was carried out on agar plates made of waste water, enriched with missing nutrients. Production of the biomass for inoculation was realized in liquid culture using waste water, enriched with nutrients too. The formation of a biofilm on the sand grains was achieved by addition of the liquid culture to the sand filter, supply of nutrients

  4. Simulation of growing grains under orientation relation - dependent quadruple point dragging

    International Nuclear Information System (INIS)

    Ito, K

    2015-01-01

    The growth behaviour of a specified grain embedded in matrix grains, for which the migration mobility of the quadruple points depended on the relation between the orientations of the growing and shrinking grains, was studied using a modified Potts MC-type threedimensional simulation. Large embedded grains continued to grow without being overcome by coarsening matrix grains, whereas small embedded grains disappeared, under the influence of the relative mobilities of the quadruple points, the composition of the matrix grain texture and the width of the grain size distribution of the matrix grains. These results indicate that orientation relation-dependent quadruple point dragging can affect the recrystallization texture during the grain coarsening stage. (paper)

  5. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  6. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch.

    Science.gov (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2016-10-01

    The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.

  7. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch

    Directory of Open Access Journals (Sweden)

    Maria Balcerek

    2016-10-01

    Full Text Available The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol than those obtained on a semi-technical scale.

  8. Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico

    Science.gov (United States)

    Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles

    2016-01-01

    Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.

  9. Segregation to grain boundaries in nimonic PE16 superalloy

    International Nuclear Information System (INIS)

    Nettleship, D.J.; Wild, R.K.

    1990-01-01

    Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)

  10. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  11. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  12. Grain size distributions and their effects on auto-acoustic compaction

    Science.gov (United States)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  13. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  14. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides).

    Science.gov (United States)

    Korff, Wyatt L; McHenry, Matthew J

    2011-01-01

    Running performance depends on a mechanical interaction between the feet of an animal and the substrate. This interaction may differ between two species of sand lizard from the Mojave Desert that have different locomotor morphologies and habitat distributions. Uma scorparia possesses toe fringes and inhabits dunes, whereas the closely related Callisaurus draconoides lacks fringes and is found on dune and wash habitats. The present study evaluated whether these distribution patterns are related to differential locomotor performance on the fine sand of the dunes and the course sand of the wash habitat. We measured the kinematics of sprinting and characterized differences in grain size distribution and surface strength of the soil in both habitats. Although wash sand had a surface strength (15.4±6.2 kPa) that was more than three times that of dune sand (4.7±2.1 kPa), both species ran with similar sprinting performance on the two types of soil. The broadly distributed C. draconoides ran with a slightly (22%) faster maximum speed (2.2±0.2 m s(-1)) than the dune-dwelling U. scorparia (1.8±0.2 m s(-1)) on dune sand, but not on wash sand. Furthermore, there were no significant differences in maximum acceleration or the time to attain maximum speed between species or between substrates. These results suggest that differences in habitat distribution between these species are not related to locomotor performance and that sprinting ability is dominated neither by environmental differences in substrate nor the presence of toe fringes.

  15. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  16. Oil-sands giants leaving smaller environmental footprints

    International Nuclear Information System (INIS)

    Stonehouse, D.

    1999-01-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO 2 ) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO 2 which has been linked to global warming. By year 2006, all of Syncrude's processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO 2 ) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle faster

  17. Grain Formation Processes in Oxygen-Rich Circumstellar Outflows: Testing the Metastable Eutectic Condensation Hypothesis and Measuring Atom-Grain & Grain-Grain Sticking Coefficients (A Sub-orbital Investigation)

    Science.gov (United States)

    Nuth, Joseph

    An experimentally-based model of grain formation in oxygen-rich circumstellar outflows that includes vapor-solid nucleation, grain growth, thermal annealing and grain aggregation in sufficient detail to predict the spectral energy distribution (SED) of the shells for comparison with observations of a wide range of stellar sources still lacks critical data. In order to gather this data we propose to conduct a series of laboratory experiments using our proven experimental system and microgravity condensation, growth and grain aggregation experiments on sounding rockets with a flight-proven payload provided by Dr. Yuki Kimura of Hokkaido University. We have proposed that solids from a hydrogen-rich, supersaturated, Fe-Mg-SiO vapor condense at metastable eutectic points in this ternary phase diagram. Because the FeOMgO system is totally miscible (has no eutectic or metastable eutectic compositions), this predicts that condensates will be pure Mg-silicate or Fe-silicate grains and that no primary condensate will be a mixed Fe-Mg-silicate. We have shown that this observation leads to a logical explanation as to why pure magnesium olivine and enstatite minerals are detected in circumstellar winds rather than the mixed Mg-Fe-silicate grains that might otherwise be expected (Rietmeijer, Nuth & Karner, 1999). This simplifying hypothesis has been built into our models of circumstellar condensation and growth. However, these experimental results require confirmation and testing since they should apply to other, quite similar condensable systems. We propose to test this hypothesis by condensing solids from the Fe-Mg-AlO ternary vapor system. Since FeO-MgO miscibility also applies to this system, the primary condensates from such a vapor should consist of pure amorphous Fe-aluminates and Mg-aluminates. No mixed Fe-Mg-spinels should be detected as primary condensates if this hypothesis is correct, just as none were detected for the FeO-MgO-SiO system. Confirmation of this

  18. 3D RECONSTRUCTION AND ANALYSIS OF THE FRAGMENTED GRAINS IN A COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Luc Gillibert

    2013-06-01

    Full Text Available X-ray microtomography from solid propellant allows studying the microstructure of fragmented grains in damaged samples. A new reconstruction algorithm of fragmented grains for 3D images is introduced. Based on a watershed transform of a morphological closing of the input image, the algorithm can be used  with different sets of markers. Two of them are compared. After the grain reconstruction, a multiscale segmentation  algorithm is used to extract each fragment of the damaged grains. This allows an original quantitative study of the  fragmentation of each grain in 3D. Experimental results on X-ray microtomographic images of a solid propellant fragmented under compression are presented and validated.

  19. Self-Synchronization of Numerical Granular Flows: A Key to Musical Sands?

    Science.gov (United States)

    Staron, L.

    2011-12-01

    In some rare circumstances, sand flows at the surface of dunes are able to produce a loud sound known as "the song of dunes". The complex mechanisms at the source of these singing properties are far from fully understood. In this study, granular flows are simulated in two dimensions using the discrete Contact Dynamics algorithm. We show that the motion of grains at the surface of the flows exhibits a well-defined oscillation, the frequency of which is not described by the natural frequencies of the system, and does not depend on the rigid or erodible bottom condition. To explain this oscillation, we propose a simple synchronization model based on the existence of coherent structures, or clusters, at the surface of the flow, which yields successful prediction of the numerically observed frequencies. Our analysis gives consistent results when compared with field data from booming dunes, offers a possible explanation for the field observation of sound-generation velocity threshold, and provides new keys to the understanding of musical sands.

  20. Stochastic Modeling of Sediment Connectivity for Reconstructing Sand Fluxes and Origins in the Unmonitored Se Kong, Se San, and Sre Pok Tributaries of the Mekong River

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Castelletti, A. F.; Kondolf, G. M.

