WorldWideScience

Sample records for sam methyltransferase cfr

  1. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Giessing, Anders; Jensen, Søren Skov; Rasmussen, Anette

    2009-01-01

    The Cfr methyltransferase confers combined resistance to five different classes of antibiotics that bind to the peptidyl transferase center of bacterial ribosomes. The Cfr-mediated modification has previously been shown to occur on nucleotide A2503 of 23S rRNA and has a mass corresponding......,8-dimethyladenosine. The mutation of single conserved cysteine residues in the radical SAM motif CxxxCxxC of Cfr abolishes its activity, lending support to the notion that the Cfr modification reaction occurs via a radical-based mechanism. Antibiotic susceptibility data confirm that the antibiotic resistance...

  2. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...

  3. Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM

    International Nuclear Information System (INIS)

    Yang, Huirong; Wang, Ping; Dong, Zhenghong; Li, Xueyuan; Gong, Rui; Yang, Ying; Li, Ze; Xu, Youwei; Xu, Yanhui

    2010-01-01

    The expression, purification and crystallization of nosiheptide-resistance methyltransferase (NSR) from Streptomyces actuosus is described. Nosiheptide-resistance methyltransferase (NSR) methylates 23S rRNA at the nucleotide adenosine 1067 in Escherichia coli and thus contributes to resistance against nosiheptide, a sulfur-containing peptide antibiotic. Here, the expression, purification and crystallization of NSR from Streptomyces actuosus are reported. Diffracting crystals were grown by the hanging-drop vapour-diffusion method in reservoir solution consisting of 0.35 M ammonium chloride, 24%(w/v) PEG 3350, 0.1 M MES pH 5.7 at 293 K. Native data have been collected from the apo enzyme and a SAM complex, as well as apo SeMet SAD data. The diffraction patterns of the apo form of NSR, of NSR complexed with SAM and of SeMet-labelled NSR crystals extended to 1.90, 1.95 and 2.25 Å resolution, respectively, using synchrotron radiation. All crystals belonged to space group P2 1 , with approximate unit-cell parameters a = 64.6, b = 69.6, c = 64.9 Å, β = 117.8°

  4. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  5. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Mohamad [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yoshinaga, Masafumi; Packianathan, Charles; Qin, Jie [Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, FL33199 (United States); Hallauer, Janell; McDermott, Joseph R. [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yang, Hung-Chi [Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Kwei-San 333, Taiwan (China); Tsai, Kan-Jen [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liu, Zijuan, E-mail: liu2345@oakland.edu [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States)

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli.

  6. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    OpenAIRE

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang

    2010-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crysta...

  7. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics

    DEFF Research Database (Denmark)

    Long, K. S.; Poehlsgaard, Jacob; Kehrenberg, C.

    2006-01-01

    to overlapping sites at the peptidyl transferase center that abut nucleotide A2503, is perturbed upon Cfr-mediated methylation. Decreased drug binding to Cfr-methylated ribosomes has been confirmed by footprinting analysis. No other rRNA methyltransferase is known to confer resistance to five chemically distinct...

  8. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    Science.gov (United States)

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  9. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.; Confer, Laura A.; Bernard, Steffen M.; Anzai, Yojiro; Kato, Fumio; Sherman, David H.; Smith, Janet L. (Michigan); (Toho)

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.

  10. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Chiron, H; Drouet, A; Claudot, A C; Eckerskorn, C; Trost, M; Heller, W; Ernst, D; Sandermann, H

