WorldWideScience

Sample records for samultang reduces apoptotic

  1. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    Science.gov (United States)

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. © 2017 The Authors.

  2. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina and Ilex paraguariensis in colon cancer cells. Methods: Antioxidant activity was determined by ORAC (Oxygen Radical Absorbance Capacity) and FRAP (Ferric Reducing Antioxidant Power). Cytotoxic ...

  3. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  4. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE......, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE....... However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce...

  5. Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune complex-mediated arthritis.

    Science.gov (United States)

    van Lent, P L; Licht, R; Dijkman, H; Holthuysen, A E; Berden, J H; van den Berg, W B

    2001-11-01

    Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex-mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.

  6. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  7. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2015-01-01

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA 2 , which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA 2 activity, leading to avoidance of non-apoptotic cell death

  8. Studying apoptotic cell death by flow cytometry

    International Nuclear Information System (INIS)

    Ormerod, Michael G.

    1998-01-01

    Full text: Programmed cell death (PCD) is of fundamental importance in the normal development of an animal and also in tumour biology and radiation biology. During PCD a sequence of changes occurs in cells giving rise to an apoptotic cascade of events. The main elements of this cascade are rapidly being elucidated. Flow cytometry has been used to follow many of these changes. It also has been used to quantify the number of apoptotic cells in a culture and, more recently, in clinical samples. In this review, the properties of apoptotic cells and the main feature of apoptotic cascade will be described. How flow cytometry can be used to follow changes during the apoptotic cascade will be discussed

  9. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    Science.gov (United States)

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  10. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  11. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  12. Mitotic and apoptotic activity in colorectal neoplasia.

    Science.gov (United States)

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.

  13. Significance of apoptotic cell death after γ-irradiation

    International Nuclear Information System (INIS)

    Wu, H.G.; Kim, I.H.; Ha, S.W.; Park, C.I.

    2003-01-01

    Full text: The objectives of this study are to investigate the significance of apoptotic death compared to total cell death after γ-ray irradiation in human Hand N cancer cell lines and to find out correlation between apoptosis and radiation sensitivity. Materials and Method: Head and neck cancer cell lines (PCI-1, PCI-13, and SNU-1066), leukemia cell line (CCRF-CEM), and fibroblast cell line (LM217) as a normal control were used for this study. Cells were irradiated using Cs-137 animal experiment irradiator. Total cell death was measured by clonogenic assay. Annexin-V staining was used to detect the fraction of apoptotic death. The resulting data was analyzed with two parameters, apoptotic index (AI) and apoptotic fraction(AF). AI is ratio of apoptotic cells to total cells, and AF is ration of apoptotic cell death to mutant frequencytion ex(Number of apoptotic cells) / (Number of total cells counted) AF = {(AI) / (1-survival fraction)} x 100 (%) Results. Surviving fraction at 2 Gy (SF2) were 0.741, 0.544, 0.313, 0.302, and 0.100 for PCI-1, PCI-13, SNU-1066, CCRF-CEM, and LM217 cell lines, respectively. Apoptosis was detected in all cell lines. Apoptotic index reached peak value at 72 hours after irradiation in head and neck cancer cell lines, and that was at 24 hours in CCRF-CEM and LM217. Total cell death increased exponentially with increasing radiation dose from 0 Gy to 8 Gy, but the change was minimal in apoptotic index (Fig. 1.). Apoptotic fractions at 2 Gy were 46%, 48%, 46%, 24%, and 19% and at 6 Gy were 20%, 33%, 35%, 17%, and 20% for PCI-1, PCI-13, SNU-1066, CCRF-CEM, and LM217, respectively. The radioresistant cell lines showed more higher apoptotic fraction at 2 Gy (Table 1.), but there was not such correlation at 6 Gy. Conclusion: All cell lines used in this study showed apoptosis after irradiation, but time course of apoptosis was different from that of leukemia cell line and normal fibroblast cell line. Reproductive cell death was more important

  14. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

    Directory of Open Access Journals (Sweden)

    José A. Sánchez Alcázar

    2015-08-01

    Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  15. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A

    Directory of Open Access Journals (Sweden)

    K Smetana

    2009-08-01

    Full Text Available The present study was designed to provide more information on nucleoli in apoptotic cells, which were represented in the present study by cultured leukemic myeloblasts (Kasumi-1 cells. The apoptotic process in these cells was produced by trichostatin A (TSA that is a histone deacetylase inhibitor with strong cytostatic effects. The selected TSA concentration added to cultures facilitated to study apoptotic and notapoptotic cells in one and the same specimen. The nucleolar diameter and density were determined using computer assisted measurement and densitometry in specimens stained for RNA. In comparison with not-apoptotic cells, in apoptotic cells, nucleolar mean diameter did not change significantly and nucleolar RNA density was also not apparently different. On the other hand, the cytoplasmic RNA density in apoptotic cells was markedly reduced. Thus it seemed to be possible that the transcribed RNA remained “frozen” within the nucleolus but its transport to the cytoplasm decreased or stopped. However, the possibility of the RNA degradation in the cytoplasm of apoptotic cells based on the present study cannot be eliminated. At this occasion it should be added that AgNORs reflecting nucleolar biosynthetic and cell proliferation activity in apoptotic cells decreased in number or disappeared. The presented results also indicated that large nucleoli intensely stained for RNA need not be necessarily related to the high nucleolar biosynthetic or cell proliferation activity and may be also present in apoptotic cells responding to the cytostatic treatment.

  16. Apoptotic markers in protozoan parasites

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  17. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-10-01

    Full Text Available Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg. Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA, methotrexate and tumor necrosis factor (TNF inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.

  18. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury.

    Science.gov (United States)

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (pfacial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally.

  19. The effect of bystander medium on the apoptotic process in HPV-G cells

    International Nuclear Information System (INIS)

    Maguire, P.; Lyng, F.; Seymour, C.; Mothersill, C.

    2003-01-01

    Full text: It has been shown in recent years that in both in vivo and in vitro situations irradiated cells cause what is known as the bystander effect. This presently unknown factor causes chromosomal aberrations, initiation of apoptosis and reduced clonogenic survival. Using the medium transfer method to study the bystander effect, this study investigated early events in the apoptotic cascade, which leads to cell death in cells receiving medium from irradiated cells but which were not themselves irradiated. Medium from irradiated ( 0.005Gy to 5Gy) human HPV G keratinocytes was harvested one hour after irradiation, sterile filtered and transferred on to unirradiated HPV-G cells. The appearance of apoptotic markers in the apoptotic cascade was monitored over a period of 48 hours following medium transfer. These apoptotic markers include loss of mitochondrial membrane potential, cytochrome c release and the activity of the death inducing caspase 3. Clonogenic survival of HPV-G cells over a nine day period was also monitored to assess the final survival of the cells. A TUNEL assay, which indicated the level of apoptosis over a 72 hour period after exposure to bystander medium was also performed. Data collected in this study indicates that for very low doses (0.005Gy) the appearance of well-characterised early 'apoptotic' markers such as changes in mitochondrial membrane potential doesn't mean the cell has committed to the apoptotic cascade leading to cell death. This has been illustrated for bystander medium from 0.005Gy irradiated cells, which causes mitochondrial membrane potential depolarisation after six-hour exposure but little difference has been noted for clonogenic survival for exposure to 0.005Gy bystander medium from that of the control. The results may help clarify how cells sector to death or survival following receipt of a signal from a radiation event

  20. To the Large Nucleolar Bodies in Apoptotic Leukaemic Granulocytic Progenitors without Further Differentiation. Are Large Nucleoli Always Present in Proliferating Cells?

    Science.gov (United States)

    Smetana, K; Kuželová, K; Zápotocký, M; Hrkal, Z

    2017-01-01

    Large nucleoli have generally been believed to be present in less differentiated and proliferating cells including the malignant ones. Such nucleoli have also been considered to be active in the biosynthetic process and major cell developmental activities. In contrast, after cytostatic treatment, apoptotic leukaemic progenitors still containing nuclei did not exhibit substantial reduction of the nucleolar size but displayed decreased nucleolar biosynthetic activity. The present study was undertaken to provide more information on the large nucleoli in spontaneously occurring apoptotic leukaemic progenitors without further differentiation. Leukaemic progenitors of established cell lineages originating from leukaemic patients represented a very convenient model for such study. Some of them exhibit morphological signs of the spontaneously occurring apoptotic process. Since such signs are expressed by nuclear and cytoplasmic morphological variability, the present study dealt with spontaneously occurring apoptotic progenitors with preserved nuclei characterized by heavy chromatin condensation and occasional fragmentation. Based of nucleolar body and nuclear maximal diameter measurements it seems to be clear that the nucleolar size in these cells was not substantially reduced, contrary to that of the nucleus. However, large nucleolar bodies in spontaneously occurring apoptotic cells were characterized by markedly reduced biosynthetic activity, as expressed by the decreased number of nucleolar transcription markers such as nucleolar fibrillar centres. In conclusion, large nucleoli may be present not only in proliferating, but also in spontaneously occurring apoptotic cells.

  1. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    Science.gov (United States)

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  2. Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B

    International Nuclear Information System (INIS)

    Yoon, J-Y; Szwajcer, D; Ishdorj, G; Benjaminson, P; Xiao, W; Kumar, R; Johnston, J B; Gibson, S B

    2013-01-01

    Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins

  3. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    Science.gov (United States)

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  4. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M; Chaurio, Ricardo; Herrmann, Martin; Muñoz, Luis E; Janko, Christina

    2013-01-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  5. Immunosuppressive effects of apoptotic cells

    Science.gov (United States)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  6. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  7. Detection of apoptotic cells in tumour paraffin sections

    International Nuclear Information System (INIS)

    Pizem, J.; Coer, A.

    2003-01-01

    Apoptosis is a distinct form of cell death characterised by specific morphological features and regulated by complex molecular mechanisms. Its deregulation is fundamental for tumour growth and progression and, moreover, anticancer therapies suppress tumour growth mainly by induction of apoptosis. Since the extent of apoptosis in a tumour may have prognostic as well as therapeutic implications, much effort has been invested in developing specific methods that can be routinely used to detect apoptotic cells in archival formalin- fixed paraffin-embedded tissue. Complex molecular pathways are involved in the regulation of apoptosis. Pro-apoptotic signals trigger activation of caspases that specifically cleave target proteins. Cleavage of proteins (caspase substrates) is responsible for morphological changes of apoptotic cells and DNA fragmentation. In the last decade, detection of apoptotic cells in formalin-fixed tumour tissue sections has been based mainly on morphology and characteristic DNA fragmentation. Recently, specific antibodies to activated caspases and cleaved target proteins (including cytokeratin 18, actin and PARP) have been produced that enable accurate detection of apoptosis in paraffin sections. (author)

  8. Endoplasmic Reticulum Stress Induces the Early Appearance of Pro-apoptotic and Anti-apoptotic Proteins in Neurons of Five Familial Alzheimer′s Disease Mice

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-01-01

    Conclusions: These findings suggest that compared with those of age-matched WT mice, ERS-associated pro-apoptotic and anti-apoptotic proteins are upregulated in 2-month-old 5×FAD mice, consistent with intracellular Aβ aggregation in neurons.

  9. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Qiang [Department of Hematology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jiandong [Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Ren, Qinyou [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Cao, Wei [Department of Interventional Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jingyue; Yu, Zhaocai [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yu, Fang [Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi' an, Shaanxi (China); Wu, Yanlan [Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Shi, Hengjun [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China)

    2012-04-27

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  10. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    International Nuclear Information System (INIS)

    Zheng, Jin; Liu, Qiang; Yang, Jiandong; Ren, Qinyou; Cao, Wei; Yang, Jingyue; Yu, Zhaocai; Yu, Fang; Wu, Yanlan; Shi, Hengjun; Liu, Wenchao

    2012-01-01

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells

  11. Reactive oxygen species are key mediators of the nitric oxide apoptotic pathway in anterior pituitary cells.

    Science.gov (United States)

    Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Cabilla, Jimena P; Duvilanski, Beatriz H

    2007-03-01

    We previously showed that long-term exposure of anterior pituitary cells to nitric oxide (NO) induces apoptosis. The intracellular signals underlying this effect remained unclear. In this study, we searched for possible mechanisms involved in the early stages of the NO apoptotic cascade. Caspase 3 was activated by NO with no apparent disruption of mitochondrial membrane potential. NO caused a rapid increase of reactive oxygen species (ROS), and this increase seems to be dependent of mitochondrial electron transport chain. The antioxidant N-acetyl-cysteine avoided ROS increase, prevented the NO-induced caspase 3 activation, and reduced the NO apoptotic effect. Catalase was inactivated by NO, while glutathione peroxidase (GPx) activity and reduced glutathione (GSH) were not modified at first, but increased at later times of NO exposure. The increase of GSH level is important for the scavenging of the NO-induced ROS overproduction. Our results indicate that ROS have an essential role as a trigger of the NO apoptotic cascade in anterior pituitary cells. The permanent inhibition of catalase may strengthen the oxidative damage induced by NO. GPx activity and GSH level augment in response to the oxidative damage, though this increase seems not to be enough to rescue the cells from the NO effect.

  12. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  13. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer.

    Science.gov (United States)

    Nguyen, Khanh-Quynh; Tsou, Wen-I; Kotenko, Sergei; Birge, Raymond B

    2013-08-01

    Receptor tyrosine kinases, Tyro-3, Axl and Mer, collectively designated as TAM, are involved in the clearance of apoptotic cells. TAM ligands, Gas6 and Protein S, bind to the surfaces of apoptotic cells, and at the same time, interact directly with TAM expressed on phagocytes, impacting the engulfment and clearance of apoptotic cells and debris. The well-tuned and balanced actions of TAM may affect a variety of human pathologies including autoimmunity, retinal degeneration, and cancer. This article emphasizes some of the emerging findings and mechanistic insights into TAM functions that are clinically relevant and possibly therapeutically targeted.

  14. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  15. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF on Mouse Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Berna Tezcan

    2017-12-01

    Full Text Available Objective: Brainderived neurotrophic factor (BDNF promotes the development and differentiation of neurons and synapses, as well as neuronal survival, by acting on specific neuronal groups in the central and peripheral nervous systems. However, the direct effect of BDNF on apoptosis in peripheral tissues is not known. The aim of this study was to investigate the relationship between BDNF and apoptosis, and the density and distribution of BDNF receptors in liver and kidney tissues by histological and immunehistochemical methods. Methods: Seven wild-type and 7 BDNF heterozygous (reduced BDNF levels male mice were used in the study. Caspase-3 and TUNEL immunehistochemical stainings were performed in order to investigate the presence of apoptosis in the liver and kidney tissues of the studied groups. Apoptosis-entering cells were counted and the groups were compared. Concentration and distribution of BDNF receptors, tropomyosin-related kinase B (TrkB and nerve growth factor receptor p75 (NGFR p75, in liver and kidney tissues were also examined by immunehistochemical analyzes. Results: As a result of Caspase-3 and TUNEL immune histochemical staining, more cells were counted to enter the apoptotic process in sections of BDNF heterozygous group compared to control group (p<0.0001. In both groups TrkB and NGFR p75 receptors in liver and kidney tissues were determined in trace amounts, but there was no difference in intensity and distribution between the studied groups. Conclusion: According to our histological and immune histochemical stainings and statistical analysis of cell count between groups, it was found that BDNF is protect ive against apoptosis in liver and kidney. The lack of difference between the studied groups in terms of intensity and distribution of BDNF receptors, suggests that BDNF receptor distribution in the liver and kidney tissues may be different from the nervous system or that BDNF may differ in affinity for these receptors.

  16. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  17. H pylori receptor MHC class II contributes to the dynamic gastric epithelial apoptotic response

    Science.gov (United States)

    Bland, David A; Suarez, Giovanni; Beswick, Ellen J; Sierra, Johanna C; Reyes, Victor E

    2006-01-01

    AIM: To investigate the role of MHC class II in the modulation of gastric epithelial cell apoptosis induced by H pylori infection. METHODS: After stimulating a human gastric epithelial cell line with bacteria or agonist antibodies specific for MHC class II and CD95, the quantitation of apoptotic and anti-apoptotic events, including caspase activation, BCL-2 activation, and FADD recruitment, was performed with a fluorometric assay, a cytometric bead array, and confocal microscopy, respectively. RESULTS: Pretreatment of N87 cells with the anti-MHC class II IgM antibody RFD1 resulted in a reduction in global caspase activation at 24 h of H pylori infection. When caspase 3 activation was specifically measured, crosslinking of MHC class II resulted in a marked reduced caspase activation, while simple ligation of MHC class II did not. Crosslinking of MHC class II also resulted in an increased activation of the anti-apoptosis molecule BCL-2 compared to simple ligation. Confocal microscope analysis demonstrated that the pretreatment of gastric epithelial cells with a crosslinking anti-MHC class II IgM blocked the recruitment of FADD to the cell surface. CONCLUSION: The results presented here demonstrate that the ability of MHC class II to modulate gastric epithelial apoptosis is at least partially dependent on its crosslinking. Furthermore, while previous research has demonstrated that MHC class II signaling can be pro-apoptotic during extended ligation, we have shown that the crosslinking of this molecule has anti-apoptotic effects during the earlier time points of H pylori infection. This effect is possibly mediated by the ability of MHC class II to modulate the activation of the pro-apoptotic receptor Fas by blocking the recruitment of the accessory molecule FADD, and this delay in apoptosis induction could allow for prolonged cytokine secretion by H pylori-infected gastric epithelial cells. PMID:16981259

  18. Apoptotic Effect of Nigella sativa on Human Lymphoma U937 Cells.

    Science.gov (United States)

    Arslan, Belkis Atasever; Isik, Fatma Busra; Gur, Hazal; Ozen, Fatih; Catal, Tunc

    2017-10-01

    Nigella sativa is from botanical Ranunculaceae family and commonly known as black seed. Apoptotic effect of N. sativa and its apoptotic signaling pathways on U937 lymphoma cells are unknown. In this study, we investigated selective cytotoxic and apoptotic effects of N. sativa extract and its apoptotic mechanisms on U937 cells. In addition, we also studied selective cytotoxic activity of thymoquinone that is the most active essential oil of N. sativa . Our results showed that N. sativa extract has selective cytotoxicity and apoptotic effects on U937 cells but not ECV304 control cells. However, thymoquinone had no significant cytotoxicity against on both cells. N. sativa extract increased significantly caspase-3, BAD, and p53 gene expressions in U937 cells. N. sativa may have anticancer drug potential and trigger p53-induced apoptosis in U937 lymphoma cells. This is the first study showing the apoptotic effect of Nigella sativa extract on U937 cells. Abbreviations used: CI: Cytotoxicity index, DMEM: Dulbecco's Modified Eagle Medium, HL: Hodgkin's lymphoma, MTT: 3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl tetrazolium bromide, RPMI: Roswell Park Memorial Institute medium.

  19. Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine Fertilized Embryo Development

    Directory of Open Access Journals (Sweden)

    Brendan Mulligan

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-α (PFT-α, on preimplantation porcine in vitro fertilized (IVF embryo development in culture. Treatment of PFT-α was administered at both early (0 to 48 hpi, and later stages (48 to 168 hpi of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3, was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-α, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-α treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-α administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-α treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-α may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-α as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

  20. BAD-mediated apoptotic pathway is associated with human cancer development.

    Science.gov (United States)

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, pBAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  1. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.

    Science.gov (United States)

    Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il

    2014-07-25

    Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  3. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway

    Science.gov (United States)

    Pérez-Garijo, Ainhoa; Fuchs, Yaron; Steller, Hermann

    2013-01-01

    Apoptotic cells can produce signals to instruct cells in their local environment, including ones that stimulate engulfment and proliferation. We identified a novel mode of communication by which apoptotic cells induce additional apoptosis in the same tissue. Strong induction of apoptosis in one compartment of the Drosophila wing disc causes apoptosis of cells in the other compartment, indicating that dying cells can release long-range death factors. We identified Eiger, the Drosophila tumor necrosis factor (TNF) homolog, as the signal responsible for apoptosis-induced apoptosis (AiA). Eiger is produced in apoptotic cells and, through activation of the c-Jun N-terminal kinase (JNK) pathway, is able to propagate the initial apoptotic stimulus. We also show that during coordinated cell death of hair follicle cells in mice, TNF-α is expressed in apoptotic cells and is required for normal cell death. AiA provides a mechanism to explain cohort behavior of dying cells that is seen both in normal development and under pathological conditions. DOI: http://dx.doi.org/10.7554/eLife.01004.001 PMID:24066226

  5. Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress.

    Science.gov (United States)

    Chimote, Ameet A; Adragna, Norma C; Lauf, Peter K

    2010-04-01

    Membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, K(i), uptake of the K congener rubidium, Rb(i), and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein-kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2-fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% K(i) loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of K(i), and accompanying water, and Rb(i) uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 microM STP exposure, the cells lost approximately 40% water and approximately 60% K(i), respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and K(i) loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4-aminopyridine (4-AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE-B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro-apoptotic STP-activation of 4-AP-sensitive voltage-gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110-122, 2010. (c) 2009 Wiley-Liss, Inc.

  6. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  7. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  8. Apoptotic pathways as regulators of recombination

    International Nuclear Information System (INIS)

    Gauny, S.S.; Kronenberg, A.; Liu, W.-C.

    2003-01-01

    Apoptosis, or programmed cell death (PCD), is a fundamental process that protects organismal integrity. In earlier work, we demonstrated that over-expression of either of two anti-apoptotic members of the BCL-2 family (BCL-2 or BCL-X L could elevate the frequency of radiation-induced mutations at the autosomal TK1 locus in human TK6 lymphoblasts that express wild-type TP53. Ectopic expression of BCL-X L also elevated the frequencies of double-strand break-induced gene conversion. The purpose of this study is to determine if BCL-2 family proteins promote radiation mutagenesis indirectly through their suppression of PCD, or whether the 'pro-mutagenic' function of these proteins can be separated from their anti-apoptotic function. We developed stable transfectants of TK6 cells that express a mutated form of BCL-X L with a single amino acid substitution in the BH1 domain that is known to interfere with the ability to suppress PCD (BCL-X L gly159ala). We also developed stable transfectants of TK6 cells that express a dominant negative caspase-9 that suppresses PCD. The results to date indicate that the mutated form of BCL-X L (gly159ala) does not suppress x-ray-induced PCD in TK6 cells, but it elevates radiation-induced TK1 mutant frequencies to the same extent as high level expression of wild-type BCL-X L . These data suggest that the anti-apoptotic function of BCL-2 family proteins is not required to elevate radiation mutagenesis. Separate experiments using TK6 cells that express a dominant negative caspase-9 indicate that this protein inhibits x-ray-induced PCD but TK1 mutant frequencies are not elevated. Taken together, the results suggest there is a separate function of BCL-2 family proteins that elevates radiation-induced mutagenesis independent of the well-known anti-apoptotic effect of these proteins of importance in human carcinogenesis

  9. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic ... Quantitative real-time polymerase chain reaction (qPCR) was performed using Taq PCR Master ... Keywords: Anti-apoptotic genes, Cervical cancer, Apoptosis, Cell viability, BCL2, .... polyclonal anti-rabbit immunoglobulin HRP-linked.

  11. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles.

    Science.gov (United States)

    Bilyy, Rostyslav O; Shkandina, Tanya; Tomin, Andriy; Muñoz, Luis E; Franz, Sandra; Antonyuk, Volodymyr; Kit, Yuriy Ya; Zirngibl, Matthias; Fürnrohr, Barbara G; Janko, Christina; Lauber, Kirsten; Schiller, Martin; Schett, Georg; Stoika, Rostyslav S; Herrmann, Martin

    2012-01-02

    Inappropriate clearance of apoptotic remnants is considered to be the primary cause of systemic autoimmune diseases, like systemic lupus erythematosus. Here we demonstrate that apoptotic cells release distinct types of subcellular membranous particles (scMP) derived from the endoplasmic reticulum (ER) or the plasma membrane. Both types of scMP exhibit desialylated glycotopes resulting from surface exposure of immature ER-derived glycoproteins or from surface-borne sialidase activity, respectively. Sialidase activity is activated by caspase-dependent mechanisms during apoptosis. Cleavage of sialidase Neu1 by caspase 3 was shown to be directly involved in apoptosis-related increase of surface sialidase activity. ER-derived blebs possess immature mannosidic glycoepitopes and are prioritized by macrophages during clearance. Plasma membrane-derived blebs contain nuclear chromatin (DNA and histones) but not components of the nuclear envelope. Existence of two immunologically distinct types of apoptotic blebs may provide new insights into clearance-related diseases.

  12. Different immunophenotypical apoptotic profiles characterise megakaryocytes of essential thrombocythaemia and primary myelofibrosis.

    Science.gov (United States)

    Florena, A M; Tripodo, C; Di Bernardo, A; Iannitto, E; Guarnotta, C; Porcasi, R; Ingrao, S; Abbadessa, V; Franco, V

    2009-04-01

    Essential thrombocythaemia (ET) and primary myelofibrosis (PMF) share some clinical and pathological features, but show different biological behaviour and prognosis. The latest contributions to understanding the nature of these disorders have focused on bone marrow microenvironment remodelling and proliferative stress, recognising megakaryocytes (MKCs) as "key-cells". The aim of this study was to investigate the apoptotic profile of ET and PMF MKCs in order to further characterise the biology of these disorders. Bone marrow biopsy samples from 30 patients with ET, and 30 patients with PMF, were immunophenotypically studied for the expression of pro-apoptotic (Fas, Fas-L, Bax, Bad) and anti-apoptotic (Bcl-2, Bcl-XL, hTERT (human telomerase reverse transcriptase)) molecules and the "executioner" molecule caspase-3. The fraction of MKCs undergoing apoptosis was assessed by deoxynucleotidyl transferase-mediated dUTP nick-end labelling. Only the mitochondrial pathway seemed to be involved in MKC apoptosis. The anti-apoptotic molecule Bcl-XL was predominantly found in ET MKCs (50.5% of ET MKCs versus 35% of PMF MKCs; p = 0.036), while pro-apoptotic molecules Bax and Bad showed a prevalent expression in PMF MKCs (30.5% of ET MKCs versus 55% of PMF MKCs; 41% of ET MKCs versus 52% of PMF MKCs; p = 0.001 and p = 0.068, respectively). A significant fraction of PMF MKCs were committed to apoptosis according to caspase-3 expression and TUNEL, while only few ET cells were committed to apoptosis. hTERT was significantly more expressed in PMF (32% of ET MKCs versus 46% of PMF MKCs; p = 0.022), in agreement with the proliferative nature of this disease. It was found that ET and PMF MKCs, which barely differ in terms of morphology and aggregation, are characterised by markedly different apoptotic profiles. The rather high apoptotic fraction of PMF was able to support the fibrotic nature of this process, while the anti-apoptotic profile of ET cells fits well with their "steady

  13. The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1.

    Science.gov (United States)

    Dyballa-Rukes, Nadine; Jakobs, Philipp; Eckers, Anna; Ale-Agha, Niloofar; Serbulea, Vlad; Aufenvenne, Karin; Zschauer, Tim-Christian; Rabanter, Lothar L; Jakob, Sascha; von Ameln, Florian; Eckermann, Olaf; Leitinger, Norbert; Goy, Christine; Altschmied, Joachim; Haendeler, Judith

    2017-04-20

    The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.

  14. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  15. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Directory of Open Access Journals (Sweden)

    Hafner Martin

    2004-08-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.

  16. Inhibition of early 99mTc-MIBI uptake by Bcl-2 anti-apoptotic protein overexpression in untreated breast carcinoma

    International Nuclear Information System (INIS)

    Del Vecchio, Silvana; Zannetti, Antonella; Aloj, Luigi; Caraco, Corradina; Ciarmiello, Andrea; Salvatore, Marco

    2003-01-01

    Lack of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake is consistently reported to predict poor response to subsequent chemotherapy in a variety of human malignant tumours. Since 99m Tc-MIBI accumulates within mitochondria, which also play a central role in apoptosis through the integration of death signals by Bcl-2 family members, we tested whether early 99m Tc-MIBI uptake is affected by alterations of the apoptotic pathway. Forty-two breast cancer patients were intravenously injected with 740 MBq of 99m Tc-MIBI and planar images were obtained 10 min post injection with the patients in the prone lateral position. Ten carcinomas failed to accumulate 99m Tc-MIBI and could not be visualised on scintigraphic images despite being larger than 1.8 cm (MIBI negative). Thirty-two of the 42 breast carcinomas showed focal uptake of 99m Tc-MIBI (MIBI positive), and 10 min tumour-to-background ratios (T/B) varied between 1.14 and 6.93. The apoptotic index, the rate of proliferation, and the expression of the anti-apoptotic Bcl-2 protein and pro-apoptotic Bax protein were assessed in surgically excised tumours. All MIBI-negative carcinomas showed a dramatic and statistically significant reduction in the apoptotic index as compared with MIBI-positive lesions (mean±SD, 0.14±0.15 vs 1.28±0.83, P 99m Tc-MIBI in breast carcinomas is affected by alterations of apoptotic pathway. High levels of Bcl-2, despite the stabilisation of mitochondrial membrane potentials, prevent accumulation of 99m Tc-MIBI in tumour cells. In conclusion, absent or reduced early 99m Tc-MIBI uptake in large tumours may indicate a Bcl-2-mediated resistance to chemo- and radiotherapy. (orig.)

  17. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  18. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia

    2006-01-01

    that overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO...... for their growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... of apoptosis was the finding that one of the key enzymes in the apoptotic process, caspase-3, was induced when DFMO was omitted from the growth medium. Furthermore, inhibition of the caspase activity significantly reduced the recruitment of cells to the sub-G1 fraction. In conclusion, deregulation of polyamine...

  19. Detection of apoptotic cells using immunohistochemistry

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Immunohistochemistry is commonly used to show the presence of apoptotic cells in situ. In this protocol, B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples are

  20. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  1. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    International Nuclear Information System (INIS)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-01-01

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent

  2. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  3. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  4. Substance P reduces apoptotic cell death possibly by modulating the immune response at the early stage after spinal cord injury.

    Science.gov (United States)

    Jiang, Mei Hua; Lim, Ji Eun; Chi, Guang Fan; Ahn, Woosung; Zhang, Mingzi; Chung, Eunkyung; Son, Youngsook

    2013-10-23

    Previously, we have reported that substance P (SP) enhanced functional recovery from spinal cord injury (SCI) possibly by the anti-inflammatory modulation associated with the induction of M2-type macrophages at the injured lesion. In this study, we explored the cytokine expression profiles and apoptotic cell death in the lesion site of the SCI after an immediate intravenous injection of SP. SP injection increased the levels of interleukin-4 (IL-4), IL-6, and IL-10 at day 1 after the SCI approximately by 2-, 9-, and 10-folds when compared with the control SCI, respectively. On the basis of double immunofluorescence staining with IL-10 and CD11b, activated macrophages or microglia expressing IL-10 appeared in the margin of the lesion site at day 1 only after the SP injection. This SP-mediated alteration in the lesion microenvironment was shown to be associated with the lower cell death of neuronal cells at day 1 and oligodendrocytes at day 5 by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which was also accompanied by a decrease in caspase-3 activation. These findings suggest that SP may reduce the inflammation-induced secondary cell death, possibly through immune modulation at an early stage after the SCI.

  5. Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis

    International Nuclear Information System (INIS)

    Hu, Z.; Li, Ch.; Chen, K.; Wang, L.E.; Sturgis, E.M.; Spitz, M.R.; Wei, Q.; Sturgis, E.M.

    2008-01-01

    Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we geno typed 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in , −938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases

  6. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  7. The effect of pomelo citrus (Citrus maxima var. Nambangan), vitamin C and lycopene towards the number reduction of mice (Mus musculus) apoptotic hepatocyte caused of ochratoxin A

    Science.gov (United States)

    Badriyah, Hastuti, Utami Sri

    2017-06-01

    Foods can contaminated by some mycotoxin produced by molds. Ochratoxin A is a sort of mycotoxin that cause structural damage on hepatocytes. Pomelo citrus (Citrus maxima var. Nambangan) contain vitamin C and lycopene that have antioxidant character. This research is done to: 1)examine the effect of pomelo citrus juice, vitamin C, and lycopene treatment towards the number reduction of mice apoptotic hepatocytes caused by ochratoxin A exposure, 2)examine the effect of vitamin C mixed with lycopene treatment towards the number reduction of mice apoptotic hepatocytes caused by ochratoxin A exposure. The experimental group used male mice strain BALB-C in the age of three month and bodyweight 20-30 grams devided in 4 experiment group and control group. The experiment group I were administered pomelo citrus juice 0,5 ml/30 grams BW/day orally during 2 weeks and then administered with ochratoxin in the dose of 1 mg/kg BW during 1 week. The experiment group II were administered with vitamin C in the dose of 5,85 µg/30g BW with the same methods. The experiment group III were administered with lycopene in the dose of 0,1025 µg/30 g BW with the same methods. The experiment group IV were administered with vitamin C mixed with lycopene with the same methods. The control group were administered with ochratoxin A in the dose of 1 mg/kg BW per oral during 1 week. The apoptotic hepatocyte number were count by microscopic observation of hepatocyte slides from experiment group as well as control group with cytochemical staining. The research result shows that: 1) the pomelo citrus juice, vitamin C as well as lycopene administration could reduce the mice apoptotic hepatocyte number caused by ochratoxin A exposure, compared with the mice apoptotic hepatocyte number caused by ochratoxin A exposure only; 2) the vitamin C mixed with lycopene could reduce the mice apoptotic hepatocyte number caused by ochratoxin A exposure compared with the mice apoptotic hepatocyte number caused by

  8. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  9. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  10. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    Science.gov (United States)

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  11. Association of anti-apoptotic Mcl-1L isoform expression with radioresistance of oral squamous carcinoma cells

    International Nuclear Information System (INIS)

    Palve, Vinayak C; Teni, Tanuja R

    2012-01-01

    Oral cancer is a common cancer and a major health problem in the Indian subcontinent. At our laboratory Mcl-1, an anti-apoptotic member of the Bcl-2 family has been demonstrated to be overexpressed in oral cancers and to predict outcome in oral cancer patients treated with definitive radiotherapy. To study the role of Mcl-1 isoforms in radiation response of oral squamous carcinoma cells (OSCC), we investigated in the present study, the association of Mcl-1 isoform expression with radiosensitivity of OSCC, using siRNA strategy. The time course expression of Mcl-1 splice variants (Mcl-1L, Mcl-1S & Mcl-1ES) was studied by RT-PCR, western blotting & immunofluorescence, post-irradiation in oral cell lines [immortalized FBM (radiosensitive) and tongue cancer AW8507 & AW13516 (radioresistant)]of relatively differing radiosensitivities. The effect of Mcl-1L knockdown alone or in combination with ionizing radiation (IR) on cell proliferation, apoptosis & clonogenic survival, was investigated in AW8507 & AW13516 cells. Further the expression of Mcl-1L protein was assessed in radioresistant sublines generated by fractionated ionizing radiation (FIR). Three to six fold higher expression of anti-apoptotic Mcl-1L versus pro-apoptotic Mcl-1S was observed at mRNA & protein levels in all cell lines, post-irradiation. Sustained high levels of Mcl-1L, downregulation of pro-apoptotic Bax & Bak and a significant (P < 0.05) reduction in apoptosis was observed in the more radioresistant AW8507, AW13516 versus FBM cells, post-IR. The ratios of anti to pro-apoptotic proteins were high in AW8507 as compared to FBM. Treatment with Mcl-1L siRNA alone or in combination with IR significantly (P < 0.01) increased apoptosis viz. 17.3% (IR), 25.3% (siRNA) and 46.3% (IR plus siRNA) and upregulated pro-apoptotic Bax levels in AW8507 cells. Combination of siRNA & IR treatment significantly (P < 0.05) reduced cell proliferation and clonogenic survival of radioresistant AW8507 & AW13516 cells

  12. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum.