    2018-01-01

    Sediment supply to rivers, subsequent fluvial transport, and the resulting sediment connectivity on network scales are often sparsely monitored and subject to major uncertainty. We propose to approach that uncertainty by adopting a stochastic method for modeling network sediment connectivity, which we present for the Se Kong, Se San, and Sre Pok (3S) tributaries of the Mekong. We quantify how unknown properties of sand sources translate into uncertainty regarding network connectivity by running the CASCADE (CAtchment Sediment Connectivity And DElivery) modeling framework in a Monte Carlo approach for 7,500 random realizations. Only a small ensemble of realizations reproduces downstream observations of sand transport. This ensemble presents an inverse stochastic approximation of the magnitude and variability of transport capacity, sediment flux, and grain size distribution of the sediment transported in the network (i.e., upscaling point observations to the entire network). The approximated magnitude of sand delivered from each tributary to the Mekong is controlled by reaches of low transport capacity ("bottlenecks"). These bottlenecks limit the ability to predict transport in the upper parts of the catchment through inverse stochastic approximation, a limitation that could be addressed by targeted monitoring upstream of identified bottlenecks. Nonetheless, bottlenecks also allow a clear partitioning of natural sand deliveries from the 3S to the Mekong, with the Se Kong delivering less (1.9 Mt/yr) and coarser (median grain size: 0.4 mm) sand than the Se San (5.3 Mt/yr, 0.22 mm) and Sre Pok (11 Mt/yr, 0.19 mm).

  1. Towards Quantitative Spatial Models of Seabed Sediment Composition.

    Directory of Open Access Journals (Sweden)

    David Stephens

    Full Text Available There is a need for fit-for-purpose maps for accurately depicting the types of seabed substrate and habitat and the properties of the seabed for the benefits of research, resource management, conservation and spatial planning. The aim of this study is to determine whether it is possible to predict substrate composition across a large area of seabed using legacy grain-size data and environmental predictors. The study area includes the North Sea up to approximately 58.44°N and the United Kingdom's parts of the English Channel and the Celtic Seas. The analysis combines outputs from hydrodynamic models as well as optical remote sensing data from satellite platforms and bathymetric variables, which are mainly derived from acoustic remote sensing. We build a statistical regression model to make quantitative predictions of sediment composition (fractions of mud, sand and gravel using the random forest algorithm. The compositional data is analysed on the additive log-ratio scale. An independent test set indicates that approximately 66% and 71% of the variability of the two log-ratio variables are explained by the predictive models. A EUNIS substrate model, derived from the predicted sediment composition, achieved an overall accuracy of 83% and a kappa coefficient of 0.60. We demonstrate that it is feasible to spatially predict the seabed sediment composition across a large area of continental shelf in a repeatable and validated way. We also highlight the potential for further improvements to the method.

  2. Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2003-01-01

    A system designed for measurement of the optically stimulated luminescence (OSL) from individual sand-sized mineral grains has been constructed. Previously, this system was equipped only with a green laser emitting at 532 run, but now an infrared (IR) laser at 830 run has been added. It is now...... possible to interchangeably use the two laser sources for optical stimulation. This is especially valuable for the measurement of feldspars. The power density using the IR laser at the grain is similar to500 W cm(-2), and stimulation for 1 s reduces the OSL signal to near background level. Initial results...

  3. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  4. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  5. A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2003-01-01

    Nomenclature describing size distributions is important to geologists because grain size is the most basic attribute of sediments. Traditionally, geologists have divided sediments into four size fractions that include gravel, sand, silt, and clay, and classified these sediments based on ratios of the various proportions of the fractions. Definitions of these fractions have long been standardized to the grade scale described by Wentworth (1922), and two main classification schemes have been adopted to describe the approximate relationship between the size fractions.Specifically, according to the Wentworth grade scale gravel-sized particles have a nominal diameter of ⩾2.0 mm; sand-sized particles have nominal diameters from <2.0 mm to ⩾62.5 μm; silt-sized particles have nominal diameters from <62.5 to ⩾4.0 μm; and clay is <4.0 μm. As for sediment classification, most sedimentologists use one of the systems described either by Shepard (1954) or Folk (1954, 1974). The original scheme devised by Shepard (1954) utilized a single ternary diagram with sand, silt, and clay in the corners to graphically show the relative proportions among these three grades within a sample. This scheme, however, does not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme (Fig. 1) was subsequently modified by the addition of a second ternary diagram to account for the gravel fraction (Schlee, 1973). The system devised by Folk (1954, 1974) is also based on two triangular diagrams (Fig. 2), but it has 23 major categories, and uses the term mud (defined as silt plus clay). The patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of

  6. Single-grain OSL dating of Early Middle Palaeolithic deposits at Cuesta de la Bajada, Ebro Basin, Spain

    Science.gov (United States)

    Arnold, Lee; Demuro, Martina; Santonja, Manuel; Perez-Gonzalez, Alfredo; Pares, Josep

    2013-04-01

    The open-air site of Cuesta de la Bajada comprises a 2-2.5 m-thick sequence of fluvial-lacustrine sediments inset into the +50-60 m terrace deposits preserved along the south-eastern margins of the Alfambra river valley, Teruel, Spain. The main archaeological horizons lie ~20 m above the present-day river level and consists of an upward-fining sequence of massive fluvial silts and fine sands with dispersed gravels, detritic marls and shales that collectively overlie a series of planar bedded fluvial gravels. These units have yielded ~3000 lithic artefacts displaying reduction techniques characteristic of an early Middle Palaeolithic techno-complex, as well as a multitude of faunal remains indicative of a late Middle Pleistocene origin. The paucity of open-air Palaeolithic sites in the interior eastern sector of the Iberian Peninsula, and the relatively low number of documented early Middle Palaeolithic archives in this region, means that Cuesta de la Bajada is of key importance for understanding the coexistence/transition of Iberian Acheulean and Mousterian techno-complexes during the Middle Pleistocene period. Establishing reliable absolute chronologies at Cuesta de la Bajada remains essential for understanding the regional significance of this site. In an attempt to redress the existing chronological uncertainty we are undertaking an interdisciplinary dating study of the Middle Palaeolithic deposits using OSL dating, ESR/U-series dating of teeth and ESR dating of sedimentary quartz. Here we present results obtained using quartz single-grain OSL dating of 4 samples collected from a 7 m vertical profile bracketing the archaeological horizons. 2 samples were collected from the archaeology-bearing silt and fine sand horizons, while the remaining samples were obtained from well-bedded fine-sands and silts 3.5 m above and 3 m below the main excavation. The measured quartz grains are characterised by relatively bright OSL signals and typically display dose

  7. grain size and heavy mineral analyses of two boreholes in recent

    African Journals Online (AJOL)

    user

    mineral composition and the grain sizes of the aquifer in the study areas. ... analysis of both wells show that mean, inclusive standard deviation, ..... colourless grains with rectangular outline. .... Nigeria; A Case Study of Onisha and Environ.

  8. Water productivity analysis of sand dams irrigation farming in northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Lorenzo Villani

    2018-06-01

    Full Text Available Water scarcity in drylands is the main problem that has to be tackled by farmers and practitioners that work in these areas. Climate change and increased and wealthier population are expected to put additional stress on the water resource. A large number of studies is calling to focus efforts to enhance water productivity (WP, and one of the most promising option is represented by water harvesting, the collection and storage of runoff water to be used for beneficially uses. Among the available technologies, sand dams are experiencing a renovated interest because of their relative simplicity and their potential. This research aims to deepen the knowledge about WP of water harvesting systems studying a sand dam irrigation system in Tigray, north Ethiopia, where farmers are getting used to this new technology. The research was carried out in the period March-April 2017, when farmers use sand dams water to irrigate off-season maize. We analysed a representative plot irrigated through a shallow well drilled in the sand dam aquifer, in terms of yield, Crop Water Productivity (CWP, Crop Water Productivity based on Evapotranspiration (CWP(ET and Economic Water Productivity (EWP, through field data analysis and a validated Aquacrop model. CWP(ET was found to be low (1.12 kg of grain per m3 of evapotranspired water, due by both inefficient water application and low soil fertility. Aquacrop model results showed that changing the irrigation schedule can increase CWP(ET up to 1.35 kg/m3 and EWP up to 3.94 birr/m3, but yield gap is mainly due to the low soil fertility. Interventions on soil fertility can raise yields from the original 3.3 up to 8.5 kg/ha, and thus CWP(ET and EWP up to 2.94 kg/m3 and 9.54 birr/m3 respectively. To enhance the effect of sand dams in northern Ethiopia, a set of measures, including conservation agriculture, is then proposed.