    2000-12-01

    Formation of pinosylvin (PS) and pinosylvin 3-O-monomethyl ether (PSM), as well as the activities of stilbene synthase (STS) and S-adenosyl-1-methionine (SAM):pinosylvin O-methyltransferase (PMT), were induced strongly in needles of Scots pine seedlings upon ozone treatment, as well as in cell suspension cultures of Scots pine upon fungal elicitation. A SAM-dependent PMT protein was purified and partially characterised. A cDNA encoding PMT was isolated from an ozone-induced Scots pine cDNA library. Southern blot analysis of the genomic DNA suggested the presence of a gene family. The deduced protein sequence showed the typical highly conserved regions of O-methyltransferases (OMTs), and average identities of 20-56% to known OMTs. PMT expressed in Escherichia coli corresponded to that of purified PMT (40 kDa) from pine cell cultures. The recombinant enzyme catalysed the methylation of PS, caffeic acid, caffeoyl-CoA and quercetin. Several other substances, such as astringenin, resveratrol, 5-OH-ferulic acid, catechol and luteolin, were also methylated. Recombinant PMT thus had a relatively broad substrate specificity. Treatment of 7-year old Scots pine trees with ozone markedly increased the PMT mRNA level. Our results show that PMT represents a new SAM-dependent OMT for the methylation of stress-induced pinosylvin in Scots pine needles.

  11. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Lamballeire, Xavier de; Brisbare, Nadege; Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno; Gould, Ernest; Forrester, Naomi; Bolognesi, Martino

    2006-01-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup

  12. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  13. An easy-to-perform photometric assay for methyltransferase activity measurements.

    Science.gov (United States)

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases

    DEFF Research Database (Denmark)

    Ntokou, Eleni; Hansen, Lykke Haastrup; Kongsted, Jacob

    2015-01-01

    -ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore......Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence...... interchangeability between Cfr and RlmN we constructed various combinations of their genes. The function of the mixed genes was investigated by RNA primer extension analysis to reveal methylation at 23S rRNA position A2503 and by MIC analysis to reveal antibiotic resistance. The catalytic site is expected...

  15. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  16. Active site labeling of the guanine-7-methyltransferase

    International Nuclear Information System (INIS)

    Streaker, E.; Sitz, T.O.

    1992-01-01

    Studies on the guanine-7-methyltransferase have defined three domains in the active site: the S-adenosylmethionine (SAM) region, the cap region (GpppG), and the RNA binding domain (--NpNpNpNpNp---). The authors attempted to label the SAM binding domain by a photoaffinity label using 8-azido-SAM and another method using 3 H-SAM and long exposures to uv-light. Neither method was successful. The next approach was to attempt to label the cap-RNA binding domain (GpppGpNpNpNpNpN) by synthesizing RNA containing 8-azido-Ap using an in vitro transcription system and T7 RNA polymerase. The 8-azido-ATP inhibited the T7 RNA polymerase preventing the synthesis of RNA. As they were unable to synthesize the photoaffinity label, they next tried to synthesize an end labeled RNA and directly label by long exposures to uv-light. When the enzyme was incubated with 32 P-labeled RNA for 15 min at 37 degrees and then exposed to a germicidal lamp for various times at O degrees, optimal labeling occurred after 45 min. Various enzyme preparations were labeled by this method and two polypeptides were found to specifically bind the non-methylated mRNA analog. This labeling method should allow characterization of the subunit structure and generate information about the nature of the RNA binding domain

  17. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    Energy Technology Data Exchange (ETDEWEB)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina; Engel, Daniel A.; Derewenda, Zygmunt S.

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  18. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  19. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  20. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  1. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  2. Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-01-01

    tRNA (m 7 G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m 7 G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N 7 -methylguanosine (m 7 G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His 6 tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2 1

  3. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  4. Crystallization and preliminary crystallographic analysis of tRNA (m{sup 7}G46) methyltransferase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2008-08-01

    tRNA (m{sup 7}G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m{sup 7}G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N{sup 7}-methylguanosine (m{sup 7}G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His{sub 6} tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2{sub 1}.

  5. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    OpenAIRE

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinc...

  6. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  7. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    Full Text Available Juvenile hormone acid methyltransferase (JHAMT is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM to the carboxyl group of either farnesoic acid (FA or JH acid (JHA. Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT. The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation.