    Directory of Open Access Journals (Sweden)

    Mariana Raineri

    Full Text Available Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections on glial cells (microglia and astroglia. We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

  13. Macrophage Clearance of Apoptotic Cells: A Critical Assessment

    Directory of Open Access Journals (Sweden)

    Siamon Gordon

    2018-01-01

    Full Text Available As the body continues to grow and age, it becomes essential to maintain a balance between living and dying cells. Macrophages and dendritic cells play a central role in discriminating among viable, apoptotic, and necrotic cells, as selective and efficient phagocytes, without inducing inappropriate inflammation or immune responses. A great deal has been learnt concerning clearance receptors for modified and non-self-ligands on potential targets, mediating their eventual uptake, disposal, and replacement. In this essay, we assess current understanding of the phagocytic recognition of apoptotic cells within their tissue environment; we conclude that efferocytosis constitutes a more complex process than simply removal of corpses, with regulatory interactions between the target and effector cells, which determine the outcome of this homeostatic process.

  14. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle

    DEFF Research Database (Denmark)

    Adhihetty, Peter J; Uguccioni, Giulia; Leick, Lotte

    2009-01-01

    Mitochondria are critical for cellular bioenergetics, and they mediate apoptosis within cells. We used whole body peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) knockout (KO) animals to investigate its role on organelle function, apoptotic signaling, and cytochrome......-c oxidase activity, an indicator of mitochondrial content, in muscle and other tissues (brain, liver, and pancreas). Lack of PGC-1alpha reduced mitochondrial content in all muscles (17-44%; P liver, and pancreas. However, the tissue expression of proteins involved...

  15. Regulation of Intrinsic and Extrinsic Apoptotic Pathways in Osteosarcoma Cells Following Oleandrin Treatment.

    Science.gov (United States)

    Ma, Yunlong; Zhu, Bin; Yong, Lei; Song, Chunyu; Liu, Xiao; Yu, Huilei; Wang, Peng; Liu, Zhongjun; Liu, Xiaoguang

    2016-11-23

    Our previous study has reported the anti-tumor effect of oleandrin on osteosarcoma (OS) cells. In the current study, we mainly explored its potential regulation on intrinsic and extrinsic apoptotic pathway in OS cells. Cells apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected using fluorescence staining and flow cytometry. Caspase-3 activity was detected using a commercial kit. The levels of cytoplasmic cytochrome c, mitochondrial cytochrome c, bcl-2, bax, caspase-9, Fas, FasL, caspase-8 and caspase-3 were detected by Western blotting. z-VAD-fmk was applied to block both intrinsic and extrinsic apoptosis pathways, and cells apoptosis was also tested. Furthermore, we used z-LEHD-fmk and Fas blocking antibody to inhibit intrinsic and extrinsic pathways, separately, and the selectivity of oleandrin on these pathways was explored. Results showed that oleandrin induced the apoptosis of OS cells, which was accompanied by an increase in ROS and a decrease in MMP. Furthermore, cytochrome c level was reduced in mitochondria but elevated in the cytoplasm. Caspase-3 activity was enhanced by oleandrin in a concentration- and time-dependent manner. Oleandrin also down-regulated the expression of bcl-2, but up-regulated bax, caspase-9, Fas, FasL, caspase-8 and caspase-3. In addition, the suppression of both apoptotic pathways by z-VAD-fmk greatly reverted the oleandrin-induced apoptosis. Moreover, the suppression of one pathway by a corresponding inhibitor did not affect the regulation of oleandrin on another pathway. Taken together, we concluded that oleandrin induced apoptosis of OS cells via activating both intrinsic and extrinsic apoptotic pathways.

  16. Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids

    Science.gov (United States)

    Orozco, Aaron F.; Jorgez, Carolina J.; Horne, Cassandra; Marquez-Do, Deborah A.; Chapman, Matthew R.; Rodgers, John R.; Bischoff, Farideh Z.; Lewis, Dorothy E.

    2008-01-01

    Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA+ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies. PMID:18974299

  17. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells.

    Science.gov (United States)

    Kao, Aimee W; Eisenhut, Robin J; Martens, Lauren Herl; Nakamura, Ayumi; Huang, Anne; Bagley, Josh A; Zhou, Ping; de Luis, Alberto; Neukomm, Lukas J; Cabello, Juan; Farese, Robert V; Kenyon, Cynthia

    2011-03-15

    Frontotemporal lobar degeneration is a progressive neurodegenerative syndrome that is the second most common cause of early-onset dementia. Mutations in the progranulin gene are a major cause of familial frontotemporal lobar degeneration [Baker M, et al. (2006) Nature 442:916-919 and Cruts M, et al. (2006) Nature 442:920-924]. Although progranulin is involved in wound healing, inflammation, and tumor growth, its role in the nervous system and the mechanism by which insufficient levels result in neurodegeneration are poorly understood [Eriksen and Mackenzie (2008) J Neurochem 104:287-297]. We have characterized the normal function of progranulin in the nematode Caenorhabditis elegans. We found that mutants lacking pgrn-1 appear grossly normal, but exhibit fewer apoptotic cell corpses during development. This reduction in corpse number is not caused by reduced apoptosis, but instead by more rapid clearance of dying cells. Likewise, we found that macrophages cultured from progranulin KO mice displayed enhanced rates of apoptotic-cell phagocytosis. Although most neurodegenerative diseases are thought to be caused by the toxic effects of aggregated proteins, our findings suggest that susceptibility to neurodegeneration may be increased by a change in the kinetics of programmed cell death. We propose that cells that might otherwise recover from damage or injury are destroyed in progranulin mutants, which in turn facilitates disease progression.

  18. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums

    Science.gov (United States)

    2010-01-01

    Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes (“find-me” signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key “eat-me” signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge. PMID:20805564

  19. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  20. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response.

    Science.gov (United States)

    Zervantonakis, Ioannis K; Iavarone, Claudia; Chen, Hsing-Yu; Selfors, Laura M; Palakurthi, Sangeetha; Liu, Joyce F; Drapkin, Ronny; Matulonis, Ursula; Leverson, Joel D; Sampath, Deepak; Mills, Gordon B; Brugge, Joan S

    2017-08-28

    The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-X L ) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers.High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.

  1. faloabi@uniben.edu Antiproliferative and Pro-apoptotic activities

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Keyword: Persea americana, antiproliferative activity, apoptotic effect, flow ... of the stem bark of Persea americana in MCF-7 cell line by flow cytometer. .... of an electric milling machine. ... Flow Cytometric Measurement Of Cell Proliferation:.

  2. Growth inhibitory, apoptotic and anti-inflammatory activities ...

    Indian Academy of Sciences (India)

    naturally abundant oleanolic acid, displayed diverse biolog- ical activities ... triterpenoids and natural products. CDDO and its .... ration was determined by treating with anti-BrdU antibody and Texas red ..... apoptotic and necrotic in the tumour tissue. Thus .... Palmer RM, Ashton DS and Moncada S 1988 Vascular endothelial.

  3. SYTO probes: markers of apoptotic cell demise.

    Science.gov (United States)

    Wlodkowic, Donald; Skommer, Joanna

    2007-10-01

    As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).

  4. Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2015-09-01

    Full Text Available Apoptosis is an essential biological function required during embryogenesis, tissue homeostasis, organ development and immune system regulation. It is an active cell death pathway involved in a variety of pathological conditions. During this process cytoskeletal proteins appear damaged and undergo an enzymatic disassembling, leading to formation of apoptotic features. This study was designed to examine the three-dimensional chromatin behavior and cytoskeleton involvement, in particular actin re-modeling. HL-60 cells, exposed to hyperthermia, a known apoptotic trigger, were examined by means of a Field Emission in Lens Scanning Electron Microscope (FEISEM. Ultrastructural observations revealed in treated cells the presence of apoptotic patterns after hyperthermia trigger. In particular, three-dimensional apoptotic chromatin rearrangements appeared involving the translocation of filamentous actin from cytoplasm to the nucleus. FEISEM immunogold techniques showed actin labeling and its precise three-dimensional localization in the diffuse chromatin, well separated from the condensed one. The actin presence in dispersed chromatin inside the apoptotic nucleus can be considered an important feature, indispensable to permit the apoptotic machinery evolution.

  5. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  6. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  7. Foveolar cells phagocytose apoptotic neutrophils in chronic active Helicobacter pylori gastritis.

    Science.gov (United States)

    Caruso, R A; Fedele, F; Di Bella, C; Mazzon, E; Rigoli, L

    2012-11-01

    The recognition and removal of apoptotic inflammatory cells by tissue macrophages and non-professional phagocytes, in a process called efferocytosis, is required for resolution of inflammation and is actively anti-inflammatory. We have previously demonstrated phagocytosis of apoptotic neutrophils by tumor cells in human gastric carcinoma, but to date, there have been no studies investigating this process in chronic active Helicobacter pylori gastritis. Biopsy specimens from 28 subjects with or without H. pylori infection and active inflammation were examined and graded according to the updated Sydney system. Light microscopy, electron microscopy, and Terminal Deoxynucleotidyltransferase-Mediated UTP End Labeling staining were used to identify apoptosis. H. pylori infection was detected by histology and by molecular assay in 16 out of 28 cases. DNA from paraffin-embedded gastric biopsies was amplified using primers specific for cagA, for the cag "empty site" as well as for the s and m alleles of vacA. The more virulent cagA-positive strains were found in five out of nine patients with chronic active gastritis. The vacA s1/m1 and s2/m1 genotypes were more common in nine patients with chronic active gastritis, while the vacA s2/m2 genotype was more frequent in seven patients with chronic inactive gastritis. Apoptotic neutrophils were also detected within the cytoplasmic vacuoles of the foveolar cells of nine cases with chronic active gastritis. Transmission electron micrographs revealed further apoptotic neutrophils within spacious phagosomes of foveolar cells in a similar manner to those described in late-phase efferocytosis both in vivo and in vitro. These new observations expand the morphological spectrum of gastritis in patients infected with more virulent H. pylori strains, compatible with an anti-inflammatory role for the gastric epithelial cells in their removal of apoptotic neutrophils during active chronic gastritis.

  8. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation.

    Science.gov (United States)

    Liu, Yu; Wen, Pei-Hao; Zhang, Xin-Xue; Dai, Yang; He, Qiang

    2018-05-02

    Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.

  9. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zeilstra, Jurrit; Joosten, Sander P.J. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Wensveen, Felix M. [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Dessing, Mark C.; Schuetze, Denise M. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Eldering, Eric [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Spaargaren, Marcel [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Pals, Steven T., E-mail: s.t.pals@amc.uva.nl [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which

  10. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    International Nuclear Information System (INIS)

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-01-01

    Research highlights: → Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. → Expression profiling of apoptosis-related genes in Apc Min/+ mice revealed the differential expression of pro-apoptotic Bok and Bax. → APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. → Blocking of β-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or β-catenin causes constitutively active β-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc Min/+ mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of β-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the

  11. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  12. Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV

    NARCIS (Netherlands)

    Freitas, D.S.; Coelho, M.C.F.; Souza, M.T.; Marques, A.; Ribeiro, B.M.

    2007-01-01

    The introduction of anti-apoptotic genes into plants leads to resistance to environmental stress and broad-spectrum disease resistance. The anti-apoptotic gene (p35) from a baculovirus was introduced into the genome of passion fruit plants by biobalistics. Eleven regenerated plants showed the

  13. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina ... Both plant infusions inhibited viability and cell growth of SW480 and SW620 cells. .... 100 g of dry extract, from a gallic acid calibration curve [9]. ..... antioxidant capacity and in vitro inhibition of colon.

  14. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  15. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor.

    Science.gov (United States)

    Son, S M; Byun, J; Roh, S-E; Kim, S J; Mook-Jung, I

    2014-04-17

    The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca(2+). Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca(2+) homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca(2+) dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca(2+) concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca(2+) through the InsP3 receptor (InsP3R). The Ca(2+) efflux in IRE1α-deficient cells correlates with dissociation of the Ca(2+)-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α-TRAF2-ASK1 complex. The increased cytosolic concentration of Ca(2+) induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca(2+) dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca(2+) influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca(2+) homeostasis and cell survival during ER stress and reveal a previously unknown Ca(2+)-mediated cell death signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.

  16. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  17. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  18. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    International Nuclear Information System (INIS)

    Lizarte, F.S. Neto; Tirapelli, D.P.C.; Ambrosio, S.R.; Tirapelli, C.R.; Oliveira, F.M.; Novais, P.C.; Peria, F.M.; Oliveira, H.F.; Carlotti, C.G. Junior; Tirapelli, L.F.

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors

  19. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    International Nuclear Information System (INIS)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A.

    2007-01-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl - /HCO 3 - exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes

  20. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta

    Directory of Open Access Journals (Sweden)

    Mehmet Gül

    2015-09-01

    Full Text Available Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ induced diabetic rats. Study Design: Animal experimentation. Methods: In this study, a total of 12 female Wistar Albino rats (control (n=6 and diabetic (n=6 were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20th day of pregnancy by cesarean incision under ketamine/xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM. Hematoxylin-eosin (HE and periodic acid Schiff-diastase (PAS-D staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate. Results: Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening

  1. Multicolor fluorescence technique to detect apoptotic cells in advanced coronary atherosclerotic plaques

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available Apoptosis occurring in atherosclerotic lesions has been suggested to be involved in the evolution and the structural stability of the plaques. It is still a matter of debate whether apoptosis mainly involves vascular smooth muscle cells (vSMCs in the fibrous tissue or inflammatory (namely foam cells, thus preferentially affecting the cell-poor lipid core of the atherosclerotic plaques. The aim of the present investigation was to detect the presence of apoptotic cells and to estimate their percentage in a series of atherosclerotic plaques obtained either by autopsy or during surgical atherectomy. Apoptotic cells were identified on paraffinembedded sections on the basis of cell nuclear morphology after DNA staining and/or by cytochemical reactions (TUNEL assay, immunodetection of the proteolytic poly (ADP-ribose polymerase-1 [PARP-1] fragment; biochemical procedures (identifying DNA fragmentation or PARP-1 proteolysis were also used. Indirect immunofluorescence techniques were performed to label specific antigens for either vSMCs or macrophages (i.e., the cells which are most likely prone to apoptosis in atherosclerotic lesions: the proper selection of fluorochrome labeling allowed the simultaneous detection of the cell phenotype and the apoptotic characteristics, by multicolor fluorescence techniques. Apoptotic cells proved to be less than 5% of the whole cell population, in atherosclerotic plaque sections: this is, in fact, a too low cell fraction to be detected by widely used biochemical methods, such as agarose gel electrophoresis of low-molecular-weight DNA or Western-blot analysis of PARP-1 degradation. Most apoptotic cells were of macrophage origin, and clustered in the tunica media, near or within the lipid-rich core; only a few TUNEL-positive cells were labeled for antigens specific for vSMCs. These results confirm that, among the cell populations in atherosclerotic plaques, macrophage foam-cells are preferentially involved in apoptosis

  2. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-ca...

  3. Androgen receptor in early apoptotic follicles in the porcine ovary at pregnancy.

    Directory of Open Access Journals (Sweden)

    Zbigniew Tabarowski

    2006-09-01

    Full Text Available Localization of androgen receptor (AR was investigated in ovarian follicles developing and undergoing atresia during pregnancy in the pig. Immunohistochemical staining was conducted on ovarian antral follicles isolated on different days of gestation: 10, 18, 32, 50, 70, and 90. Paraffin sections were also subjected to in situ DNA labeling. TUNEL staining revealed the presence of positive follicles on all days of pregnancy but the amount of atretic follicles increased with time. However, even on day 90 of gestation many follicles were normal, with no signs of atresia. In atretic follicles, apoptotic cells were localized predominantly in the granulosa while theca was much less affected. Atretic follicles with many apoptotic cells were negative for AR. Nuclear immunostaining for AR was positive in follicles with limited amount of apoptotic cells. The same relationship was observed in ovarian follicles isolated at various days of pregnancy.

  4. Pro- and anti-apoptotic CD95 signaling in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2011-04-01

    Full Text Available Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6 is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

  5. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing.

    Science.gov (United States)

    Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie

    2018-03-01

    Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.

  6. A Novel Non-Apoptotic Role of Procaspase-3 in the Regulation of Mitochondrial Biogenesis Activators.

    Science.gov (United States)

    Kim, Ji-Soo; Ha, Ji-Young; Yang, Sol-Ji; Son, Jin H

    2018-01-01

    The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved. Moreover, detailed phenotypic characterization of caspase-3-deficient DA cells revealed severe mitochondrial dysfunction, including an accumulation of damaged mitochondria with a characteristic swollen structure and broken cristae, reduced membrane potential, increased levels of reactive oxygen species (ROS), and deficits in mitochondrial oxidative phosphorylation (OXPHOS) enzymes. Of great interest, we found that mitochondrial biogenesis was dramatically decreased in caspase-3-deficient DA cells, whereas their capability of mitophagy was normal. In accordance with this observation, caspase-3 gene knock down (KD) resulted in dramatically decreased expression of the key transcriptional activators of mitochondrial biogenesis, such as Tfam and Nrf-1, implicating a non-apoptotic role of procaspase-3 in mitochondrial biogenesis. Therefore, a prolonged anti-apoptotic intervention targeting caspase-3 should be considered with caution due to the potential adverse effects in mitochondria dynamics resulting from a novel potential functional role of procaspase-3 in mitochondrial biogenesis via regulating the expression of mitochondrial biogenesis activators. J. Cell. Biochem. 119: 347-357, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  8. Detection of apoptotic cells using propidium iodide staining

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have

  9. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  10. Nogo-B (Reticulon-4B) functions as a negative regulator of the apoptotic pathway through the interaction with c-FLIP in colorectal cancer cells.

    Science.gov (United States)

    Kawaguchi, Nao; Tashiro, Keitaro; Taniguchi, Kohei; Kawai, Masaru; Tanaka, Keitaro; Okuda, Junji; Hayashi, Michihiro; Uchiyama, Kazuhisa

    2018-08-01

    Nogo-B is a member of the Nogo/Reticulon-4 family and has been reported to be an inducer of apoptosis in certain types of cancer cells. However, the role of Nogo-B in human cancer remains less understood. Here, we demonstrated the functions of Nogo-B in colorectal cancer cells. In clinical colorectal cancer specimens, Nogo-B was obviously overexpressed, as determined by immunohistochemistry; and Western blot analysis showed its expression level to be significantly up-regulated. Furthermore, knockdown of Nogo-B in two colorectal cancer cell lines, SW480 and DLD-1, by transfection with si-RNA (siR) resulted in significantly reduced cell viability and a dramatic increase in apoptosis with insistent overexpression of cleaved caspase-8 and cleaved PARP. The transfection with Nogo-B plasmid cancelled that apoptosis induced by siRNogoB in SW480 cells. Besides, combinatory treatment with siR-Nogo-B/staurosporine (STS) or siR-Nogo-B/Fas ligand (FasL) synergistically reduced cell viability and increased the expression of apoptotic signaling proteins in colorectal cancer cells. These results strongly support our contention that Nogo-B most likely played an oncogenic role in colorectal cancer cells, mainly by negatively regulating the extrinsic apoptotic pathway in them. Finally, we revealed that suppression of Nogo-B caused down-regulation of c-FLIP, known as a major anti-apoptotic protein, and activation of caspase-8 in the death receptor pathway. Interaction between Nogo-B and c-FLIP was shown by immunoprecipitation and immunofluorescence studies. In conclusion, Nogo-B was shown to play an important negative role in apoptotic signaling through its interaction with c-FLIP in colorectal cancer cells, and may thus become a novel therapeutic target for colorectal cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    Science.gov (United States)

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  12. Cynodon dactylon (L) Pers (Poaceae) root extract induces apoptotic ...

    African Journals Online (AJOL)

    has also been used for the treatment of weak vision, urinary tract infection, .... with an alternating 12 h dark/light cycle in ... detected by Western blot analysis as described previously .... the cyclin signaling pathways, induced apoptotic cell death ...

  13. Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages.

    Directory of Open Access Journals (Sweden)

    Jan Rupp

    Full Text Available BACKGROUND: Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae. METHODOLOGY/PRINCIPAL FINDINGS: We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ss production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-alpha response. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.

  14. Peptide-Based Photoelectrochemical Cytosensor Using a Hollow-TiO2/EG/ZnIn2S4 Cosensitized Structure for Ultrasensitive Detection of Early Apoptotic Cells and Drug Evaluation.

    Science.gov (United States)

    Wu, Rong; Fan, Gao-Chao; Jiang, Li-Ping; Zhu, Jun-Jie

    2018-02-07

    The ability to rapidly detect apoptotic cells and accurately evaluate therapeutic effects is significant in cancer research. To address this target, a biocompatible, ultrasensitive photoelectrochemical (PEC) cytosensing platform was developed based on electrochemically reduced graphene (EG)/ZnIn 2 S 4 cosensitized TiO 2 coupled with specific recognition between apoptotic cells and phosphatidylserine-binding peptide (PSBP). In this strategy, the HL-60 cells were selected as a model and C005, nilotinib, and imatinib were selected as apoptosis inducers to show cytosensing performances. In particular, a TiO 2 photoactive substrate was designed as hollow spheres to enhance the PEC performance. Graphene was electrodeposited on the hollow TiO 2 -modified electrode to accelerate electron transfer and increase conductivity, followed by in situ growth of ZnIn 2 S 4 nanocrystals as photosensitizers via successive ionic layer adsorption and reaction method, forming a TiO 2 /EG/ZnIn 2 S 4 cosensitized structure that was used as a PEC matrix to immobilize PSBP for the recognition of early apoptotic cells. The detection of apoptotic cells was based on steric hindrance originating from apoptotic cell capture to induce an obvious decrease in the photocurrent signal. The ultrahigh sensitivity of the cytosensor resulted from enhanced PEC performance, bioactivity, and high binding affinity between PSBP and apoptotic cells. Compared with other assays, incorporate toxic elements were avoided, such as Cd, Ru, and Te, which ensured normal cell growth and are appropriate for cell analysis. The designed PEC cytosensor showed a low detection limit of apoptotic cells (as low as three cells), a wide linear range from 1 × 10 3 to 5 × 10 7 cells/mL, and an accurate evaluation of therapeutic effects. It also exhibited good specificity, reproducibility, and stability.

  15. Relationship between apoptotic markers in semen from fertile men and demographic, hormonal and seminal characteristics

    DEFF Research Database (Denmark)

    Specht, Ina; Spanò, Marcello; Hougaard, Karin S

    2012-01-01

    and biological correlates of the pro-apoptotic marker Fas and the anti-apoptotic marker Bcl-xL in sperm cells of fertile men. Six hundred and four men from Greenland, Poland and Ukraine were consecutively enrolled during their pregnant wife's antenatal visits. Semen analysis was performed as recommended...

  16. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  17. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

    2013-11-01

    Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax.

    Directory of Open Access Journals (Sweden)

    Sunny R Slone

    Full Text Available Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP(+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.

  19. Combination phenylbutyrate/gemcitabine therapy effectively inhibits in vitro and in vivo growth of NSCLC by intrinsic apoptotic pathways

    Directory of Open Access Journals (Sweden)

    Schniewind Bodo

    2006-11-01

    Full Text Available Abstract Background Standard chemotherapy protocols in NSCLC are of limited clinical benefit. Histone deacetylase (HDAC inhibitors represent a new strategy in human cancer therapy. In this study the combination of the HDAC inhibitor phenylbutyrate (PB and the nucleoside analogue gemcitabine (GEM was evaluated and the mechanisms underlying increased cell death were analyzed. Methods Dose escalation studies evaluating the cytotoxicity of PB (0.01–100 mM, GEM (0.01–100 μg/ml and a combination of the two were performed on two NSCLC cell lines (BEN and KNS62. Apoptotic cell death was quantified. The involvement of caspase-dependent cell death and MAP-kinase activation was analyzed. Additionally, mitochondrial damage was determined. In an orthotopic animal model the combined effect of PB and GEM on therapy was analyzed. Results Applied as a single drug both GEM and PB revealed limited potential to induce apoptosis in KNS62 and Ben cells. Combination therapy was 50–80% (p = 0.012 more effective than either agent alone. On the caspase level, combination therapy significantly increased cleavage of the pro-forms compared to single chemotherapy. The broad spectrum caspase-inhibitor zVAD was able to inhibit caspase cleavage completely, but reduced the frequency of apoptotic cells only by 30%. Combination therapy significantly increased changes in MTP and the release of cyto-c, AIF and Smac/Diabolo into the cytoplasm. Furthermore, the inhibitors of apoptosis c-IAP1 and c-IAP2 were downregulated and it was shown that in combination therapy JNK activation contributed significantly to induction of apoptosis. The size of the primary tumors growing orthotopically in SCID mice treated for 4 weeks with GEM and PB was significantly reduced (2.2–2.7 fold compared to GEM therapy alone. The Ki-67 (KNS62: p = 0.015; Ben: p = 0.093 and topoisomerase IIα (KNS62: p = 0.008; Ben: p = 0.064 proliferation indices were clearly reduced in tumors treated by combination

  20. Methadone as an inducer of apoptotic process in cheek mucosae cells in rats

    Directory of Open Access Journals (Sweden)

    Małgorzata Stępień

    2017-11-01

    Full Text Available Methadone is an opioid medication which can reduce withdrawal symptoms in people addicted to heroin and other drugs. Methadone is used also as a pain reliever and as part of drug addiction detoxification program. Apoptosis is the physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated by signal cascades. The aim of this study was to asses how methadone induces apoptotic process in cheek mucosae cells in rats. Forty albino rats wares divided into two parts and five subgroups each. The biggest histological changes of cheek mucosae was observed in the groups with methadone. There is no indication of ability to regeneration in short time after treatment.

  1. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  2. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  3. Apoptotic intrinsic pathway proteins predict survival in canine cutaneous mast cell tumours.

    Science.gov (United States)

    Barra, C N; Macedo, B M; Cadrobbi, K G; Pulz, L H; Huete, G C; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Nishiya, A T; Fukumasu, H; Strefezzi, R F

    2018-03-01

    Mast cell tumours (MCTs) are the most frequent canine round cell neoplasms and show variable biological behaviours with high metastatic and recurrence rates. The disease is treated surgically and wide margins are recommended. Adjuvant chemotherapy and radiotherapy used in this disease cause DNA damage in neoplastic cells, which is aimed to induce apoptotic cell death. Resisting cell death is a hallmark of cancer, which contributes to the development and progression of tumours. The aim of this study was to investigate the expression of the proteins involved in the apoptotic intrinsic pathway and to evaluate their potential use as prognostic markers for canine cutaneous MCTs. Immunohistochemistry for BAX, BCL2, APAF1, Caspase-9, and Caspase-3 was performed in 50 canine cases of MCTs. High BAX expression was associated with higher mortality rate and shorter survival. BCL2 and APAF1 expressions offered additional prognostic information to the histopathological grading systems. The present results indicate that variations in the expression of apoptotic proteins are related to malignancy of cutaneous MCTs in dogs. © 2017 John Wiley & Sons Ltd.

  4. Different apoptotic responses to Plasmodium chabaudi malaria in ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... The purpose of this study is to determine whether the apoptotic responses to Plasmodium chabaudi malaria in spleen and liver via mRNA expression of three genes involved in apoptosis (Bax, Bcl-2 and. Caspase-3) are similar or not and to detect if these genes could be a good marker for apoptosis due to.

  5. Ultrastructural apoptotic lesions induced in rat thymocytes after borax ingestion.

    Science.gov (United States)

    Sylvain, I C; Berry, J P; Galle, P

    1998-01-01

    Apoptosis has gained increasing attention in recent years. Several chemical compounds induce apoptotic lesions in the thymus. Male Wistar rats received 2000 ppm of borax (Na2B4O7.10H2O) in their food for 16 days. The rats were sacrificed 2, 5, 9, 12, 19, 21, 26 and 28 days after the beginning of treatment. Thymus samples of all rats were taken. A Philips EM 300 electron microscopy was used to study the ultrastructural morphology. Serious nuclear and cytoplasmic lesions were observed. Moreover, numerous macrophages containing apoptotic cells were present in the thymus. The alterations were observed from the 2nd to the 28th day. The extent of damage was much more important in the rats sacrificed 21, 26 and 28 days after borax ingestion.

  6. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  7. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members.

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    Full Text Available Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

  8. Reduced DICER1 Expression Bestows Rheumatoid Arthritis Synoviocytes Proinflammatory Properties and Resistance to Apoptotic Stimuli.

    Science.gov (United States)

    Alsaleh, Ghada; Nehmar, Ramzi; Blüml, Stephan; Schleiss, Cédric; Ostermann, Eleonore; Dillenseger, Jean-Philippe; Sayeh, Amira; Choquet, Philippe; Dembele, Doulaye; Francois, Antoine; Salmon, Jean-Hugues; Paul, Nicodème; Schabbauer, Gernot; Bierry, Guillaume; Meyer, Alain; Gottenberg, Jacques-Eric; Haas, Gabrielle; Pfeffer, Sebastien; Vallat, Laurent; Sibilia, Jean; Bahram, Seiamak; Georgel, Philippe

    2016-08-01

    While the regulatory role of individual microRNAs (miRNAs) in rheumatoid arthritis (RA) is well established, the role of DICER1 in the pathogenesis of the disease has not yet been investigated. The purpose of this study was to analyze the expression of factors involved in miRNA biogenesis in fibroblast-like synoviocytes (FLS) from RA patients and to monitor the arthritis triggered by K/BxN serum transfer in mice deficient in the Dicer gene (Dicer(d/d) ). The expression of genes and precursor miRNAs was quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). MicroRNA macroarray profiling was monitored by qRT-PCR. Cytokines were quantified by enzyme-linked immunosorbent assay. Experimental arthritis in mice was achieved by the transfer of serum from K/BxN donors. Apoptosis was quantified using an enzyme-linked immunosorbent assay. We found decreased DICER1 and mature miRNA expression in synovial fibroblasts from RA patients. These cells were hyperresponsive to lipopolysaccharide, as evidenced by their increased interleukin-6 secretion upon stimulation. Experimental serum-transfer arthritis in Dicer(d/d) mice confirmed that an unbalanced biogenesis of miRNAs correlated with an enhanced inflammatory response. Synoviocytes from both RA patients and Dicer(d/d) mice exhibited increased resistance to apoptotic stimuli. The findings of this study further substantiate the important role of DICER1 in the maintenance of homeostasis and the regulation of inflammatory responses. © 2016, American College of Rheumatology.

  9. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  10. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Xu HL

    2015-05-01

    Full Text Available Huanli Xu,1 Xin Zhao,2 Xiaohui Liu,1 Pingxiang Xu,1 Keming Zhang,2 Xiukun Lin11Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, 2Department of Hepatobiliary Surgery, 302 Hospital of Chinese People’s Liberation Army, Beijing, People’s Republic of ChinaAbstract: Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.Keywords: traditional Chinese medicine, antitumor effects, apoptotic pathway

  11. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    Science.gov (United States)

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD + . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation.

    Science.gov (United States)

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-04-27

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades.

  13. Apoptotic potential and cell sensitivity to fractionated radiotherapy

    International Nuclear Information System (INIS)

    Rupnow, Brent A.; Murtha, Albert D.; Alarcon, Rodolfo M.; Giaccia, Amato J.; Knox, Susan J.

    1997-01-01

    Purpose/Objective: At present, the relationship between sensitivity to radiation-induced apoptosis and overall cellular radiosensitivity remains unclear. In particular, the relationship of apoptotic sensitivity to the survival of cells following fractionated irradiation has not been well studied. The purpose of the present study was to determine if increasing cell sensitivity to radiation-induced apoptosis would result in decreased clonogenic survival following single dose and fractionated irradiation in vitro. Materials and Methods: To address this, we chose a cell line (Rat-1MycER) in which the sensitivity to radiation-induced apoptosis could be altered by switching on or off the activity of a conditional c-Myc allele (c-MycER). The c-MycER construct expresses a full length c-Myc protein fused to a modified hormone binding domain of the estrogen receptor. Only in the presence of the estrogen analog 4-hydroxytamoxifen (4HT), does the conditional c-MycER become active. Apoptosis following irradiation in these cells (with and without c-MycER activation) was analyzed by flow cytometry to determine the percentage of cells undergoing apoptosis following various radiation doses and at different times after irradiation. Additionally, clonogenic survival analysis was performed following single radiation doses from 0 to 10 Gy and following five fractions of 2 or 4 Gy each. Survival of cells with and without c-MycER activation was compared. Furthermore, the effect of overexpressing the anti-apoptotic Bcl-2 gene on apoptosis induction and clonogenic survival of these cells was examined. Results: Rat-1MycER cells were strongly sensitized to radiation-induced apoptosis in a dose and time dependent manner when MycER was activated relative to cells treated without c-MycER activation. This c-Myc-mediated sensitivity to radiation-induced apoptosis was suppressed by overexpression of the anti-apoptotic protein Bcl-2. In addition to increasing apoptosis, activating c-MycER prior to

  14. Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Mayumi; Koga, Satomi [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan); Tatsuka, Masaaki, E-mail: tatsuka@pu-hiroshima.ac.jp [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan)

    2010-06-01

    In mouse thymic lymphoma 3SB cells bearing wild type p53, ionizing radiation (IR) and UV light are potent triggers of caspase-3-dependent apoptosis. Although cytochrome c was released from mitochondria as expected, caspase-9 activation was not observed in UV-exposed cells. Laser scanning confocal microscopy analysis showed that caspase-9 is localized in an unusual punctuated pattern in UV-induced apoptotic cells. In agreement with differences in the status of caspase-9 activation between IR and UV, subcellular protein fractionation experiments showed that pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1), normally a part of the apoptosome assembled in response to the release of cytochrome c from mitochondria, and B-cell lymphoma extra long (Bcl-xL), an inhibitor of the change in mitochondrial membrane permeability, were redistributed by the IR-exposure but not by the UV-exposure. Instead of the sequestration of the capase-9/apoptosome activation in UV-induced apoptotic cells, the extrinsic apoptotic signaling generated by caspase-8 activation and consequent activation of B-cell lymphoma extra long (Bid) to release cytochrome c from mitochondria was observed. Thus, the post-mitochondrial apoptotic pathway downstream of cytochrome c release cannot operate the apoptosome function in UV-induced apoptosis in thymic 3SB cells. The intracellular redistribution and sequestration of apoptosis-related proteins upon mitochondrion-based apoptotic signaling was identified as a novel cellular mechanism to respond to DNA damage in an agent type-specific manner. This finding suggests that the kind of the critical ultimate apoptosis-inducing DNA lesion complex form resulting from the agent-specific DNA damage responses is important to determine which of apoptosis signals would be activated.

  15. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway.