  9. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  10. Ramifications of projectile velocity on the ballistic dart penetration of sand

    Science.gov (United States)

    Sable, Peter Anthony

    With the advent of novel in-situ experimental measurement techniques, highly resolved quantitative observations of dynamic events within granular media can now be made. In particular, high speed imagery and digital analysis now allow for the ballistic behaviors of sand to be examined not only across a range of event velocities but across multiple length scales. In an attempt to further understand the dynamic behavior of granular media, these new experimental developments were implemented utilizing high speed photography coupled with piezo-electric stress gauges to observe visually accessible ballistic events of a dart penetrating Ottawa sand. Projectile velocities ranged from 100 to over 300 meters per second with two distinct chosen fields of view to capture bulk and grain-scale behaviors. Each event was analyzed using the digital image correlation technique, particle image velocimetry from which two dimensional, temporally resolved, velocity fields were extracted, from which bulk granular flow and compaction wave propagation were observed and quantified. By comparing bulk, in situ, velocity field behavior resultant from dart penetration, momentum transfer could be quantified measuring radius of influence or dilatant fluid approximations from which a positive correlation was found across the explored velocity regime, including self similar tendencies. This was, however, not absolute as persistent scatter was observed attributed to granular heterogeneous effects. These were tentatively measured in terms of an irreversible energy amount calculated via energy balance. Grain scale analysis reveals analogous behavior to the bulk response with more chaotic structure, though conclusions were limited by the image processing method to qualitative observations. Even so, critical granular behaviors could be seen, such as densification, pore collapse, and grain fracture from which basic heterogeneous phenomena could be examined. These particularly dominated near nose

  11. Friction stir weld tools having fine grain structure

    Science.gov (United States)

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  12. Radiogenic heavy minerals in Brazilian beach sand

    International Nuclear Information System (INIS)

    Malanca, A.

    1998-01-01

    Sand samples collected on the beaches of the 'radioactive' Brazilian town of Guarapari were first separated by flotation in bromoform and successively divided into various magnetic fractions with a Franz isodynamic separator. concentrations of background radionuclides in samples of monazite, ilmenite, and zircon were determined by a γ-ray spectrometer. Chemical composition of monazite, ilmenite and magnetite were assessed by means of an electron microprobe. Monazite resulted to be relatively rich in ThO 2 whose abundance ranged from 5.3 to 7.7 (wt%). (author)

  13. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells.

    Science.gov (United States)

    Valli, Veronica; Taccari, Annalisa; Di Nunzio, Mattia; Danesi, Francesca; Bordoni, Alessandra

    2018-05-01

    Nowadays the higher nutritional value of whole grains compared to refined grains is recognized. In the last decade, there has been a renewed interest in the ancient wheat varieties for producing high-value food products with enhanced health benefits. This study compared two ancient grains, two heritage grains, and four modern grains grown in the same agronomic conditions considering not only their chemical characteristics, but also their biological effects. Whole grain flours were obtained and used to make bread. Bread was in vitro digested, the digesta were supplemented to HepG2 cells, and the biological effects of supplementation were evaluated. In addition, cells previously supplemented with the different digested bread types were then exposed to inflammatory agents to evidence possible protective effects of the pre-treatments. Despite the impossibility to discriminate bread made with different grains based on their chemical composition, results herein reported evidence that their supplementation to cultured cells exerts different effects, confirming the potential health benefits of ancient grains. This research represents an advancement for the evaluation of the apparent positive effects of ancient grains and the formulation of cereal-based products with added nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  15. AES/STEM grain boundary analysis of stabilized zirconia ceramics

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Kroot, P.J.M.; Burggraaf, A.J.

    1983-01-01

    Semiquantitative Auger Electron Spectroscopy (AES) on pure monophasic (ZrO2)0.83(YO1.5)0.17 was used to determine the chemical composition of the grain boundaries. Grain boundary enrichment with Y was observed with an enrichment factor of about 1.5. The difference in activation energy of the ionic

  16. Estimating the effect of fermentation yeast on distillers grains protein

    Science.gov (United States)

    Distillers dried grains with solubles (DDGS) is the key co-product of bio-ethanol production from grains. Major factors affecting its quality and market values include protein quantity (concentration) and quality (amino acid composition). Yet, the effect of fermentation yeast on DDGS quality has no...

  17. Self-compacting fine-grained concretes with compensated shrinkage

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available This paper substantiates the efficiency of application of fine-grained concrete for erection of cast-in-place concrete and reinforced concrete structures of different purpose. On the basis of analysis of experimental research results it was established that the introduction of microfillers with expansion effect to composite binder allows not only improving the rheological properties of fine-grained concrete, but also decreasing of value of shrinkage strain and improving of concrete crack resistance and durability. The analysis of the results of industrial use of fine-grained concretes with compensated shrinkage is given.

  18. The Rheology of Acoustically Fluidized Sand

    Science.gov (United States)

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between

  19. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    Science.gov (United States)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are air temperatures are ≤-17 °C, and snow cover is conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and subsidence of adjacent strata. Sand wedge development in seasonally frozen ground

  20. Source and distribution of naturally occurring arsenic in groundwater from Alberta’s Southern Oil Sands Regions

    International Nuclear Information System (INIS)

    Moncur, Michael C.; Paktunc, Dogan; Jean Birks, S.; Ptacek, Carol J.; Welsh, Brent; Thibault, Yves

    2015-01-01

    Highlights: • Widespread naturally occurring As in groundwater with concentrations up to 179 μg/L. • 50% of the 816 water wells sampled exceeded 10 μg/L of As. • As(III) was the dominant species in 74% of the groundwater samples. • Shallow groundwater As is derived from arsenian pyrite oxidation. • In deeper sediments, As release is associated with Fe(III) reduction. - Abstract: Arsenic (As) concentrations as high as 179 μg/L have been observed in shallow groundwater in the Alberta’s Southern Oil Sand Regions. The geology of this area of Alberta includes a thick cover (up to 200 m) of unconsolidated glacial deposits, with a number of regional interglacial sand and gravel aquifers, underlain by marine shale. Arsenic concentrations observed in 216 unconsolidated sediment samples ranged from 1 and 17 ppm. A survey of over 800 water wells sampled for As in the area found that 50% of the wells contained As concentrations exceeding drinking water guidelines of 10 μg/L. Higher As concentrations in groundwater were associated with reducing conditions. Measurements of As speciation from 175 groundwater samples indicate that As(III) was the dominant species in 74% of the wells. Speciation model calculations showed that the majority of groundwater samples were undersaturated with respect to ferrihydrite, suggesting that reductive dissolution of Fe-oxyhydroxides may be the source of some As in groundwater. Detailed mineralogical characterization of sediment samples collected from two formations revealed the presence of fresh framboidal pyrite in the deeper unoxidized sediments. Electron microprobe analysis employing wavelength dispersive spectrometry indicated that the framboidal pyrite had variable As content with an average As concentration of 530 ppm, reaching up to 1840 ppm. In contrast, the oxidized sediments did not contain framboidal pyrite, but exhibited spheroidal Fe-oxyhydroxide grains with elevated As concentrations. The habit and composition suggest

  1. Properties of Desert Sand and CMAS Glass

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  2. Trace element determination in presolar SiC grains by synchrotron x-ray fluorescence: Commencement of a coordinated multimethod study

    International Nuclear Information System (INIS)

    Knight, K.B.; Sutton, S.R.; Newville, M.; Davis, A.M.; Dauphas, N.; Lewis, R.S.; Amari, S.; Steele, I.M.; Savina, M.R.; Pellin, M.J.