  8. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  9. Cloning, expression, purification, crystallization and preliminary X-ray analysis of NodS N-methyltransferase from Bradyrhizobium japonicum WM9

    International Nuclear Information System (INIS)

    Cakici, Ozgur; Sikorski, Michal; Stepkowski, Tomasz; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    The NodS N-methyltransferase, an enzyme participating in the biosynthesis of the bacterial nodulation (Nod) factor necessary to establish symbiotic nitrogen fixation with a legume plant host, has been crystallized in the apo form as well as in complex with SAH. SAH is a byproduct of SAM degradation during the SAM-dependent methylation reaction. The Nod factor (NF) is a rhizobial signal molecule that is involved in recognition of a legume host and the formation of root and stem nodules. Some unique enzymes are involved in the biosynthesis of NF, which is a variously but specifically substituted lipochitooligosaccharide. One of these enzymes is NodS, an N-methyltransferase that methylates end-deacetylated chitooligosaccharide substrates. In the methylation reaction, NodS uses S-adenosyl-l-methionine (SAM) as a methyl donor. To date, no structural information is available about NodS from any rhizobium. X-ray crystallographic studies of the NodS protein from Bradyrhizobium japonicum WM9, which infects the legumes lupin and serradella, have been undertaken. The nodS gene was cloned and the recombinant protein was expressed in Escherichia coli cells using natural amino acids and as an SeMet derivative. NodS without ligands was crystallized in the presence of PEG 3350 and MgCl 2 . The protein was also crystallized in complex with S-adenosyl-l-homocysteine (SAH) in the presence of PEG 8000 and MgCl 2 . SAH is produced from SAM as a byproduct of the methylation reaction. The crystals of apo NodS are tetragonal and diffracted X-rays to 2.42 Å resolution. The NodS–SAH complex crystallizes in an orthorhombic space group and the crystals diffracted X-rays to 1.85 Å resolution

  10. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    Science.gov (United States)

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to

  11. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    Science.gov (United States)

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  12. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    Science.gov (United States)

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2018-03-01

    Full Text Available Protein arginine methyltransferase 5 (PRMT5 is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s. T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer.

  14. Human C6orf211 Encodes Armt1, a Protein Carboxyl Methyltransferase that Targets PCNA and Is Linked to the DNA Damage Response

    Directory of Open Access Journals (Sweden)

    J. Jefferson P. Perry

    2015-03-01

    Full Text Available Recent evidence supports the presence of an L-glutamyl methyltransferase(s in eukaryotic cells, but this enzyme class has been defined only in certain prokaryotic species. Here, we characterize the human C6orf211 gene product as “acidic residue methyltransferase-1” (Armt1, an enzyme that specifically targets proliferating cell nuclear antigen (PCNA in breast cancer cells, predominately methylating glutamate side chains. Armt1 homologs share structural similarities with the SAM-dependent methyltransferases, and negative regulation of activity by automethylation indicates a means for cellular control. Notably, shRNA-based knockdown of Armt1 expression in two breast cancer cell lines altered survival in response to genotoxic stress. Increased sensitivity to UV, adriamycin, and MMS was observed in SK-Br-3 cells, while in contrast, increased resistance to these agents was observed in MCF7 cells. Together, these results lay the foundation for defining the mechanism by which this post-translational modification operates in the DNA damage response (DDR.

  15. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics.

    Science.gov (United States)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-09-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics also occurs through methylation of 23S rRNA at position A2503 by the methyltransferase Cfr. The mutations in L3 and the cfr gene have been found together in clinical isolates, raising the question of whether they have a combined effect on antibiotic resistance or growth. We transformed a plasmid-borne cfr gene into a uL3-depleted Escherichia coli strain containing either wild-type L3 or L3 with one of seven mutations, G147R, Q148F, N149S, N149D, N149R, Q150L, or T151P, expressed from plasmid-carried rplC genes. The L3 mutations are well tolerated, with small to moderate growth rate decreases. The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were seen. This study underscores the complex interplay between various resistance mechanisms and cross-resistance, even from antibiotics with overlapping binding sites. Copyright © 2017 American Society for Microbiology.