    Science.gov (United States)

    Lee, Jisun; Lee, Seul; Kim, Sun-Lim; Choi, Ji Won; Seo, Jeong Yeon; Choi, Doo Jin; Park, Yong Il

    2014-12-05

    Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Activation of the intrinsic-apoptotic pathway in LNCaP prostate cancer cells by genistein- topotecan combination treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Hörmann

    2013-03-01

    Full Text Available ABSTRACTBackground: Prostate cancer is the second most common cancer in American men. The development of alternative preventative and/or treatment options utilizing a combination of phytochemicals and chemotherapeutic drugs could be an attractive alternative compared to conventional carcinoma treatments. Genistein isoflavone is the primary dietary phytochemical found in soy and has demonstrated anti-tumor activities in LNCaP prostate cancer cells. Topotecan Hydrochloride (Hycamtin is an FDA-approved chemotherapy for secondary treatment of lung, ovarian and cervical cancers. The purpose of this study was to detail the potential activation of the intrinsic apoptotic pathway in LNCaP prostate cancer cells through genistein-topotecan combination treatments.Methods: LNCaP cells were cultured in complete RPMI medium in a monolayer (70-80% confluency at 37ºC and 5% CO2. Treatment consisted of single and combination groups of genistein and topotecan for 24 hours. The treated cells were assayed for i growth inhibition through trypan blue exclusion assay and microphotography , ii classification of cellular death through acridine/ ethidium bromide fluorescent staining, and iii activation of the intrinsic apoptotic pathway through Jc-1: mitochondrial membrane potential assay, cytochrome c release and Bcl-2 protein expression.Results: The overall data indicated that genistein-topotecan combination was significantly more efficacious in reducing the prostate carcinoma’s viability compared to the single treatment options. In all treatment groups, cell death occurred primarily through the activation of the intrinsic apoptotic pathway.Conclusion: The combination of topotecan and genistein has the potential to lead to treatment options with equal therapeutic efficiency as traditional chemo- and radiation therapies, but lower cell cytotoxicity and fewer side effects in patients.

  17. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver

    International Nuclear Information System (INIS)

    Patel, Nirav; Joseph, Cecil; Corcoran, George B.; Ray, Sidhartha D.

    2010-01-01

    The emergence of silymarin (SMN) as a natural remedy for liver diseases, coupled with its entry into NIH clinical trial, signifies its hepatoprotective potential. SMN is noted for its ability to interfere with apoptotic signaling while acting as an antioxidant. This in vivo study was designed to explore the hepatotoxic potential of Doxorubicin (Dox), the well-known cardiotoxin, and in particular whether pre-exposures to SMN can prevent hepatotoxicity by reducing Dox-induced free radical mediated oxidative stress, by modulating expression of apoptotic signaling proteins like Bcl-xL, and by minimizing liver cell death occurring by apoptosis or necrosis. Groups of male ICR mice included Control, Dox alone, SMN alone, and Dox with SMN pre/co-treatment. Control and Dox groups received saline i.p. for 14 days. SMN was administered p.o. for 14 days at 16 mg/kg/day. An approximate LD 50 dose of Dox, 60 mg/kg, was administered i.p. on day 12 to animals receiving saline or SMN. Animals were euthanized 48 h later. Dox alone induced frank liver injury (> 50-fold increase in serum ALT) and oxidative stress (> 20-fold increase in malondialdehyde [MDA]), as well as direct damage to DNA (> 15-fold increase in DNA fragmentation). Coincident genomic damage and oxidative stress influenced genomic stability, reflected in increased PARP activity and p53 expression. Decreases in Bcl-xL protein coupled with enhanced accumulation of cytochrome c in the cytosol accompanied elevated indexes of apoptotic and necrotic cell death. Significantly, SMN exposure reduced Dox hepatotoxicity and associated apoptotic and necrotic cell death. The effects of SMN on Dox were broad, including the ability to modulate changes in both Bcl-xL and p53 expression. In animals treated with SMN, tissue Bcl-xL expression exceeded control values after Dox treatment. Taken together, these results demonstrated that SMN (i) reduced, delayed onset, or prevented toxic effects of Dox which are typically associated with

  18. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As

  19. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells.

    Science.gov (United States)

    Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa

    2009-02-15

    Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.

  20. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    International Nuclear Information System (INIS)

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-01-01

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  1. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. © 2015 Wiley Periodicals, Inc.

  2. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways.

    Science.gov (United States)

    Siriwarin, Boondaree; Weerapreeyakul, Natthida

    2016-07-25

    Sesamol is a phenolic lignan found in sesame seeds (Sesamum indicum L.) and sesame oil. The anticancer effects and molecular mechanisms underlying its apoptosis-inducing effect were investigated in human lung adenocarcinoma (SK-LU-1) cells. Sesamol inhibited SK-LU-1 cell growth with an IC50 value of 2.7 mM and exhibited less toxicity toward normal Vero cells after 48 h of treatment (Selective index = 3). Apoptotic bodies-the hallmark of apoptosis-were observed in sesamol-treated SK-LU-1 cells, stained with DAPI. Sesamol increased the activity of caspase 8, 9, and 3/7, indicating that apoptotic cell death occurred through both extrinsic and intrinsic pathways. Sesamol caused the loss of mitochondrial transmembrane potential signifying intrinsic apoptosis induction. Decreasing Bid expression revealed crosstalk between the intrinsic and extrinsic apoptotic pathways; demonstrating clearly that sesamol induces apoptosis through both pathways in human lung adenocarcinoma (SK-LU-1) cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Mariela Rivera

    Full Text Available Curcumin, an extract from the turmeric rhizome (Curcuma longa, is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12 and Poly (ADP-ribose polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses.

  4. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells

    Science.gov (United States)

    Rivera, Mariela; Ramos, Yanilda; Rodríguez-Valentín, Madeline; López-Acevedo, Sheila; Cubano, Luis A.; Zou, Jin; Zhang, Qiang; Wang, Guangdi

    2017-01-01

    Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12) and Poly (ADP-ribose) polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses. PMID:28628644

  5. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2011-02-01

    Full Text Available Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.

  6. Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Venkatramanan Mohanram

    Full Text Available Dendritic cells (DCs are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+ T cells (ApoInf or apoptotic uninfected activated CD4(+ T cells (ApoAct induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+ T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+ T cells (ApoRest. Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.

  7. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  8. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-α2b peptide

    International Nuclear Information System (INIS)

    Blank, Viviana C.; Pena, Clara; Roguin, Leonor P.

    2010-01-01

    In the search of mimetic peptides of the interferon-α2b molecule (IFN-α2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-α2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-α2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  9. The anti-apoptotic activity associated with phosphatidylinositol transfer protein α activates the MAPK and Akt/PKB pathway

    NARCIS (Netherlands)

    Schenning, M.; Goedhart, J.; Gadella (jr.), T.W.J.; Avram, D.; Wirtz, K.W.A.; Snoek, G.T.

    2008-01-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein α (PI-TPα; SPIα cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts

  10. Inhibition of Hepatocarcinogenesis by ArtinM via Anti-proliferative and Pro-apoptotic Mechanisms.

    Science.gov (United States)

    Braz, Mariana M; Roque-Barreira, Maria Cristina; Ramalho, Fernando S; Oliveira, Carlos A; Augusto, Marlei J; Ramalho, Leandra N Z

    ArtinM is a d-mannose-binding lectin found in the seeds of Artocarpus heterophyllus (jackfruit) that interacts with N-glycans, that is associated with receptors on the surface of phagocytic cells and induces the production of inflammatory mediators. Some of them are especially important because they may be required for antitumor immune response. This study aimed to evaluate the effect of ArtinM on hepatocellular preneoplastic foci. Wistar rats received 50 mg/kg of diethyl-nitrosamine (DEN) intraperitoneal weekly for 12 weeks. From the 14th week, the treated animals received 50 μg/kg of ArtinM subcutaneous every 2 weeks until the 18th week, whereas control animals were injected with vehicle alone. Preneoplastic-related factors were estimated using histological, western blotting and RT-PCR analysis. In comparison to the groups exposed to DEN, the ArtinM-treated rats showed diminution of preneoplastic foci, decreased expression of proliferating cell nuclear antigen (PCNA), increased number of nuclear p21 and p27 stained cells, augmented number of apoptotic cells, increased expression of p53, p42/44 MAPK and p21 proteins, reduced cyclin D1 (CCND1) protein levels and increased expression of TNFα and IFNγ genes. No difference was observed in interleukin 12 (IL12) protein levels. These findings indicate that ArtinM may provide protection against hepatocarcinogenesis as a result of the induction of cell-cycle blockage and pro-apoptotic mechanisms. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    Directory of Open Access Journals (Sweden)

    Ullah Ikram

    2012-01-01

    Full Text Available Abstract Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met and thymoquinone (TQ during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (ΔψM, which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2, increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol

  12. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts.

    Science.gov (United States)

    Chen, Xin; Song, In-Hwan; Dennis, James E; Greenfield, Edward M

    2007-05-01

    PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a

  13. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    International Nuclear Information System (INIS)

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa

    2006-01-01

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy

  14. Free cholesterol accumulation impairs antioxidant activities and aggravates apoptotic cell death in menadione-induced oxidative injury.

    Science.gov (United States)

    Lee, Waisin; Xu, Mingjing; Li, Yue; Gu, Yong; Chen, Jianping; Wong, Derek; Fung, Peter C W; Shen, Jiangang

    2011-10-01

    Although the relationship between hypercholesterolemia and oxidative stress has been extensively investigated, direct evidence regarding to the roles of cholesterol accumulation in the generations of reactive oxygen species (ROS) and apoptotic cell death under oxidative stress is lack. In this study, we investigated productions of superoxide anions (O(2)(-)) and nitric oxide (NO), and apoptotic cell death in wild type Chinese hamster ovary (CHO) cells and cholesterol accumulated CHO cells genetically and chemically. Oxidative stress was induced by menadione challenge. The results revealed that abundance of free cholesterol (FC) promoted menadione-induced O(2)(-) and NO productions. FC accumulation down-regulated eNOS expression but up-regulated NADPH oxidases, and inhibited the activities of superoxide dismutase (SOD) and catalase. Treatment of menadione increased the expressions of iNOS and qp91 phox, enhanced the activities of SOD and catalase in the wild-type CHO cells but inhibited the activity of glutathione peroxidase in the cholesterol accumulated CHO cells. Moreover, FC abundance promoted apoptotic cell death in these cells. Taken together, those results suggest that free cholesterol accumulation aggravates menadione-induced oxidative stress and exacerbates apoptotic cell death. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. PURIFICATION AND FRACTIONAL ANALYSIS OF METHANOLIC EXTRACT OF WEDELIA TRILOBATA POSSESSING APOPTOTIC AND ANTI-LEUKEMIC ACTIVITY

    Science.gov (United States)

    Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar

    2017-01-01

    Background: Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. Materials and methods: The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Results: Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3rd fraction gave positive results and it shows single peak during compositional analysis through HPLC. Conclusion: The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis. PMID:28480428

  16. Antiproliferative and Pro-apoptotic activities of the stem bark of ...

    African Journals Online (AJOL)

    Persea americana (Lauraceae) have been used in traditional medicine for a wide range of illness and some of these uses have been proven scientifically. The aim of this present study is to screen for the phytochemical content, determine the proximate parameter and determine the antiproliferative and apoptotic effects of ...

  17. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  18. Detection and quantification of live, apoptotic, and necrotic human peripheral lymphocytes by single-laser flow cytometry.

    Science.gov (United States)

    Liegler, T J; Hyun, W; Yen, T S; Stites, D P

    1995-05-01

    Regulation of peripheral lymphocyte number involves a poorly understood balance between cell renewal and loss. Disrupting this balance leads to a large number of disease states. Methods which allow qualitative and quantitative measurements of cell viability are increasingly valuable to studies directed at revealing the mechanisms underlying apoptotic and necrotic cell death. Here, we have characterized a method using single-laser flow cytometry that differentiates and quantifies the relative number of live, apoptotic, and late-stage apoptotic and necrotic peripheral lymphocytes. Following in vitro gamma irradiation and staining with acridine orange in combination with ethidium bromide, three distinct populations were seen by bivariate analysis of green versus red fluorescence. The identity of each distinct fluorescent population (whether live, apoptotic, or necrotic) was determined by sorting and examination of cellular morphology by electron microscopy. This flow cytometric method is directly compared with the techniques of trypan blue exclusion and DNA fragmentation to quantify cell death following exposure to various doses of in vitro gamma irradiation and postirradiation incubation times. We extend our findings to illustrate the utility of this method beyond analyzing radiation-induced apoptotic peripheral blood mononuclear cells (PBMC); similar fluorescent patterns are shown for radiation- and corticosteroid-treated murine thymocytes, activated human PBMC, and PBMC from human immunodeficiency virus-infected individuals. Our results demonstrate that dual-parameter flow cytometric analysis of acridine orange-ethidium bromide-stained lymphocytes is overall a superior method with increased sensitivity, greater accuracy, and decreased subjectivity in comparison with the other methods tested. By using standard laser and filter settings commonly available to flow cytometric laboratories, this method allows rapid measurement of a large number of cells from a

  19. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Wu Gang; Gu Hongguang; Han Benli; Pei Xuetao

    2002-01-01

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  20. Histochemical detection and comparison of apoptotic cells in the gingival epithelium using hematoxylin and eosin and methyl green-pyronin: A pilot study.

    Science.gov (United States)

    Nayak, Aarati; Raikar, Anita; Kotrashetti, Vijaylaxmi; Nayak, Ramakant; Shree, Sumedha; Kambali, Soumya

    2016-01-01

    Apoptosis plays a critical role in the regulation of inflammation and host immune response. It helps in tissue homeostasis and a disturbance in this is often associated with disease. The use of histochemical stains like hematoxylin and eosin (H and E) and methyl green-pyronin (MGP) can provide a simple and cost-effective method for the detection of apoptotic cells. Study intended to analyze the expression of apoptosis in the gingival epithelium of healthy subjects and in patients with chronic periodontitis, using H and E and MGP. It is also proposed to correlate the apoptotic index (AI) of healthy individuals and those with chronic periodontitis. Twenty gingival biopsies were harvested from which ten samples were of healthy subjects and ten subjects who suffered from chronic periodontitis. Apoptotic cells were analyzed using MGP and H and E under light microscopy. Apoptotic cells were identified at ×100 magnification and AI was calculated. Apoptotic cells were easily distinguishable in MGP stained sections when compared to those stained using H and E. Moreover, apoptotic cell count was higher in chronic periodontitis. Statistical analyses were done by Tukey's multiple post hoc procedure. The study reveals that MGP staining can be used in a routine basic laboratory set up as one of the cost-effective methods for the detection of apoptotic cells.

  1. Histochemical detection and comparison of apoptotic cells in the gingival epithelium using hematoxylin and eosin and methyl green-pyronin: A pilot study

    Directory of Open Access Journals (Sweden)

    Aarati Nayak

    2016-01-01

    Full Text Available Background: Apoptosis plays a critical role in the regulation of inflammation and host immune response. It helps in tissue homeostasis and a disturbance in this is often associated with disease. The use of histochemical stains like hematoxylin and eosin (H and E and methyl green-pyronin (MGP can provide a simple and cost-effective method for the detection of apoptotic cells. Aim: Study intended to analyze the expression of apoptosis in the gingival epithelium of healthy subjects and in patients with chronic periodontitis, using H and E and MGP. It is also proposed to correlate the apoptotic index (AI of healthy individuals and those with chronic periodontitis. Materials and Methods: Twenty gingival biopsies were harvested from which ten samples were of healthy subjects and ten subjects who suffered from chronic periodontitis. Apoptotic cells were analyzed using MGP and H and E under light microscopy. Results: Apoptotic cells were identified at ×100 magnification and AI was calculated. Apoptotic cells were easily distinguishable in MGP stained sections when compared to those stained using H and E. Moreover, apoptotic cell count was higher in chronic periodontitis. Statistical analyses were done by Tukey's multiple post hoc procedure. Conclusion: The study reveals that MGP staining can be used in a routine basic laboratory set up as one of the cost-effective methods for the detection of apoptotic cells.

  2. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  3. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    Directory of Open Access Journals (Sweden)

    Byeon HJ

    2015-01-01

    Full Text Available Hyeong Jun Byeon,1 Insoo Kim,1 Ji Su Choi,1 Eun Seong Lee,2 Beom Soo Shin,3 Yu Seok Youn11Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 2Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea; 3Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of KoreaAbstract: The aim of the current study was to investigate the antitumor potential of poly(D,L-lactic-co-glycolic acid microspheres (PLGA MSs containing polyethylene glycol (PEG-conjugated (PEGylated tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL. PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 µm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively. The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.Keywords: Poly(D,L-lactic-co-glycolic acid, controlled release, PEGylation, TRAIL, pancreatic cancer

  4. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  5. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Science.gov (United States)

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  6. Apoptotic-cell-derived membrane microparticles and IFN-α induce an inflammatory immune response.

    Science.gov (United States)

    Niessen, Anna; Heyder, Petra; Krienke, Stefan; Blank, Norbert; Tykocinski, Lars-Oliver; Lorenz, Hanns-Martin; Schiller, Martin

    2015-07-15

    A dysregulation in the clearance of apoptotic material is considered a major pathogenetic factor for the emergence of autoimmune diseases. Apoptotic-cell-derived membrane microparticles (AdMPs), which are released from the cell surface during apoptosis, have been implicated in the pathogenesis of autoimmunity. Also of importance are cytokines, such as interferon-α (IFN-α), which is known to be a major player in patients with systemic lupus erythematosus (SLE). This study investigates the combined effect of AdMPs and IFN-α on professional phagocytes. In the presence of IFN-α, phagocytosis of AdMPs by human monocytes was significantly increased in a dose-dependent manner. The combination of AdMPs and raised IFN-α concentrations resulted in an increase in the secretion of pro-inflammatory cytokines and an upregulation of surface molecule expression involved in antigen uptake. In addition, macrophage polarisation was shifted towards a more inflammatory type of cell. The synergism between IFN-α and AdMPs seemed to be mediated by an upregulation of phosphorylated STAT1. Our results indicate that IFN-α, together with AdMPs, amplify the initiation and maintenance of inflammation. This mechanism might especially play a crucial role in disorders with a defective clearance of apoptotic material. © 2015. Published by The Company of Biologists Ltd.

  7. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  8. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    Science.gov (United States)

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  9. Developmental toxicity of toluene in male rats: effects on semen quality, testis morphology, and apoptotic neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, M.; Hossaini, A.; Hass, U.; Ladefoged, O. [Inst. of Food Safety and Toxicology, Danish Veterinary and Food Administration, Soborg (Denmark); Hougaard, K.S. [National Inst. of Occupational Health, Copenhagen (Denmark)

    2001-04-01

    In one study, pregnant Wistar rats were exposed to 1200 ppm toluene by inhalation 6 h a day from gestational day (GD) 7 to postnatal day (PND) 18. Sperm analysis was performed in the adult male offspring at PND 110 by using computer-assisted sperm analysis. Toluene did not affect the semen quality of exposed rats. In another study, pregnant rats were exposed to 1800 ppm from GD 7 to GD 20, and the male offspring were killed at PND 11, 21 or 90. Paired testes weight, histopathology and immunoexpression of vimentin in Sertoli cells were used as markers of testis toxicity. In the brain, the number of apoptotic cells in the hippocampus and cerebellum were counted after visualisation by means of the TUNEL assay. Mean body weight in pups of exposed dams was lower than in pups from control litters. This decrease was still statistically significant at PND 11, but at PND 21 and 90 the body weight of toluene-exposed males tended to approach that of the controls. Absolute and relative testes weights were reduced in all three age groups, although not to a statistically significant degree. Histopathological examinations of the testis and immuno-expression of vimentin did not reveal any differences between toluene-exposed animals and control animals. In the hippocampus, almost no apoptosis was observed in any age group, and there were no differences in apoptotic neurodegeneration between male rats exposed to 1800 ppm and control animals at PND 11, 21 or 90. Generally, a marked increase in number of apoptotic cells was observed in cerebellar granule cells at PND 21 compared with the other age groups. Toluene induced a statistically significant increase in the number of apoptotic cells in the cerebellar granule layer at PND 21. The mean was increased from 37 in the control group to 71 in the toluene-exposed group. Thus, the granular cell layer in cerebellum is a highly relevant tissue with which to study toluene-induced apoptosis, because of the continuous migration of neurons and

  10. Ginsenoside Rb1 Protects Neonatal Rat Cardiomyocytes from Hypoxia/Ischemia Induced Apoptosis and Inhibits Activation of the Mitochondrial Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2014-01-01

    Full Text Available Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1 on hypoxia/ischemia (H/I injury in cardiomyocytes in vitro and the mitochondrial apoptotic pathway mediated mechanism. Methods. Neonatal rat cardiomyocytes (NRCMs for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit. Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm. Its administration also inhibited activities of caspase-9 and caspase-3. Conclusion. Administration of GS-Rb1 during H/I in vitro is involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.

  11. Protein S blocks the extrinsic apoptotic cascade in tissue plasminogen activator/N-methyl D-aspartate-treated neurons via Tyro3-Akt-FKHRL1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Freeman Robert S

    2011-02-01

    Full Text Available Abstract Background Thrombolytic therapy with tissue plasminogen activator (tPA benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult. Results We show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM, we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates

  12. A Novel Mitochondria-Dependent Apoptotic Pathway (MAP) in Prostate Cancer (Pca) Cells

    National Research Council Canada - National Science Library

    Chandra, Dhyan

    2004-01-01

    ...) are also up-regulated (Chandra et al., J. Biol. Chem., 277, 50842-54; 2002). Later, when the apoptotic machinery is activated, I notice that there is prominent localization of active caspase-9 and -3 in the mitochondria...

  13. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  14. Increased endothelial apoptotic cell density in human diabetic erectile tissue--comparison with clinical data.

    Science.gov (United States)

    Costa, Carla; Soares, Raquel; Castela, Angela; Adães, Sara; Hastert, Véronique; Vendeira, Pedro; Virag, Ronald

    2009-03-01

    Erectile dysfunction (ED) is a common complication of diabetes. Endothelial cell (EC) dysfunction is one of the main mechanisms of diabetic ED. However, loss of EC integrity has never been assessed in human diabetic corpus cavernosum. To identify and quantify apoptotic cells in human diabetic and normal erectile tissue and to compare these results with each patient's clinical data and erection status. Eighteen cavernosal samples were collected, 13 from diabetics with ED and 5 from nondiabetic individuals. Cavernosal structure and cell proliferation status were evaluated by immunohistochemistry. Tissue integrity was assessed by terminal transferase dUTP nick end labeling assay, an index of apoptotic cell density (ACD) established and compared with each patient age, type of diabetes, arterial risk factors number, arterial/veno-occlusive disease, response to intracavernous vasoactive injections (ICI), and penile nitric oxide release test (PNORT). Establish an index of ACD and correlate those results with patient clinical data. Nondiabetic samples presented few scattered cells in apoptosis and an ACD of 7.15 +/- 0.44 (mean apoptotic cells/tissue area mm(2) +/- standard error). The diabetic group showed an increased ACD of 23.82 +/- 1.53, and apoptotic cells were located specifically at vascular sites. Rehabilitation of these endothelial lesions seemed impaired, as no evidence of EC proliferation was observed. Furthermore, higher ACD in diabetic individuals correlated to poor response to PNORT and to ICI. We provided evidence for the first time that loss of cavernosal EC integrity is a crucial event involved in diabetic ED. Furthermore, we were able to establish a threshold between ACD values and cavernosal tissue functionality, as assessed by PNORT and vasoactive ICI.

  15. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    International Nuclear Information System (INIS)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness; Cook-Moreau, Jeanne; Beneytout, Jean-Louis; Liagre, Bertrand

    2013-01-01

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression

  16. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  17. In vitro evidence for participation of DEC-205 expressed by thymic cortical epithelial cells in clearance of apoptotic thymocytes.

    NARCIS (Netherlands)

    Small, M; Kraal, G.

    2003-01-01

    Binding of apoptotic cells was compared after incubation of thymocytes with two clones of murine thymic stromal cells to which CD4(+)/CD8(+) thymocytes attach. With the BA/10, but not the BA/2, clone, thymocytes with apoptotic morphology were bound irreversibly. These tightly bound thymocytes were

  18. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  19. Exon-skipping strategy by ratio modulation between cytoprotective versus pro-apoptotic clusterin forms increased sensitivity of LNCaP to cell death.

    Directory of Open Access Journals (Sweden)

    Abdellatif Essabbani

    Full Text Available BACKGROUND: In prostate cancer the secreted form of clusterin (sCLU has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties. METHODOLOGY: In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress. RESULTS AND CONCLUSIONS: We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line "LNCaP" after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an "on demand alternative splicing" strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.

  20. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sanja Aveic

    Full Text Available BCL2 associated Athano-Gene 1 (BAG1 is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  1. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-01-01

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3 + apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b + cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1 + macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver

  2. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  3. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Castelli

    2001-01-01

    Full Text Available Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187 for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD values indicating that their plasma membranes were less rough (lower FD than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process.

  4. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic genes, BCL2, Bcl-xL, XIAP and Survivin), in cervical carcinoma cells. Methods: Annexin V-FITC/propidium iodide (PI) staining was used for the investigation of cell apoptosis. RNA RNeasy Kits was used to isolate RNA and Omniscript ...

  5. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Science.gov (United States)

    Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe

    2014-01-01

    Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071

  6. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  7. Effect of Transient Maternal Hypotension on Apoptotic Cell Death in Foetal Rat Brain

    Directory of Open Access Journals (Sweden)

    Hamit Özyürek

    2014-03-01

    Full Text Available Background: Intrauterine perfusion insufficiency induced by transient maternal hypotension has been reported to be associated with foetal brain malformations. However, the effects of maternal hypotension on apoptotic processes in the foetal brain have not been investigated experimentally during the intrauterine period. Aims: The aim of this study was to investigate the effects of transient maternal hypotension on apoptotic cell death in the intrauterine foetal brain. Study Design: Animal experimentation. Methods: Three-month-old female Wistar albino rats were allocated into four groups (n=5 each. The impact of hypoxic/ischemic injury induced by transient maternal hypotension on the 15th day of pregnancy (late gestation in rats was investigated at 48 (H17 group or 96 hours (H19 group after the insult. Control groups underwent the same procedure except for induction of hypotension (C17 and H17 groups. Brain sections of one randomly selected foetus from each pregnant rat were histopathologically evaluated for hypoxic/ischemic injury in the metencephalon, diencephalon, and telencephalon by terminal transferase-mediated dUTP nick end labelling and active cysteine-dependent aspartate-directed protease-3 (caspase-3 positivity for cell death. Results: The number of terminal transferase-mediated dUTP nick end labelling (+ cells in all the areas examined was comparable in both hypotension and control groups. The H17 group had active caspase-3 (+ cells in the metencephalon and telencephalon, sparing diencephalon, whereas the C19 and H19 groups had active caspase-3 (+ cells in all three regions. The number of active caspase-3 (+ cells in the telencephalon in the H19 group was higher compared with the metencephalon and diencephalon and compared with H17 group (p<0.05. Conclusion: Our results suggest that prenatal hypoxic/ischemic injury triggers apoptotic mechanisms. Therefore, blockade of apoptotic pathways, considering the time pattern of the insult, may

  8. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.

    Science.gov (United States)

    Lien, Li-Ming; Su, Cheng-Chen; Hsu, Wen-Hsien; Lu, Wan-Jung; Chung, Chi-Li; Yen, Ting-Lin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-11-01

    Andrographolide, a novel nuclear factor-κB (NF-κB) inhibitor, is isolated from the leaves of Andrographis paniculata. Platelet activation is relevant to a variety of coronary heart diseases. Our recent studies revealed that andrographolide possesses potent antiplatelet activity by inhibition of the p38 MAPK/(●) HO-NF-κB-ERK2 cascade. Although platelets are anucleated cells, apoptotic machinery apparatus recently has been found to regulate platelet activation and limit platelet lifespan. Therefore, we further investigated the regulatory effects of andrographolide on platelet apoptotic events. In this study, apoptotic signaling events for caspase-3, -8, and Bid were time (10-60 min)- and dose (25-100 μΜ)-dependently activated by andrographolide in human platelets. Andrographolide could also disrupt mitrochondrial membrane potential. In addition, caspase-8 inhibitor (z-IETD-fmk, 50 μΜ) was found to reverse andrographolide-induced caspase-8 activation, whereas the antagonistic anti-Fas receptor (ZB4, 500 ng/mL) and anti-tumor necrosis factor-R1 (H398, 10 µg/mL) monoclonal antibodies did not. In conclusion, this study for the first time demonstrated that andrographolide might limit platelet lifespan by initiating the caspase-8-dependent extrinsic apoptotic pathway, in spite of no direct evidence that death receptors are involved in this process proved. Overall, the various medicinal properties of andrographolide suggest its potential value in treating patients with thromboembolic disorders. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines.

    Science.gov (United States)

    Alyafee, Yusra A; Alaamery, Manal; Bawazeer, Shahad; Almutairi, Mansour S; Alghamdi, Badr; Alomran, Nawaf; Sheereen, Atia; Daghestani, Maha; Massadeh, Salam

    2018-01-01

    Anastrozole (ANS) is an aromatase inhibitor that is widely used as a treatment for breast cancer in postmenopausal women. Despite the wide use of ANS, it is associated with serious side effects due to uncontrolled delivery. In addition, ANS exhibits low solubility and short plasma half-life. Nanotechnology-based drug delivery has the potential to enhance the efficacy of drugs and overcome undesirable side effects. In this study, we aimed to prepare novel ANS-loaded PLA-PEG-PLA nanoparticles (ANS-NPs) and to compare the apoptotic response of MCF-7 cell line to both ANS and ANS-loaded NPs. ANS-NPs were synthesized using double emulsion method and characterized using different methods. The apoptotic response was evaluated by assessing cell viability, morphology, and studying changes in the expression of MAPK3 , MCL1 , and c-MYC apoptotic genes in MCF-7 cell lines. ANS was successfully encapsulated within PLA-PEG-PLA, forming monodisperse therapeutic NPs with an encapsulation efficiency of 67%, particle size of 186±27.13, and a polydispersity index of 0.26±0.11 with a sustained release profile extended over 144 hours. In addition, results for cell viability and for gene expression represent a similar apoptotic response between the free ANS and ANS-NPs. The synthesized ANS-NPs showed a similar therapeutic effect as the free ANS, which provides a rationale to pursue pre-clinical evaluation of ANS-NPs on animal models.

  10. Mis-targeting of the mitochondrial protein LIPT2 leads to apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Emanuele Bernardinelli

    Full Text Available Lipoyl(Octanoyl Transferase 2 (LIPT2 is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell, mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation. The findings presented here may help elucidate the molecular mechanisms underlying derangements of lipoic acid biosynthesis.

  11. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    Science.gov (United States)

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  12. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells

    International Nuclear Information System (INIS)

    Thiem, Suzanne M.; Chejanovsky, Nor

    2004-01-01

    Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8Δp35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle

  13. Antitumor and apoptotic effects of cucurbitacin a in A-549 lung ...

    African Journals Online (AJOL)

    Background: The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study.

  14. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB.

    Science.gov (United States)

    Matteucci, Claudia; Minutolo, Antonella; Marino-Merlo, Francesca; Grelli, Sandro; Frezza, Caterina; Mastino, Antonio; Macchi, Beatrice

    2015-04-15

    The present study addresses the issue of enhanced apoptotic response to AZT following co-treatment with an NF-kB inhibitor. To investigate this issue, different cell lines were assayed for susceptibility to AZT-mediated apoptosis without or with the addition of the NF-kB inhibitor Bay-11-7085. For further investigation, U937 cells were selected as good-responder cells to the combination treatment with 32 or 128 μM AZT, and 1 μM Bay-11-7085. Inhibition of NF-kB activation by Bay-11-7085 in cells treated with AZT was assayed through Western blot analysis of p65 expression and by EMSA. Involvement of the mitochondrial pathway of apoptosis in mechanisms underlying the improved effect of AZT following Bay-11-7085 co-treatment, was evaluated by assaying the cytochrome c release and the mitochondrial membrane potential (MMP) status using the JC-1 dye. Moreover, the transcriptional activity of both anti- and pro-apoptotic genes in U937 cells after combination treatment was quantitatively evaluated through real-time PCR. We found that the combined treatment induced high levels of cytochrome c release and of MMP collapse in association with evident changes in the expression of both anti- and pro-apoptotic genes of the Bcl-2 family. Overexpression of Bcl-2 significantly suppressed the sensitization of U937 cells to an enhanced apoptotic response to AZT following co-treatment with the NF-kB inhibitor. The new findings suggest that a combination regimen based on AZT plus an NF-kB inhibitor could represent a new chemotherapeutic tool for retrovirus-related pathologies.

  15. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  16. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  17. A histochemical comparison of methyl green-pyronin, and hematoxylin and eosin for detecting apoptotic cells in oral squamous cell carcinoma, oral leukoplakia, oral submucous fibrosis and normal oral mucosa.

    Science.gov (United States)

    Sumedha, S; Kotrashetti, V S; Somannavar, P; Nayak, R; Babji, D

    2015-05-01

    Analysis of apoptotic cells in oral pathological states could be useful for determining the rates of tissue turnover, which would help determine prognosis. The use of histochemical stains such as hematoxylin and eosin (H & E) and methyl green-pyronin (MGP) can provide a simple and cost-effective method for detecting apoptotic cells. We compared the efficacy of MGP and H & E for detecting apoptotic cells in oral squamous cell carcinoma (OSCC), oral leukoplakia (OL), oral submucous fibrosis (OSMF) and normal oral mucosa (NOM). Ten cases each of OSCC, OSMF, OL and NOM were retrieved from the archives and two serial sections were stained, one with H & E and the other with MGP. Apoptotic cells were identified at 100 x magnification and the apoptotic index was calculated. Apoptotic cells were distinguished more readily in MGP stained sections than in those stained with H & E. Also, the apoptotic cell count was greater in OSCC compared to OL, OSMF and NOM. We concluded that MGP staining can be used as a routine, cost-effective method for detecting apoptotic cells.

  18. Apoptotic abscess imaging with {sup 99m}Tc-HYNIC-rh-Annexin-V

    Energy Technology Data Exchange (ETDEWEB)

    Penn, David L.; Kim, Christopher; Zhang, Kaijun; Mukherjee, Archana; Devakumar, Devadhas; Jungkind, Donald [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Thakur, Mathew L. [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: mathew.thakur@jefferson.edu

    2010-01-15

    Abscess formation causes systemic and localized up-regulation of neutrophil [polymorphonuclear leukocytes (PMNs)] signaling pathways. In the abscess, following bacterial ingestion or PMN activation by inflammatory mediators, PMN apoptosis is elevated and leads to the externalization of phosphatidylserine. Annexin-V (AnxV) has been shown to have high affinity to externalized phosphatidylserine. We hypothesized that {sup 99m}Tc-AnxV will target high densities of apoptotic PMNs and image abscesses. AnxV, conjugated with hydrazinenicaotinamide (HYNIC), was labeled with reduced {sup 99m}TcO{sub 4}{sup -} and its purity was determined by instant thin-layer chromatography. Apoptosis was induced in isolated human PMNs by incubation in 2% saline for 17 and 22 h at 37 deg. C. PMNs were then incubated with {sup 99m}Tc-HYNIC-AnxV and associated {sup 99m}Tc was determined. Abscesses were induced in mice by intramuscular injection of bacteria or turpentine. Following intravenous administration of {sup 99m}Tc-HYNIC-AnxV, mice were imaged and tissue distribution studied at 4 and 24 h. Radiochemical purity of {sup 99m}Tc-HYNIC-AnxV was 84.9{+-}8.11%. At 17 h, {sup 99m}Tc-HYNIC-AnxV bound to apoptotic PMNs was 71.6{+-}0.01% and 48.6{+-}0.01% for experimental and control cells, respectively (P=.002). At 22 h, experimental cells retained 74.9{+-}0.02% and control cells retained 47.2{+-}0.02% (P=.005). {sup 99m}Tc-HYNIC-AnxV associated with bacterial abscesses was 1.25{+-}0.09 and 3.75{+-}0.83 percent injected dose per gram (%ID/g) at 4 and 24 h compared to turpentine abscesses which was 1.02{+-}0.16 and 0.72{+-}0.17 %ID/g at 4 (P{<=}.05) and 24 h (P{<=}.01). {sup 99m}Tc-HYNIC-AnxV represents a minimally invasive and promising agent to image and potentially distinguish between infectious and inflammatory abscesses.