    2008-01-01

    We determined trace element compositions of individual ∼1-3 ?m presolar SiC grains from 6 KJG grains and 26 additionally cleaned KJG grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Presolar SiC grains are robust remnants of stellar matter ejected from stars. They survived processing in the early solar system and retain the nucleosynthetic fingerprints of their stellar progenitors. As such, they represent unique physical probes of the interiors of stars. Presolar SiC grains are commonly analyzed by mass spectrometric techniques that determine isotopic compositions and, to some degree, elemental concentrations. These techniques, however, are destructive, and can be subject to matrix effects. Elemental composition data on presolar grains remain scarce and affected by contamination and analytical artifacts. In addition, contamination has plagued isotopic characterization of some elements such as Mo and Ba. We determined trace element compositions of individual ∼1-3 (micro)m presolar SiC grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Samples included the KJG fraction, and a second KJG fraction that underwent additional cleaning. As every cleaning step results in some grain loss, one goal of this study was to justify additional cleaning of grains. Six KJG grains and 26 additionally cleaned KJG grains were analyzed, with location and identities of individual grains noted for future correlated isotopic study.

  3. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  4. Surface and groundwater management in the oil sands industry

    International Nuclear Information System (INIS)

    Dixon, D.G.; Barker, J.

    2004-02-01

    A study was conducted to examine the sublethal effects of oil sands constituents on gill and liver histopathology and fish reproduction. Field studies of food web dynamics were conducted using stable isotopes, including oil sands constituents degradation isotope studies. The objective was to determine changes in food web dynamics associated with reclamation methods and maturity using stable isotopes. The study related changes in toxicity to changes in ground and surface naphthenic acids concentration and composition. It also demonstrated the natural attenuation of toxic chemicals as they travel through groundwater to potential surface water receptors. A methodology was developed to assess the natural attenuation capacity for future situations involving process-affected groundwater of different chemistry with different critical potential contaminants such as sulphides, metals, and specific organics. The mobility and natural attenuation of process water chemicals migrating in groundwater was also assessed. tabs., figs

  5. A particle model of rolling grain ripples under waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste

    2001-01-01

    A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...

  6. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  7. Study on trace and rare earth elements in Indonesian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Hong-peng; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Major, trace elements and rare earth and mineral composition of the oil sand samples (ST1, ST2, ST3) and the oil sand retorting residue (semi-coke: SC1, SC2, SC3) from Indonesian were determined by XFS, ICP-MS and XRD methods. The trace elements content in oil sand is pretty much the same thing in Earth's Clarke value. The trace element is abundantly in earth's Clarke, in oil sand yet, for Ti, Mn, Ba, Sr, but these elements are lower enrichment. However, the Cr (EF = 16.8) and Mo (EF = 11.8) are ''enrichment'' in ST1; the Ni (EF =10.5), Se (EF = 17.5), Sr (EF = 28.7), Mo (EF = 106.5), Sc (EF = 12.8) and U (EF = 43.2) are ''enrichment'' in ST2; the Se (EF = 12.6), Sr (EF = 18.4), Mo (EF = 47.5), and U (EF = 27.8) are ''enrichment'' in ST3. Calculations show that trace elements in sime-coke have lower evaporation rate during Fischer Assay. Trace elements in raw oil sand are so stable that trace elements can't move easily to other pyrolysis product but enrich to sime-coke. After retorting, more elements are EF > 10, such as B, V, Ni, As, Se, Sr, Mo, Hg, Cs and U. It is essential to take the pollution produced by trace elements in sime-coke during the sime-coke utilization into consideration. The REEs content had a high correlation with the ash in oil sand. The REE is closely related to terrigenous elastic rocks.

  8. Non-cohesive silt turbidity current flow processes; insights from proximal sandy-silt and silty-sand turbidites, Fiordland, New Zealand

    Science.gov (United States)

    Strachan, Lorna J.; Bostock, Helen C.; Barnes, Philip M.; Neil, Helen L.; Gosling, Matthew

    2016-08-01

    Silt-rich turbidites are commonly interpreted as distal marine deposits. They are associated with interlaminated clay and silt deposition from the upper and rear portions of turbidity currents. Here, multibeam bathymetry and shallow sediment core data from the intra-slope Secretary Basin, Fiordland, New Zealand, located laminar) flows that have undergone a variety of up-dip flow transformations. Most flows were initially erosive followed by deposition of partitioned 2- or 3- phase mixed mode flows that include high-density transitional and laminar flows that can be fore- or after-runners to low-density turbulent flow sections. Turbulence is inferred to have been suppressed in high-density flows by increasing flow concentration of both sands and silts. The very fine and fine sand modal grain sizes of sandy-silt and silty-sand turbidites are significantly coarser than classical abyssal plain silt turbidites and are generally coarser than overbank silt turbidites. While the low percentage of clays within Secretary Basin sandy-silt and silty-sand turbidites represents a fundamental difference between these and other silt and mud turbidites, we suggest these beds represent a previously undescribed suite of proximal continental slope deposits.

  9. Effects of bedding with recycled sand on lying behaviors, udder hygiene, and preference of lactating Holstein dairy cows.

    Science.gov (United States)

    Kull, J A; Ingle, H D; Black, R A; Eberhart, N L; Krawczel, P D

    2017-09-01

    Effects of bedding with recycled sand and season on lying behaviors, hygiene, and preferences of late-lactation Holstein cows were studied. It was hypothesized that recycled sand will decrease lying time and increase hygiene scores due to increased moisture content and organic matter, and thus a preference for the control sand will be evident. Cows (n = 64) were divided into 4 groups (n = 8 per group) per season. In summer (August to September), cows were balanced by days in milk (268.1 ± 11.9 d) and parity (2.0 ± 0.2). In winter (January to February), mean DIM was 265.5 ± 34.1 d. Cows were assigned to 1 of 2 treatments using a crossover design with each treatment lasting 7 d (no-choice phase): bedding with recycled sand (RS; n = 32) or control (CO; clean sand; n = 32). Stocking density was maintained at 100%. The choice phase allowed cows to have access to either treatment with stocking density at 50%. Accelerometers recorded daily lying time, number of lying bouts per day, lying bout duration (min/bout), and total steps per day. Teat swabs, milk, sand samples, and udder hygiene scores were collected on d 0, 3, and 7 of each experimental week. Samples were cultured for streptococci, staphylococci, and gram-negative bacteria. Video data were used to assess bedding preferences. All data were analyzed using the MIXED and GLIMMIX procedures of SAS 9.4 (SAS Institute Inc., Cary, NC). Lying time was not affected by treatment, but cows did take more steps during winter. Bacterial counts were elevated for cows on recycled sand. A preference was observed for clean sand during the summer, but no preference was observed for sand during the winter. Regardless of bedding, the most commonly observed behavior was lying in the stalls, which suggested either bedding might be suitable. Caution should be used with this interpretation of preference, as sand was recycled only once. This limited reclamation was still sufficient to potentially alter the composition of sand, driving

  10. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers.