  16. Crystal structures of human 108V and 108M catechol O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. (UWASH)

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT bound with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond

  17. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    Science.gov (United States)

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  18. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    Science.gov (United States)

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  19. SAM Photovoltaic Model Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  20. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine.

    Science.gov (United States)

    Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E

    2014-05-13

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.

  1. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii.

    Science.gov (United States)

    Padgett, Leah R; Lentini, Jenna M; Holmes, Michael J; Stilger, Krista L; Fu, Dragony; Sullivan, William J

    2018-01-01

    Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.

  2. Identification of a peptide inhibitor for the histone methyltransferase WHSC1.

    Directory of Open Access Journals (Sweden)

    Michael J Morrison

    Full Text Available WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.

  3. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors.

    Science.gov (United States)

    Mercurio, Flavia Anna; Di Natale, Concetta; Pirone, Luciano; Iannitti, Roberta; Marasco, Daniela; Pedone, Emilia Maria; Palumbo, Rosanna; Leone, Marilisa

    2017-12-12

    The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.

  4. SAM Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactor concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.

  5. SAM Photovoltaic Model Technical Reference 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Freeman, Janine M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobos, Aron [No longer NREL employee; Ryberg, David [No longer NREL employee

    2018-03-19

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixed arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.

  6. Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase.

    Directory of Open Access Journals (Sweden)

    Anne eJunker

    2013-07-01

    Full Text Available Putrescine N-methyltransferases (PMTs are the first specific enzymes of the biosynthesis of nicotine and tropane alkaloids. PMTs transfer a methyl group onto the diamine putrescine from S-adenosyl-L-methionine (SAM as coenzyme. PMT proteins have presumably evolved from spermidine synthases (SPDSs, which are ubiquitous enzymes of polyamine metabolism. SPDS use decarboxylated SAM as coenzyme to transfer an aminopropyl group onto putrescine. In an attempt to identify possible and necessary steps in the evolution of PMT from SPDS, homology based modeling of Datura stramonium SPDS1 and PMT was employed to gain deeper insight in the preferred binding positions and conformations of the substrate and the alternative coenzymes. Based on predictions of amino acids responsible for the change of enzyme specificities, sites of mutagenesis were derived. PMT activity was generated in Datura stramonium SPDS1 after few amino acid exchanges. Concordantly, Arabidopsis thaliana SPDS1 was mutated and yielded enzymes with both, PMT and SPDS activities. Kinetic parameters were measured for enzymatic characterization. The switch from aminopropyl to methyl transfer depends on conformational changes of the methionine part of the coenzyme in the binding cavity of the enzyme. The rapid generation of PMT activity in SPDS proteins and the wide-spread occurrence of putative products of N-methylputrescine suggest that PMT activity is present frequently in the plant kingdom.

  7. Crystal structures of the SAM-III/S[subscript MK] riboswitch reveal the SAM-dependent translation inhibition mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.; Smith, A.M.; Fuchs, R.T.; Ding, F.; Rajashankar, K.; Henkin, T.M.; Ke, A. (Cornell); (OSU)

    2010-01-07

    Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-{angstrom} crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.

  8. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    Science.gov (United States)

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C 3 methylthiolation of the D89 residue in the ribosomal S 12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS - ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  9. SAM International Case Studies: DPV Analysis in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-28

    Presentation demonstrates the use of the System Advisor Model (SAM) in international analyses, specifically Mexico. Two analyses are discussed with relation to SAM modelling efforts: 1) Customer impacts from changes to net metering and billing agreements and 2) Potential benefits of PV for Mexican solar customers, the Mexican Treasury, and the environment. Along with the SAM analyses, integration of the International Utility Rate Database (I-URDB) with SAM and future international SAM work are discussed. Presentation was created for the International Solar Energy Society's (ISES) webinar titled 'International use of the NREL System Advisor Model (SAM) with case studies'.