  19. Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid

    KAUST Repository

    Radogna, Flavia

    2015-03-01

    Extra-neurological functions of melatonin include control of the immune system and modulation of apoptosis. We previously showed that melatonin inhibits the intrinsic apoptotic pathway in leukocytes via stimulation of high affinity MT1/MT2 receptors, thereby promoting re-localization of the anti-apoptotic Bcl-2 protein to mitochondria. Here we show that Bcl-2 sequesters pro-apoptotic Bax into mitochondria in an inactive form after melatonin treatment, thus reducing cell propensity to apoptosis. Bax translocation and the anti-apoptotic effect of melatonin are strictly dependent on the presence of Bcl-2, and on the 5-lipoxygenase (5-LOX) metabolite 5-hydroxyeicosatetraenoic acid (5-HETE), which we have previously shown to be produced as a consequence of melatonin binding to its low affinity target calmodulin. Therefore, the anti-apoptotic effect of melatonin requires the simultaneous, independent interaction with high (MT1/MT2) and low (calmodulin) affinity targets, eliciting two independent signal transduction pathways converging into Bax sequestration and inactivation. MT1/MT2 vs. lipoxygenase pathways are activated by 10-9 vs. 10-5M melatonin, respectively; the anti-apoptotic effect of melatonin is achieved at 10-5M, but drops to 10-9M upon addition of exogenous 5-HETE, revealing that lipoxygenase activation is the rate-limiting pathway. Therefore, in areas of inflammation with increased 5-HETE levels, physiological nanomolar concentrations of melatonin may suffice to maintain leukocyte viability.

  20. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  1. Early radiation effects in highly apoptotic murine lymphoma xenografts monitored by 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sakurai, Hideyuki; Mitsuhashi, Norio; Murata, Osamu; Kitamoto, Yoshizumi; Saito, Yoshihiro; Hasegawa, Masatoshi; Akimoto, Tetsuo; Takahashi, Takeo; Nasu, Sachiko; Niibe, Hideo

    1998-01-01

    Purpose: Phosphorus-31 magnetic resonance spectra ( 31 P-MRS) were obtained from highly apoptotic murine lymphoma xenografts before and up to 24 hr following graded doses of radiation ranging from 2 to 30 Gy. Radiation-induced apoptosis was also estimated up to 24 hr by scoring apoptotic cells in tumor tissue. Methods and Materials: Highly apoptotic murine lymphoma cells, EL4, were subcutaneously transplanted into C57/BL mice. At 7 days after transplantation, radiation was given to the tumor with a single dose at 3, 10, and 30 Gy. The β-ATP/Pi, PME/Pi, and β-ATP/PME values were calculated from the peak area of each spectrum. Radiation-induced apoptosis was scored with counting apoptotic cells on hematoxylin and eosin stained specimens (%apoptosis). Results: The values of % apoptosis 4, 8, and 24 hr after radiation were 21.8, 19.6, and 4.6% at 3 Gy, 35.1, 25.6, and 14.8% at 10 Gy, 38.4, 38.0, and 30.6% at 30 Gy, respectively (cf. 4.4% in control). There was no correlation between early change in β-ATP/Pi and % apoptosis at 4 hr after radiation when most of the apoptosis occurred. An early decrease in PME/Pi was observed at 4 hr after radiation dose at 30 Gy. For each dose, the values of β-ATP/Pi 24 hr after radiation were inversely related to radiation dose. Conclusion: The increase in β-ATP/Pi observed by 31 P-MRS was linked to the degree of histological recovery from radiation-induced apoptosis

  2. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2011-01-01

    Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

  3. Apoptotic-like programmed cell death in fungi: the benefits in filamentous species

    Directory of Open Access Journals (Sweden)

    Neta eShlezinger

    2012-08-01

    Full Text Available Studies conducted in the early 1990's showed for the first time that Saccahromyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologues of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with ageing and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programmed cell death (PCD instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts and multi-cellular (filamentous species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.

  4. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    International Nuclear Information System (INIS)

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir

    2012-01-01

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.

  5. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    Energy Technology Data Exchange (ETDEWEB)

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir, E-mail: amirsh@ex.tau.ac.il [Department of Molecular Biology and Ecology of Plants, Tel Aviv University,, Tel Aviv (Israel)

    2012-08-07

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.

  6. Anti-apoptotic effect of hyperglycemia can allow survival of potentially autoreactive T cells.

    Science.gov (United States)

    Ramakrishnan, P; Kahn, D A; Baltimore, D

    2011-04-01

    Thymocyte development is a tightly controlled multi-step process involving selective elimination of self-reactive and non-functional T cells by apoptosis. This developmental process depends on signaling by Notch, IL-7 and active glucose metabolism. In this study, we explored the requirement of glucose for thymocyte survival and found that in addition to metabolic regulation, glucose leads to the expression of anti-apoptotic genes. Under hyperglycemic conditions, both mouse and human thymocytes demonstrate enhanced survival. We show that glucose-induced anti-apoptotic genes are dependent on NF-κB p65 because high glucose is unable to attenuate normal ongoing apoptosis of thymocytes isolated from p65 knockout mice. Furthermore, we demonstrate that in vivo hyperglycemia decreases apoptosis of thymocytes allowing for survival of potentially self-reactive thymocytes. These results imply that hyperglycemic conditions could contribute to the development of autoimmunity through dysregulated thymic selection. © 2011 Macmillan Publishers Limited

  7. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells.

    Science.gov (United States)

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-06-06

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1), they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6) are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  8. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  9. Intrinsic, pro-apoptotic effects of IGFBP-3 on breast cancer cells are reversible: Involvement of PKA, Rho and ceramide.

    Directory of Open Access Journals (Sweden)

    Claire M Perks

    2011-05-01

    Full Text Available We established previously that IGFBP-3 could exert positive or negative effects on cell function depending upon the extracellular matrix composition and by interacting with integrin signalling. To elicit its pro-apoptotic effects IGFBP-3 bound to caveolin-1 and the beta 1 integrin receptor and increased their association culminating in MAPK activation. Disruption of these complexes or blocking the beta 1 integrin receptor reversed these intrinsic actions of IGFBP-3. In this study we have examined the signalling pathway between integrin receptor binding and MAPK activation that mediates the intrinsic, pro-apoptotic actions of IGFBP-3. We found on inhibiting protein kinase A(PKA, Rho associated kinase (ROCK and ceramide, the accentuating effects of IGFBP-3 on apoptotic triggers were reversed, such that IGFBP-3 then conferred cell survival. We established that IGFBP-3 activated Rho, the upstream regulator of ROCK and that beta1 integrin and PKA were upstream of Rho activation, whereas the involvement of ceramide was downstream. The beta 1 integrin, PKA, Rho and ceramide were all upstream of MAPK activation. These data highlight key components involved in the pro-apoptotic effects of IGFBP-3 and that inhibiting them leads to a reversal in the action of IGFBP-3.

  10. Apoptotic effect of a novel kefir product, PFT, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism

    Science.gov (United States)

    GHONEUM, MAMDOOH; GIMZEWSKI, JAMES

    2014-01-01

    We examined the apoptotic effect of a novel Probiotics Fermentation Technology (PFT) kefir grain product; PFT is a natural mixture composed primarily of Lactobacillus kefiri P-IF, a specific strain of L. kefiri with unique growth characteristics. The aim of this study was to examine the apoptotic effect of PFT on human multidrug-resistant (MDR) myeloid leukemia (HL60/AR) cells in vitro and explore the mechanistic approach underlying its effect. HL60/AR cells were cultured with PFT (0.6–5.0 mg/ml) for 3 days. The apoptotic effect of PFT was assessed through examination of percent apoptosis, caspase 3 activation, Bcl-2 expression levels and changes in mitochondrial membrane potential (MMP). PFT induced apoptosis in HL60/AR cells in a dose-dependent manner which was maximal at 67.5% for 5 mg/ml. Induction of apoptosis was associated with activation of caspase 3, decreased expression of Bcl-2 and decreased polarization of MMP. In addition, PFT showed a unique characteristic of piercing holes in HL60/AR cells, as indicated by AFM studies. This hole induction may be responsible for the apoptotic effect on cancer cells. These results suggest that PFT may act as a potential therapy for the treatment of MDR leukemia. PMID:24430613

  11. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  12. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hwa; Ha, Ji-Hyang [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kim, Yul [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Bae, Kwang-Hee [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Park, Jae-Yong [Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Yoon, Ho Sup [Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511 (Singapore); Park, Sung Goo; Park, Byoung Chul [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Yi, Gwan-Su, E-mail: gsyi@kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Chi, Seung-Wook, E-mail: swchi@kribb.re.kr [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  13. Expression of defender against apoptotic death (DAD-1) in iris and dianthus petals

    NARCIS (Netherlands)

    Kop, van der D.A.M.; Ruys, G.; Dees, D.; Schoot, van der C.; Boer, de A.D.; Doorn, van W.G.

    2003-01-01

    The gene defender against apoptotic death (DAD-1) prevents programmed cell death in animal cells. We investigated the expression pattern of DAD-1 in petals of iris (Iris x hollandica cv. Blue Magic) and carnation (Dianthus caryophyllus cv. Etarro). DAD-1 expression in Iris petals was strongly

  14. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Zeriouh, Wafa; Nani, Abdelhafid; Belarbi, Meriem; Dumont, Adélie; de Rosny, Charlotte; Aboura, Ikram; Ghanemi, Fatima Zahra; Murtaza, Babar; Patoli, Danish; Thomas, Charles; Apetoh, Lionel; Rébé, Cédric; Delmas, Dominique; Khan, Naim Akhtar; Ghiringhelli, François; Rialland, Mickael; Hichami, Aziz

    2017-01-01

    Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.

  15. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  16. Phosphatidylserine-Liposomes Promote Tolerogenic Features on Dendritic Cells in Human Type 1 Diabetes by Apoptotic Mimicry

    Directory of Open Access Journals (Sweden)

    Silvia Rodriguez-Fernandez

    2018-02-01

    Full Text Available Type 1 diabetes (T1D is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC generation. These liposomes contained phosphatidylserine (PS—the main signal of the apoptotic cell membrane—and β-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological

  17. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2016-06-01

    Full Text Available Background Beta-ionone is an aroma compound found in the Rosaceae family. Some evidence supported that beta-ionone has a great potential for cancer prevention. To date, the anti-proliferative and apoptotic effects of beta-ionone in human leukemia cell line K562 were not studied. Objectives Hence, we investigated whether beta-ionone could inhibit cell growth and induce apoptosis in the K562 cells. Materials and Methods In this experimental study, human leukemia cell line K562 was cultured and anti-proliferation effect of beta-ionone with different doses (25 - 400 µm at different times (24 - 96 hours on treated cells was evaluated by the MTT assay. To determine apoptosis rate, the Hoechst 33342 staining and flow cytometry was performed. Results The MTT assay showed that beta-ionone inhibited proliferation of K562 cells in a dose-dependent manner significantly (P = 0.0008. Moreover, the increased apoptotic rate was found after incubation of K562 cells with 200 µm beta-ionone. The Hoechst staining and flow cytometry analysis indicated that beta-ionone could increase apoptosis of K562 cells in a dose-dependent manner. Conclusions The results demonstrated that beta-ionone has anti-proliferative and apoptotic effects on K562 cells, and in the future may be used in the treatment of some leukemia sub-types.

  18. The importance of apoptotic activity and plasma NT-proBNP levels in patients with acute exacerbation of decompensated heart failure and their relation to different drugs and comorbidities

    International Nuclear Information System (INIS)

    Sarimehmetoglu, A. C.; Gultekin, N.; Yildiz, A.; Kocas, C.; Ersanli, M.; Kucukates, E.

    2014-01-01

    Objective: To demonstrate the presence and importance of apoptotic activity in heart failure during acute exacerbations and to investigate the effects of different drugs used and co-morbidities on levels of N-Terminal pro-Brain Natriuretic Peptide and apoptotic activity on admission and during hospitalisation. Methods: The descriptive study was conducted at the emergency department of Istanbul University Cardiology Institute between October 2010 and May 2011 and comprised patients with complaints of shortness of breath, and who were evaluated as acutely exacerbated decompensated heart failure with an aetiology of ischaemic or dilated cardiomyopathy. Apoptotic activity and N-Terminal pro-Brain Natriuretic Peptide levels were measured on admission and on the seventh day of treatment. SPSS 15 was used for statistical analysis. Results: Of the 89 patients in the study, 67(75%) were males. Overall mean age of the study sample was 61+-12 years. Patients who had N-Terminal pro-Brain Natriuretic Peptide levels higher than 6000 pg/ml on admission had greater in-patient mortality rate (p<0.001). N-Terminal pro-Brain Natriuretic Peptide levels decreased significantly on the seventh day of treatment compared to the admission values (p<0.012). Apoptotic activity levels, although not statistically significant, increased on the seventh day compared with admission values (p<0.12). Apoptotic activity levels on the 7th day were associated with in-patient deaths (p<0.002). Dopamine infusion in the treatment group during hospitalisation significantly increased apoptotic activity (p<0.035), whereas there was a trend towards decreased apoptotic activity levels with spironolactone (p<0.07). Treatment with beta-blockers did not change apoptotic activity levels (p<0.751), whereas lack of beta-blocker therapy increased apoptotic activity (p<0.02). Conclusion: N-Terminal pro-Brain Natriuretic Peptide may be an important risk predictor in decompensated heart failure exacerbations during

  19. Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite

    Science.gov (United States)

    Shen, Zhong-Ying; Shen, Wen-Ying; Chen, Ming-Hua; Shen, Jian; Cai, Wei-Jie; Yi, Zeng

    2002-01-01

    AIM: To Quantitatively analyze the nitri oxide (NO) and Ca2+ in apoptosis of esophageal carcinoma cells induced by arsenic trioxide (As2O3). METHODS: The cell line SHEEC1, a malignant esophageal epithelial cell induced by HPV in synergy with TPA in our laboratory, was cultured in a serum-free medium and treated with As2O3. Before and after administration of As2O3, NO production in cultured medium was detected quantitatively using the Griess Colorimetric method. Intracellular Ca2+ was labeled by using the fluorescent dye Fluo3-AM and detected under confocal laser scanning microscope (CLSM), which was able to acquire data in real-time enabling Ca2+ dynamics of individual cells in vitro. The apoptotic cells were examined under electron microscopy. RESULTS: Intracellular concentration of Ca2+ increased from 1.00 units to 1.09-1.38 units of fluorescent intensity at As2O3 treatment and NO products subsequently released from As2O3-treated cells increased from 0.98-1.00 × 10-2 μmol·L-1 up to 1.48-1.52 × 10-2 μmol·L-1 and maintained in a high level continuously. Finally apoptosis of cells occurred, chromatin being agglutinated, cells shrunk, nuclei became round and mitochondria swelled. CONCLUSION: Ca2+ and NO increased with cell damage and apoptosis in cells treated by As2O3. The Ca2+ is an initial messenger to the apoptotic pathway. To investigate Ca2+ and NO will be a new direction for studying the apoptotic signaling messenger of the esophageal carcinoma cells induced by As2O3. PMID:11833068

  20. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    Science.gov (United States)

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  1. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Porrini, Vanessa; Sarnico, Ilenia; Benarese, Marina; Branca, Caterina; Mota, Mariana; Lanzillotta, Annamaria; Bellucci, Arianna; Parrella, Edoardo; Faggi, Lara; Spano, Pierfranco; Imbimbo, Bruno Pietro; Pizzi, Marina

    2017-01-18

    CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.

  2. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Science.gov (United States)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  3. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells.

    Science.gov (United States)

    Stump, Trevor A; Santee, Brittany N; Williams, Lauren P; Kunze, Rachel A; Heinze, Chelsae E; Huseman, Eric D; Gryka, Rebecca J; Simpson, Denise S; Amos, Samson

    2017-07-01

    Glioblastoma (GBM) is highly proliferative, infiltrative, malignant and the most deadly form of brain tumour. The epidermal growth factor receptor (EGFR) is overexpressed, amplified and mutated in GBM and has been shown to play key and important roles in the proliferation, growth and survival of this tumour. The goal of our study was to investigate the antiproliferative, apoptotic and molecular effects of apigenin in GBM. Proliferation and viability tests were carried out using the trypan blue exclusion, MTT and lactate dehydrogenase (LDH) assays. Flow cytometry was used to examine the effects of apigenin on the cell cycle check-points. In addition, we determined the effects of apigenin on EGFR-mediated signalling pathways by Western blot analyses. Our results showed that apigenin reduced cell viability and proliferation in a dose- and time-dependent manner while increasing cytotoxicity in GBM cells. Treatment with apigenin-induced is poly ADP-ribose polymerase (PARP) cleavage and caused cell cycle arrest at the G2M checkpoint. Furthermore, our data revealed that apigenin inhibited EGFR-mediated phosphorylation of mitogen-activated protein kinase (MAPK), AKT and mammalian target of rapamycin (mTOR) signalling pathways and attenuated the expression of Bcl-xL. Our results demonstrated that apigenin has potent inhibitory effects on pathways involved in GBM proliferation and survival and could potentially be used as a therapeutic agent for GBM. © 2017 Royal Pharmaceutical Society.

  4. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    Science.gov (United States)

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  6. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  7. Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q.

    Science.gov (United States)

    Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C; Kolodner, Richard D; Edelmann, Winfried; Wang, Jean Y J

    2008-09-16

    Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients.

  8. ANTIPROLIFERATIVE AND APOPTOTIC EFFECTS OF THE ESSENTIAL OIL OF ORIGANUM ONITES AND CARVACROL ON HEP-G2 CELLS

    Directory of Open Access Journals (Sweden)

    Özlem TOMSUK

    2011-08-01

    Full Text Available The essential oil Origanum onites L. and its phenolic constituent carvacrol were examined for their cytotoxic and apoptotic effects in a human hepatocellular carcinoma cells Hep-G2. WST-1 and neutral red uptake assays were performed to determine the inhibitory effects of the oil and carvacrol on the growth of the cells. Possible induction of apoptosis by Origanum oil and carvacrol was further investigated by acridine orange/ethidium bromide (AO/EB staining. Results showed that the Ori- ganum oil and carvacrol was significantly cytotoxic and induced apoptosis in Hep-G2 cells. IC₅₀ value of essential oil and carvacrol was found about 0,009% (v/v and 500 μM, respectively. After incuba- tion of the cells with Origanum oil and carvacrol, characteristics of apoptotic morphology such as chromatin condensation, shrinkage of the cells and cytoplasmic blebbing was observed. In conclusion, both essential oil and its major constituent carvacrol significantly exhibited cytotoxic and apoptotic activities in hepatocellular carcinoma cells, indicating its potential for use as an anticancer agent.

  9. Molecular MRI of Cardiomyocyte Apoptosis with Simultaneous Delayed Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes In Vivo: Potential for Midmyocardial Salvage in Acute Ischemia

    Science.gov (United States)

    Sosnovik, David E.; Garanger, Elisabeth; Aikawa, Elena; Nahrendorf, Matthias; Figuiredo, Jose-Luiz; Dai, Guangping; Reynolds, Fred; Rosenzweig, Anthony; Weissleder, Ralph; Josephson, Lee

    2009-01-01

    Background A novel dual contrast molecular MRI technique to image both cardiomyocyte (CM) apoptosis and necrosis in-vivo within 4-6 hours of ischemia is presented. The technique utilizes the annexin-based nanoparticle AnxCLIO-Cy5.5 (apoptosis) and simultaneous delayed enhancement (DE) imaging with a novel gadolinium chelate, Gd-DTPA-NBD (necrosis). Methods and Results Mice with transient coronary ligation were injected intravenously at the onset of reperfusion with AnxCLIO-Cy5.5 (n=7) or the control probe Inact_CLIO-Cy5.5 (n=6). T2* weighted MR images (9.4 Tesla) were acquired within 4-6 hours of reperfusion. The contrast-to-noise ratio (CNR) between injured and uninjured myocardium was measured. The mice were then injected with Gd-DTPA-NBD and DE imaging was performed within 10-30 minutes. Uptake of AnxCLIO-Cy5.5 was most prominent in the midmyocardium and was significantly greater than that of Inact_CLIO-Cy5.5 (CNR 8.82 +/− 1.5 versus 3.78 +/− 1.1, p DTPA-NBD. Wall thickening was significantly reduced in segments with DE and/or transmural accumulation of AnxCLIO-Cy5.5 (p DTPA-NBD confirmed the presence of large numbers of apoptotic but potentially viable CMs (AnxCLIO-Cy5.5 positive, Gd-DTPA-NBD negative) in the midmyocardium. Conclusions A novel technique to image CM apoptosis and necrosis in-vivo within 4-6 hours of injury is presented, and reveals large areas of apoptotic but viable myocardium in the midmyocardium. Strategies to salvage the numerous apoptotic but potentially viable CMs in the midmyocardium in acute ischemia should be investigated. PMID:19920044

  10. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Puijvelde, Gijs H M; Wierts, Laura; Lagraauw, H Maxime; Foks, Amanda C; van Santbrink, Peter J; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C A

    2015-01-01

    Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This

  11. A study on apoptotic signaling pathway in HL-60 cells induced by radiation

    International Nuclear Information System (INIS)

    Kim, Hye Jung; Moon, Sung Keun; Lee, Jae Hoon; Moon, Sun Rock

    2001-01-01

    The mechanical insights of death at cancer cells by ionizing radiation are not yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine proteases, Bcl2/Bax, cytochrome c and Fas/Fas-L in target cells. HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by MTT assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, caspase-3, Cytochrome-c, BcI-2, Bax, Fas and Fas-L. Ionizing radiation decreases the viability of HL -60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL- 60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation at genomic DNA over 16 Gy at 4 hours. Ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL --60 cells in a time-dependent manner. The activation of caspase- 3 protease is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In addition, expression of Fas and Fas-L is also increased in a time dependent manner. These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, BcI 2 /Bax, Fas and Fas-L in a time and dose dependent manner

  12. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    Directory of Open Access Journals (Sweden)

    Nasrin Majidi Gharenaz

    2016-08-01

    Full Text Available Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240 were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80, vitrified at 8 cell stage (n=80, vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80. Embryos were vitrified by using cryolock, (open system described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03. In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004, however expression of Bax and Bcl-2 (apoptotic genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003, but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage

  13. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    International Nuclear Information System (INIS)

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-01

    Highlights: ► The article revealed FoxP3 gene function in gastric cancer firstly. ► Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. ► Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. ► Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. ► FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis in GC cells by regulating apoptotic signaling, which could be a promising therapeutic approach for gastric cancer.

  14. p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Paramita Banerjee Sawant

    Full Text Available Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD, leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD, ultimately resulting in significant (p<0.05 embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.

  15. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    Science.gov (United States)

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  16. Apoptotic and free radical scavenging properties of the methanolic extract of Gentianella alborosea.

    Science.gov (United States)

    Acero, Nuria; Llinares, Francisco; Galán de Mera, Antonio; Oltra, Beatriz; Muñoz-Mingarro, Dolores

    2006-09-01

    Gentianella alborosea ("Hercampure") is a Peruvian species used in folk medicine for the treatment of a variety of health disorders. We tested the free radical scavenging (DPPH) and induction of apoptosis on a human uterus tumor cell line (HeLa) by its methanolic extract. The results showed a noticeable radical scavenging activity and a dose-dependent apoptotic effect.

  17. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination.

    Science.gov (United States)

    Svandova, E Budisova; Vesela, B; Lesot, H; Poliard, A; Matalova, E

    2017-04-01

    Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.

  18. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

    Directory of Open Access Journals (Sweden)

    Steve Oghumu

    2017-10-01

    Full Text Available Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO (20 µg/ml in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA, a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  19. Role of wild-type p53 in apoptotic and non-apoptotic cell death induced by X-irradiation and heat treatment in p53-mutated mouse M10 cells

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakano, Hisako; Shinohara, Kunio

    2010-01-01

    The sensitizing effects of wild-type p53 on X-ray-induced cell death and on heat-induced apoptosis in M10, a radiosensitive and Trp53 (mouse p53 gene)-mutated lymphoma cell line which dies through necrosis by X-irradiation, were investigated using three M10 derived transfectants with wild-type TP53 (human p53 gene). Cell death was determined by colony formation and/or dye exclusion test, and apoptosis was detected as the changes in nuclear morphology by Giemsa staining. Expression of wild-type p53 protein increased radiosensitivity of cell death as determined by both clonogenic and dye exclusion assays. This increase in radiosensitivity was attributable largely to apoptosis induction in addition to a small enhancement of necrosis. Interestingly neither pathway to cell death was accompanied by caspase-3 activation. On the other hand, heat-induced caspase-3 dependent apoptotic cell death without transfection was further increased by the transfection of wild-type p53. In conclusion, the introduction of wild-type p53 enhanced apoptotic cell death by X-rays or heat via different mechanisms that do or do not activate caspase-3, respectively. In addition, p53 also enhanced the X-ray-induced necrosis in M10 cells. (author)

  20. Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats by the regulation of inflammatory and apoptotic proteins

    International Nuclear Information System (INIS)

    Sayed, Rabab H.; Saad, Muhammed A.; El-Sahar, Ayman E.

    2016-01-01

    Serotonin level plays a role in suppressing the pathological findings of benign prostatic hyperplasia (BPH). Thus a new selective serotonin reuptake inhibitor, dapoxetine was used to test its ability to ameliorate the pathological changes in the rat prostate. A dose response curve was constructed between the dose of dapoxetine and prostate weight as well as relative prostate weight, then a 5 mg/kg dose was used as a representative dose for dapoxetine administration. Rats were divided into four groups; the control group that received the vehicle; the BPH-induced group received daily s.c injection of 3 mg/kg testosterone propionate dissolved in olive oil for four weeks; BPH-induced group treated with finasteride 5 mg/kg/day p.o and BPH-induced group treated with dapoxetine 5 mg/kg/day p.o. Injection of testosterone increased prostate weight and relative prostate weight which were both returned back to the normal value after treatment with dapoxetine as well as finasteride. Testosterone also upregulated androgen receptor (AR) and proliferating cell nuclear antigen gene expression. Furthermore, testosterone injection elevated cyclooxygenase-II (COX II), inducible nitric oxide synthase (iNOS), B-cell lymphoma-2 (Bcl2) expression and tumor necrosis factor alpha content and reduced caspase-3 activity, Bcl-2-associated X protein (Bax) expression and Bax/Bcl2 ratio. Dapoxetine and finasteride administration reverted most of the changes made by testosterone injection. In conclusion, the current study provides an evidence for the protective effects of dapoxetine against testosterone-induced BPH in rats. This can be attributed, at least in part, to decreasing AR expression, and the anti-proliferative, anti-inflammatory and pro-apoptotic activities of dapoxetine in BPH. - Highlights: • Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats. • Dapoxetine decreased androgen receptor gene expression in rat prostate. • Dapoxetine possess anti

  1. Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats by the regulation of inflammatory and apoptotic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Rabab H., E-mail: rabab.sayed@pharma.cu.edu.eg; Saad, Muhammed A.; El-Sahar, Ayman E.

    2016-11-15

    Serotonin level plays a role in suppressing the pathological findings of benign prostatic hyperplasia (BPH). Thus a new selective serotonin reuptake inhibitor, dapoxetine was used to test its ability to ameliorate the pathological changes in the rat prostate. A dose response curve was constructed between the dose of dapoxetine and prostate weight as well as relative prostate weight, then a 5 mg/kg dose was used as a representative dose for dapoxetine administration. Rats were divided into four groups; the control group that received the vehicle; the BPH-induced group received daily s.c injection of 3 mg/kg testosterone propionate dissolved in olive oil for four weeks; BPH-induced group treated with finasteride 5 mg/kg/day p.o and BPH-induced group treated with dapoxetine 5 mg/kg/day p.o. Injection of testosterone increased prostate weight and relative prostate weight which were both returned back to the normal value after treatment with dapoxetine as well as finasteride. Testosterone also upregulated androgen receptor (AR) and proliferating cell nuclear antigen gene expression. Furthermore, testosterone injection elevated cyclooxygenase-II (COX II), inducible nitric oxide synthase (iNOS), B-cell lymphoma-2 (Bcl2) expression and tumor necrosis factor alpha content and reduced caspase-3 activity, Bcl-2-associated X protein (Bax) expression and Bax/Bcl2 ratio. Dapoxetine and finasteride administration reverted most of the changes made by testosterone injection. In conclusion, the current study provides an evidence for the protective effects of dapoxetine against testosterone-induced BPH in rats. This can be attributed, at least in part, to decreasing AR expression, and the anti-proliferative, anti-inflammatory and pro-apoptotic activities of dapoxetine in BPH. - Highlights: • Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats. • Dapoxetine decreased androgen receptor gene expression in rat prostate. • Dapoxetine possess anti

  2. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  3. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  4. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    International Nuclear Information System (INIS)

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu

    2005-01-01

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis

  5. BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng

    2014-02-28

    In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Opening up of plasmalemma type-1 VDAC to form apoptotic "find me signal" pathways is essential in early apoptosis - evidence from the pathogenesis of cystic fibrosis resulting from failure of apoptotic cell clearance followed by sterile inflammation.

    Science.gov (United States)

    Thinnes, Friedrich P

    2014-04-01

    Cell membrane-standing type-1 VDAC is involved in cell volume regulation and thus apoptosis. The channel has been shown to figure as a pathway for osmolytes of varying classes, ATP included. An early event in apoptotic cell death is the release of "find me signals" by cells that enter the apoptotic process. ATP is one of those signals. Apoptotic cells this way attract phagocytes for an immunologically silent cell clearance. Thus, whenever apoptosis fails by a blockade of plasmalemma type-1 VDAC processes of sterile inflammation must be assumed for cell elimination. This is evident from a close look on the pathogenetic process of cystic fibrosis (CF). However, in normal airway epithelia two different anion channels cooperate to guarantee an appropriate volume of airway surface liquid (ASL) necessary for surface clearing: the cystic fibrosis conductance regulator (CFTR) and the outwardly rectifying chloride channel (ORCC) complex also called "alternate chloride channel" and under the control of the CFTR. There are arguments, that type-1 VDAC forms the channel part of the ORCC complex, and it has been shown that CFTR and type-1 VDAC co-localize in the apical membranes of human surface respiratory epithelium. In cystic fibrosis, the central cAMP-dependent regulation of ion and water transport via functional CFTR is lost. Here, CFTR molecules do not reach the apical membranes of airway epithelia anymore or work in an insufficient way, respectively. In addition, type-1 VDAC is no longer available to work as a "find me signal" pathway. In consequence, clearing away of apoptotic cells is blocked. There are experimental data on the channel characteristics of type-1 VDAC under the anion channel blocker DIDS (4,4-diisothiocyanato-stilbenedisulphonic acid) that argue in favor of this hypothesis. Together, type-1 VDAC should be kept as a "find me signal" pathway, which may give way to several classes of such signals. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Minocycline exacerbates apoptotic neurodegeneration induced by the NMDA receptor antagonist MK-801 in the early postnatal mouse brain.

    Science.gov (United States)

    Inta, Ioana; Vogt, Miriam A; Vogel, Anne S; Bettendorf, Markus; Gass, Peter; Inta, Dragos

    2016-10-01

    NMDA receptor (NMDAR) antagonists induce in perinatal rodent cortical apoptosis and protracted schizophrenia-like alterations ameliorated by antipsychotic treatment. The broad-spectrum antibiotic minocycline elicits antipsychotic and neuroprotective effects. Here we tested, if minocycline protects also against apoptosis triggered by the NMDAR antagonist MK-801 at postnatal day 7. Surprisingly, minocycline induced widespread cortical apoptosis and exacerbated MK-801-triggered cell death. In some areas such as the subiculum, the pro-apoptotic effect of minocycline was even more pronounced than that elicited by MK-801. These data reveal among antipsychotics unique pro-apoptotic properties of minocycline, raising concerns regarding consequences for brain development and the use in children.

  8. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin

  9. Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells.

    Science.gov (United States)

    Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; Bruzzese, Eugenia; D'Alessandro, Alessandra; Cuomo, Rosario; Steardo, Luca; Sarnelli, Giovanni; Esposito, Giuseppe

    2017-12-01

    Clostridium difficile toxin A is responsible for colonic damage observed in infected patients. Drugs able to restore Clostridium difficile toxin A-induced toxicity have the potential to improve the recovery of infected patients. Cannabidiol is a non-psychotropic component of Cannabis sativa, which has been demonstrated to protect enterocytes against chemical and/or inflammatory damage and to restore intestinal mucosa integrity. The purpose of this study was to evaluate (a) the anti-apoptotic effect and (b) the mechanisms by which cannabidiol protects mucosal integrity in Caco-2 cells exposed to Clostridium difficile toxin A. Caco-2 cells were exposed to Clostridium difficile toxin A (30 ng/ml), with or without cannabidiol (10 -7 -10 -9  M), in the presence of the specific antagonist AM251 (10 -7  M). Cytotoxicity assay, transepithelial electrical resistence measurements, immunofluorescence analysis and immunoblot analysis were performed in the different experimental conditions. Clostridium difficile toxin A significantly decreased Caco-2 cells' viability and reduced transepithelial electrical resistence values and RhoA guanosine triphosphate (GTP), bax, zonula occludens-1 and occludin protein expression, respectively. All these effects were significantly and concentration-dependently inhibited by cannabidiol, whose effects were completely abolished in the presence of the cannabinoid receptor type 1 (CB1) antagonist, AM251. Cannabidiol improved Clostridium difficile toxin A-induced damage in Caco-2 cells, by inhibiting the apoptotic process and restoring the intestinal barrier integrity, through the involvement of the CB1 receptor.

  10. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Algan, Oe.; Hanks, G.E.; Biade, S.; Chapman, J.D.

    1995-01-01

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHT TM ) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (α a + α p ) D + β p D 2 , were α a represents cell inactivation by radiation-induced apoptosis, α p and β p represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders

  12. Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells.

    Science.gov (United States)

    Xu, Ming-Long; Hu, Jin; Guo, Bao-Ping; Niu, Ya-Ru; Xiao, Cheng; Xu, Yin-Xue

    2016-12-01

    Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016. © 2015 Wiley Periodicals, Inc.

  13. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model

    Directory of Open Access Journals (Sweden)

    Marisol Orozco-Ibarra

    Full Text Available BACKGROUND: Aged garlic extract (AGE and its main constituent S-allylcysteine (SAC are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2 has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-Ια and up-regulation of HIF-1a-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells RESULTS: We found that CoCl2 induced the stabilization of HIF-1a and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1a stabilization, activity not previously reported for AGE and SAC CONCLUSIONS: Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1a and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions

  14. Study of morphological changes in breast cancer cells MCF-7 under the action of pro-apoptotic agents with laser modulation interference microscope MIM-340

    Science.gov (United States)

    Nebogatikov, V.; Nikitiuk, A.; Konysheva, A.; Ignatyev, P.; Grishko, V.; Naimark, O.