    Science.gov (United States)

    Ampatzoglou, Antonios; Atwal, Kiranjit K; Maidens, Catherine M; Williams, Charlotte L; Ross, Alastair B; Thielecke, Frank; Jonnalagadda, Satya S; Kennedy, Orla B; Yaqoob, Parveen

    2015-02-01

    Whole-grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology, and gastrointestinal symptoms in healthy, middle-aged adults with habitual WG intake food frequency questionnaires and subsequently completed 3-day food diaries (3DFDs) to confirm habitual WG consumption. Subjects consumed diets high in WG (>80 g/d) or low in WG [range of cereal food products. The 3DFDs, diet compliance diaries, and plasma alkylresorcinols were used to verify compliance. During the WG intervention, consumption increased from 28 g/d to 168 g/d (P increase in plasma alkylresorcinols (P increased 24-h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG intervention compared with the RG period. A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical markers, body composition, BP, fecal measurements, or gut microbiology. This trial was registered at www.controlled-trials.com as ISRCTN36521837. © 2015 American Society for Nutrition.

  11. Phenolic Compositions and Antioxidant Activities Differ Significantly among Sorghum Grains with Different Applications

    Directory of Open Access Journals (Sweden)

    Shuyu Shen

    2018-05-01

    Full Text Available Sorghum grains with different applications had different phenolic profiles, which were corresponded to various antioxidant capacities. In this study, total phenolic, proanthocyanidins and flavonoids contents, as well as contents of individual phenolic compounds from sorghum grains with various applications were determined, and their antioxidant capacities were evaluated. Total phenolic contents (TPC and total proanthocyanidins contents (TPAC showed strong correlation with antioxidant activities (r > 0.95, p < 0.01. Hongyingzi (S-1, one of the brewing sorghums, showed the highest level of TPC and TPAC, while white grain sorghum (S-8 had the lowest. Except for black grain sorghum (S-7, that contained the highest contents of ferulic acid, brewing sorghum grains contained the higher contents of the most individual phenolic compounds, especially the variety S-1. The correlation among individual phenolic compounds and antioxidant activities indicated that the free forms of protocatechuic acid (r = 0.982 of FRAPassay, p < 0.01 and taxifolin (r = 0.826 of FRAP assay, p < 0.01 may be the main functional compounds. These results indicate that brewing sorghum grains can also be utilized as effective materials for functional foods.

  12. Evaluation for swelling characteristics of buffer and backfill materials for high-level nuclear waste disposal. Influence of sand-bentonite content and cation compositions in bentonite

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1999-01-01

    Compacted bentonite and sand-bentonite mixture are attracting greater attention as buffer and backfill materials for disposal pits and access tunnels in the underground facilities for repositories of high-level nuclear waste. Buffer and backfill materials must have the swelling characteristics and are expected to fill up the space between these materials and surrounding ground by swelling. This role is called as 'Self-sealing'. To design the specifications, such as dry density, bentonite content and size, of buffer and backfill materials for the disposal facilities of high-level nuclear wastes described above, we must evaluate the swelling characteristics of compacted bentonite and sand-bentonite mixtures. For this purpose, this study proposed the evaluation formula for swelling characteristics of buffer and backfill materials containing bentonite. This study derived new equations for evaluating the relationship between the swelling deformation of compacted bentonite and sand-bentonite mixtures, and the swelling behavior of montmorillonite minerals, which are swelling clay minerals. This study also proposed new equations for evaluating the ion compositions of bentonite, ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of buffer and backfill materials. The evaluation formula proposed in this study is presented by combining the above-mentioned new equations with theoretical equations, of which are the Gouy-Chapman diffuse double layer theory and the van der Waals force, of repulsive and attractive forces of montmorillonite minerals. (author)

  13. Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Victor Zorrilla

    2017-11-01

    Full Text Available Cutaneous leishmaniasis (CL is an important health problem in the New World affecting civilian and military populations that are frequently exposed in endemic settings. The Peruvian region of Madre de Dios located near the border with Brazil is one of the most endemic CL regions in South America with more than 4,451 reported cases between 2010 and 2015 according to the Peruvian epidemiology directorate. However, little is known regarding the diversity and distribution of sand fly vectors in this region. In this study, we aimed to characterize the sand fly fauna in this endemic setting and identify sand fly species naturally infected with Leishmania possibly involved in pathogen transmission.Sand fly collections were carried out during 2014 and 2015 in the communities of Flor de Acre, Villa Primavera, Mavila and Arca Pacahuara using CDC light traps and Shannon traps. Collected specimens were identified and non-blood-fed females were selected for Leishmania infection screening using kinetoplastid DNA-PCR (kDNA-PCR and nested Real time PCR for species identification.A total of 10,897 phlebotomines belonging to the genus Lutzomyia (58 species and Brumptomyia (2 species were collected. Our study confirmed the widespread distribution and abundance of Lutzomyia (Trichophoromyia spp. (24%, Lu. whitmani (19.4% and Lu. yucumensis (15.8% in the region. Analysis of Shannon diversity index indicates variability in sand fly composition across sites with Villa Primavera presenting the highest sand fly diversity and abundance. Leishmania screening by kDNA-PCR resulted in 45 positive pools collected from Flor de Acre (34 pools, Mavila (10 pools and Arca Pacahuara (1 pool and included 14 species: Lu. yucumensis, Lu. aragoi, Lu. sallesi, Lu. sherlocki, Lu. shawi, Lu. walkeri, Lu nevesi, Lu. migonei, Lu. davisi, Lu. carrerai, Lu. hirsuta, Lu. (Trichophoromyia spp., Lu. llanosmartinsi and Lu. whitmani. Lutzomyia sherlocki, Lu. walkeri and Lu. llanosmartinsi had the

  14. Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon.

    Science.gov (United States)

    Zorrilla, Victor; De Los Santos, Maxy B; Espada, Liz; Santos, Rocío Del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A; Ballard, Sarah-Blythe; Lescano, Andres G; Vásquez, Gissella M; Valdivia, Hugo O

    2017-11-01

    Cutaneous leishmaniasis (CL) is an important health problem in the New World affecting civilian and military populations that are frequently exposed in endemic settings. The Peruvian region of Madre de Dios located near the border with Brazil is one of the most endemic CL regions in South America with more than 4,451 reported cases between 2010 and 2015 according to the Peruvian epidemiology directorate. However, little is known regarding the diversity and distribution of sand fly vectors in this region. In this study, we aimed to characterize the sand fly fauna in this endemic setting and identify sand fly species naturally infected with Leishmania possibly involved in pathogen transmission. Sand fly collections were carried out during 2014 and 2015 in the communities of Flor de Acre, Villa Primavera, Mavila and Arca Pacahuara using CDC light traps and Shannon traps. Collected specimens were identified and non-blood-fed females were selected for Leishmania infection screening using kinetoplastid DNA-PCR (kDNA-PCR) and nested Real time PCR for species identification. A total of 10,897 phlebotomines belonging to the genus Lutzomyia (58 species) and Brumptomyia (2 species) were collected. Our study confirmed the widespread distribution and abundance of Lutzomyia (Trichophoromyia) spp. (24%), Lu. whitmani (19.4%) and Lu. yucumensis (15.8%) in the region. Analysis of Shannon diversity index indicates variability in sand fly composition across sites with Villa Primavera presenting the highest sand fly diversity and abundance. Leishmania screening by kDNA-PCR resulted in 45 positive pools collected from Flor de Acre (34 pools), Mavila (10 pools) and Arca Pacahuara (1 pool) and included 14 species: Lu. yucumensis, Lu. aragoi, Lu. sallesi, Lu. sherlocki, Lu. shawi, Lu. walkeri, Lu nevesi, Lu. migonei, Lu. davisi, Lu. carrerai, Lu. hirsuta, Lu. (Trichophoromyia) spp., Lu. llanosmartinsi and Lu. whitmani. Lutzomyia sherlocki, Lu. walkeri and Lu. llanosmartinsi had the

  15. Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon

    Science.gov (United States)

    Zorrilla, Victor; De Los Santos, Maxy B.; Espada, Liz; Santos, Rocío del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A.; Ballard, Sarah-Blythe; Lescano, Andres G.; Vásquez, Gissella M.; Valdivia, Hugo O.