  10. Regulation of homocysteine metabolism and methylation in human and mouse tissues

    Science.gov (United States)

    Chen, Natalie C.; Yang, Fan; Capecci, Louis M.; Gu, Ziyu; Schafer, Andrew I.; Durante, William; Yang, Xiao-Feng; Wang, Hong

    2010-01-01

    Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine (Hcy) metabolism involves multiple enzymes; however, tissue Hcy metabolism and its relevance to methylation remain unknown. Here, we established gene expression profiles of 8 Hcy metabolic and 12 methylation enzymes in 20 human and 19 mouse tissues through bioinformatic analysis using expression sequence tag clone counts in tissue cDNA libraries. We analyzed correlations between gene expression, Hcy, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM) levels, and SAM/SAH ratios in mouse tissues. Hcy metabolic and methylation enzymes were classified into two types. The expression of Type 1 enzymes positively correlated with tissue Hcy and SAH levels. These include cystathionine β-synthase, cystathionine-γ-lyase, paraxonase 1, 5,10-methylenetetrahydrofolate reductase, betaine:homocysteine methyltransferase, methionine adenosyltransferase, phosphatidylethanolamine N-methyltransferases and glycine N-methyltransferase. Type 2 enzyme expressions correlate with neither tissue Hcy nor SAH levels. These include SAH hydrolase, methionyl-tRNA synthase, 5-methyltetrahydrofolate:Hcy methyltransferase, S-adenosylmethionine decarboxylase, DNA methyltransferase 1/3a, isoprenylcysteine carboxyl methyltransferases, and histone-lysine N-methyltransferase. SAH is the only Hcy metabolite significantly correlated with Hcy levels and methylation enzyme expression. We established equations expressing combined effects of methylation enzymes on tissue SAH, SAM, and SAM/SAH ratios. Our study is the first to provide panoramic tissue gene expression profiles and mathematical models of tissue methylation regulation.—Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., Yang, X.-F., Wang, H. Regulation of homocysteine metabolism and methylation in human and mouse tissues. PMID:20305127

  11. Samsø Energy Vision 2030

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth; Ridjan, Iva

    The purpose of this report is to investigate potential scenarios for converting Samsø into 100% renewable energy supply in 2030 with focus on local electricity and biomass resources. Firstly, a 2013 reference scenario is established to investigate whether Samsø is 100% renewable today. Next, scen...

  12. Aroma biosynthesis in strawberry: s-adenosylmethionine:furaneol o-methyltransferase activity in ripening fruits.

    Science.gov (United States)

    Lavid, Noa; Schwab, Wilfried; Kafkas, Ebru; Koch-Dean, Margery; Bar, Einat; Larkov, Olga; Ravid, Uzi; Lewinsohn, Efraim

    2002-07-03

    Among the most important volatile compounds in the aroma of strawberries are 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Furaneol) and its methoxy derivative (methoxyfuraneol, mesifuran). Three strawberry varieties, Malach, Tamar, and Yael, were assessed for total volatiles, Furaneol, and methoxyfuraneol. The content of these compounds sharply increased during fruit ripening, with maximum values at the ripe stage. An enzymatic activity that transfers a methyl group from S-adenosylmethionine (SAM) to Furaneol sharply increases during ripening of strawberry fruits. The in vitro generated methoxyfuraneol was identified by radio-TLC and GC-MS. The partially purified enzyme had a native molecular mass of approximately 80 kDa, with optimum activity at pH 8.5 and 37 degrees C. A high apparent K(m) of 5 mM was calculated for Furaneol, whereas this enzyme preparation apparently accepted as substrates other o-dihydroxyphenol derivatives (such as catechol, caffeic acid, and protocatechuic aldehyde) with much higher affinities (K(m) approximately 105, 130, and 20 microM, respectively). A K(m) for SAM was found to be approximately 5 microM, regardless of the acceptor used. Substrates that contained a phenolic group with only one OH group, such as p-coumaric and trans-ferulic acid, as well as trans-anol and coniferyl alcohol, were apparently not accepted by this activity. It is suggested that Furaneol methylation is mediated by an O-methyltransferase activity and that this activity increases during fruit ripening.