    2017-09-01

    Quantitative phase microscopy is a new method to measure and evaluate the microlevel processes characterized by the high resolution and providing ample opportunities to quantitatively analyze various parameters, including specimens from biological matter. In this study, a laser interference microscope was used to evaluate the state of cancer cells (living and apoptotic). Apoptotic cancer cells were obtained by treatment of MCF-7 cells with the use of betulin-based α-bromomethyl ketone (BMK) derivative. When using the microscope, the main differences in the morphometric parameters of living and apoptotic cells such as height, diameter, perimeter, area and volume were appraised. The criteria that can be used as markers of apoptosis activation were identified.

  15. Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway

    Directory of Open Access Journals (Sweden)

    Sonjit Das

    2018-01-01

    Full Text Available The present studies have been executed to explore the protective mechanism of carnosic acid (CA against NaAsO2-induced hepatic injury. CA exhibited a concentration dependent (1–4 μM increase in cell viability against NaAsO2 (12 μM in murine hepatocytes. NaAsO2 treatment significantly enhanced the ROS-mediated oxidative stress in the hepatic cells both in in vitro and in vivo systems. Significant activation of MAPK, NF-κB, p53, and intrinsic and extrinsic apoptotic signaling was observed in NaAsO2-exposed hepatic cells. CA could significantly counteract with redox stress and ROS-mediated signaling and thereby attenuated NaAsO2-mediated hepatotoxicity. NaAsO2 (10 mg/kg treatment caused significant increment in the As bioaccumulation, cytosolic ATP level, DNA fragmentation, and oxidation in the liver of experimental mice (n=6. The serum biochemical and haematological parameters were significantly altered in the NaAsO2-exposed mice (n=6. Simultaneous treatment with CA (10 and 20 mg/kg could significantly reinstate the NaAsO2-mediated toxicological effects in the liver. Molecular docking and dynamics predicted the possible interaction patterns and the stability of interactions between CA and signal proteins. ADME prediction anticipated the drug-likeness characteristics of CA. Hence, there would be an option to employ CA as a new therapeutic agent against As-mediated toxic manifestations in future.

  16. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes.

    Science.gov (United States)

    Kloesch, Burkhard; Becker, Tatjana; Dietersdorfer, Elisabeth; Kiener, Hans; Steiner, Guenter

    2013-02-01

    It has recently been reported that the polyphenol curcumin has pronounced anti-carcinogenic, anti-inflammatory and pro-apoptotic properties. This study investigated possible anti-inflammatory and apoptotic effects of curcumin on the human synovial fibroblast cell line MH7A, and on fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis (RA). MH7A cells and RA-FLS were stimulated either with interleukin (IL)-1β or phorbol 12-myristate 13 acetate (PMA), and treated simultaneously or sequentially with increasing concentrations of curcumin. Release of interleukin (IL)-6 and vascular endothelial growth factor (VEGF)-A was quantified by enzyme-linked immunosorbent assays (ELISAs). In MH7A cells, modulation of the transcription factor nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs) such as p38 and extracellular-signal regulated kinase (ERK1/2) were analysed by a reporter gene assay and Western blot, respectively. Pro-apoptotic events were monitored by Annexin-V/7-AAD based assay. Cleavage of pro-caspase-3 and -7 was checked with specific antibodies. Curcumin effectively blocked IL-1β and PMA-induced IL-6 expression both in MH7A cells and RA-FLS. VEGF-A expression could only be detected in RA-FLS and was induced by PMA, but not by IL-1β. Furthermore, curcumin inhibited activation of NF-κB and induced dephosphorylation of ERK1/2. Treatment of FLS with high concentrations of curcumin was associated with a decrease in cell viability and induction of apoptosis. The natural compound curcumin represents strong anti-inflammatory properties and induces apoptosis in FLS. This study provides an insight into possible molecular mechanisms of this substance and suggests it as a natural remedy for the treatment of chronic inflammatory diseases like RA. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available OBJECTIVE: Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS: Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION: The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

  18. The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Shi

    Full Text Available Cell apoptosis is a contributing factor in the initiation, progression and relapse of atrial fibrillation (AF, a life-threatening illness accompanied with stroke and heart failure. However, the regulatory cascade of apoptosis is intricate and remains unidentified, especially in the setting of AF. The aim of this study was to explore the roles of endoplasmic reticulum (ER stress, mitochondrial apoptotic pathway (MAP, mitogen-activated protein kinases (MAPKs, and their cross-talking in tachypacing-induced apoptosis.HL-1 cells were cultured in the presence of tachypacing for 24 h to simulate atrial tachycardia remodeling. Results showed that tachypacing reduced cell viability measured by the cell counting kit-8, dissipated mitochondrial membrane potential detected by JC-1 staining and resulted in approximately 50% apoptosis examined by Hoechst staining and annexin V/propidium iodide staining. In addition, the proteins involved in ER stress, MAP and MAPKs were universally up-regulated or activated via phosphorylation, as confirmed by western blotting; and reversely silencing of ER stress, caspase-3 (the ultimate executor of MAP and MAPKs with specific inhibitors prior to pacing partially alleviated apoptosis. An inhibitor of ER stress was applied to further investigate the responses of mitochondria and MAPKs to ER stress, and results indicated that suppression of ER stress comprehensively but incompletely attenuated the activation of MAP and MAPKs aroused by tachypacing, with the exception of ERK1/2, one branch of MAPKs.Our study suggested tachypacing-induced apoptosis is regulated by ER stress-mediated MAP and MAPKs. Thus, the above three components are all promising anti-apoptotic targets in AF patients and ER stress appears to play a dominant role due to its comprehensive effects.

  19. Post-infarct treatment with [Pyr1]apelin-13 exerts anti-remodelling and anti-apoptotic effects in rats' hearts.

    Science.gov (United States)

    Azizi, Yaser; Imani, Alireza; Fanaei, Hamed; Khamse, Safoura; Parvizi, Mohammad Reza; Faghihi, Mahdieh

    2017-01-01

    Ischaemic heart disease is the main cause of mortality in the world. After myocardial infarction (MI) cardiomyocytes apoptosis and ventricular remodelling have occurred. Apelin is a peptide that has been shown to exert cardioprotective effects. The aim of this study was to investigate the anti-apoptotic and anti-remodelling effects of [Pyr¹]apelin-13 in the rat model of post-MI. Thirty-six male Wistar rats were randomly divided into three groups: (1) sham, (2) MI, and (3) MI treated with [Pyr¹] apelin-13 (MI+Apel). MI animals were subjected to 30-min ligation of the left anterior descending coronary artery (LAD) and 14 days of reperfusion. Twenty-four hours after LAD ligation, [Pyr¹]apelin-13 (10 nmol/kg/day, i.p.) was administered for five consecutive days. Hypertrophic parameters, left ventricular (LV) remodelling, and gene expression of Apel, apelin receptor (Apelr), Bax, caspase-3 (Casp-3), and Bcl-2 by real-time polymerase chain reaction and cardiomyocytes apoptosis by TUNEL immunostaining were assessed on day 14 post-MI. Post-infarct treatment with [Pyr¹]apelin-13 improved myocardial hypertrophic and LV remodelling parameters and led to a significant increase in the expression of Apel, Apelr, and Bcl-2, and a decrease in the expression of Bax and Casp-3. Furthermore, treatment with [Pyr¹]apelin-13 decreased cardiomyocyte apoptosis. [Pyr¹]apelin-13 has anti-hypertrophic, anti-remodelling, and anti-apoptotic effects via overexpression of Apel, Apelr, and Bcl-2 and reduces gene expression of Bax and Casp-3 in the infarcted myocardium, which can in turn lead to repair myocardium.

  20. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms.

    Science.gov (United States)

    De Petrocellis, Luciano; Ligresti, Alessia; Schiano Moriello, Aniello; Iappelli, Mariagrazia; Verde, Roberta; Stott, Colin G; Cristino, Luigia; Orlando, Pierangelo; Di Marzo, Vincenzo

    2013-01-01

    Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ(9) -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1-10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca(2+)). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. These data support the clinical testing of CBD against prostate carcinoma. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node.

    Science.gov (United States)

    Baratin, Myriam; Simon, Léa; Jorquera, Audrey; Ghigo, Clément; Dembele, Doulaye; Nowak, Jonathan; Gentek, Rebecca; Wienert, Stephan; Klauschen, Frederick; Malissen, Bernard; Dalod, Marc; Bajénoff, Marc

    2017-08-15

    In lymph nodes (LNs), dendritic cells (DCs) are thought to dispose of apoptotic cells, a function pertaining to macrophages in other tissues. We found that a population of CX3CR1 + MERTK + cells located in the T cell zone of LNs, previously identified as DCs, are efferocytic macrophages. Lineage-tracing experiments and shield chimeras indicated that these T zone macrophages (TZM) are long-lived macrophages seeded in utero and slowly replaced by blood monocytes after birth. Imaging the LNs of mice in which TZM and DCs express different fluorescent proteins revealed that TZM-and not DCs-act as the only professional scavengers, clearing apoptotic cells in the LN T cell zone in a CX3CR1-dependent manner. Furthermore, similar to other macrophages, TZM appear inefficient in priming CD4 T cells. Thus, efferocytosis and T cell activation in the LN are uncoupled processes designated to macrophages and DCs, respectively, with implications to the maintenance of immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2008-05-01

    Full Text Available Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2 and c-Jun N-terminal kinase (JNK were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.

  3. Breast Carcinoma Progression and Tumour Vascular Markers Related to Apoptotic Mechanisms

    Directory of Open Access Journals (Sweden)

    Miroslava Bilecova-Rabajdova

    2014-01-01

    Full Text Available Background. In the last few years, the cancer research had tried to identify and characterize new biochemical and molecular pathways in which the inhibition induces prosurvival mechanisms. Our work describes the expression of two different members of apoptotic regulatory pathway and their relationship with a progression of breast carcinoma. Materials and Methods. We compared expression of genes related to apoptosis (DR6 and Gpm6B in the blood of patients suffering from stage I of breast cancer in different grades (I–IV, with healthy controls. After isolation of mRNA, transcription of mRNA into the cDNA was performed. The quantification of gene expression changes in DR6 and Gpm6B was detected by RT-PCR method. Analysis at the protein level was performed by the Western blot.Results. In statistical analysis of Dr6 mRNA level changes we detected significant increase starting in Grading 1 (G1 and reached maximal level in G3.This expression on mRNA levels was similar to protein levels, which copy rising tendency with maximal value in G3. The results of Gpm6B were significantly lower.Conclusion. This result showed that antiapoptotic signalling during neovascularization is increased significantly. It would be advisable in the future to study the influence of cytostatic treatment on the expression of genes related to apoptotic pathways and their relationship with progression of breast cancer tumours.

  4. The effect of octreotide and bromocriptine on expression of a pro-apoptotic Bax protein in rat prolactinoma.

    Directory of Open Access Journals (Sweden)

    Jolanta Kunert-Radek

    2004-03-01

    Full Text Available It is well established that disruption of apoptosis may lead to tumor initiation, progression or metastasis. It is also well documented that many anticancer drugs induce apoptosis. In the earlier studies, the dopamine D2 receptor agonist bromocriptine (BC and somatostatin analog octreotide (OCT were found to inhibit the growth of the estrogen-induced rat prolactinoma. Our previous investigations, applying the TUNEL method showed the involvement of the pro-apoptotic effect in the action of BC, and to a lesser degree, in the action of OCT. The aim of the present study was to investigate whether the pro-apoptotic action of these drugs involves the increased expression of Bax--a member of Bcl-2 protein family which is known to play an important role in the regulation of apoptosis. Male four-week Fisher 344 rats were used in the experiment. Capsules containing diethylstilboestrol (DES were implanted subcutaneously. Six weeks after the implantation the rats were given OCT (2 x 25 microg/animal/24, BC (3 mg/kg b.w./24 h or OCT and BC at the above doses for 10 days. Bax expression was detected by immunohistochemistry. Prolactin (PRL in blood serum was measured by radioimmunoassay (RIA. It has been found that both OCT and BC, alone or in combination, significantly reduce the tumor weight. Both OCT and BC suppressed PRL levels, but the inhibitory effect of BC was stronger than that of OCT. It has been found that the treatment with OCT and BC, alone or in combination, causes a significant increase in Bax expression in the rat prolactinoma cells. Our findings indicate that anti-tumoral action of bromocriptine and to some extent the action of octreotide in the experimental rat prolactinoma is connected with the induction of apoptosis and is associated with increased Bax expression.

  5. Oldenlandia diffusa Promotes Antiproliferative and Apoptotic Effects in a Rat Hepatocellular Carcinoma with Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Yun-Young Sunwoo

    2015-01-01

    Full Text Available Oldenlandia diffusa (OD is commonly used with various diseases such as cancer, arthritis, and autoimmune disease. Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC. Here, we show that the therapeutic effect of OD, which was investigated both in vitro and chemically, induced HCC model. OD significantly enhanced apoptosis and antiproliferative activity and reduced migration ability of HCC cells. In vivo, OD was treated twice a day for 28 days after confirmed HCC model through 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG imaging. The survival in OD treated groups was shown to have a greater therapeutic effect than the control group. 28 days after OD treatment, OD treated groups resulted in a significant reduction in tumor number, size, 18F-FDG uptake, and serum levels such as alanine transaminase, aspartate transaminase, and alkaline phosphate compared to the control group. Also, proliferated cells in tumor sites by OD were reduced compared to the control group. Furthermore, several rats in OD treated group survived over 60 days and liver morphology of these rats showed the difference between tumor mass and normal tissue. These results suggest that OD may have antiproliferative activity, inhibition of metastasis, and apoptotic effects in chemically induced HCC model and can have the potential use for clinical application as anticancer drug of the herbal extract.

  6. Identification of chosen apoptotic (TIAR and TIA-1) markers expression in thyroid tissues from adolescents with immune and non-immune thyroid diseases

    International Nuclear Information System (INIS)

    Bossowski, A.; Czarnocka, B.; Lyczkowska, A.; Bardadin, K.; Czerwinska, J.; Moniuszko, A.; Dadan, J.; Bossowska, A.

    2010-01-01

    The aim of this study was to estimate sodium iodide symporter (NIS) and thyroid peroxidase (TPO) expression in thyrocytes from patients with GD and no-toxic multi nodular goitre (NTMG) in relationship with apoptotic (TIAR and TIA-1) markers. The investigation was performed on thyroid cells isolated from post operation thyroid tissues from 15 patients aged 12-21 years old with GD and 15 cases aged 13-21 years old with NTMG. Detection of NIS and TPO was performed by immunohistochemistry. Analysis of apoptotic markers in thyroid tissues was performed using antibodies to TIAR and TIA-1 by Western Blot and immunohistochemistry. Identification of pro apoptotic TIAR and TIA-1 molecules in the thyroid tissues revealed a higher expression of both proteins in patients with Graves' disease (+++; +, respectively) in comparison to patients with NTNG (+; 0). In addition, TIAR expression was detected in three bands [p50, p42, p38 (kDa)] and TIA-1 in two bands [p22, p17 (kDa)]. using Western Blot test in patients with thyroid autoimmune diseases. In patients with NTNG expression of both apoptotic proteins was lower and identified in single bands: 42 (kDa) for TIAR and 17 (kDa) for TIA-1. The analysis of expression of NIS and TPO in thyroid follicular cells was higher in patients with Graves' disease in compared to their detection in patients with NTMG. In addition, degree of thyroid antigen expression positive correlated with amount of pro apoptotic markers (TIAR, p<0.001; TIA-1, p<0.025 for NIS; TIAR, p<0.012 for TPO). We conclude that elevated expression of NIS and TPO in Graves' disease is associated with higher stimulation and activation of apoptosis in thyroid follicular cells during autoimmune process. (authors)

  7. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    Full Text Available Ying-Hui Chen,1,2,* Jo-Yu Wang,3,* Bo-Syong Pan,3,4 Yi-Fen Mu,3 Meng-Shao Lai,3,4 Edmund Cheung So,5 Thian-Sze Wong,6 Bu-Miin Huang3,4 1Department of Anesthesia, Chi-Mei Medical Center, Liouying, 2Department of Nursing, Min-Hwei College of Health Care Management, 3Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 4The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 5Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan; 6Department of Surgery, University of Hong Kong Medical Center, Faculty of Medicine, The University of Hong Kong, Hong Kong *Authors contributed equally to this work Purpose: The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis and cisplatin (a platinum-based chemotherapy drug has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC. Methods: The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results: Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c

  8. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice

    Directory of Open Access Journals (Sweden)

    María del Carmen García-Rodríguez

    2016-01-01

    Full Text Available This study was conducted to investigate the effects of vanadium pentoxide (V2O5, ascorbic acid (AA, and alpha-tocopherol (α-TOH on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a vehicle, distilled water; (b vehicle, corn oil; (c AA, 100 mg/kg intraperitoneally (ip; (d α-TOH, 20 mg/kg by gavage; (e V2O5, 40 mg/kg by ip injection; (f AA + V2O5; and (g α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE. The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5.

  9. Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingyun, E-mail: lingyunlee@126.com [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Gao, Luyan [Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Song, Yunzhen; Qin, Zheng-Hong [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Liang, Zhongqin, E-mail: liangzhongqin@suda.edu.cn [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China)

    2016-02-12

    Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase in the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration. - Highlights: • Inhibition of autophagy aggravated the cell apoptotic death in SH-SY5Y cells. • Activation of cathepsin L impaired the autophagy pathway. • Activation of cathepsin L enhanced the cell apoptotic cascade. • Cathepsin L involves in the cross talk between autophagy and apoptosis.

  10. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Glutathione peroxidase-1 (GPx1 is a pivotal intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. This study aims to identify a microRNA (miRNA that targets GPx1 to maintain redox homeostasis. Dual luciferase assays combined with mutational analysis and immunoblotting were used to validate the bioinformatically predicted miRNAs. We sought to select miRNAs that were responsive to oxidative stress induced by hydrogen peroxide (H2O2 in the H9c2 rat cardiomyocyte cell line. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-181a in H2O2-treated H9c2 cells was markedly upregulated. The downregulation of miR-181a significantly inhibited H2O2-induced cellular apoptosis, ROS production, the increase in malondialdehyde (MDA levels, the disruption of mitochondrial structure, and the activation of key signaling proteins in the mitochondrial apoptotic pathway. Our results suggest that miR-181a plays an important role in regulating the mitochondrial apoptotic pathway in cardiomyocytes challenged with oxidative stress. MiR-181a may represent a potential therapeutic target for the treatment of oxidative stress-associated cardiovascular diseases.

  11. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  12. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  13. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  14. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2018-01-01

    Full Text Available Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.

  15. The early supra-additive apoptotic response of R3327-G prostate tumors to androgen ablation and radiation is not sustained with multiple fractions

    International Nuclear Information System (INIS)

    Pollack, Alan; Ashoori, Faramarz; Sikes, Charles; Lim Joon, Daryl; Eschenbach, Andrew C. von; Zagars, Gunar K.; Meistrich, Marvin L.

    2000-01-01

    Purpose: The treatment of R3327-G tumor-bearing rats with androgen ablation (AA) via castration results in a supra-additive increase in apoptosis when 2-8 Gy γ-irradiation (RT) is given as a single dose 3-14 days afterwards. We report here the dose response and effect of multiple fractions on this supra-additive apoptotic response. Materials and Methods: Dunning R3327-G tumors were grown in the flanks of Copenhagen rats and the experiments were initiated at a tumor volume of 1.0-1.5 cc. Androgen ablation was achieved by castration 3 days prior to γ-irradiation. Apoptosis was measured with a terminal deoxynucleotidyl transferase dUTP-biotin nick end-labeling assay 6-h after RT, unless otherwise specified. Results: The dose response of the supra-additive apoptotic response was assessed by irradiating castrated animals with single doses of 2, 4, 8, or 16 Gy (n = 5 per group); tumor cell apoptosis at 6-h following irradiation was 2.4% ± 0.7% (± SEM), 4.2% ± 0.8%, 6.5% ± 1.4%, and 1.6% ± 0.3%, respectively. The RT only and AA only controls had < 1% apoptosis. The effect of fractionated RT on apoptosis was investigated to determine if the supra-additive apoptotic response was sustained with repeated 2-8 Gy fractions. When tumor-bearing animals were treated with repeated daily 2-Gy fractions, there was a reduction in the level of the supra-additive apoptotic response. After five 2-Gy fractions at 24-h intervals, apoptosis in the combined treated tumors was at levels seen in the AA controls. This raised the possibility that more than 24 h are required for recovery of the high supra-additive apoptotic levels seen after one fraction. When the interfraction interval was extended to 96 h, there was no significant increase in apoptosis over the additive effect of AA and RT. Although there was a decline in supra-additive apoptosis with repeated fractions, a dose response for tumor growth delay was evident for RT alone using 2.5-Gy fractions. Moreover, the combination of

  16. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂-induced apoptosis through targeting the mitochondria apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    Ruotian Li

    Full Text Available MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H₂O₂-treated neonatal rat ventricle myocytes (NRVMs was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H₂O₂-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.

  17. Atractylenolide-I Protects Human SH-SY5Y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Sandeep Vasant More

    2017-05-01

    Full Text Available Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I on 1-methyl-4-phenylpyridinium (MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates that ATR-I significantly inhibits the loss of cell viability induced by MPP+ in SH-SY5Y cells. To further unravel the mechanism, we examined the effect of ATR-I on MPP+-induced apoptotic cell death characterized by an increase in the Bax/Bcl-2 mRNA ratio, the release of cytochrome-c, and the activation of caspase-3 leading to elevated levels of cleaved poly(ADP-ribose polymerase (PARP resulting in SH-SY5Y cell death. Our results demonstrated that ATR-I decreases the level of pro-apoptotic proteins induced by MPP+ and also restored Bax/Bcl-2 mRNA levels, which are critical for inducing apoptosis. In addition, ATR-I demonstrated a significant increase in the protein expression of heme-oxygenase in MPP+-treated SH-SY5Y cells. These results suggest that the pharmacological effect of ATR-I may be, at least in part, caused by the reduction in pro-apoptotic signals and also by induction of anti-oxidant protein.

  18. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    Science.gov (United States)

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.

  20. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, Katerina A. [Department of Biological Sciences, University of Cyprus, Nicosia (Cyprus); Liapis, Vasilis; Evdokiou, Andreas [Department of Surgery, Basil Hetzel Institute, Adelaide University, Adelaide (Australia); Constantinou, Constantina [St. George' s University of London Medical School at the University of Nicosia, Nicosia (Cyprus); Magiatis, Prokopios; Skaltsounis, Alex L. [Faculty of Pharmacy, University of Athens, Athens (Greece); Koumas, Laura; Costeas, Paul A. [Center for Study of Hematological Malignancies, Nicosia (Cyprus); Constantinou, Andreas I., E-mail: andreasc@ucy.ac.cy [Department of Biological Sciences, University of Cyprus, Nicosia (Cyprus)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

  1. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells.

    Science.gov (United States)

    Fujita, Yasunori; Kojima, Toshio; Kawakami, Kyojiro; Mizutani, Kosuke; Kato, Taku; Deguchi, Takashi; Ito, Masafumi

    2015-10-01

    The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients. © 2015 Wiley Periodicals, Inc.

  2. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    International Nuclear Information System (INIS)

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo

    2005-01-01

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein

  3. Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis.

    Science.gov (United States)

    Someya, Shinichi; Yamasoba, Tatsuya; Weindruch, Richard; Prolla, Tomas A; Tanokura, Masaru

    2007-10-01

    Presbycusis is characterized by an age-related progressive decline of auditory function, and arises mainly from the degeneration of hair cells or spiral ganglion (SG) cells in the cochlea. Here we show that caloric restriction suppresses apoptotic cell death in the mouse cochlea and prevents late onset of presbycusis. Calorie restricted (CR) mice, which maintained body weight at the same level as that of young control (YC) mice, retained normal hearing and showed no cochlear degeneration. CR mice also showed a significant reduction in the number of TUNEL-positive cells and cleaved caspase-3-positive cells relative to middle-age control (MC) mice. Microarray analysis revealed that CR down-regulated the expression of 24 apoptotic genes, including Bak and Bim. Taken together, our findings suggest that loss of critical cells through apoptosis is an important mechanism of presbycusis in mammals, and that CR can retard this process by suppressing apoptosis in the inner ear tissue.

  4. Phenethyl Isothiocyanate Induces Apoptotic Cell Death Through the Mitochondria-dependent Pathway in Gefitinib-resistant NCI-H460 Human Lung Cancer Cells In Vitro.

    Science.gov (United States)

    Hsia, Te-Chun; Huang, Yi-Ping; Jiang, Yi-Wen; Chen, Hsin-Yu; Cheng, Zheng-Yu; Hsiao, Yung-Ting; Chen, Cheng-Yen; Peng, Shu-Fen; Chueh, Fu-Shin; Chou, Yu-Cheng; Chung, Jing-Gung

    2018-04-01

    Some lung cancer patients treated with gefitinib develop resistance to this drug resulting in unsatisfactory treatment outcomes. Phenethyl isothiocyanate (PEITC), present in our common cruciferous vegetables, exhibits anticancer activities in many human cancer cell lines. Currently, there is no available information on the possible modification of gefitinib resistance of lung cancer in vitro by PEITC. Thus, the effects of PEITC on gefitinib resistant lung cancer NCI-H460 cells were investigated in vitro. The total cell viability, apoptotic cell death, production of reactive oxygen species (ROS) and Ca 2+ , levels of mitochondria membrane potential (ΔΨ m ) and caspase-3, -8 and -9 activities were measured by flow cytometry assay. PEITC induced chromatin condensation was examined by DAPI staining. PEITC-induced cell morphological changes, decreased total viable cell number and induced apoptotic cell death in NCI-H460 and NCI-H460/G cells. PEITC decreased ROS production in NCI-H460 cells, but increased production in NCI-H460/G cells. PEITC increased Ca 2+ production, decreased the levels of ΔΨ m and increased caspase-3, -8 and -9 activities in both NCI-H460 and NCI-H460/G cells. Western blotting was used to examine the effect of apoptotic cell death associated protein expression in NCI-H460 NCI-H460/G cells after exposure to PEITC. Results showed that PEITC increased expression of cleaved caspase-3, PARP, GADD153, Endo G and pro-apoptotic protein Bax in NCI-H460/G cells. Based on these results, we suggest that PEITC induces apoptotic cell death via the caspase- and mitochondria-dependent pathway in NCI-H460/G cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  6. TNF alpha induces ABCA1 through NF-kappa B in macrophages and in phagocytes ingesting apoptotic cells

    NARCIS (Netherlands)

    Gerbod-Giannone, Marie-Christine; Li, Yankun; Holleboom, Adriaan; Han, Seongah; Hsu, Li-Chung; Tabas, Ira; Tall, Alan R.

    2006-01-01

    Recent evidence suggests that tumor necrosis factor alpha (TNF alpha) signaling in vascular cells can have antiatherogenic consequences, but the mechanisms are poorly understood. TNFa is released by free cholesterol loaded apoptotic macrophages, and the clearance of these cells by phagocytic

  7. Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3′,4′,5′-Pentamethoxyflavone Isolated from Lantana ukambensis

    Directory of Open Access Journals (Sweden)

    Wamtinga Richard Sawadogo

    2015-12-01

    Full Text Available Lantana ukambensis (Vatke Verdc. is an African food and medicinal plant. Its red fruits are eaten and highly appreciated by the rural population. This plant was extensively used in African folk medicinal traditions to treat chronic wounds but also as anti-leishmanial or cytotoxic remedies, especially in Burkina Faso, Tanzania, Kenya, or Ethiopia. This study investigates the in vitro bioactivity of polymethoxyflavones extracted from a L. ukambensis as anti-proliferative and pro-apoptotic agents. We isolated two known polymethoxyflavones, 5,6,7,3′,4′,5′-hexamethoxyflavone (1 and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 from the whole plant of L. ukambensis. Their chemical structures were determined by spectroscopic analysis and comparison with published data. These molecules were tested for the anti-proliferative, cytotoxic and pro-apoptotic effects on human cancer cells. Among them, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 was selectively cytotoxic against monocytic lymphoma (U937, acute T cell leukemia (Jurkat, and chronic myelogenous leukemia (K562 cell lines, but not against peripheral blood mononuclear cells (PBMCs from healthy donors, at all tested concentrations. Moreover, this compound exhibited significant anti-proliferative and pro-apoptotic effects against U937 acute myelogenous leukemia cells. This study highlights the anti-proliferative and pro-apoptotic effects of 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 and provides a scientific basis of traditional use of L. ukambensis.

  8. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways.

    Science.gov (United States)

    Liu, Shumin; Sun, Zhengwu; Chu, Peng; Li, Hailong; Ahsan, Anil; Zhou, Ziru; Zhang, Zonghui; Sun, Bin; Wu, Jingjun; Xi, Yalin; Han, Guozhu; Lin, Yuan; Peng, Jinyong; Tang, Zeyao

    2017-05-01

    Homocysteine (Hcy) induced vascular endothelial injury leads to the progression of endothelial dysfunction in atherosclerosis. Epigallocatechin gallate (EGCG), a natural dietary antioxidant, has been applied to protect against atherosclerosis. However, the underlying protective mechanism of EGCG has not been clarified. The present study investigated the mechanism of EGCG protected against Hcy-induced human umbilical vein endothelial cells (HUVECs) apoptosis. Methyl thiazolyl tetrazolium assay (MTT), transmission electron microscope, fluorescent staining, flow cytometry, western blot were used in this study. The study has demonstrated that EGCG suppressed Hcy-induced endothelial cell morphological changes and reactive oxygen species (ROS) generation. Moreover, EGCG dose-dependently prevented Hcy-induced HUVECs cytotoxicity and apoptotic biochemical changes such as reducing mitochondrial membrane potential (MMP), decreasing Bcl-2/Bax protein ratio and activating caspase-9 and 3. In addition, EGCG enhanced the protein ratio of p-Akt/Akt, endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) formation in injured cells. In conclusion, the present study shows that EGCG prevents Hcy-induced HUVECs apoptosis via modulating mitochondrial apoptotic and PI3K/Akt/eNOS signaling pathways. Furthermore, the results indicate that EGCG is likely to represent a potential therapeutic strategy for atherosclerosis associated with Hyperhomocysteinemia (HHcy).

  9. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells.

    Science.gov (United States)

    Park, Sang-Il; Lee, Eun Hye; Kim, So Ra; Jang, Young Pyo

    2017-03-01

    The purpose of the study was to investigate the protective effect of the Curcuma longa L. extract (CLE) and its curcuminoids against blue light-induced cytotoxicity in human retinal pigment epithelial (RPE) cells laded with A2E. A2E has been concerned in age-related macular degeneration (AMD). To perform this study, A2E-accumulated ARPE-19 cells were exposed to blue light to induce cytotoxicity. The cytotoxicity and apoptotic gene expression levels were evaluated using a lactate dehydrogenase (LDH) assay and real-time PCR analysis, respectively. Curcuma longa L. extract was found to exert a protective effect in a dose-dependent manner. At a concentration of 15 μm, curcumin, demethoxycurcumin and bisdemethoxycurcumin exerted significant protective effects against blue light-induced cytotoxicity. Treatment with CLE and curcuminoids meaningfully reduced the mRNA levels of c-Abl and p53, which was known to be augmented in apoptotic RPE cells. Demethoxycurcumin and bisdemethoxycurcumin were found to inhibit p38 expression, which is increased in blue light-irradiated A2E-accumulated RPE cells. Curcuma longa L. extract and its curcuminoids provided significant protection against photooxidative damage and apoptosis in the RPE cells. Our results suggest that curcuminoids may show potential in the treatment of AMD. © 2017 Royal Pharmaceutical Society.

  10. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Reconstitution of the anti-apoptotic Bcl-2 protein into lipid membranes and biophysical evidence for its detergent-driven association with the pro-apoptotic Bax protein.

    Directory of Open Access Journals (Sweden)

    Marcus Wallgren

    Full Text Available The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2 protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax, are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23-lauryl-ether (Brij-35 detergent at a level below its critical micelle concentration (CMC. Additional surface plasmon resonance (SPR measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2 to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC. Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.

  12. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  13. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  14. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    Science.gov (United States)

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    To identify those with a micropapillary pattern, ascertain relative frequency and document clinicopathological characteristics by reviewing gastric carcinomas. One hundred and fifty-one patients diagnosed with gastric cancer who underwent gastrectomy were retrospectively studied and the presence of a regional invasive micropapillary component was evaluated by light microscopy. All available hematoxylin-eosin (HE)-stained slides were histologically reviewed and 5 tumors were selected as putative micropapillary carcinoma when cancer cell clusters without a vascular core within empty lymphatic-like space comprised at least 5% of the tumor. Tumor tissues from these 5 invasive gastric carcinomas were immunostained using an anti-mucin 1 (MUC1) antibody (clone MA695) to detect the characteristic inside-out pattern and with D2-40 antibody to determine the presence of intratumoral lymph vessels. Detection of intraepithelial neutrophil apoptosis was evaluated in consecutive histological tissue sections by three independent methods, namely light microscopy with HE staining, the conventional terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemistry for activated caspase-3 (clone C92-605). Among 151 gastric cancers resected for cure, 5 (3.3%) were adenocarcinomas with a micropapillary component. Four of the patients died of disease from 6 to 23 mo and one patient was alive with metastases at 9 mo. All patients had advanced-stage cancer (≥ pT2) and lymph node metastasis. Positive MUC1 immunostaining on the stroma-facing surface (inside-out pattern) of the carcinomatous cluster cells, together with negative immunostaining for D2-40 in the cells limiting lymphatic-like spaces, confirmed the true micropapillary pattern in these gastric neoplasms. In all five cases, several micropapillae were infiltrated by neutrophils. HE staining, TUNEL assay and immunostaining for caspase-3 demonstrated apoptotic neutrophils within

  15. Repeated Exposure of Epithelial Cells to Apoptotic Cells Induces the Specific Selection of an Adaptive Phenotype: Implications for Tumorigenesis.

    Science.gov (United States)

    Feng, Lanfei; Vujicic, Snezana; Dietrich, Michael E; Litbarg, Natalia; Setty, Suman; Antoni, Angelika; Rauch, Joyce; Levine, Jerrold S

    2018-05-16

    The consequences of apoptosis extend beyond mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPT SEL ) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPT SEL responders fully resistant to apoptotic target-induced death (~85% survival versus exposure in selected versus non-selected responders indicated that the acquired resistance of BU.MPT SEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  17. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases.

    Science.gov (United States)

    Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T

    2018-07-01

    The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.

  18. Interaction of DNA-lesions induced by sodium fluoride and radiation and its influence in apoptotic induction in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Santosh Podder

    2015-01-01

    Full Text Available Fluoride is an essential trace element but also an environmental contaminant with major sources of exposure being drinking water, food and pesticides. Previous studies showed that sodium fluoride (NaF at 5 mM or more is required to induce apoptosis and chromosome aberrations and proposed that DNA damage and apoptosis play an important role in toxicity of excessive fluoride. The aim of this study is directed to understand the nature of DNA-lesions induced by NaF by allowing its interaction with radiation induced DNA-lesions. NaF 5 mM was used after observing inability to induce DNA damages and apoptosis by single exposure with 50 μM or 1 mM NaF. Co-exposure to NaF and radiation significantly increased the frequency of aberrant metaphases and exchange aberrations in human lymphocytes and arrested the cells in G1 stage instead of apoptotic death. Flow cytometric analysis, DNA fragmentation and PARP-cleavage analysis clearly indicated that 5 mM NaF together with radiation (1 Gy induced apoptosis in both U87 and K562 cells due to down regulation of expression of anti-apoptotic proteins, like Bcl2 in U87 and inhibitors of apoptotic proteins like survivin and cIAP in K562 cells. This study herein suggested that single exposure with extremely low concentration of NaF unable to induce DNA lesions whereas higher concentration induced DNA lesions interact with the radiation-induced DNA lesions. Both are probably repaired rapidly thus showed increased interactive effect. Coexposure to NaF and radiation induces more apoptosis in cancer cell lines which could be due to increased exchange aberrations through lesions interaction and downregulating anti-apoptotic genes.