    2017-01-01

    Background Cutaneous leishmaniasis (CL) is an important health problem in the New World affecting civilian and military populations that are frequently exposed in endemic settings. The Peruvian region of Madre de Dios located near the border with Brazil is one of the most endemic CL regions in South America with more than 4,451 reported cases between 2010 and 2015 according to the Peruvian epidemiology directorate. However, little is known regarding the diversity and distribution of sand fly vectors in this region. In this study, we aimed to characterize the sand fly fauna in this endemic setting and identify sand fly species naturally infected with Leishmania possibly involved in pathogen transmission. Methods Sand fly collections were carried out during 2014 and 2015 in the communities of Flor de Acre, Villa Primavera, Mavila and Arca Pacahuara using CDC light traps and Shannon traps. Collected specimens were identified and non-blood-fed females were selected for Leishmania infection screening using kinetoplastid DNA-PCR (kDNA-PCR) and nested Real time PCR for species identification. Results A total of 10,897 phlebotomines belonging to the genus Lutzomyia (58 species) and Brumptomyia (2 species) were collected. Our study confirmed the widespread distribution and abundance of Lutzomyia (Trichophoromyia) spp. (24%), Lu. whitmani (19.4%) and Lu. yucumensis (15.8%) in the region. Analysis of Shannon diversity index indicates variability in sand fly composition across sites with Villa Primavera presenting the highest sand fly diversity and abundance. Leishmania screening by kDNA-PCR resulted in 45 positive pools collected from Flor de Acre (34 pools), Mavila (10 pools) and Arca Pacahuara (1 pool) and included 14 species: Lu. yucumensis, Lu. aragoi, Lu. sallesi, Lu. sherlocki, Lu. shawi, Lu. walkeri, Lu nevesi, Lu. migonei, Lu. davisi, Lu. carrerai, Lu. hirsuta, Lu. (Trichophoromyia) spp., Lu. llanosmartinsi and Lu. whitmani. Lutzomyia sherlocki, Lu. walkeri and Lu

  16. Constitutive modeling of stress-driven grain growth in nanocrystalline metals

    KAUST Repository

    Gürses, Ercan

    2013-02-08

    In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.

  17. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  18. Retardation of grain boundary self-diffusion in nickel doped with antimony and tin

    International Nuclear Information System (INIS)

    Padgett, R.A.; White, C.L.

    1984-01-01

    Many important metallurgical phenomena are strongly influenced or controlled by grain boundary mass transport. There is also much evidence that the composition of grain boundaries is often significantly different from the overall composition of metals and alloys, owing to strong segregation of residual (and often undetected) impurities. This segregation, which does not always advertise its presence through grain boundary brittleness, may vary markedly from heat to heat, and occasionally from specimen to specimen within a given heat. Unfortunately, there are relatively few experimental observations of how such segregation affects grain boundary mass transport, and even less fundamental understanding of how these effects occur. In this paper we present autoradiographic results on self-diffusion of 63 Ni in nickel and nickel doped with antimony and tin. While these results do not permit a quantitative evaluation of the grain boundary diffusivity, D, they qualitatively illustrate the dramatic effect that these solute elements have on the ability of nickel grain boundaries to act as preferential paths for mass transport

  19. Radiation-induced grain boundary segregation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Charlot, L.A.; Vetrano, J.S.; Simonen, E.P.

    1994-11-01

    Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550 degrees C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from G to 5 dpa) and temperature (from 175 to about 350 degrees C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 10 at% after irradiation doses to 10 dpa at an intermediate temperature of 325 degrees C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutron-irradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements

  20. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea

    International Nuclear Information System (INIS)

    Rao, Wenbo; Mao, Changping; Wang, Yigang; Huang, Huiming; Ji, Junfeng

    2017-01-01

    The radial sand ridges (RSRs) in the southwestern Yellow Sea off the Jiangsu Coast, East China have been intensively studied at least since 1975. Despite decades of studies, the provenance of the RSR sediments remains uncertain. In this study, the Nd-Sr isotopic and REE geochemical compositions of residual sediments (i.e., the acid-insoluble fractions) were investigated to determine the provenance of the RSR sediments. The Nd isotopic composition, PAAS-normalized REE patterns and characteristic parameters (e.g., Sm/Nd, (La/Sm)_N, (Gd/Yb)_N) were merely associated with source rocks but not with particle sorting while the Sr isotopic composition and REE contents of residual sediments were affected by particle sorting in addition to source rocks. The onshore RSR sediments originated mainly from mixing of the fine-grained sediments from various parts of the offshore RSR in terms of REE geochemical and isotopic analyses. Isotopic and REE geochemical comparison further reveals that the RSRs off the Jiangsu Coast were fed chiefly by the dispersal of surface sediments from the Yangtze River Mouth. Surface sediments from the Yangtze River Mouth were directly dispersed to the RSRs along the Jiangsu Coast and significantly affected the seaward part of the offshore RSR and the old Yellow River Delta area by a northward branch of the Changjiang Diluted Freshwater Plume. Only minor quantities of surface sediments from the modern Yellow River Mouth were introduced into the RSRs by the Jiangsu Coastal Current and mainly contaminated the landward part of the offshore RSR area. Our findings highlighted the potential of the Nd isotopes with REE geochemistry to trace the provenance of coastal sediments. - Highlights: • Nd isotopic and REE geochemical compositions of coastal and estuary sediments are mainly associated with source rocks. • Onshore RSR sediments originate from mixing of fine-grained sediments from various parts of the offshore RSR. • The RSRs off the Jiangsu Coast

  1. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    Science.gov (United States)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  2. Differentiation of Palaeogene sand by glauconitic and geochemical fingerprinting, Siri Canyon, Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Olivarius, M.; Knudsen, Christian; Svendsen, Johan B.