  13. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  14. System for Award Management (SAM) API

    Data.gov (United States)

    General Services Administration — The SAM API is a RESTful method of retrieving public information about the businesses, organizations, or individuals (referred to as entities) within the SAM entity...

  15. 78 FR 62627 - Sam Rayburn Dam Rate

    Science.gov (United States)

    2013-10-22

    ..., Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative, Inc. (Contract No... Schedule SRD-08, Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative... ADMINISTRATION RATE SCHEDULE SRD-13 \\1\\ WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM...

  16. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase.

    Science.gov (United States)

    Fenwick, Michael K; Almabruk, Khaled H; Ealick, Steven E; Begley, Tadhg P; Philmus, Benjamin

    2017-08-01

    Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp 2 orbital of N6 and then toward an sp 2 orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.

  17. System Advisor Model, SAM 2014.1.14: General Description

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Neises, Ty [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wagner, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ferguson, Tom [Global Resources, Northbrook, IL (United States); Gilman, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [Janzou Consulting, Idaho Springs, CO (United States)

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  18. 核蛋白Sam68的原核表达及鉴定%Prokaryotic Expression and Identification of Nuclear Protein Sam68

    Institute of Scientific and Technical Information of China (English)

    张华; 陈宁; 丁筠; 邹德华; 潘子夜; 李鹏飞; 李丽阳; 肖丽杰; 曹宏伟

    2017-01-01

    为了构建pGEX-4T-1-Sam68原核表达载体,表达并鉴定GST-Sam68融合蛋白,采用PCR扩增Sam68基因,插入pGEX-4T-1的EcoR I和Sal I位点,并转化Rosetta(DE3)大肠杆菌,IPTG诱导表达,SDS-PAGE和Western Blot验证蛋白表达,GST pull-down技术验证Sam68的结合活性.酶切和测序结果证实Sam68基因正确插入pGEX-4T-1载体中,载体能够在Rosetta(DE3)细胞中正确表达,且纯化的GST-Sam68蛋白具有与PI3K p85特异结合的活性,说明成功构建了原核表达载体pGEX-4T-1-Sam68.

  19. The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

    DEFF Research Database (Denmark)

    Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine S.

    2012-01-01

    The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first...

  20. Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) S-Adenosylmethionine Methyltransferase Reaction.

    Science.gov (United States)

    Packianathan, Charles; Li, Jiaojiao; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P

    2018-03-01

    The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S -adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

  1. Storifying Samsøs Renewable Energy Transition

    DEFF Research Database (Denmark)

    Papazu, Irina

    2018-01-01

    Through a joint community effort Denmark’s Renewable Energy Island Samsø became self-sufficient with renewable energy over a period of 10 years from 1997 to 2007. Today, the story about Samsø’s successful energy transition has become a global export and a widely known model of community building...... the effects of such well-crafted transition narratives. This tendency toward the ‘storification’ of transition processes is not restricted to Samsø; it is employed as a tactics by environmental organizations operating globally....

  2. Roles of DNA methyltransferases in Arabidopsis development ...

    African Journals Online (AJOL)

    Mutations that cause severe loss of DNA methylation often leads to abnormal development. In the present review, we summarized recent findings of the three major DNA methyltransferases mutants playing vital role in development of Arabidopsis thaliana. Keywords: DNA methylation, epigenetics, methyltransferase, mutant ...

  3. Inhibition of thiopurine S-methyltransferase activity by impurities in commercially available substrates: a factor for differing results of TPMT measurements.