  19. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  20. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  1. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Chen Gao

    Full Text Available Chronic myocardial infarction (MI triggers pathological remodeling in the heart and cardiac nervous system. Abnormal function of the autonomic nervous system (ANS, including stellate ganglia (SG and dorsal root ganglia (DRG contribute to increased sympathoexcitation, cardiac dysfunction and arrythmogenesis. ANS modulation is a therapeutic target for arrhythmia associated with cardiac injury. However, the molecular mechanism involved in the pathological remodeling in ANS following cardiac injury remains to be established.In this study, we performed transcriptome analysis by RNA-sequencing in thoracic SG and (T1-T4 DRG obtained from Yorkshire pigs following either acute (3 to 5 hours or chronic (8 weeks myocardial infarction. By differential expression and weighted gene co-expression network analysis (WGCNA, we identified significant transcriptome changes and specific gene modules in the ANS tissues in response to myocardial infarction at either acute or chronic phases. Both differential expressed genes and the member genes of the WGCNA gene module associated with post-infarct condition were significantly enriched for inflammatory signaling and apoptotic cell death. Targeted validation analysis supported a significant induction of inflammatory and apoptotic signal in both SG and DRG following myocardial infarction, along with cellular evidence of apoptosis induction based on TUNEL analysis. Importantly, these molecular changes were observed specifically in the thoracic segments but not in their counterparts obtained from lumbar sections.Myocardial injury leads to time-dependent global changes in gene expression in the innervating ANS. Induction of inflammatory gene expression and loss of neuron cell viability in SG and DRG are potential novel mechanisms contributing to abnormal ANS function which can promote cardiac arrhythmia and pathological remodeling in myocardium.

  2. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    Science.gov (United States)

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. SorCS2 Regulates Dopaminergic Wiring and Is Processed into an Apoptotic Two-Chain Receptor in Peripheral Glia

    DEFF Research Database (Denmark)

    Glerup, Simon; Olsen, Ditte; Vægter, Christian Bjerggaard

    2014-01-01

    Balancing trophic and apoptotic cues is critical for development and regeneration of neuronal circuits. Here we identify SorCS2 as a proneurotrophin (proNT) receptor, mediating both trophic and apoptotic signals in conjunction with p75NTR. CNS neurons, but not glia, express SorCS2 as a single-chain...... behavioral response to amphetamine reminiscent of ADHD. Contrary, in PNS glia, but not in neurons, proteolytic processing produced a two-chain SorCS2 isoform that mediated proNT-dependent Schwann cell apoptosis. Sciatic nerve injury triggered generation of two-chain SorCS2 in p75NTR-positive dying Schwann...... cells, with apoptosis being profoundly attenuated in Sorcs2−/− mice. In conclusion, we have demonstrated that two-chain processing of SorCS2 enables neurons and glia to respond differently to proneurotrophins....

  4. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.; Hari, P.S.; Remacle, Jose; Sridhar, T.S., E-mail: tssridhar@sjri.res.in

    2016-08-01

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helps inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.

  5. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots.

    Science.gov (United States)

    Singh, Braj R; Singh, Brahma N; Khan, W; Singh, H B; Naqvi, A H

    2012-08-01

    Cadmium sulfide (CdS) quantum dots (QDs) have raised great attention because of their superior optical properties and wide utilization in biological and biomedical studies. However, little is known about the cell death mechanisms of CdS QDs in human cancer cells. This study was designed to investigate the possible mechanisms of apoptosis induced by biosurfactant stabilized CdS QDs (denoted as "bsCdS QDs") in human prostate cancer LNCaP cells. It was also noteworthy that apoptosis correlated with reactive oxygen species (ROS) production, mitochondrial damage, oxidative stress and chromatin condensation in a dose- and time-dependent manner. Results also showed involvement of caspases, Bcl-2 family proteins, heat shock protein 70, and a cell-cycle checkpoint protein p53 in apoptosis induction by bsCdS QDs in LNCaP cells. Moreover, pro-apoptotic protein Bax was upregulated and the anti-apoptotic proteins, survivin and NF-κB were downregulated in bsCdS QDs exposed cells. Protection of N-acetyl cysteine (NAC) against ROS clearly suggested the implication of ROS in hyper-activation of apoptosis and cell death. It is encouraging to conclude that biologically stabilized CdS QDs bear the potential of its applications in biomedicine, such as tumor therapy specifically by inducing caspase-dependent apoptotic cell death of human prostate cancer LNCaP cells. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Is the presence of 6 or fewer crypt apoptotic bodies sufficient for diagnosis of graft versus host disease? A decade of experience at a single institution.

    Science.gov (United States)

    Lin, Jingmei; Fan, Rong; Zhao, Zijin; Cummings, Oscar W; Chen, Shaoxiong

    2013-04-01

    Histopathology assessment is crucial for the diagnosis of graft versus host disease (GVHD), as the presence of crypt apoptosis is the cardinal criterion required. However, crypt apoptosis is not limited to GVHD; it also occurs in other conditions such as infection, drug reaction, or inflammatory reactions unrelated to GVHD. To better determine whether the presence of 6 or fewer apoptotic bodies is sufficient for the diagnosis of GVHD, we retrospectively reviewed 78 colon biopsies from 66 patients who received either hematopoietic stem cell (HSCT) or cord blood cell transplantation and whose colon biopsies exhibited apoptotic bodies. Among them, 41 cases contained 6 or fewer apoptotic bodies in the colon biopsy. These biopsies were compared with 141 colon biopsy controls that showed no significant pathologic changes as well as 16 colon biopsies with cytomegalovirus colitis from patients without a history of bone marrow transplantation. Among the 41 cases reviewed, 7 patients had coexisting GVHD in other organs (skin or liver). However, gastrointestinal symptoms of at least 4 HSCT patients whose colon biopsies contained 6 or fewer apoptotic bodies completely resolved in the absence of further intervention for GVHD. The discrepancy between pathologic findings and the clinical course may be due to confounding factors, such as infection or medication-induced injury. Our data suggest that identifying 6 or fewer crypt apoptotic bodies in colon biopsies from HSCT patients is worth reporting in order to alert the clinicians of the possibility of GVHD but not sufficient to render a diagnosis on the pathologic grounds alone. The colon biopsies containing 6 or fewer apoptotic bodies represent a heterogenous group. We suggest this group to be classified as indeterminate for GVHD, instead of diagnosing GVHD outright. Synthesis of all clinical, endoscopic, and pathologic information, including the status of infection, coexisting GVHD involvement in the other organs, and

  8. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines

    Directory of Open Access Journals (Sweden)

    Abdurrahim Kocyigit

    2016-10-01

    Conclusions: This study showed that both NG-Ox and NG possess cytotoxic, genotoxic and apoptotic activities through the production of ROS on cells, NG-Ox being the more effective one. Therefore, derived compound of NG might be used as antiproliferative agents for the treatment of cancer.

  9. Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaochun; Komaki, Ritsuko; Cheung, Rex; Fang Bingliang

    2006-01-01

    Purpose: To overcome radiation resistance in esophageal adenocarcinoma by tumor-specific apoptotic gene targeting using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Methods and Materials: Adenoviral vector Ad/TRAIL-F/RGD with a tumor-specific human telomerase reverse transcription promoter was used to transfer TRAIL gene to human esophageal adenocarcinoma and normal human lung fibroblastic cells (NHLF). Activation of apoptosis was analyzed by Western blot, fluorescent activated cell sorting, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate labeling (TUNEL) assay. A human esophageal adenocarcinoma mouse model was treated with intratumoral injections of Ad/TRAIL-F/RGD plus local radiotherapy. Results: The combination of Ad/TRAIL-F/RGD and radiotherapy increased the cell-killing effect in all esophageal adenocarcinoma cell lines but not in NHLF cells. This combination also significantly reduced clonogenic formation (p < 0.05) and increased sub-G1 deoxyribonucleic acid accumulation in cancer cells (p < 0.05). Activation of apoptosis by Ad/TRAIL-F/RGD plus radiotherapy was demonstrated by activation of caspase-9, caspase-8, and caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase in vitro and TUNEL assay in vivo. Combined Ad/TRAIL-F/RGD and radiotherapy dramatically inhibited tumor growth and prolonged mean survival in the esophageal adenocarcinoma model to 31.6 days from 16.7 days for radiotherapy alone and 21.5 days for Ad/TRAIL-F/RGD alone (p < 0.05). Conclusions: The combination of tumor-specific TRAIL gene targeting and radiotherapy enhances the effect of suppressing esophageal adenocarcinoma growth and prolonging survival

  10. Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Lakshna Mahajan

    Full Text Available Surfactant protein D (SP-D, an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7, and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2 showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host's immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and

  11. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  13. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Yu [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Chao-Yu [School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kang, Chao-Kai [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Sher, Yuh-Pyng [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan (China); Sheu, Wayne H.-H. [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan (China); School of Medicine, National Yang Ming University, Taipei, Taiwan (China); School of Medicine, National Defense Medical Center, Taipei, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung, Taiwan (China)

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  14. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    International Nuclear Information System (INIS)

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-01-01

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation

  15. Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats

    DEFF Research Database (Denmark)

    Ladefoged, Ole; Hougaard, Karin Sørig; Hass, Ulla

    2004-01-01

    the offspring for developmental neurotoxicity and level of apoptosis in the brain. The number of apoptotic cells in cerebellum postnatal day 22, 24, and 27 and in hippocampus (postnatal day 22, 24, and 27) were counted after visualization by the TUNEL staining or measured by DNA-laddering technique. Caspase-3...

  16. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    Science.gov (United States)

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  17. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  18. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary

    Directory of Open Access Journals (Sweden)

    Sandy B. Serizier

    2017-11-01

    Full Text Available For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells. Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  19. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary.

    Science.gov (United States)

    Serizier, Sandy B; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  20. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    Science.gov (United States)

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Anti-apoptotic role of retinoic acid in the inner ear of noise-exposed mice

    International Nuclear Information System (INIS)

    Ahn, Joong Ho; Kang, Hun Hee; Kim, Young-Jin; Chung, Jong Woo

    2005-01-01

    Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise

  3. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family.

    Science.gov (United States)

    Gonzalez, Laura E; Juknat, A Ana; Venosa, Andrea J; Verrengia, Noemi; Kotler, Mónica L

    2008-12-01

    Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.

  4. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Science.gov (United States)

    Pernice, Mathieu; Dunn, Simon R; Miard, Thomas; Dufour, Sylvie; Dove, Sophie; Hoegh-Guldberg, Ove

    2011-01-24

    Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. The PRESENT study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  5. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  6. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    2011-01-01

    Full Text Available Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts.The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity.In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  7. Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin.

    Science.gov (United States)

    Zhou, Mi; Feng, Mei; Fu, Ling-Ling; Ji, Lin-Dan; Zhao, Jin-Shun; Xu, Jin

    2016-11-01

    Tributyltin (TBT) is one of the most widely used organotin biocides, which has severe endocrine-disrupting effects on marine species and mammals. Given that TBT accumulates at higher levels in the liver than in any other organ, and it acts mainly as a hepatotoxic agent, it is important to clearly delineate the hepatotoxicity of TBT. However, most of the available studies on TBT have focused on observations at the cellular level, while studies at the level of genes and proteins are limited; therefore, the molecular mechanisms of TBT-induced hepatotoxicity remains largely unclear. In the present study, we applied a toxicogenomic approach to investigate the effects of TBT on gene expression in the human normal liver cell line HL7702. Gene expression profiling identified the apoptotic pathway as the major cause of hepatotoxicity induced by TBT. Flow cytometry assays confirmed that medium- and high-dose TBT treatments significantly increased the number of apoptotic cells, and more cells underwent late apoptosis in the high-dose TBT group. The genes encoding heat shock proteins (HSPs), kinases and tumor necrosis factor receptors mediated TBT-induced apoptosis. These findings revealed novel molecular mechanisms of TBT-induced hepatotoxicity, and the current microarray data may also provide clues for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    Science.gov (United States)

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  9. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  10. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    Al-Gubory, Kais H.

    2005-01-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  11. Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2016-06-01

    Full Text Available Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer (HT29 cells by using real-time polymerase chain reaction and flow-cytometry methods. Methods: This experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH, disk diffusion and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT methods, respectively. The half maximal inhibitory concentration (IC50 value was calculated. We extracted total RNA molecules by using RNX solution, after which cDNA was synthesized. Finally, the pro-apoptotic (Bax and anti-apoptotic (Bcl2 gene expression was performed by real-time polymerase chain reaction and apoptotic effects were analyzed using Flow-cytometry method. Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57% and Caryophyllene oxide (15.15% The antioxidant activity of the extract was IC50= 0.6±0.03 mg/ml. The maximum and minimum antibacterial effects of extract were belonged to gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that the A.citrodora extract have IC50= 20.1±0.78 mg/ml against colon cancer (HT29 cell line and real-time polymerase chain reaction results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72 (P< 0.05, 0.43±0.35 (P< 0.05. In addition, the flow-cytometry results indicated the 38

  12. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies.

    Science.gov (United States)

    Puiggròs, Francesc; Salvadó, Maria-Josepa; Bladé, Cinta; Arola, Lluís

    2014-01-01

    Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.

  13. Asymmetric Synthesis and Evaluation of Danshensu-Cysteine Conjugates as Novel Potential Anti-Apoptotic Drug Candidates

    Science.gov (United States)

    Pan, Li-Long; Wang, Jie; Jia, Yao-Ling; Zheng, Hong-Ming; Wang, Yang; Zhu, Yi-Zhun

    2014-01-01

    We have previously reported that the danshensu-cysteine conjugate N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide (DSC) is a potent anti-oxidative and anti-apoptotic agent. Herein, we further design and asymmetrically synthesize two diastereoisomers of DSC and explore their potential bioactivities. Our results show that DSC and its two diastereoisomers exert similar protective effects in hydrogen peroxide (H2O2)-induced cellular injury in SH-SY5Y cells, as evidenced by the increase of cell viability, superoxide dismutase (SOD), and reduced glutathione (GSH) activity, and glutathione peroxidase (GPx) expression, and the decrease of cellular morphological changes and nuclear condensation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) production. In H2O2-stimulated human umbilical vein endothelial cells (HUVEC), DSC concentration-dependently attenuates H2O2-induced cell death, LDH release, mitochondrial membrane potential collapse, and modulates the expression of apoptosis-related proteins (Bcl-2, Bax, caspase-3, and caspase-9). Our results provide strong evidence that DSC and its two diastereoisomers have similar anti-oxidative activity and that DSC exerts significant vascular-protective effects, at least in part, through inhibition of apoptosis and modulation of endogenous antioxidant enzymes. PMID:25551606

  14. Inhibition of Carbonic Anhydrase IX by Ureidosulfonamide Inhibitor U104 Reduces Prostate Cancer Cell Growth, But Does Not Modulate Daunorubicin or Cisplatin Cytotoxicity.

    Science.gov (United States)

    Riemann, Anne; Güttler, Antje; Haupt, Verena; Wichmann, Henri; Reime, Sarah; Bache, Matthias; Vordermark, Dirk; Thews, Oliver

    2018-03-05

    Carbonic anhydrase (CA) IX has emerged as a promising target for cancer therapy. It is highly upregulated in hypoxic regions and mediates pH regulation critical for tumor cell survival as well as extracellular acidification of the tumor microenvironment, which promotes tumor aggressiveness via various mechanisms, such as augmenting metastatic potential. Therefore, the aim of this study was to analyze the complex interdependency between CA IX and the tumor microenvironment in prostate tumor cells with regard to potential therapeutic implications. CA IX was upregulated by hypoxia as well as acidosis in prostate cancer cells. This induction did not modulate intracellular pH but led to extracellular acidification. Pharmacological inhibition of CA IX activity by U104 (SLC-0111) resulted in a reduction in tumor cell growth and an increase in apoptotic cell death. Intracellular pH was reduced under normoxic and even more so under hypoxic conditions when CA IX level was high. However, although intracellular pH regulation was disturbed, targeting CA IX in combination with daunorubicin or cisplatin did not intensify apoptotic tumor cell death. Hence, targeting CA IX in prostate cancer cells can lead to intracellular pH dysregulation and, consequently, can reduce cellular growth and elevate apoptotic cell death. Attenuation of extracellular acidification by blocking CA IX might additionally impede tumor progression and metastasis. However, no beneficial effect was seen when targeting CA IX in combination with chemotherapeutic drugs.

  15. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    Science.gov (United States)

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  16. Human Adipose-Derived Stem Cells Delay Retinal Degeneration in Royal College of Surgeons Rats Through Anti-Apoptotic and VEGF-Mediated Neuroprotective Effects.

    Science.gov (United States)

    Li, Z; Wang, J; Gao, F; Zhang, J; Tian, H; Shi, X; Lian, C; Sun, Y; Li, W; Xu, J-Y; Li, P; Zhang, J; Gao, Z; Xu, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Stem cell therapy is a promising therapeutic approach for retinal degeneration (RD). Our study investigated the effects of human adipose derived stem cell (hADSCs) on Royal College of Surgeons (RCS) rats. Green fluorescent protein (GFP)-labeled hADSCs were transplanted subretinally into RCS rats at postnatal (PN) 21 days to explore potential therapeutic effects, while adeno-associated viral vector (AAV2)-vascular endothelial growth factor (VEGF) and siVEGF-hADSCs were used to aid the mechanistic dissections. Visual function was evaluated by Electroretinogram (ERG) recording. Potential transdifferentiations were examined by Immunofluorescence (IF) and gene expressions were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Apoptotic retinal cells were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) assay and the cytokines secreted by hADSCs were measured by Enzyme-linked Immunosorbent Assay (ELISA). The visual function of RCS rats began to decrease one week after their eyes opened at PN week 3 and almost lost in PN 5 weeks, accompanied by the loss of retinal outer nuclear layer (ONL). Subretinal transplantation of hADSCs significantly improved the visual function 2 weeks after the transplantation and such therapeutic effect persisted up to 8 weeks after the treatment (PN 11 weeks), with 3-4 rows of photoreceptors remained in the ONL and reduced apoptosis. Consistent with these phenotypic changes, the gene expression of rod photoreceptor markers Rhodopsin (Rho), Crx and Opsin (Opn1) in RCS rats showed obvious decreasing trends over time after PN 3 weeks, but were elevated with hADSC treatment. hADSC transplantation also repressed the expressions of Bax, Bak and Caspase 3, but not the expression of anti-apoptotic genes, including Bcl-2 and Bcl-XL. Finally, substantial VEGF, hepatocyte growth factor (HGF) and pigment epithelium-derived factor (PEDF) secretions from hADSCs were detected, while endogenous

  17. Membrane microdomain-associated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Shigeru Kihira

    2012-08-01

    Our previous study demonstrated that tyrosine phosphorylation of p145met/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD serve as a structural platform for signaling events involving p145met, EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa, an urothelium-specific protein. Results obtained so far revealed: 1 UPIIIa undergoes partial proteolysis in serum-starved cells; 2 a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3 knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP, inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.

  18. Comparative studies of cytotoxic and apoptotic properties of different extracts and the essential oil of Lavandula angustifolia on malignant and normal cells.

    Science.gov (United States)

    Tayarani-Najaran, Zahra; Amiri, Atefeh; Karimi, Gholamreza; Emami, Seyed Ahmad; Asili, Javad; Mousavi, Seyed Hadi

    2014-01-01

    Lavender (Lavandula angustifolia Mill.) is a bush-like shrub from Lamiaceae. The herb has been used in alternative medicine for several centuries. In this study, the cytotoxicity and the mechanisms of cell death induced by 3 different extracts of aerial parts and the essential oil of L. angustifolia were compared in normal and cancerous human cells. Malignant (HeLa and MCF-7 cell lines) and nonmalignant (human fibroblasts) cells were incubated with different concentrations of the plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak). The molecules as apoptotic signal translation, including Bax and cleaved PARP, were identified by Western blot. Ethanol and n-hexane extracts and essential oil exhibited significant cytotoxicity to malignant cells but marginal cytotoxicity to human fibroblasts in vitro and induced a sub-G1 peak in flow cytometry histogram of treated cells compared to the control. Western blot analysis demonstrated that EtOH and n-hexane extracts upregulated Bax expression, also it induced cleavage of PARP in HeLa cells compared to the control. In conclusion, L. angustifolia has cytotoxic and apoptotic effects in HeLa and MCF-7 cell lines, and apoptosis is proposed as the possible mechanism of action.

  19. Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia Through AKT1 and Mitochondrial Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2010-01-01

    Full Text Available Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  20. Melatonin reduces hypoxic-ischaemic (HI) induced autophagy and apoptosis: An in vivo and in vitro investigation in experimental models of neonatal HI brain injury.

    Science.gov (United States)

    Hu, Yingying; Wang, Zhouguang; Liu, Yanlong; Pan, Shulin; Zhang, Hao; Fang, Mingchu; Jiang, Huai; Yin, Jiayu; Zou, Shuangshuang; Li, Zhenmao; Zhang, Hongyu; Lin, Zhenlang; Xiao, Jian

    2017-07-13

    Melatonin has neuroprotective effects in many diseases, including neonatal hypoxic-ischaemic (HI) brain injury. The purpose of this study was to evaluate the neuroprotective effects of melatonin both in vivo and in vitro and associated molecular mechanisms behind these effects. Postnatal day 7 male and female rat pups were subjected to unilateral HI, melatonin was injected intraperitoneally 1h before HI and an additional six doses were administered at 24h intervals. The pups were sacrificed at 24h and 7 d after HI. Pre-treatment with melatonin significantly reduced brain damage at 7 d after HI, with 15mg/kg melatonin achieving over 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell death as indicated by autophagy associated proteins, cleaved caspase 3 and Tunel staining, was significantly inhibited after melatonin treatment in vivo as well as in PC12 cells. Melatonin treatment also significantly increased the GAP43 in the cortex. In conclusion, melatonin treatment reduced neonatal rat brain injury after HI, and this appeared to be related to inhibiting autophagy as well as reducing apoptotic cell death. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Freezing and post-thaw apoptotic behaviour of cells in the presence of palmitoyl nanogold particles

    International Nuclear Information System (INIS)

    Thirumala, Sreedhar; Forman, Julianne M; Monroe, W Todd; Devireddy, Ram V

    2007-01-01

    The aim of this study was to evaluate the freezing response of HeLa and Jurkat cells in the presence of commercially available nanoparticles, NPs (Palmitoyl Nanogold[reg], Nanoprobes). The cells were incubated with NPs for either 5 min or 3 h, and a calorimeter technique was then used to generate the volumetric shrinkage response during freezing at 20 deg. C min -1 . Concomitantly, we also examined the effect of a commonly used cryoprotectant, dimethylsulfoxide, DMSO (10% v/v ratio) on the freezing response of HeLa and Jurkat cells. By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the reference hydraulic conductivity, L pg (μm/min-atm) and activation energy, E Lp (kcal mol -1 ) were obtained. For HeLa cells, the values of L pg ranged from 0.08 to 0.23 μm/min-atm, while E Lp ranged from 10.9 to 37.4 kcal mol -1 . For Jurkat cells these parameter values ranged from 0.05 to 0.16 μm/min-atm and 9.5 to 35.9 kcal mol -1 . A generic optimal cooling rate equation was then used to predict the optimal rates of freezing HeLa and Jurkat cells in the presence and absence of DMSO and NPs. The post-thaw viability and apoptotic response of HeLa and Jurkat cells was further investigated by cooling cells at three rates in the presence and absence of DMSO and NPs using a commercially available controlled rate freezer. Jurkat cells treated in this manner demonstrated an increase in their adhesive properties after 18 h incubation and adhered strongly to the bottom of the culture plate. This observation prevented further analysis of Jurkat apoptotic and necrotic post-thaw responses. There was no significant effect of NPs or DMSO alone on HeLa cell viability prior to freezing. The post-thaw results from HeLa cells show that the NPs increased the measured post-freeze apoptotic response when cooled at 1 deg. C min -1 , suggesting a possible therapeutic use of NPs in cryodestructive procedures

  2. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  3. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  4. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  5. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  6. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2013-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT

  7. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    Science.gov (United States)

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  8. Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury.

    Science.gov (United States)

    Zhang, Qing-Hong; Chen, Qi; Kang, Jia-Rui; Liu, Chen; Dong, Ning; Zhu, Xiao-Mei; Sheng, Zhi-Yong; Yao, Yong-Ming

    2011-09-21

    Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice. Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg), or with low (2 mg/kg) or high doses (20 mg/kg) of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE) and soluble protein-100 (S-100). Finally, cerebral phospho-ERK expression was measured by western blot. Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%). Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%), survival time was prolonged against the placebo control (43.1 ± 4.5 h vs. 35.5 ± 5.0 h; P Burn-induced T cell suppression was greatly alleviated by high dose gelsolin treatment. Concurrently, cerebral abnormalities were greatly ameliorated as shown by reduced NSE and S-100 content of brain, decreased cytokine mRNA expressions, suppressed microglial activation, and enhanced infiltration of CD11b+ and CD45+ cells into the brain. Furthermore, the elevated caspase-3 activity seen following burn injury was remarkably reduced by high dose gelsolin treatment along with down-regulation of

  9. Branchial lesions associated with abundant apoptotic cells in oysters Ostrea edulis of Galicia (NW Spain).

    Science.gov (United States)

    Mirella da Silva, P; Villalba, Antonio; Sunila, Inke

    2006-06-12

    An experiment to evaluate differences in growth, mortality and disease susceptibility among Ostrea edulis stocks was performed. Five families were produced from each of 4 oyster populations (Irish, Greek and 2 Galician). The spat were transferred to a raft in the Ria de Arousa (Galicia, Spain) for grow-out. Monthly samples of each family were histologically processed from 2001 to 2003. One of the pathological conditions discovered by this study was the occurrence of extensive branchial lesions characterized by haemocytic infiltration and loss of branchial architecture. Furthermore, abundant atypical cells occurred among the haemocytes in the lesions in the branchial connective and epithelial tissues, but rarely in the mantle. These cells were contracted in size with nuclei showing chromatin condensation and fragmentation. Some nuclear chromatin aggregated under the nuclear membranes into crescent shapes, whereas others were uniformly dense. Those characteristics suggested that the cells were apoptotic haemocytes, which was confirmed by transmission electron microscopy (TEM) and by a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labelling (TUNEL) assay using the Apoptag Kit on paraffin sections. A low prevalence of gill lesions was detected in some, but not all, families of every origin peaking in July 2002 and April 2003. No etiologic agent was identified by either histology or TEM; thus, the cause of the abundance of apoptotic cells remains unclear.

  10. Classification of Normal and Apoptotic Cells from Fluorescence Microscopy Images Using Generalized Polynomial Chaos and Level Set Function.

    Science.gov (United States)

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2016-06-01

    Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.

  11. Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?

    Science.gov (United States)

    Lokhmatikov, Alexey V.; Voskoboynikova, Natalia; Cherepanov, Dmitry A.; Skulachev, Maxim V.; Steinhoff, Heinz-Jürgen; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2016-01-01

    Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane—liposomes of pure bovine heart CL—we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature. PMID:27313834

  12. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  14. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    Science.gov (United States)

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  15. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  16. Apoptotic factors in physiological and pathological processes of teeth and periodontal tissues – literature review

    Directory of Open Access Journals (Sweden)

    Orzedala-Koszel Urszula

    2014-12-01

    Full Text Available Apoptosis is a physiological process that occurs in the human body throughout the entire life span. This process can be seen in the tissues of the stomatognathic system. A disorder in such programmed cell death processes leads to the development of pathological lesions. Among these are inflammation, osteolytic lesions and neoplastic hyperplasia. We put forward that future studies should concentrate on how to use the knowledge of apoptotic processes and their inhibitors in therapeutic processes involving the stomatognathic system.

  17. Non-apoptotic cell death associated with perturbations of macropinocytosis.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  18. Non-apoptotic cell death associated with perturbations of macropinocytosis

    Directory of Open Access Journals (Sweden)

    William A. Maltese

    2015-02-01

    Full Text Available Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed ‘methuosis’, from the Greek methuo (to drink to intoxication. It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  19. Upregulation of intrinsic apoptotic pathway in NSAIDs mediated chemoprevention of experimental lung carcinogenesis.

    Science.gov (United States)

    Setia, Shruti; Sanyal, Sankar N

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) act by inhibition of cyclooxygenase-2 (COX-2), which is overexpressed in cancer. The role of COX-2 and apoptosis were evaluated in 9,10-dimethylbenz(a)anthracene (DMBA)-induced lung cancer in rat and chemoprevention with indomethacin, a traditional NSAID and etoricoxib, a selective COX-2 inhibitor. The animals were divided into Control, DMBA, DMBA+ indomethacin and DMBA+ etoricoxib groups. They received a single intratracheal instillation of DMBA while NSAIDs were given orally daily for 32 weeks. Besides morphology and histology of lungs, RT-PCR, western blots and immunohistochemistry were performed for the expression of apoptotic proteins and COX enzymes. Apoptosis was studied by DNA fragmentation and fluorescent staining. The occurrence of tumors and lesions was noted in the DMBA animals, besides constricted alveolar spaces and hyperplasia. COX-1 was found to be uniformly expressed while COX-2 level was raised significantly in DMBA group. The apoptotic proteins, apaf-1, caspase-9 and caspase-3 were highly diminished in DMBA group but restored to normal level in NSAIDs groups. Also, apoptosis was suppressed in carcinogen group by DNA fragmentation analysis and fluorescent staining of the lung cells while co-administration of NSAIDs along with DMBA led to the restoration of apoptosis. DMBA administration to the rats led to tumorigenesis in the lungs, had no effects on COX-1 expression, while elevating the COX-2 levels and suppressing apoptosis. The treatment with NSAIDs led to the amelioration of these effects. However, etoricoxib which is a COX-2 specific inhibitor, was found to be more effective than the traditional NSAID, indomethacin.

  20. Extrinsic and Intrinsic Apoptotic Responses Induced by Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Aqueous Extract against a Larynx Carcinoma Cell Line.

    Science.gov (United States)

    Finimundy, Tiane C; Scola, Gustavo; Scariot, Fernando J; Dillon, Aldo J P; Moura, Sidnei; Echeverrigaray, Sérgio; Henriques, João Pegas; Roesch-Ely, Mariana

    2018-01-01

    Cumulative evidence from research studies has shown that the shiitake culinary-medicinal mushroom, Lentinus edodes, is an excellent source of natural antitumor agents and is capable of inhibiting cancer cell growth. However, the cell signaling pathway that leads tumor cells to apoptosis is not well understood because many chemical compounds may be acting. This study investigated the chemopreventive effects of an L. edodes aqueous extract on human HEp-2 epithelial larynx carcinoma cells and normal human MRC-5 lung fibroblasts by identifying proliferative and apoptotic pathways. The chemical characterization of the dry powder was assessed by high-performance liquid chromatography. Antiproliferative and proapoptotic effects induced by the extract were evaluated by assessing proliferative markers, cell sorting through flow cytometry, and expression levels of apoptotic proteins with Western blotting. The results suggest that inhibition of cell proliferation was more prominent in HEp-2 than in MRC-5 cells. Cell death analysis showed the appearance of cell populations in the sub-G1 phase, with late apoptotic signal increased in a dose-dependent manner. In addition, the aqueous extract induced depolarization of mitochondria, activating the generation of intracellular reactive oxygen species in HEp-2 cells. These observations suggest that L. edodes extract may exert a chemopreventive effect, regulating mitotic induction of apoptogenic signals. These findings highlight the mushroom's pharmacological potential in cancer treatment.

  1. Natriuretic peptide infusion reduces myocardial injury during acute ischemia/reperfusion

    DEFF Research Database (Denmark)

    Kousholt, Birgitte S.; Larsen, Jens Kjærgaard Rolighed; Bisgaard, Line Stattau

    2012-01-01

    Aim: The aim of this study was to determine whether a natriuretic peptide infusion during reperfusion can reduce cardiomyocyte ischemia–reperfusion damage. Materials and methods: The effect of B-type natriuretic peptide (BNP) activity was assessed in vitro and in vivo: the cellular effect...... in apoptotic changes in the BNP-stimulated cells. Pigs tolerated the BNP and CD-NP (a CNP analogue) infusion well, with a decrease in systemic blood pressure (~15 mmHg) and increased diuresis compared with the controls. Left ventricular pressure decreased in the pigs that received BNP infusion compared...... with controls (P=0.02). A similar trend was observed in the pigs that received CD-NP infusion, although this was not significant (P=0.3). BNP and CD-NP infusion in pigs reduced total cardiac troponin T release by 46 and 40%, respectively (P=0.0015 and 0.0019), and were associated with improved RNA integrity...

  2. Natriuretic peptide infusion reduces myocardial injury during acute ischemia/reperfusion

    DEFF Research Database (Denmark)

    Kousholt, Birgitte S.; Larsen, Jens Kjærgaard Rolighed; Bisgaard, Line Stattau

    2012-01-01

    Aim: The aim of this study was to determine whether a natriuretic peptide infusion during reperfusion can reduce cardiomyocyte ischemia–reperfusion damage. Materials and methods: The effect of B-type natriuretic peptide (BNP) activity was assessed in vitro and in vivo: the cellular effect...... in apoptotic changes in the BNP-stimulated cells. Pigs tolerated the BNP and CD-NP (a CNP analogue) infusion well, with a decrease in systemic blood pressure (∼15 mmHg) and increased diuresis compared with the controls. Left ventricular pressure decreased in the pigs that received BNP infusion compared...... with controls (P=0.02). A similar trend was observed in the pigs that received CD-NP infusion, although this was not significant (P=0.3). BNP and CD-NP infusion in pigs reduced total cardiac troponin T release by 46 and 40%, respectively (P=0.0015 and 0.0019), and were associated with improved RNA integrity...

  3. Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation

    International Nuclear Information System (INIS)

    Olive, P.L.; Vikse, C.M.; Vanderbyl, S.

    1999-01-01

    Background and purpose: Approximately 18% of the cells recovered by rapid mechanical dissociation of SiHa xenograft tumours contain large numbers of DNA strand breaks. The number of damaged cells increases to 30-40% 4-6 h after exposure to 5 or 15 Gy, returning to normal levels by 12 h. This observation is reminiscent of the rate of production of apoptotic cells in other murine and human xenograft tumours. The nature of this damage, rate of development and relation to cell proliferation rate were therefore examined in detail.Materials and methods: SiHa human cervical carcinoma cells were grown as xenograft tumours in SCID mice. Single-cell suspensions were prepared as a function of time after irradiation of the mouse and examined for DNA damage using the alkaline comet assay. Cell cycle progression was measured by flow cytometry evaluation of anti-bromodeoxyuridine-labelled tumour cells.Results: Significant numbers of apoptotic cells could not be detected in irradiated SiHa tumours using an end-labelling assay, electron microscopy, or histological examination of thin sections. Instead, xenograft cells exhibiting extensive DNA damage in the comet assay were predominantly necrotic cells. The increase in the proportion of heavily damaged cells 4-6 h after irradiation could be the result of an interplay between several factors including loss of viable cells and change in production or loss of necrotic cells. Analysis of the progression of BrdUrd-labelled cells confirmed that while 35% of cells from untreated SiHa tumours had divided and entered G 1 phase by 6 h after BrdUrd injection, none of the labelled cells from tumours exposed to 5 or 15 Gy had progressed to G 1 .Conclusions: The increase in the percentage of SiHa tumour cells with extensive DNA damage 4-6 h after irradiation is attributable to necrosis, not apoptosis. Cell cycle progression and cell loss are likely to influence the kinetics of appearance of both apoptotic and necrotic cells in irradiated tumours

  4. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence.