    2011-07-01

    The submarine Siri Canyon is NE-SW-oriented and located in the Danish North Sea. It contains a number of oil reservoirs with glauconite-rich sand. The reservoirs of interest in the Nini oil field are the Late Paleocene Tyr Member of the Lista Formation and the Kolga Member of the Sele Formation, presumably of Early Eocene age. These members have previously been known as the Ty and Hermod members. The sand shows signs of injection, both in cores and in seismic data. The aim of this work is to chemically characterise and fingerprint the sand in order to reveal the origin of the sand found in three horizontal wells, which could have been injected from one or both of the Tyr and Kolga members. Core samples were collected from two vertical wells of known stratigraphy to make a basis of comparison, whereas samples of the cuttings were collected from the three horizontal wells with ages primarily corresponding to the Kolga Member. The purpose was moreover to evaluate whether cuttings samples can be used for fingerprinting as an alternative to core samples. The interest in discriminating between the ages of the injected sand is the fact that the reservoir properties (porosity and permeability) are largely controlled by the original composition of the sand. Consequently, results from this study could affect the property modelling of the field. (LN)

  3. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  4. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  5. Whole-grain and blood lipid changes in apparently healthy adults

    DEFF Research Database (Denmark)

    Hollænder, Pernille Lærke Bjørndal; Ross, Alastair B; Kristensen, Mette Bredal

    2015-01-01

    BACKGROUND: Whole grains are recognized for their potential role in preventing cardiovascular diseases; however, results from randomized controlled studies on blood lipids are inconsistent, potentially because of compositional differences between individual grain types for some nutrients, including...... dietary fiber. OBJECTIVE: Using a meta-analytic approach, we assessed the effect of whole-grain compared with non-whole-grain foods on changes in total cholesterol (TC), LDL cholesterol, HDL cholesterol, and triglycerides. DESIGN: We conducted a systematic literature search in selected databases. Studies...... were included if they were randomized controlled comparisons between whole-grain foods and a non-whole-grain control in adults. A total of 6069 articles were screened for eligibility, and data were extracted from 24 studies. Weighted mean differences were calculated, and meta-regression analyses were...

  6. Technology unlocks tar sands energy

    Energy Technology Data Exchange (ETDEWEB)

    Law, C

    1967-09-25

    Tar sand processing technology has been developed primarily in the categories of extraction techniques and in-situ processing. In October, a $235 million venture into tar sand processing will be inspected by visitors from many points on the globe. A synthetic crude of premium quality will be flowing through a 16-in. pipeline from the Tar Island plant site of Great Canadian Oil Sands to Edmonton. This processing plant uses an extractive mining technique. The tar sand pay zone in this area averages approximately 150 ft in thickness with a 50-ft overburden. It has been estimated that the tar sands cannot be exploited when the formation thickness is less than 100 ft and overburden exceeds the same amount. This indicates that extraction techniques can only be used to recover approximately 15% of the tar sand deposits. An in-situ recovery technique developed by Shell of Canada is discussed in detail. In essence it is selective hydraulic fracturing, followed by the injection of emulsifying chemicals and steam.

  7. Effect of monomer composition on the properties of high temperature polymer concretes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  8. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  9. Development and Application of the Single-Spiral Inductive-Capacitive Resonant Circuit Sensor for Wireless, Real-Time Characterization of Moisture in Sand

    Directory of Open Access Journals (Sweden)

    Andrew J. DeRouin

    2013-01-01

    Full Text Available A wireless, passive embedded sensor was designed and fabricated for monitoring moisture in sand. The sensor, consisted of an inductive-capacitive (LC resonant circuit, was made of a printed spiral inductor embedded inside sand. When exposed to an electromagnetic field, the sensor resonated at a specific frequency dependent on the inductance of the inductor and its parasitic capacitance. Since the permittivity of water was much higher than dry sand, moisture in sample increased the parasitic capacitance, thus decreasing the sensor’s resonant frequency. Therefore, the internal moisture level of the sample could be easily measured through tracking the resonant frequency using a detection coil. The fabrication process of this sensor is much simpler compared to LC sensors that contain both capacitive and inductive elements, giving it an economical advantage. A study was conducted to investigate the drying rate of sand samples of different grain sizes. The experimental data showed a strong correlation with the actual moisture content in the samples. The described sensor technology can be applied for long term monitoring of localized water content inside soils and sands to understand the environmental health in these media, or monitoring moisture levels within concrete supports and road pavement.

  10. Bituminous sands : tax issues

    International Nuclear Information System (INIS)

    Patel, B.

    2004-01-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs

  11. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  12. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  13. Recolonization of macrozoobenthos on defaunated sediments in a hypertrophic brackish lagoon: effects of sulfide removal and sediment grain size.

    Science.gov (United States)

    Kanaya, Gen

    2014-04-01

    Influences of sediment types on recolonization of estuarine macrozoobenthos were tested using enclosures in a hypertrophic lagoon. Three types of azoic sediment, sand (S), sulfide-rich mud (M), and mud removed of sulfide through iron addition (MFe), were set in field for 35 days during a hypoxic period. A total of 14 taxa including opportunistic polychaetes and amphipods occurred. Infaunal community in S treatment was characterized by highest diversity, total density and biomass, and population density of five dominant taxa, while those parameters were lowest in M treatment. Sulfide removal in MFe treatment achieved much higher density, biomass, and population densities of several taxa in the sediment. Multivariate analyses demonstrated that the established community structure was unique to each treatment. These imply that dissolved sulfide level as well as sediment grain size is a key determinant for the community composition and recolonization speed of early colonists in estuarine soft-bottom habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermal Consolidation of Dredge Sand for Artificial Reef Formations

    Science.gov (United States)

    Trevino, Alexandro

    Coral Reef ecosystems have degraded over years due to a variety of environmental issues such as ocean acidification. The continuous stress has detrimental effects on coral reef ecosystems that can possibly lead to the loss of the ecosystem. Our research aims to construct a prototype of an artificial reef by consolidating dredge sand from the ship channels of South Texas. Consolidation is achieved through an aluminum polytetrafluoroethylene self-propagating high temperature process that yields a solid formation to mimic the physical properties of coral reef structures. Using thermodynamic calculations, the variation of initial components was determined that reached an adiabatic temperature with a maximum peak of 2000 K. The self-sustaining reaction front was obtained to rigidly consolidate the dredge sand only at composition concentrations exceeding a critical value of 24 wt.% Al, and 3 wt.% PTFE. The combustion synthesis produced a consolidated formation with a hardened and porous structure.

  15. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  16. Measurement and modeling of radiation-induced grain boundary grain boundary segregation in stainless steels

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Charlot, L.A.; Simonen, E.P.

    1995-08-01

    Grain boundary radiation-induced segregation (RIS) in Fe-Ni-Cr stainless alloys has been measured and modelled as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550 degrees C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350 degrees C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si levels peaked at an intermediate temperature of ∼325 degrees C reaching levels of ∼8 at. %. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Examination of reported RIS in neutron-irradiated stainless steels revealed similar effects of irradiation dose on grain boundary compositional changes for both major alloying and impurity element's. The Inverse Kirkendall model accurately predicted major alloying element RIS in ion- and neutron-irradiated alloys over the wide range of temperature and dose conditions. In addition, preliminary calculations indicate that the Johnson-Lam model can reasonably estimate grain boundary Si enrichment if back diffusion is enhanced

  17. The evolution of grain mantles and silicate dust growth at high redshift

    Science.gov (United States)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  18. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  19. Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: Experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Mischa Theis; Christian Mueller; Bengt-Johan Skrifvars; Mikko Hupa; Honghi Tran [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry

    2006-10-15

    Model biofuel ash of well-defined size and melting properties was fed into an entrained flow reactor (EFR) to simulate the deposition behaviour of commercially applied biofuel mixtures in large-scale boilers. The aim was to obtain consistent experimental data that can be used for validation of computational fluid dynamics (CFD)-based deposition models. The results showed that while up to 80 wt% of the feed was lost to the EFR wall, the composition of the model ash particles collected at the reactor exit did not change. When model ashes were fed into the reactor individually, the ash particles were found to be sticky when they contained more than 15 wt% molten phase. When model ashes were fed in mixtures with silica sand, it was found that only a small amount of sand particles was captured in the deposits; the majority rebounded upon impact. The presence of sand in the feed mixture reduced the deposit buildup by more than could be expected from linear interpolation between the model ash and the sand. The results suggested that sand addition to model ash may prevent deposit buildup through erosion. 22 refs., 6 figs., 3 tabs.