    Science.gov (United States)

    Kröplin, T; Fischer, C; Iven, H

    1999-06-01

    Thiopurine S-methyltransferase (TPMT) activity, when measured in red blood cells (RBC) with a recently published TPMT activity assay using 6-thioguanine (6-TG) as substrate, could not be reproduced in another laboratory. We investigated factors which could influence the results of the TPMT activity measurement. We tested twelve 6-TG and four 6-mercaptopurine (6-MP) compounds from different suppliers as substrates and determined the enzyme kinetic parameters Km and Vmax. Furthermore, we studied the influence of different 6-TG compounds on the affinity of the methyl donor S-adenosyl-L-methionine (SAM) to the TPMT enzyme. All 6-TG products were of equal purity (declared >98% by the supplier): this was ascertained by HPLC. However, the rate of methylation obtained following incubation with 6-TG from different suppliers ranged from 10% to 100% when incubated with the same RBC lysate. The lowest apparent Km value for a 6-TG was 22.3 micromol x l(-1), while the product with the highest methylation rate showed a Km of 156 micromol x l(-1). From these results we assume that there is a contaminant in some 6-TG products, which acts as a strong inhibitor of TPMT activity. Compounds possibly used for the synthesis of 6-TG (guanine, pyridine, 6-chloroguanine) did not affect the methylation rate. Thioxanthine, which is known to be a strong inhibitor of TPMT when added to the assay system to give a 2% contamination, reduced TPMT activity from 100% to 72%. Using 6-MP from different suppliers as substrate resulted in Km values ranging from 110 to 162 micromol x l(-1) and Vmox values ranging from 54 to 68 nmol 6-MMP x g(-1)Hb x h(-1). The Km value for the methyl donor SAM was similar to and independent from the thiopurine substrates tested (range 4.9-11 micromol-l(-1) SAM). In contrast to other investigators, we found non-enzymatic S-methylation, which was negligible under our assay conditions (3% with 128 micromol x l(-1) SAM), but could become relevant in experiments using higher

  4. A Mononuclear Iron-Dependent Methyltransferase Catalyzes Initial Steps in Assembly of the Apratoxin A Polyketide Starter Unit.

    Science.gov (United States)

    Skiba, Meredith A; Sikkema, Andrew P; Moss, Nathan A; Tran, Collin L; Sturgis, Rebecca M; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2017-12-15

    Natural product biosynthetic pathways contain a plethora of enzymatic tools to carry out difficult biosynthetic transformations. Here, we discover an unusual mononuclear iron-dependent methyltransferase that acts in the initiation steps of apratoxin A biosynthesis (AprA MT1). Fe 3+ -replete AprA MT1 catalyzes one or two methyl transfer reactions on the substrate malonyl-ACP (acyl carrier protein), whereas Co 2+ , Fe 2+ , Mn 2+ , and Ni 2+ support only a single methyl transfer. MT1 homologues exist within the "GNAT" (GCN5-related N-acetyltransferase) loading modules of several modular biosynthetic pathways with propionyl, isobutyryl, or pivaloyl starter units. GNAT domains are thought to catalyze decarboxylation of malonyl-CoA and acetyl transfer to a carrier protein. In AprA, the GNAT domain lacks both decarboxylation and acyl transfer activity. A crystal structure of the AprA MT1-GNAT di-domain with bound Mn 2+ , malonate, and the methyl donor S-adenosylmethionine (SAM) reveals that the malonyl substrate is a bidentate metal ligand, indicating that the metal acts as a Lewis acid to promote methylation of the malonyl α-carbon. The GNAT domain is truncated relative to functional homologues. These results afford an expanded understanding of MT1-GNAT structure and activity and permit the functional annotation of homologous GNAT loading modules both with and without methyltransferases, additionally revealing their rapid evolutionary adaptation in different biosynthetic contexts.

  5. Samâ’ dalam Tradisi Tasawuf

    Directory of Open Access Journals (Sweden)

    Said Aqil Siradj

    2014-01-01

    Full Text Available Samâ‘ in Tasawuf has been a very important element in the dissemination of this spiritual dimension of Islam. Yet, it has received very little both from the practitioners of Tasawuf and its intellectuals. This paper tries to expose this simply in a hope to make it heard in the academic and popular circle. Here, samâ‘ is not only understood as a form of music, as many would do, but also as an art of listening of which music is certainly part. The paper will explore the meaning and definition of this term, putting emphasis on its many-faceted function in the formation and development of one’s soul and spirituality. It is argued that soul is musical and artistic. Using art and music to talk to soul is therefore the proper way and means. The paper will also try to show that samâ‘ is also an indispensable part of spiritual method to reach and know God. Knowledge of God in other words, can be gained through this practice. Hence, samâ‘ is treated not only as a form of entertainment, but also a kind of practical epistemology.