    Science.gov (United States)

    Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder

    2006-06-01

    Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.

  5. [Cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy].

    Science.gov (United States)

    Tan, Jiao; Wang, Ya-Ping; Wang, Hui-Xin; Liang, Jian-Ming; Zhang, Meng; Sun, Xun; Huang, Yong-Zhuo

    2014-12-01

    To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.

  6. Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation.

    Science.gov (United States)

    van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2011-01-01

    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.

  7. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  8. Ethanol as an inducer of apoptotic process in cheek mucosae in rats

    Directory of Open Access Journals (Sweden)

    Katarzyna Borowska

    2017-11-01

    Full Text Available Apoptosis is the process that plays a important role in development and tissue homeostasis. This physiological process is regulated by caspases. The caspases are specific cysteine proteases. The aim of this study was to prove how ethanol induces apoptotic process in cheek mucosae cells in rats. Fifteen male Wistar rats were used in the research. They were divided into two treated groups (group A and group Abis and control group. The biggest histological changes of cheek mucosae was observed in group with ethanol four weeks after last consumption. There is no indication of ability to regeneration in short time after treatment. The most marked was expression of caspase 8 in group A bis. In caspase 9 expression group A was more visible.

  9. Implication of the apoptotic process in the modulation of chromosomal damages

    International Nuclear Information System (INIS)

    Blaise, Renaud

    2001-01-01

    In this research thesis in the field of biology, the author reports that the study of radio-induced chromosomal reorganizations during cellular proliferation revealed the occurrence of other radio-induced 'de novo' chromosomal anomalies present in the lineage of irradiated cells. Three cellular models have been studied. The obtained results show the role on a short term of the apoptosis in maintaining chromosomal damages, an inhibition of this death process along with an increase of the number of aberration in the first cellular generations following an irradiation or an extended exposure to H 2 O 2 . But the apoptotic process does not seem to influence the appearance of chromosomal damages on a long term. The author concludes that apoptosis as an early response to a stress, and chromosomal unsteadiness as a late response are not directly associated

  10. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages

    Directory of Open Access Journals (Sweden)

    Perno Carlo

    2002-09-01

    Full Text Available Abstract Background Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M. Results Flow cytometric analysis (FACS of human cultured astrocytes shortly incubated with HIV-1-infected M/M supernatants showed apoptotic cell death, an effect accompanied by pronounced staining for nitrotyrosine (footprint of peroxynitrite and by abnormal formation of malondialdehyde (MDA. Pretreatment of astrocytes with the peroxynitrite decomposition catalyst FeTMPS antagonized HIV-related astrocytic apoptosis, MDA formation and nitrotyrosine staining. Conclusions Taken together, our results suggest that inibition of peroxynitrite leads to protection against peroxidative stress accompanying HIV-related apoptosis of astrocytes. Overall results support the role of peroxynitrite in HIV-related programmed death of astrocytes and suggest the use of peroxynitrite decomposition catalyst to counteract HIV-1-related neurological disorders.

  11. Developmental Programming: Impact of Prenatal Testosterone Excess on Ovarian Cell Proliferation and Apoptotic Factors in Sheep1

    OpenAIRE

    Salvetti, Natalia R.; Ortega, Hugo H.; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2012-01-01

    Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep, which include increased ovarian follicular recruitment and persistence. To test the hypothesis that follicular disruptions in T sheep stem from changes in the developmental ontogeny of ovarian proliferation and apoptotic factors, pregnant Suffolk sheep were injected twice weekly with T propionate or dihydrotestosterone propionate (DHT; a nonaromatizable androgen) from Days 30 to 90 of gestation. Changes in developme...

  12. Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures

    Science.gov (United States)

    Pearce, John A.

    2013-02-01

    Apoptosis is an especially important process affecting disease states from HIV-AIDS to auto-immune disease to cancer. A cascade of initiator and executioner capsase functional proteins is the hallmark of apoptosis. When activated the various caspases activate other caspases or cleave structural proteins of the cytoskeleton, resulting in "blebbing" of the plasma membrane forming apoptotic bodies that completely enclose the disassembled cellular components. Containment of the cytosolic components within the apoptotic bodies differentiates apoptosis from necroptosis and necrosis, both of which release fragmented cytosol and other cellular constituents into the intracellular space. Biochemical models of caspase activation reveal the extensive feedback loops characteristic of apoptosis. They clearly explain the failure of Arrhenius models to give accurate predictions of cell survival curves in hyperthermic heating protocols. Nevertheless, each of the individual reaction velocities can reasonably be assumed to follow Arrhenius kinetics. If so, the thermal sensitivity of the reaction velocity to temperature elevation is: ∂k/∂T = Ea [k/RT2]. Particular reaction steps described by higher activation energies, Ea, are likely more thermally-sensitive than lower energy reactions and may initiate apoptosis in the absence of other stress signals. Additionally, while the classical irreversible Arrhenius formulation fails to accurately represent many cell survival and/or dye uptake curves - those that display an early stage shoulder region - an expanded reversible model of the law of mass action equation seems to prove effective and is directly based on a firm theoretical thermodynamic foundation.

  13. Apoptotic activity and gene responses in Drosophila melanogaster S2 cells, induced by azadirachtin A.

    Science.gov (United States)

    Xu, Lin; Li, Sheng; Ran, Xueqin; Liu, Chang; Lin, Rutao; Wang, Jiafu

    2016-09-01

    Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  15. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  16. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  17. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals.

    Science.gov (United States)

    Bhogal, Balpreet; Plaza-Jennings, Amara; Gavis, Elizabeth R

    2016-06-15

    Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. © 2016. Published by The Company of Biologists Ltd.

  18. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    Science.gov (United States)

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Isoegomaketone induces apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway via activating the PI3K/Akt pathway.

    Science.gov (United States)

    Kwon, Soon-Jae; Lee, Ju-Hye; Moon, Kwang-Deog; Jeong, Il-Yun; Yee, Sung-Tae; Lee, Mi-Kyung; Seo, Kwon-Il

    2014-11-01

    Isoegomaketone (IK) is a major biologically active component of Perilla frutescens. In this study, we investigated the contribution of reactive oxygen species (ROS) to IK-induced apoptosis in human melanoma SK-MEL-2 cells. We found that IK inhibited the proliferation of SK-MEL-2 human melanoma cells in a dose-dependent manner. IK also induced sub-G1 DNA accumulation, formation of apoptotic bodies, nuclear condensation, and a DNA ladder in SK-MEL-2 cells. IK also induced activation of caspase-3 and -9, whereas caspase‑8 was unaffected. Further, N-acetyl-L-cysteine (NAC, ROS scavenger) treatment to SK-MEL-2 cells significantly reduced IK-induced cell death. Pretreatment of NAC to SK-MEL-2 cells followed by 100 µM IK reduced the protein levels of Bax and cytochrome c as well as PARP cleavage, whereas the protein level of Bcl-2 increased. Moreover, IK inhibited the phosphorylation of AKT/mTOR protein and cell proliferation induced by LY294002, a PI3K inhibitor. In conclusion, IK-induced ROS generation regulates cell growth inhibition and it induces apoptosis through caspase‑dependent and -independent pathways via modulation of PI3K/AKT signaling in SK-MEL-2 cells.

  20. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas - Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c.

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A; Rieker, Ralf J; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  1. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c

    Directory of Open Access Journals (Sweden)

    Bei eHuang

    2013-12-01

    Full Text Available The molecular pathogenesis of thymomas and thymic carcinomas (TCs is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and thymic carcinomas, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCC with a custom made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  2. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  3. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  4. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Lassmann, Hans; Johansen, Flemming Fryd

    2007-01-01

    Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether...... anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following...... colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3...

  5. The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells.

    Science.gov (United States)

    Sun, Shuqin; Yang, Shuo; Dai, Min; Jia, Xiujuan; Wang, Qiyan; Zhang, Zheng; Mao, Yongjun

    2017-06-13

    Apoptosis plays a critical role in the progression of diabetic cardiomyopathy (DC). Astragalus polysaccharides (APS), an extract of astragalus membranaceus (AM), is an effective cardioprotectant. Currently, little is known about the detailed mechanisms underlying cardioprotective effects of APS. The aims of this study were to investigate the potential effects and mechanisms of APS on apoptosis employing a model of high glucose induction of apoptosis in H9C2 cells. A model of high glucose induction of H9C2 cell apoptosis was adopted in this research. The cell viabilities were analyzed by MTT assay, and the apoptotic response was quantified by flow cytometry. The expression levels of the apoptosis related proteins were determined by Real-time PCR and western blotting. Incubation of H9C2 cells with various concentrations of glucose (i.e., 5.5, 12.5, 25, 33 and 44 mmol/L) for 24 h revealed that cell viability was reduced by high glucose dose-dependently. Pretreatment of cells with APS could inhibit high glucose-induced H9C2 cell apoptosis by decreasing the expressions of caspases and the release of cytochrome C from mitochondria to cytoplasm. Further experiments also showed that APS could modulate the ratio of Bcl-2 to Bax in mitochondria. APS decreases high glucose-induced H9C2 cell apoptosis by inhibiting the expression of pro-apoptotic proteins of both the extrinsic and intrinsic pathways and modulating the ratio of Bcl-2 to Bax in mitochondria.

  6. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination.

    Science.gov (United States)

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-11-07

    To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and

  7. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer

    International Nuclear Information System (INIS)

    Zerp, Shuraila F.; Stoter, T. Rianne; Hoebers, Frank J. P.; Brekel, Michiel W. M. van den; Dubbelman, Ria; Kuipers, Gitta K.; Lafleur, M. Vincent M.; Slotman, Ben J.; Verheij, Marcel

    2015-01-01

    Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI’s below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF 37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis

  8. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  9. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-01-01

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  10. Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in Paneth cells of rat intestine.

    Science.gov (United States)

    Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E

    2017-03-01

    Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the

  11. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    Science.gov (United States)

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  12. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7

    Directory of Open Access Journals (Sweden)

    M Kolahi

    2016-06-01

    Full Text Available Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. .  Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast cancer cells. Methods: In order to study appoptic effect of p- coumaric acid, MCF-7 breast cancer cells were treated with different concentrations of p- coumaric acid (10, 37, 70, 150 and 300 mM for 24 h. Cell viability was determined using MTT assay. Apoptosis markers including phosphatidylserine exposure at the outer leaflet of the plasma membrane were measured using flow cytometery for Annexin V affinity. Results: Cell viability of MCF-7 cells was decreased with increasing of p- coumaric acid concentration. Maximal effect of p- coumaric acid was observed in cells that treated with 300 mM for 24h (p< 0.05. Viability assay showed that the IC50 of p- coumaric acid in MCF-7 cells was about 40 mM. p- coumaric acid at dose of 300 mM significantly increased the late apoptotic cells with Annexin V+ and propium iodide (PI+ features after 24 h treatment. Conclusion: The results of this study showed that p- coumaric acid had effective appoptic activity against MCF-7 cells. The results can be helpful in understanding the anticancer mechanism of p- coumaric acid and using it was suggested as an alternative or complementary drug in cancer chemotherapy.

  13. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  14. Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q

    OpenAIRE

    Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C.; Kolodner, Richard D.; Edelmann, Winfried; Wang, Jean Y. J.

    2008-01-01

    Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcrip...

  15. Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1

    Energy Technology Data Exchange (ETDEWEB)

    Jenson, Justin M.; Ryan, Jeremy A.; Grant, Robert A.; Letai, Anthony; Keating, Amy E. (DFCI); (MIT)

    2017-06-08

    Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer progression and confers resistance to chemotherapy. Small molecules that target Bcl-2 are used in the clinic to treat leukemia, but tight and selective inhibitors are not available for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed peptides potently trigger disruption of the mitochondrial outer membrane in cells dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted geometry, relative to PUMA and other binding partners, due to a set of epistatic mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-binding groove to augment specificity. Designed Bfl-1 binders provide reagents for cellular profiling and leads for developing enhanced and cell-permeable peptide or small-molecule inhibitors.

  16. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  17. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  18. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    International Nuclear Information System (INIS)

    Ahmed, Maha A.E.

    2015-01-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  19. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p,p'-DDE in European and Inuit populations

    DEFF Research Database (Denmark)

    Stronati, A; Manicardi, G C; Cecati, M

    2006-01-01

    Persistent organochlorine pollutants (POPs) are suspected to interfere with hormone activity and the normal homeostasis of spermatogenesis. We investigated the relationships between sperm DNA fragmentation, apoptotic markers identified on ejaculated spermatozoa and POP levels in the blood of 652...... adult males (200 Inuits from Greenland, 166 Swedish, 134 Polish and 152 Ukrainian). Serum levels of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (CB-153), as a proxy of the total POP burden, and of 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE), as a proxy of the total DDT exposure were determined...... neither sperm DNA fragmentation nor apoptotic sperm parameters and the large variations in POPs exposure was observed for the separate study groups. However, considering the European populations taken together, we showed that both %TUNEL positivity and Bcl-xL were related to CB-153 serum levels, whereas...

  20. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas – Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A.; Rieker, Ralf J.; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. PMID:24427739

  1. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    Science.gov (United States)

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  2. Application of TMA (Tissue micro-array) in the observation of apoptotic cascade in postradiation damage in avian medicine

    International Nuclear Information System (INIS)

    Fridman, E.; Skarda, J.; Skardova, I.

    2006-01-01

    The study of apoptotic cascade by the use of relatively new technique in avian medicine: TMA may help in early detection and prevention of acquired immunodeficiency caused by the influence of a variety of pathogenic and non-pathogenic environmental factors, which may result in severe economical losses in conditions of intensive poultry farming. There has not been any report of applying this method in veterinary medicine. Tissue micro-array (TMA) technology allows rapid visualization of molecular targets in thousands of tissue specimens at a time, either at the DNA, RNA or protein level. The technique facilitates rapid translation of molecular discoveries to clinical applications. This technology has a number of advantages compared with conventional techniques: speed and high throughput, standardization and experimental uniformity, ease of use, all histochemical and molecular detection techniques can be used, decreased assay volume, preservation of original block, and conservation of valuable tissue etc. The aim of the present work were the study of immunosuppression and apoptotic cascade and possibilities of application of tissue micro-array in chicken in experimental condition and diagnostics in avian medicine in general. The selection of samples from avian primary immune organs: thymus and Bursa Fabric was done after gamma irradiation and infectious bursal virus infection (IBDV). (authors)

  3. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death

    Science.gov (United States)

    Choudhury, Arnab; Kar, Sudeshna; Tabassum, Heena

    2017-01-01

    Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of

  4. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Mohammad Waseem

    Full Text Available Oxaliplatin (Oxa treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel, could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm, resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin's protective effects may prove successful in eliciting pathways to further alter the neurotoxic

  5. Contrasting apoptotic responses of conjugated linoleic acid in the liver of obese Zucker rats fed palm oil or ovine fat.

    Science.gov (United States)

    Lopes, Paula A; Martins, Susana V; Viana, Ricardo S J; Ramalho, Rita M; Alfaia, Cristina M; Pinho, Mário S; Jerónimo, Eliana; Bessa, Rui J B; Castro, Matilde F; Rodrigues, Cecília M P; Prates, José A M

    2011-08-01

    We hypothesized that reducing weight properties of conjugated linoleic acid (CLA) are due to adipocyte apoptosis and that CLA differentially modulates the apoptotic responses in hepatic lipotoxicity from rats fed saturated fat diets. Obese Zucker rats were fed atherogenic diets (2%w/w of cholesterol) formulated with high (15%w/w) saturated fat, from vegetable or animal origin, supplemented or not with 1% of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12 CLA isomers for 14 weeks. CLA induced no changes on retroperitoneal fat depot weight, which was in line with similar levels of apoptosis. Interestingly, CLA had a contrasting effect on cell death in the liver according to the dietary fat. CLA increased hepatocyte apoptosis, associated with upregulation of Fas protein in rats fed palm oil, compared to rats receiving palm oil alone. However, rats fed ovine fat alone displayed the highest levels of hepatic cell death, which were decreased in rats fed ovine fat plus CLA. This reducing effect of CLA was related to positively restoring endoplasmic reticulum (ER) ATF-6α, BiP and CHOP protein levels and increasing phosphorylated c-Jun NH(2)-terminal kinase (JNK) and c-Jun, thus suggesting an adaptive response of cell survival. These findings reinforce the role of CLA as regulator of apoptosis in the liver. Moreover, the dietary fat composition is a key factor in activation of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  7. Calcein+/PI- as an early apoptotic feature in Leishmania.

    Directory of Open Access Journals (Sweden)

    Louise Basmaciyan

    Full Text Available Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i to better understand the role of apoptosis in unicellular organisms, (ii to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  8. Calcein+/PI- as an early apoptotic feature in Leishmania.

    Science.gov (United States)

    Basmaciyan, Louise; Azas, Nadine; Casanova, Magali

    2017-01-01

    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  9. Paullinia cupana Mart var. sorbilis, guaraná, reduces cell proliferation and increases apoptosis of B16/F10 melanoma lung metastases in mice

    Directory of Open Access Journals (Sweden)

    H. Fukumasu

    2008-04-01

    Full Text Available We showed that guaraná (Paullinia cupana Mart var. sorbilis had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5 cells/animal were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days. Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA animals presented a 68.6% reduction in tumor burden area compared to control (CO animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043, a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026 and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152. In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.

  10. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats.

    Science.gov (United States)

    Nahas, Ziad; Jiang, Yan; Zeidan, Youssef H; Bielawska, Alicja; Szulc, Zdzislaw; Devane, Lindsay; Kalivas, Peter; Hannun, Yusuf A

    2009-01-30

    Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.

  11. Mode of cell death induced by the HSP90 inhibitor 17-AAG (tanespimycin) is dependent on the expression of pro-apoptotic BAX.

    Science.gov (United States)

    Powers, Marissa V; Valenti, Melanie; Miranda, Susana; Maloney, Alison; Eccles, Suzanne A; Thomas, George; Clarke, Paul A; Workman, Paul

    2013-11-01

    Inhibitors of the molecular chaperone heat shock protein 90 (HSP90) are of considerable current interest as targeted cancer therapeutic agents because of the ability to destabilize multiple oncogenic client proteins. Despite their resulting pleiotropic effects on multiple oncogenic pathways and hallmark traits of cancer, resistance to HSP90 inhibitors is possible and their ability to induce apoptosis is less than might be expected. Using an isogenic model for BAX knockout in HCT116 human colon carcinoma cells, we demonstrate the induction of BAX-dependent apoptosis at pharmacologically relevant concentrations of the HSP90 inhibitor 17-AAG both in vitro and in tumor xenografts in vivo. Removal of BAX expression by homologous recombination reduces apoptosis in vitro and in vivo but allows a lower level of cell death via a predominantly necrotic mechanism. Despite reducing apoptosis, the loss of BAX does not alter the overall sensitivity to 17-AAG in vitro or in vivo. The results indicate that 17-AAG acts predominantly to cause a cytostatic antiproliferative effect rather than cell death and further suggest that BAX status may not alter the overall clinical response to HSP90 inhibitors. Other agents may be required in combination to enhance tumor-selective killing by these promising drugs. In addition, there are implications for the use of apoptotic endpoints in the assessment of the activity of molecularly targeted agents.

  12. Pre-treatment with α-tocopherol and Terminalia arjuna ameliorates, pro-inflammatory cytokines, cardiac and apoptotic markers in myocardial infracted rats.

    Science.gov (United States)

    Shukla, Santosh K; Sharma, Suman B; Singh, Usha R

    2015-03-01

    This study was aimed to evaluate the cardioprotective potential of combination of T. arjuna and α-tocopherol in isoproterenol induced myocardial injury. Wistar albino rats were pre-treated with hydroalcoholic extract of T. arjuna (HETA) and α-tocopherol (100 mg/kg b. w) daily for 30 days. Isoproterenol (ISP, 85 mg/kg b.w) was administered on 28th and 29th days at an interval of 24 hr. ISP treated rats showed significant increase in lipid peroxidation (MDA), cardiac markers (CK-MB, SGOT, Trop I and LDH), pro-inflammatory cytokine (IL-6, CRP, TNF-α) levels and apoptotic markers (Bcl-2/Bax) as compared to healthy group. Pre-treatment with HETA 100 mg/kg b. w, reduced the elevated levels of these markers and significant effect (ppresent study concluded that the combination of α-tocopherol (100 mg/kg b. w) and hydroalcoholic extract of T. arjuna (100 mg/kg b. w) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from ISP-induced myocardial injury and it may have therapeutic and prophylactic value in the treatment of ischemic heart disease.

  13. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae to survive thermal stress and bleaching.

    Directory of Open Access Journals (Sweden)

    Hagit Kvitt

    Full Text Available Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like cloned in this study. In corals exposed to thermal stress (32 or 34°C, caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  14. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells.

    Science.gov (United States)

    Karakas, Bahriye; Ozmay, Yeliz; Basaga, Huveyda; Gul, Ozgur; Kutuk, Ozgur

    2018-05-04

    Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells.

    Science.gov (United States)

    Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M

    2017-07-01

    Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.

  16. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  17. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  18. De-novo NAD+ synthesis regulates SIRT1-FOXO1 apoptotic pathway in response to NQO1 substrates in lung cancer cells.

    Science.gov (United States)

    Liu, Huiying; Xing, Rong; Cheng, Xuefang; Li, Qingran; Liu, Fang; Ye, Hui; Zhao, Min; Wang, Hong; Wang, Guangji; Hao, Haiping

    2016-09-20

    Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress.

  19. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Hogg Bridget V

    2011-12-01

    Full Text Available Abstract In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.

  20. Low Doses of Gamma Rays Reduce the Sensitivity of Cervical Carcinoma Cells to Subsequent Treatment with Cisplatin

    International Nuclear Information System (INIS)

    Osmak, M.; Brozovic, A.

    2003-01-01

    One of the major challenges of modern genetics is to apply recent advances in mutation research to improve the accuracy of the estimates of the genetic risk for humans. Because of the important implications for radiation protection, biological effects of low-dose radiation have been a focus of research in recent years. Previously we have found that human cervical carcinoma HeLa cells irradiated repeatedly with low doses of gamma rays (HeLa1500 cells) became resistant to cisplatin. In this study we examine whether this effect was caused by inhibition of apoptosis. In HeLa and HeLa1500 cells we determined the induction of apoptosis following the treatment with cisplatin (i) by counting apoptotic cells with characteristic morphological changes, (ii) by analysing the expression of apoptotic genes involved in cytochrome c/Apaf-1/caspase-9 and in Fas/FasL pathways by Western blot method, and (iii) by estimating the activities of caspases by commercial caspase detection kits. Our results show that low doses of gamma rays induced alterations in human cervical carcinoma cells that were reflected in inhibition of p53-independent cisplatin-induced apoptosis due to reduced activity of caspase 3. (author)

  1. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    International Nuclear Information System (INIS)

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi

    2006-01-01

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G 1 phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma

  2. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    OpenAIRE

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to...

  3. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  4. Hypothermia reduces sulphur mustard toxicity

    International Nuclear Information System (INIS)

    Mi Lei; Gong Wenrong; Nelson, Peggy; Martin, Leanne; Sawyer, Thomas W.

    2003-01-01

    The effect of temperature on the development of sulphur mustard (HD)-induced toxicity was investigated in first passage cultures of human skin keratinocytes and on hairless guinea pig skin. When cells exposed to HD were incubated at 37 deg. C, a concentration-dependent decline in viability was observed that was maximal by 2 days. In contrast, no significant HD-induced toxicity was evident up to 4 days posttreatment when the cells were incubated at 25 deg. C. However, these protective effects were lost by 24 h when the cells were switched back to 37 deg. C. The protective effects of hypothermia were also demonstrated when apoptotic endpoints were examined. The HD concentration-dependent induction of fragmented DNA (as quantitated using soluble DNA and the TUNEL reaction), morphology, and p53 expression were all significantly depressed when cell cultures were incubated at 25 deg. C compared to 37 deg. C. When animals were exposed to HD vapour for 2, 4, and 6 min and left at room temperature, lesions were produced whose severity was dependent on exposure time and that were maximal by 72 h posttreatment. Moderate cooling (5-10 deg. C) of HD exposure sites posttreatment (4-6 h) significantly reduced the severity of the resultant lesions. However, in contrast to the in vitro results, these effects were permanent. It appears that the early and noninvasive act of cooling HD-exposed skin may provide a facile means of reducing the severity of HD-induced cutaneous lesions

  5. The role of apoptosis repressor with a CARD domain (ARC) in the therapeutic resistance of renal cell carcinoma (RCC): the crucial role of ARC in the inhibition of extrinsic and intrinsic apoptotic signalling.

    Science.gov (United States)

    Toth, Csaba; Funke, Sarah; Nitsche, Vanessa; Liverts, Anna; Zlachevska, Viktoriya; Gasis, Marcia; Wiek, Constanze; Hanenberg, Helmut; Mahotka, Csaba; Schirmacher, Peter; Heikaus, Sebastian

    2017-05-02

    Renal cell carcinomas (RCCs) display broad resistance against conventional radio- and chemotherapies, which is due at least in part to impairments in both extrinsic and intrinsic apoptotic pathways. One important anti-apoptotic factor that is strongly overexpressed in RCCs and known to inhibit both apoptotic pathways is ARC (apoptosis repressor with a CARD domain). Expression and subcellular distribution of ARC in RCC tissue samples and RCC cell lines were determined by immunohistochemistry and fluorescent immunohistochemistry, respectively. Extrinsic and intrinsic apoptosis signalling were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT-263 or topotecan. ARC knock-down was performed in clearCa-12 cells using lentiviral transduction of pGIPZ. shRNAmir constructs. Extrinsic respectively intrinsic apoptosis were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT263 or topotecan. Potential synergistic effects were tested by pre-treatment with topotecan and subsequent treatment with ABT263. Activation of different caspases and mitochondrial depolarisation (JC-1 staining) were analysed by flow cytometry. Protein expression of Bcl-2 family members and ARC in RCC cell lines was measured by Western blotting. Statistical analysis was performed by Student's t-test. Regarding the extrinsic pathway, ARC knockdown strongly enhanced TRAIL-induced apoptosis by increasing the activation level of caspase-8. Regarding the intrinsic pathway, ARC, which was only weakly expressed in the nuclei of RCCs in vivo, exerted its anti-apoptotic effect by impairing mitochondrial activation rather than inhibiting p53. Topotecan- and ABT-263-induced apoptosis was strongly enhanced following ARC knockdown in RCC cell lines. In addition, topotecan pre-treatment enhanced ABT-263-induced apoptosis and this effect was amplified in ARC-knockdown cells. Taken together, our results are the first to demonstrate the importance of ARC protein in the inhibition of both the extrinsic

  6. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  7. Developmental programming: impact of prenatal testosterone excess on ovarian cell proliferation and apoptotic factors in sheep.

    Science.gov (United States)

    Salvetti, Natalia R; Ortega, Hugo H; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2012-07-01

    Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep, which include increased ovarian follicular recruitment and persistence. To test the hypothesis that follicular disruptions in T sheep stem from changes in the developmental ontogeny of ovarian proliferation and apoptotic factors, pregnant Suffolk sheep were injected twice weekly with T propionate or dihydrotestosterone propionate (DHT; a nonaromatizable androgen) from Days 30 to 90 of gestation. Changes in developmental expression of proliferating cell nuclear antigen (PCNA), BCL2, BAX, activated CASP3, and FAS/FASLG were determined at Fetal Days 90 and 140, 22 wk, 10 mo, and 21 mo of age by immunocytochemisty. Prenatal T treatment induced changes in expression of proliferative and apoptotic markers in a follicle-, age-, and steroid-specific manner. Changes in BAX were evident only during fetal life and PCNA, BCL2, and CASP3 only postnatally. Prenatal T and not DHT increased PCNA and decreased BCL2 in granulosa/theca cells of antral follicles at 10 and 21 mo but decreased CASP3 in granulosa/theca cells of antral follicles at 22 wk (prepubertal) and 10 and 21 mo. Both treatments decreased BAX immunostaining in granulosa cells of Fetal Day 90 primordial/primary follicles. Neither treatment affected FAS expression at any developmental time point in any follicular compartment. Effects on BAX appear to be programmed by androgenic actions and PCNA, BCL2, and CASP3 by estrogenic actions of T. Overall, the findings demonstrate that fetal exposure to excess T disrupts the ovarian proliferation/apoptosis balance, thus providing a basis for the follicular disruptions evidenced in these females.

  8. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells.

    Science.gov (United States)

    Xu, Ying; Gao, Cheng-Cheng; Pan, Zhen-Guo; Zhou, Chuan-Wen

    2018-02-12

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promising value for cancer therapy due to its capacity to induce apoptosis in cancer cells. Nevertheless, TRAIL therapy is greatly hampered by its resistance. Irigenin (Iri), isoflavonoids, can be isolated from the rhizome of Belamcanda chinensis, and has been shown anti-cancer properties. In this study, we explored if Iri could enhance TRAIL-regulated apoptosis in TRAIL resistant gastric cancer cells. Iri significantly potentiated TRAIL-triggered cytotoxicity. Iri alone and TRAIL alone showed no effective role in apoptosis induction, whereas combined treatment with Iri and TRAIL markedly induced apoptosis in cancer cells, as evidenced by the up-regulation of cleaved Caspase-8/-9/-3 and PARP. Additionally, the sensitization to TRAIL was along with the enhancement of pro-apoptotic proteins, including FAS-associated protein with death domain (FADD), death receptor 5 (DR5) and Bax. And suppressing FADD, DR5 and Bax by si RNA significantly reduced the apoptosis and enhanced the cell viability induced by the co-application of Iri and TRAIL. Moreover, the sensitization to TRAIL was accompanied by the decrease of Cellular-FLICE inhibitory protein (c-FLIP), Bcl-2 and Survivin. Additionally, Iri could sensitize TRAIL to produce reactive oxygen species (ROS). Pre-treatment of N-acetyl-cysteine (NAC), ROS scavenger, attenuated Iri plus TRAIL-induced apoptosis and improved cell viability. Finally, combination of Iri and TRAIL inhibited tumor growth in the xenograft model. Collectively, our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. Copyright © 2018. Published by Elsevier Inc.

  10. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    International Nuclear Information System (INIS)

    Okano, Junko; Suzuki, Shigehiko; Shiota, Kohei

    2007-01-01

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G 1 /S progression of palatal mesenchymal cells through upregulation of p21 Cip1 , leading to Rb hypophospholylation. Thus, RA appears to cause G 1 arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA

  11. 4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.

    Science.gov (United States)

    Lee, Chien-Chin; Chang, Wen-Hsin; Chang, Ya-Sian; Liu, Ting-Yuan; Chen, Yu-Chia; Wu, Yang-Chang; Chang, Jan-Gowth

    2017-08-04

    Alternative splicing is a mechanism for increasing protein diversity from a limited number of genes. Studies have demonstrated that aberrant regulation in the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4β-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana and investigated its biological effect in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of various apoptotic genes, including HIPK3, SMAC/DIABLO, and SURVIVIN. We also discovered that the levels of SRSF1 phospho-isoform were decreased and the levels of H3K36me3 were increased in 4bHWE treatment. Knockdown experiments revealed that the splicing site selection of SMAC/DIABLO could be mediated by changes in the level of H3K36me3 in 4bHWE-treated cells. Furthermore, we extended our study to apoptosis-associated molecules, and detected increased levels of poly ADP-ribose polymerase cleavage and the active form of CASPASE-3 in 4bHWE-induced apoptosis. In vivo experiments indicated that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease in tumor size. This study is the first to demonstrate that 4bHWE affects alternative splicing by modulating splicing factors and histone modifications, and provides a novel view of the antitumor mechanism of 4bHWE.

  12. Graphene Oxide–Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs: A Novel Approach for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2018-03-01

    Full Text Available The use of graphene to target and eliminate cancer stem cells (CSCs is an alternative approach to conventional chemotherapy. We show the biomolecule-mediated synthesis of reduced graphene oxide–silver nanoparticle nanocomposites (rGO–Ag using R-phycoerythrin (RPE; the resulting RPE–rGO–Ag was evaluated in human ovarian cancer cells and ovarian cancer stem cells (OvCSCs. The synthesized RPE–rGO–Ag nanocomposite (referred to as rGO–Ag was characterized using various analytical techniques. rGO–Ag showed significant toxicity towards both ovarian cancer cells and OvCSCs. After 3 weeks of incubating OvCSCs with rGO–Ag, the number of A2780 and ALDH+CD133+ colonies was significantly reduced. rGO–Ag was toxic to OvCSCs and reduced cell viability by mediating the generation of reactive oxygen species, leakage of lactate dehydrogenase, reduced mitochondrial membrane potential, and enhanced expression of apoptotic genes, leading to mitochondrial dysfunction and possibly triggering apoptosis. rGO–Ag showed significant cytotoxic potential towards highly tumorigenic ALDH+CD133+ cells. The combination of rGO–Ag and salinomycin induced 5-fold higher levels of apoptosis than each treatment alone. A combination of rGO–Ag and salinomycin at very low concentrations may be suitable for selectively killing OvCSCs and sensitizing tumor cells. rGO–Ag may be a novel nano-therapeutic molecule for specific targeting of highly tumorigenic ALDH+CD133+ cells and eliminating CSCs. This study highlights the potential for targeted therapy of tumor-initiating cells.

  13. In vitro apoptotic effects of methanol extracts of Dianthus chinensis and Acalypha australis L. targeting specificity protein 1 in human oral cancer cells.

    Science.gov (United States)

    Shin, Ji-Ae; Kim, Jae-Jin; Choi, Eun-Sun; Shim, Jung-Hyun; Ryu, Mi Heon; Kwon, Ki Han; Park, Hee-Min; Seo, Jin-Young; Lee, Soo-Yeon; Lim, Do-Won; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-07-01

    The aims of this study were to evaluate the apoptotic activities and molecular mechanisms of methanol extracts of Dianthus chinensis (MEDC) and Acalypha australis L. (MEAL) in human oral cancer cells. The apoptotic effects and related molecular mechanisms of MEDC and MEAL on oral cancer cells were evaluated using MTS assay, DAPI staining, immunostaining, Western blotting, and reverse transcriptase-polymerase chain reaction. Sp1 was overexpressed in oral tumor tissues compared with normal oral mucosa. Downregulation of Sp1 inhibited the growth of SCC-15 and YD-15 oral cancer cells. MEDC and MEAL inhibited cell growth and induced apoptosis in both cell lines by decreasing the expression of Sp1. In addition, treatment of cells with MEDC and MEAL decreased Mcl-1 expression, which is a downstream target of Sp1. Our results indicate that MEDC and MEAL are bioactive natural products that can potentially induce apoptosis of tumor cells that overexpress the Sp1 protein. Copyright © 2012 Wiley Periodicals, Inc.