  20. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    Science.gov (United States)

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  1. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    Science.gov (United States)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  2. Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    An overview of micromechanical models of strength and deformation behaviour of nanostructured and ultrafine grained metallic materials is presented. Composite models of nanomaterials, polycrystal plasticity based models, grain boundary sliding, the effect of non-equilibrium grain boundaries...... and nanoscale properties are discussed and compared. The examples of incorporation of peculiar nanocrystalline effects (like large content of amorphous or semi-amorphous grain boundary phase, partial dislocation GB emission/glide/GB absorption based deformation mechanism, diffusion deformation, etc.......) into the continuum mechanical approach are given. The possibilities of using micromechanical models to explore the ways of the improving the properties of nanocrystalline materials by modifying their structures (e.g., dispersion strengthening, creating non-equilibrium grain boundaries, varying the grain size...

  3. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    Directory of Open Access Journals (Sweden)

    Alan J Marsh

    Full Text Available Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  4. Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    Science.gov (United States)

    Marsh, Alan J.; O’Sullivan, Orla; Hill, Colin; Ross, R. Paul; Cotter, Paul D.

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists. PMID:23894461

  5. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    Science.gov (United States)

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  6. Dependency of annealing behaviour on grain size in Al–TiC ...

    Indian Academy of Sciences (India)

    This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafinegrained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealingbehaviour of the specimens are essentially determined by the level of strain accumulation or ...

  7. Grain boundary composition and irradiation-assisted stress corrosion cracking resistance in Type 348 stainless steel

    International Nuclear Information System (INIS)

    Jacobs, A.J.; Wozadlo, G.P.; Nakata, K.

    1994-01-01

    Scanning transmission electron microscopy (STEM) analyses, in-reactor swelling mandrel tests, and laboratory constant extension rate tensile (CERT) tests were conducted on nine custom type 348 (UNS S34800) stainless steel (SS) alloys in an attempt to correlate grain boundary composition with irradiation-assisted stress corrosion cracking (IASCC) resistance. Phosphorus (P) enrichment showed the best correlation with in-reactor test results, and chromium (Cr) depletion showed the best correlation with laboratory results. Silicon (Si) and P enrichment were found to depend quantitatively on the bulk concentrations of these elements. The amount of Cr depletion seemed dependent at least partially on the amounts of Si and/or P enrichment. Si and P enrichment and Cr depletion were suppressed by higher carbon (C) contents, such as that present in commercial-purity type 348 SS

  8. Thermal activation of OSL as a geothermometer for quartz grain heating during fault movements

    International Nuclear Information System (INIS)

    Rink, W.J.; Toyoda, S.; Rees-Jones, J.; Schwarcz, H.P.

    1999-01-01

    In discussions of ESR dating of fault movements, there has been much debate whether zeroing of ESR signals is a mechanical shearing effect or caused by frictional heating. The OSL (optically stimulated luminescence) sensitivity of quartz is known to increase after heating. This thermal activation of dose response of the OSL in quartz should be useful as a geothermometer to test whether quartz particles in fault gouge had been heated. We tested the OSL sensitivities of quartz from fault gouge, and from a control (quartz grains from sandstone) and were able to show heat-induced enhancement of OSL sensitivity to a test dose. We observed that relative enhancement of OSL dose response (ratio of heated to unheated single aliquots) is significantly less for the finest grains (45-75 and 100-150 μm) compared with coarser grains (150-250 μm). These data are consistent with a model of zeroing of the quartz grains during faulting, by frictional heating localized to the grain boundaries, which would be expected to affect smaller grains more than large ones. This argues against a zeroing model in which the entire fault gouge is heated by friction. Higher laboratory preheating of sandstone quartz reduces between-aliquot variability of OSL dose response in the unheated grains to nearly zero. Unheated coarsest fault gouge grains displayed virtually no among-aliquot variability, whereas fine grains showed much larger between-aliquot variability; as with the quartz sand, variability dropped to near zero after laboratory heating, suggesting that fine grains in fault gouge have experienced a wide range of natural thermal histories during faulting. This may present a problem for ESR dating of fault gouge using the plateau method

  9. Impact fracture experiments simulating interstellar grain-grain collisions

    Science.gov (United States)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  10. FINE-GRAINED THE FIBER CONCRETE WITH APPLICATION VOLCANIC ASH, REINFORCED BY THE BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    I. A. Dzugulov

    2015-01-01

    Full Text Available The compositions of fine-grained concrete with the application of volcanic ash are developed. Are investigated compositions and properties of fine-grained fiber concrete with the volcanic ash with the application of methods of the mathematical planning of experiment. It is revealed, that the reinforcement of finegrained concrete by basaltic fibers substantially increases their strength with the bend. 

  11. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    Science.gov (United States)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  12. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  13. A phase field study of strain energy effects on solute–grain boundary interactions

    International Nuclear Information System (INIS)

    Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing

    2011-01-01

    We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.

  14. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  15. K West Basin Sand Filter Backwash Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will be used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present

  16. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  17. Tales from a distant swamp: Petrological and paleobotanical clues for the origin of the sand coal lithotype (Mississippian, Valley Fields, Virginia)

    Science.gov (United States)

    Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.

    2008-01-01

    Tournasian (Mississippian) Price Formation semianthracites (Rmax = 2.40%) in the Valley Fields of southwestern Virginia contain a lithotype described in an early-20th-century report as a "sand" coal. The Center for Applied Energy Research inherited a collection of coals containing sand coal specimens, making it possible to study the lithotype from the long-closed mines. The sand coal consists of rounded quartz sand and maceral assemblages (secretinite, corpogelinite, and rounded collotelinite) along with banded collotelinite, vitrodetrinite, and inertodetrinite assemblages. The association of rounded macerals and similar-size quartz grains suggests transport. Oxidation rims surrounding the rounded collotelinite provides further evidence for transport. Due to the semianthracite rank, palynology could not be performed. Stratigraphic evidence indicates that the Lepidodendropsis flora would have been the dominant mire vegetation. Pteridosperms in this assemblage could have contributed resin rodlets, subsequently metamorphosed to collogelinite or secretinite. While a resin rodlet origin is an intriguing possibility for the origin of the rounded macerals (at least some of the rounded maceral, the rounded collotelinite clearly has a different origin), we cannot definitively prove this origin. ?? 2008 Elsevier B.V. All rights reserved.

  18. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  19. Use of wasted foundry sand (WFS) as a partial substitute for silica in a soda lime glass

    International Nuclear Information System (INIS)

    Martin, A.C.; Ueno, O.K.; Folgueras, M.V.

    2016-01-01

    The waste foundry sand (WFS) is the main waste generates in foundry industries. Studies in the literature suggest the use of WFS in different materials, such as concrete, brick or asphalt. This work aims to partially replace the silica of a soda-lime glass by the WFS. The waste foundry sand has in its composition elements such as iron and aluminum that can affect the glass quality, which justifies the residue processing to reduce the impurity content. The treatments, that included mechanical agitation and thermal treatment, resulted in a slight decrease in the percent of iron with consequent increase of the silica content. After treatment, some sands were incorporated into the glass, that showed green color but with lower absorption intensity for the sand with less iron content. It was observed that it's possible to obtain glasses using WFS, however, there is difficulty in color controlling. (author

  20. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.