  14. Lack of a functional VHL gene product sensitizes renal cell carcinoma cells to the apoptotic effects of the protein synthesis inhibitor verrucarin A.

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-08-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  15. Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects.

    Science.gov (United States)

    Tian, Xiuzhi; Wang, Feng; Zhang, Lu; Ji, Pengyun; Wang, Jing; Lv, Dongying; Li, Guangdong; Chai, Menglong; Lian, Zhengxing; Liu, Guoshi

    2017-05-05

    CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10 -7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.

  16. Role and regulation of apoptotic cell death in the kidney. Y2K update.

    Science.gov (United States)

    Ortiz, A; Lorz, C; Catalan, M P; Justo, P; Egido, J

    2000-08-01

    Apoptosis is an active form of cell death that, in balance with mitosis, regulates cell number. Cell number abnormalities are a frequent feature of renal disease. We now review current concepts on the molecular regulation of apoptotic cell death, including the influence of survival and lethal factors from the extracellular microenvironment as well as the role of intracellular regulators of apoptosis, such as death receptors, proapoptotic and antiapoptotic bcl2-related proteins, the mitochondria and caspases. In addition the role of apoptosis in the genesis, persistence and progression and remodeling and resolution of renal injury is discussed. Information on the expression and function of apoptosis regulatory proteins in specific renal syndromes is summarized. Finally, future perspectives in research and clinical intervention are discussed.

  17. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Andrys, C.; Krejsek, J.; Hamakova, K.; Kremlacek, J.; Palicka, V.; Ranna, D.; Fiala, Z. [Charles University Prague, Prague (Czech Republic). Faculty of Medicine

    2010-03-15

    Goeckerman therapy (GT) for psoriasis is based on cutaneous application of crude coal tar (polycyclic aromatic hydrocarbons (PAH)) and exposure to ultraviolet radiation (UVR). PAH and UVR are mutagenic, carcinogenic and immunotoxic agents that promote apoptosis. We evaluated dermal absorption of PAH as well as the genotoxic and apoptotic effects of GT in 20 patients with psoriasis, by determining numbers of chromosomal abnormalities in peripheral lymphocytes, and levels of 1-hydroxypyrene (1-OHP), p53 protein and soluble FasL (sFasL) in urine and/or blood, before and after GT. Psoriasis Area and Severity Index (PASI) score was used to evaluate clinical efficacy of GT. Compared with pre-treatment levels, there was a significant increase in urine 1-OHP, indicating a high degree of dermal absorption of PAH (P <0.01). We also found a significant increase in the number of chromosomal abnormalities in peripheral blood lymphocytes (P <0.001), suggesting that GT is genotoxic; significantly increased p53 protein in plasma (P <0.05), an indicator of cell response to DNA damage; and significantly increased sFasL in serum (P <0.01), an indicator of apoptosis. The PASI score was significantly decreased after GT (P <0.001), confirming clinical benefit of this treatment. Our results demonstrate high dermal absorption of PAH during GT and provide evidence that GT promotes genotoxicity and apoptosis.

  18. Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Noelia Estévez-Calvar

    Full Text Available Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.

  19. Prenatal exposure to a novel antipsychotic quetiapine: impact on neuro-architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats.

    Science.gov (United States)

    Singh, K P; Tripathi, Nidhi

    2015-05-01

    Reports on prenatal exposure to some of the first generation antipsychotic drugs like, haloperidol, their effects on fetal neurotoxicity and functional impairments in the offspring, are well documented. But studies on in utero exposure to second generation antipsychotics, especially quetiapine, and its effects on fetal neurotoxicity, apoptotic neurodegeneration, postnatal developmental delay and neurobehavioral consequences are lacking. Therefore, the present study was undertaken to evaluate the effect of prenatal administration to equivalent therapeutic doses of quetiapine on neuro-architectural abnormalities, neurohistopathological changes, apoptotic neurodegeneration in fetal hippocampus, and postnatal development and growth as well as its long-lasting imprint on cognitive impairment in young-adult offspring. Pregnant Wistar rats (n=24) were exposed to selected doses (55 mg, 80 mg and 100mg/kg) of quetiapine, equivalent to human therapeutic doses, from gestation day 6 to 21 orally with control subjects. Half of the pregnant subjects of each group were sacrificed at gestation day 21 for histopathological, confocal and electron microscopic studies and rest of the dams were allowed to deliver naturally. Their pups were reared postnatally up to 10 weeks of age for neurobehavioral observations. In quetiapine treated groups, there was significant alterations in total and differential thickness of three typical layers of hippocampus associated with neuronal cells deficit and enhanced apoptotic neurodegeneration in the CA1 area of fetal hippocampus. Prenatally drug treated rat offspring displayed post-natal developmental delay till postnatal day 70, and these young-adult rats displayed cognitive impairment in Morris water maze and passive avoidance regimes as long-lasting impact of the drug. Therefore, quetiapine should be used with cautions considering its developmental neurotoxicological and neurobehavioral potential in animal model, rat. Copyright © 2015 Elsevier

  20. Association of Pro-apoptotic Bad Gene Expression Changes with Benign Thyroid Nodules.

    Science.gov (United States)

    Gül, Nurdan; Temel, Berna; Ustek, Duran; Sirma-Ekmekçi, Sema; Kapran, Yersu; Tunca, Fatih; Giles-Şenyürek, Yasemin; Özbek, Uğur; Alagöl, Faruk

    2018-01-01

    This study aimed to investigate the role of the mitochondrial apoptotic pathway in benign thyroid nodules. Paired samples of nodular and normal tissues were collected from 26 patients with nodular goiters undergoing thyroidectomy. Variable expression of Bcl-2, Bax and Bad genes were evaluated by quantitative PCR. Expression level of Bad gene in nodules was found to be significantly decreased compared to normal tissues (p=0.049). A positive correlation was observed between nodule size and Bad expression levels (correlation coefficient=0.563, p=0.004); and this correlation was stronger in hot nodules (n=18, correlation coefficient=0.689, p=0.003). No significant difference was observed between nodular and normal tissue expressions of Bax and Bcl-2. These results suggest that Bad expression correlates with the size of benign thyroid nodules and also its relatively lower expression in nodules, warrant further investigation. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Synthesis and Characterization of a New Benzoindole Derivative with Apoptotic Activity Against Colon Cancer Cells.

    Science.gov (United States)

    Hajiaghaalipour, Fatemeh; Faraj, Fadhil L; Bagheri, Elham; Ali, Hapipah M; Abdulla, Mahmood Ameen; Majid, Nazia A

    2017-01-01

    Colorectal cancer is the third most common form of cancer in both men and women around the world. The chemistry and biological study of heterocyclic compounds have been an interesting area for a long time in pharmaceutical and medicinal chemistry. A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated. DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively. The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Compound 49b Reduces Inflammatory Markers and Apoptosis after Ocular Blast Injury

    Science.gov (United States)

    2018-02-01

    inflammatory and apoptotic markers, but not to control levels. Figure 1. ELISA results for TNF(left) and IL-1(right) in mouse retina without exposure to...anti- apoptotic protein BcL-xL (bottom left). ELISA results for cleaved caspase 3. *Pɘ.05 vs. NT. #Pɘ.05 vs. blast only at the same time point. N=5...E). ELISA results for cleaved caspase 3 (C) in IGFBP-3 knockdown mice without exposure to blast, IGFBP-3 KD mice exposed to blast for 4, 24, and 72

  3. Zearalenone Altered the Serum Hormones, Morphologic and Apoptotic Measurements of Genital Organs in Post-weaning Gilts

    Directory of Open Access Journals (Sweden)

    X. X. Chen

    2015-02-01

    Full Text Available The present study was aimed at investigating the adverse effects of dietary zearalenone (ZEA (1.1 to 3.2 mg/kg diet on serum hormones, morphologic and apoptotic measurements of genital organs in post-weaning gilts. A total of twenty gilts (Landrace×Yorkshire×Duroc weaned at 21 d with an average body weight of 10.36±1.21 kg were used in the study. Gilts were fed a basal diet with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. Results showed that 3.2 mg/kg ZEA challenged gilts decreased (p<0.05 the serum levels of luteinizing hormone, however, serum levels of prolactin in gilts fed the diet containing 2.0 mg/kg ZEA or more were increased (p<0.05 compared to those in the control. Linear effects on all tested serum hormones except progesterone were observed as dietary ZEA levels increased (p<0.05. Gilts fed ZEA-contaminated diet showed increase (p<0.05 in genital organs size, hyperplasia of submucosal smooth muscles in the corpus uteri in a dose-dependent manner. However, the decreased numbers of follicles in the cortex and apoptotic cells in the ovarian were observed in gilts treated with ZEA in a dose-dependent manner. Degeneration and structural abnormalities of genital organs tissues were also observed in the gilts fed diet containing 1.1 mg/kg ZEA or more. Results suggested that dietary ZEA at 1.1 to 3.2 mg/kg can induce endocrine disturbance and damage genital organs in post-weaning gilts.

  4. Cytotoxic and Pro-Apoptotic Effects of Honey Bee Venom and Chrysin on Human Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elaheh Amini

    2015-06-01

    Full Text Available Background: The anti-cancer effects of honey bee venom (BV and chrysin might open a new window for treatment of chemo-resistant cancers. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV and chrysin on A2780cp cistplatin- resistant human ovarian cancer cells. Methods: As per the study objectives, A2780cp cells were categorized to 4 groups: 3 experiment groups (treated either with BV or chrysin or BV + chrysin and 1 control group (untreated cells.  Experiment group cells were cultured and treated by different concentrations of BV and chrysin for 24 hours. Then, experiment and control cells were studied with MTT assay, Annexin V-FITC, DAPI and Acridine Orange / Propidium Iodide statining, flow cytometry, caspase-3 and -9 assay, measurement of intracellular level of reactive oxygen species (ROS and RT-PCR. Results: MTT assay showed that 8 μg/mL BV, 40 µg/ml chrysin and 6 + 15 μg/mL BV + chrysin co-treatment induced 50% cell death on A2780cp cells compared with controls (P < 0.001. Morphological observations by inverted and fluorescent microscopy revealed ROS generation and apoptotic cell death under exposure to BV or chrysin or BV + chrysin co-treatment. Caspase-3 and -9 assay demonstrated that BV and chrysin triggered apoptosis through intrinsic pathway and RT-PCR demonstrated down-regulation of Bcl-2. Conclusion: Honey bee venom and chrysin are effective for destroying chemoresistant ovarian cancer cells through activation of intrinsic apoptosis, which propose them as potential candidates to be used in development of improved chemotherapeutic agents in the future.

  5. Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Juul, Jeppe Søgaard; Trusina, Ala

    2012-01-01

    increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected...... to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity......DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn...

  6. Application of Photoshop-based image analysis and TUNEL for the distribution and quantification of dexamethasone-induced apoptotic cells in rat thymus.

    Science.gov (United States)

    Hussar, Piret; Tokin, Ivan; Hussar, Ulo; Filimonova, Galina; Suuroja, Toivo

    2006-01-01

    The aim of the present study was to determine the target site cells in the rat thymus after exposure to the synthetic glucocorticoid, dexamethasone, at therapeutic doses. The findings of histology and histochemistry (Feulgen, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling--TUNEL) with quantification by computerized histomorphometry are described. A quantified investigation of apoptotic and mitotic thymic lymphocytes in 36 young adult Wistar rats was performed at 1-7 days after a 3-day injection of dexamethasone (a total dose of 1.2 mg/rat intraperitoneally). At the first day after dexamethasone administration the moderate involution and atrophy of thymus histology were observed with simultaneous fall in cortical cellularity and mitotic activity of thymocytes. More rapid fall appeared in the inner cortex. The number of apoptotic (TUNEL-positive) cells was significantly increased. On the days 5 and 7 the expression of apoptosis and the cell proliferation were at almost normal level. The findings suggest that dexamethasone-induced apoptosis of cortical thymic lymphocytes, mainly correlated with synchronous inhibition of mitosis and cell number fall in thymus. The main target sites of dexamethasone injury were cells in the inner cortex of lobuli thymi.

  7. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Yong Chan; Song, Seok Bean; Lee, Sang Kyu; Park, Sang Min; Kim, Young Sang

    2014-04-01

    Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

  8. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Science.gov (United States)

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  9. Lithium-Induced Neuroprotection is Associated with Epigenetic Modification of Specific BDNF Gene Promoter and Altered Expression of Apoptotic-Regulatory Proteins

    Directory of Open Access Journals (Sweden)

    Tushar eDwivedi

    2015-01-01

    Full Text Available Bipolar disorder (BD, one of the most debilitating mental disorders, is associated with increased morbidity and mortality. Lithium is the first line of treatment option for BD and is often used for maintenance therapy. Recently, the neuroprotective action of lithium has gained tremendous attention, given that BD is associated with structural and functional abnormalities of the brain. However, the precise molecular mechanism by which lithium exerts its neuroprotective action is not clearly understood. In hippocampal neurons, the effects of lithium on neuronal viability against glutamate-induced cytotoxicity, dendritic length and number, and expression and methylation of BDNF promoter exons and expression of apoptotic regulatory genes were studied. In rat hippocampal neurons, lithium not only increased dendritic length and number, but also neuronal viability against glutamate-induced cytotoxicity. While lithium increased the expression of BDNF as well as genes associated with neuroprotection such as Bcl2 and Bcl-XL, it decreased the expression of pro-apoptotic genes Bax, Bad, and caspases 3. Interestingly, lithium activated transcription of specific exon IV to induce BDNF gene expression. This was accompanied by hypomethylation of BDNF exon IV promoter. This study delineates mechanisms by which lithium mediates its effects in protecting neurons.

  10. Apoptotic study in Graves disease treated with thyroid arterial embolization

    International Nuclear Information System (INIS)

    Zhao Wei; Gao Bulang; Yi Genfa

    2009-01-01

    The objective of this study was to investigate apoptosis in the thyroid of Graves disease (GD) induced by thyroid arterial embolization. Forty one patients with clinically and laboratorily ascertained GD were treated with thyroid arterial embolization and followed up for 3-54 months following embolization. Prior to embolization and at 1, 3, 6, 12 and 36 months following embolization, thyroid autoimmune antibodies were tested respectively, including thyroid stimulating antibody (TSAb), thyroglobulin antibody (TGAb) and thyroid microsomal antibody (TMAb). Thyroid biopsy was performed under the guidance of computed tomography for immunohistochemistry examination using semi-quantity analysis. The positive staining of Fas and FasL was mostly in the cytoplasma and cell membrane, the positive expression of Bax was mainly in the cytoplasma, and no positive expression of P53 was detected in the thyroid cells before embolization. After arterial embolziation, the positive cell number and staining degree of these genes were both greater than before embolization. The treatment method of thyroid arterial embolization can effectively enhance the positive expression of pro-apoptotic genes of Fas, FasL, Bax, Bcl-2 and P53 in GD thyroid, thus promoting apoptosis of GD thyroid and helping restore the thyroid size and function to normal conditions. (author)

  11. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-08-01

    Full Text Available Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs, using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP, caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells.

  12. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells.

    Directory of Open Access Journals (Sweden)

    Amanda Oldani

    2009-10-01

    Full Text Available Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA(+/VacA(+H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its

  13. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    Science.gov (United States)

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  14. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  15. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    OpenAIRE

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-01-01

    Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse mi...

  16. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Ros, Jenny E.; Homan, Manon; Trautwein, Christian; Liston, Peter; Poelstra, Klaas; van Goor, Harry; Jansen, Peter L. M.; Moshage, Han

    2002-01-01

    BACKGROUND/AIMS: In acute liver failure, hepatocytes are exposed to various cytokines that activate both cell survival and apoptotic pathways. NF-kappaB is a central transcription factor in these responses. Recent studies indicate that blocking NF-kappaB causes apoptosis, indicating the existence of

  17. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    Directory of Open Access Journals (Sweden)

    Chad R Sethman

    Full Text Available Sterile alpha and armadillo-motif containing protein (SARM, a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  18. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A

    Directory of Open Access Journals (Sweden)

    Girma M. Woldemichael

    2012-08-01

    Full Text Available Verrucarin A (VA is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  19. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sui, Xizhong; Gao, Changqing

    2014-01-01

    Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats.

  20. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    Science.gov (United States)

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  1. On the use of an appropriate TdT-mediated dUTP-biotin nick end labeling assay to identify apoptotic cells.

    OpenAIRE

    Lebon, C.; Rodriguez, G.V.; Zaoui, I.E.; Jaadane, I.; Behar-Cohen, F.; Torriglia, A.

    2015-01-01

    Apoptosis is an essential cellular mechanism involved in many processes such as embryogenesis, metamorphosis, and tissue homeostasis. DNA fragmentation is one of the key markers of this form of cell death. DNA fragmentation is executed by endogenous endonucleases such as caspase-activated DNase (CAD) in caspase-dependent apoptosis. The TUNEL (TdT-mediated dUTP-biotin nick end labeling) technique is the most widely used method to identify apoptotic cells in a tissue or culture and to assess dr...

  2. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Science.gov (United States)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  3. APOPTOTIC, HEPATOPROTECTIVE AND ANTIOXIDANT POTENTIAL OF A TRIHERBAL FORMULATION AGAINST D-GALACTOSAMINE HEPATOTOXICITY

    Directory of Open Access Journals (Sweden)

    Onyekachi Ogbonnaya IROANYA

    2016-12-01

    Full Text Available A triherbal formulation prepared from hydroethanolic mixture of Gongronema latifolia, Ocimum gratissimum and Vernonia amygdalina leaves (GOV was evaluated to ascertain its heamatologic, hepatoprotective potentials, antioxidant properties and the fold increase in caspase 2, 3 and 9 activities against D-galactosamine-induced toxicity using Wistar albino rats. Forty-nine Wistar albino rats were divided equally into seven groups. Two control experiments which included normal rats treated with D-galactosamine and normal rats that received only distilled water. Three groups were treated with different doses of GOV extract (2, 4 and 8 g kg-1 b. wt while two groups received standard hepatoprotective drugs (Liv 52 and Silymarin for 13 days prior to intoxication with D-galactosamine. The activities of serum liver enzymes, concentrations of some biochemical analytes, effect on heamatologic parameters, antioxidant status and fold increase in caspase 2, 3 and 9 activities were monitored. HPTLC of GOV showed the presence of ascorbic acid, rutin, eugenol and β-sitosterol. Administration of GOV significantly (p<0.05 increased the Packed Cell Volume, Red Cell Count, Haemoglobin, White Blood Cell, platelet count, Mean Cell Haemoglobin, granulocytes and lymphocytes while the Mean Cell Volume and monocytes were significantly (p<0.05 depreciated dose dependently compared to the toxin control group. GOV dose dependently exhibited significant (p<0.05 decrease in levels of Alkaline phosphatase, Alanine aminotransferase, aspartate aminotransferase, L-γ-glutamyltransferase, Lactate dehydrogenase, cholesterol, creatinine, triglycerides, urea and Malondialdehyde. Subsequently, it significantly (p<0.05 increased the albumin, total protein, catalase, Glutathione Peroxidase, Reduced Glutathione, Glutathione-S-Transferase and Superoxide Dismutase levels. GOV significantly (p≤0.05 attenuated the fold increase in caspase 2, 3 and 9 activities compared to the toxin control

  4. Effects of phyto-oestrogen quercetin on productive performance, hormones, reproductive organs and apoptotic genes in laying hens.

    Science.gov (United States)

    Yang, J X; Chaudhry, M T; Yao, J Y; Wang, S N; Zhou, B; Wang, M; Han, C Y; You, Y; Li, Y

    2018-04-01

    Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p feed-egg ratio was decreased (p  .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E 2 ) , progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p  .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin. © 2017 Blackwell Verlag GmbH.

  5. Pro-apoptotic effect of a Mycoplasma hyopneumoniae putative type I signal peptidase on PK(15) swine cells.

    Science.gov (United States)

    Paes, Jéssica A; Virginio, Veridiana G; Cancela, Martín; Leal, Fernanda M A; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Schrank, Irene S; Ferreira, Henrique B

    2017-03-01

    Mycoplasma hyopneumoniae is an economically significant swine pathogen that causes porcine enzootic pneumonia (PEP). Important processes for swine infection by M. hyopneumoniae depend on cell surface proteins, many of which are secreted by secretion pathways not completely elucidated so far. A putative type I signal peptidase (SPase I), a possible component of a putative Sec-dependent pathway, was annotated as a product of the sipS gene in the pathogenic M. hyopneumoniae 7448 genome. This M. hyopneumoniae putative SPase I (MhSPase I) displays only 14% and 23% of sequence identity/similarity to Escherichia coli bona fide SPase I, and, in complementation assays performed with a conditional E. coli SPase I mutant, only a partial restoration of growth was achieved with the heterologous expression of a recombinant MhSPase I (rMhSPase I). Considering the putative surface location of MhSPase I and its previously demonstrated capacity to induce a strong humoral response, we then assessed its potential to elicit a cellular and possible immunomodulatory response. In assays for immunogenicity assessment, rMhSPase I unexpectedly showed a cytotoxic effect on murine splenocytes. This cytotoxic effect was further confirmed using the swine epithelial PK(15) cell line in MTT and annexin V-flow cytometry assays, which showed that rMhSPase I induces apoptosis in a dose dependent-way. It was also demonstrated that this pro-apoptotic effect of rMhSPase I involves activation of a caspase-3 cascade. The potential relevance of the rMhSPase I pro-apoptotic effect for M. hyopneumoniae-host interactions in the context of PEP is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evidence that expression of a mutated p53 gene attenuates apoptotic cell death in human gastric intestinal-type carcinomas in vivo.

    Science.gov (United States)

    Ishida, M; Gomyo, Y; Ohfuji, S; Ikeda, M; Kawasaki, H; Ito, H

    1997-05-01

    To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal-type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polymerase chain reaction-single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The TUNEL index [TI; (the number of TUNEL-positive apoptotic cells/the total number of tumor cells) x 100] was 3.8 +/- 1.4% in category A and 4.9 +/- 1.2% in category B, the value being significantly lower in the former (P gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53-independent and cell cycle-independent events.

  7. Effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine

    Directory of Open Access Journals (Sweden)

    Ebrahim Amini

    2016-04-01

    Full Text Available Background: Linoleic acid (LA is a polyunsaturated fatty acid present in high concentrations in follicular fluid, when added to maturation culture media, it affects oocyte competence. Objective: In the present study, we investigated effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine Materials and Methods: The experiments conducted on 450 ovine Cumulus-oocyte complexes (COCs with homogenous ooplasm and more than two compact layers of cumulus cells. For in vitro maturation COCs were randomly allocated into four treatment groups for 24 hr period. Treatment groups were as follow: control maturation media, 0 μM LA, 50 μM LA, 100 μM LA and 200 μM LA. The cumulus cell expansion and blastocysts rates were recorded. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to apoptotic gene expression by real-time PCR. Results: Highest concentration (200 μM/mL of LA significantly decreased the rate of fully expanded cumulus cells 24 hr after in vitro maturation (IVM and the percentage of blastocyste rate compared with the control (p<0.05. These inhibitory effects were associated with an increased in relative mRNA expression of Bax (Bcl-2- associated X gene compared with controls. Conclusion: Data obtained in present study suggest that low concentration of LA used for maturation had no deleterious effect on subsequent embryonic development compared to high concentration of LA. Relative expression of Bcl-2 (B-cell lymphoma 2 and Bax in embryos seems to be associated with LA concentration.

  8. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  9. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells.

    Science.gov (United States)

    Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Nonomura, Takako; Masaki, Tsutomu; Uchida, Naohito; Yoshiji, Hitoshi; Kuriyama, Shigeki

    2007-08-01

    Although a number of studies have shown that vitamin K possesses antitumor activities on various neoplastic cell lines, there are few reports demonstrating in vivo antitumor effects of vitamin K, and the antitumor effect on colorectal cancer (CRC) remains to be examined. Therefore, antitumor effects of vitamin K on CRC were examined both in vitro and in vivo. Vitamins K2, K3 and K5 suppressed the proliferation of colon 26 cells in a dose-dependent manner, while vitamin K1 did not. On flow cytometry, induction of apoptosis by vitamins K2, K3 and K5 was suggested by population in sub-G1 phase of the cell cycle. Hoechst 33342 staining and a two-color flow cytometric assay using fluorescein isothiocyanate-conjugated annexin V and propidium iodide confirmed that vitamins K2, K3 and K5 induced apoptotic death of colon 26 cells. Enzymatic activity of caspase-3 in colon 26 cells was significantly up-regulated by vitamins K2, K3 and K5. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, substantially prevented vitamin K-mediated apoptosis. In vivo study using syngeneic mice with subcutaneously established colon 26 tumors demonstrated that intravenous administration of vitamins K2, K3 and K5 significantly suppressed the tumor growth. The number of apoptotic tumor cells was significantly larger in the vitamin K-treated groups than in the control group. These results suggest that vitamins K2, K3 and K5 exerted effective antitumor effects on CRC in vitro and in vivo by inducing caspase-dependent apoptotic death of tumor cells, suggesting that these K vitamins may be promising agents for the treatment of patients with CRC.

  10. Apoptotic induction of skin cancer cell death by plant extracts.

    Science.gov (United States)

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  11. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation.

    Directory of Open Access Journals (Sweden)

    Claudio Scafoglio

    Full Text Available Checkpoint kinase 2 (Chk2 is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.

  12. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A12

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-01-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC. PMID:22952429

  13. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  14. In vitro cytotoxicity and apoptotic inducing activity of the synthesized 4-aryl-4H-chromenes derivatives against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Mohagheghi MA

    2009-09-01

    cytotoxic and apoptotic inducing activity comparable with or even superior than the reference drug, etoposide. The compounds without this type of substitution have lower activity. "n"nConclusions: Replacement of 3, 4, 5-trimethoxyphenyl group with thiazol ring in the synthesized derivatives reduced the cytotoxic activity. However, the derivatives with phenyl-isoxazole analogue showed potent cytotoxic and apoptotic inducing activity.

  15. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  16. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells.

    Directory of Open Access Journals (Sweden)

    R Doug Wagner

    Full Text Available Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA-polyethylene glycol (PEG could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7 vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose polymerase (PARP cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif ligand 1 (CXCL1, interleukin-1α (IL1A, interleukin-1β (IL1B, calprotectin (S100A8, and tumor necrosis factor α (TNF. GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that

  17. TIPE attenuates the apoptotic effect of radiation and cisplatin and promotes tumor growth via JNK and p38 activation in Raw264.7 and EL4 cells.

    Science.gov (United States)

    Liu, Yao; Ni, Xiao Yan; Chen, Rui Ling; Li, Juan; Gao, Feng Guang

    2018-06-01

    Tumor necrosis factor α‑induced protein 8 (TIPE) is highly expressed in many types of malignancies. Apoptosis is the process of programmed cell death which maintains the balance of cell survival and death. TIPE is involved in the carcinogenesis of many tumor types, yet the exact role of TIPE in defective apoptosis‑associated carcinogenesis remains uncertain. In the present study, TIPE‑overexpressing Raw264.7 and EL4 cells and vector control cells were treated with 4 mJ/cm2 ultraviolet radiation or 2 µg/ml cisplatin. Following ultraviolet irradiation, TIPE overexpression decreased the percentage of apoptotic cells as detected by flow cytometric and reversed the cisplatin‑mediated decrease in mitochondrial membrane potential by JC‑1 assay. Western blot analyses also revealed that TIPE overexpression inhibited cisplatin‑induced activation of caspase‑3 and ‑9 and PARP. Secondly, TIPE overexpression increased the levels of phosphorylated JNK, MEK and p38. Moreover, inhibition of JNK and p38, but not MEK, efficiently abolished the cell pro‑survival effect of TIPE. Most importantly, an in vivo tumor implantation model revealed that TIPE overexpression augmented the volume and weight of the implanted tumors, indicating that TIPE facilitated tumor formation. We found that TIPE exhibited an anti‑apoptotic effect via JNK and p38 activation, which ultimately promoted tumor. Hence, the present study revealed that activation of JNK and p38 kinases contribute to the TIPE‑mediated anti‑apoptotic effect, indicating that JNK and p38 may be potential therapeutic molecules for TIPE overexpression‑associated diseases.

  18. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  19. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts.

    Science.gov (United States)

    Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang

    2015-01-01

    Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.

  20. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway.

    Science.gov (United States)

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata , was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis

  1. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy.

    Science.gov (United States)

    Ivanović-Matić, Svetlana; Bogojević, Desanka; Martinović, Vesna; Petrović, Anja; Jovanović-Stojanov, Sofija; Poznanović, Goran; Grigorov, Ilijana

    2014-12-01

    Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H₂O₂production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.

  2. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  3. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats.

    Science.gov (United States)

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg(-1), intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg(-1) decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3.

  4. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-01-01

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  5. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  6. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  7. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  8. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction.

    Science.gov (United States)

    Zhou, Ao; Li, Shuaifeng; Khan, Faheem Ahmed; Zhang, Shujun

    2016-01-01

    Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.

  9. The pro-apoptotic action of the peptide hormone Neb-colloostatin on insect haemocytes.

    Science.gov (United States)

    Czarniewska, E; Mrówczynska, L; Kuczer, M; Rosinski, G

    2012-12-15

    The gonadoinhibitory peptide hormone Neb-colloostatin was first isolated from ovaries of the flesh fly Neobellieria bullata. This 19-mer peptide is thought to be a cleaved product of a collagen-like precursor molecule that is formed during remodelling of the extracellular matrix. In this study, we report that upon injection of picomolar and nanomolar doses, this peptide exerts a pro-apoptotic action on haemocytes of Tenebrio molitor adults, as visualized by changes in morphology and viability. The F-actin cytoskeleton was found to aggregate into distinctive patches. This may be responsible for the observed inhibition of adhesion of haemocytes and for the stimulation of filopodia formation. However, Neb-colloostatin injection did not induce the formation of autophagic vacuoles. Our results suggest that physiological concentrations of Neb-colloostatin play an important role in controlling the quantity and activity of haemocytes in insect haemolymph. They also suggest that during periods in which Neb-colloostatin is released, this peptide may cause a weakening of the insects' immune system. This is the first report that exposure to a peptide hormone causes apoptosis in insect haemocytes.

  10. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors.

    Directory of Open Access Journals (Sweden)

    Joshua eMessinger

    2015-12-01

    Full Text Available Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis and respiratory associated disease (C. pneumoniae. The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the arms race of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.

  11. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  12. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson's disease.

    Science.gov (United States)

    Jayaraj, Richard L; Tamilselvam, Kuppusamy; Manivasagam, Thamilarasan; Elangovan, Namasivayam

    2013-11-01

    Oxidative stress and mitochondrial dysfunction are underpinned for initiating a cascade of toxic events leading to dopaminergic neuronal death in Parkinson's disease (PD) and identified as vital target for therapeutic intervention. Curcumin, a potent antioxidant has been reported to display diverse neuroprotective properties against various neurodegenerative diseases including PD. In this present study, we investigated the protective effect of CNB-001, a pyrazole derivative of curcumin on rotenone-induced toxicity and its possible mechanisms in neuroblastoma SK-N-SH cells. Rotenone insult significantly reduced cell viability (MTT assay) and resulted in 78 % apoptosis (dual staining) by altering Bcl-2, Bax, caspase-3, and cytochrome C expression. Moreover, rotenone enhanced ROS production and disrupts mitochondrial membrane potential. These resultant phenotypes were distinctly alleviated by CNB-001. Pretreatment with CNB-001(2 μM) 2 h before rotenone exposure (100 nM) increased cell viability, decreased ROS formation, maintained normal physiological mitochondrial membrane potential, and reduced apoptosis. Furthermore, CNB-001 inhibited downstream apoptotic cascade by increasing the expression of vital antiapoptotic protein Bcl-2 and decreased the expression of Bax, caspase-3, and cytochrome C. Collectively, the results suggest that CNB-001 protects neuronal cell against toxicity through antioxidant and antiapoptotic properties through its action on mitochondria. Therefore, it may be concluded that CNB-001 can be further developed as a promising drug for treatment of PD.

  14. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  15. Effect of curcumin in reducing burning sensation in potentially malignant disorders of oral cavity

    Directory of Open Access Journals (Sweden)

    Nitin Nigam

    2017-01-01

    Full Text Available Introduction: Curcumin, chemically named as diferuloylmethane is a yellow coloured pigment which shows anti inflammatory, antioxidant, pro apoptotic, antibacterial, antiviral and antifungal activities. It suppresses cyclooxygenase, lipooxygenase and other inflammatory mediators and destroys free radicals. Aim: To evaluate the efficacy of curcumin in reducing the burning sensation in potentially malignant disorders of oral cavity. Materials and Methods: 100 subjects diagnosed clinically with potentially malignant disorders of oral cavity were included in this study. The patients were administered commercially available turmeric systemically and topical application of turmeric and honey was advised. Their burning sensation on VAS scale was evaluated after 15 days, and the data was then statistically analysed by Wilcoxon sign rank test. Results: After the treatment there was a significant decrease in VAS scale. The median showed decrease from 7 to 4. The mean value also showed decrease from 6.91 to 3.98. Conclusion: Hence, it is concluded that turmeric and honey showed positive results in reducing burning sensation in potentially malignant disorders of oral cavity.

  16. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    International Nuclear Information System (INIS)

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-01-01

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear β-catenin, which is reversed by IGF-1. IGF-1's effect on β-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing β-catenin

  17. Alteration of proliferation and apoptotic markers in normal and premalignant tissue associated with prostate cancer

    International Nuclear Information System (INIS)

    Ananthanarayanan, Vijayalakshmi; Deaton, Ryan J; Yang, Ximing J; Pins, Michael R; Gann, Peter H

    2006-01-01

    Molecular markers identifying alterations in proliferation and apoptotic pathways could be particularly important in characterizing high-risk normal or pre-neoplastic tissue. We evaluated the following markers: Ki67, Minichromosome Maintenance Protein-2 (Mcm-2), activated caspase-3 (a-casp3) and Bcl-2 to determine if they showed differential expression across progressive degrees of intraepithelial neoplasia and cancer in the prostate. To identify field effects, we also evaluated whether high-risk expression patterns in normal tissue were more common in prostates containing cancer compared to those without cancer (supernormal), and in histologically normal glands adjacent to a cancer focus as opposed to equivalent glands that were more distant. The aforementioned markers were studied in 13 radical prostatectomy (RP) and 6 cystoprostatectomy (CP) specimens. Tissue compartments representing normal, low grade prostatic intraepithelial neoplasia (LGPIN), high grade prostatic intraepithelial neoplasia (HGPIN), as well as different grades of cancer were mapped on H&E slides and adjacent sections were analyzed using immunohistochemistry. Normal glands within 1 mm distance of a tumor focus and glands beyond 5 mm were considered 'near' and 'far', respectively. Randomly selected nuclei and 40 × fields were scored by a single observer; basal and luminal epithelial layers were scored separately. Both Ki-67 and Mcm-2 showed an upward trend from normal tissue through HGPIN and cancer with a shift in proliferation from basal to luminal compartment. Activated caspase-3 showed a significant decrease in HGPIN and cancer compartments. Supernormal glands had significantly lower proliferation indices and higher a-casp3 expression compared to normal glands. 'Near' normal glands had higher Mcm-2 indices compared to 'far' glands; however, they also had higher a-casp3 expression. Bcl-2, which varied minimally in normal tissue, did not show any trend

  18. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  19. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  20. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or co-expression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by shRNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1, combined with reciprocal inactivation of Arf6. The latter appears to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for induction of methuosis in cancers that are resistant to apoptotic cell death. PMID:20713492