  6. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    International Nuclear Information System (INIS)

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth

    2012-01-01

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C pro induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within the 5′ non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C pro .

  7. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  8. Information System through ANIS at CeSAM

    Science.gov (United States)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  9. 78 FR 47695 - Sam Rayburn Dam Power Rate

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of public review and comment. SUMMARY: The current Sam..., Southwestern Power Administration (Southwestern), has prepared Current and Revised 2013 Power Repayment Studies...

  10. Recent Updates to the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    The System Advisor Model (SAM) is a mature suite of techno-economic models for many renewable energy technologies that can be downloaded for free as a desktop application or software development kit. SAM is used for system-level modeling, including generating performance pro the release of the code as an open source project on GitHub. Other additions that will be covered include the ability to download data directly into SAM from the National Solar Radiation Database (NSRDB) and up- dates to a user-interface macro that assists with PV system sizing. A brief update on SAM's battery model and its integration with the detailed photovoltaic model will also be discussed. Finally, an outline of planned work for the next year will be presented, including the addition of a bifacial model, support for multiple MPPT inputs for detailed inverter modeling, and the addition of a model for inverter thermal behavior.

  11. Structural Chemistry of Human RNA Methyltransferases.

    Science.gov (United States)

    Schapira, Matthieu

    2016-03-18

    RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.

  12. Spirit Pluralisme dalam Klenteng Sam Po Kong Semarang

    Directory of Open Access Journals (Sweden)

    Edi Nurwahyu Julianto

    2015-07-01

    Full Text Available Klenteng Sam Po Kong has very deep meaning as a symbol of multi cultural; multi ethnic and multi religious. Klenteng Sam Po Kong has a different function, not only used by people with background religious Tri Dharma (Budha, Tao and Konghuchu, but also used by Javanese ethnic with different religious backgrounds. Between ethnic China and Java, mutual respect and tolerance run beliefs and rituals of each. More over, Klenteng Sam Po Kong is a form of pluralism which reflected the fact Sino Javanese Muslim Culture is preserved to date both of sightings physical culture and system cultural in the form of religious rites performed by ethnic China and Java.

  13. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  14. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.

    Science.gov (United States)

    Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y

    2017-07-25

    The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.

  15. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  16. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  17. Efficacy of World Health Organization guideline in facility-based reduction of mortality in severely malnourished children from low and middle income countries: A systematic review and meta-analysis.

    Science.gov (United States)

    Hossain, Muttaquina; Chisti, Mohammod J; Hossain, Mohammod Iqbal; Mahfuz, Mustafa; Islam, Mohammad Munirul; Ahmed, Tahmeed

    2017-05-01

    Globally more than 19 million under-five children suffer from severe acute malnutrition (SAM). Data on efficacy of World Health Organization's (WHO's) guideline in reducing SAM mortality are limited. We aimed to assess the efficacy of WHO's facility-based guideline for the reduction of under-five SAM children mortality from low and middle income countries (LMICs). A systematic search of literature published in 1980-2015 was conducted using electronic databases. Additional articles were identified from the reference lists and grey literature. Studies from LMICs where SAM children (0-59 months) were managed in facilities according to WHO's guideline were included. Outcome was reduction in SAM mortality measured by case fatality rate (CFR). The review was reported following the Grading of Recommendations Assessment Development and Evaluation and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline and meta-analyses done using RevMan 5.3®. This review identified nine studies, which demonstrated reductions in SAM mortality. CFR ranged from 8 to 16% where WHO guideline applied. High rates of poverty, malnutrition, severe co-morbid condition, lack of resources and differences in treatment practices played a key role in large CFR variation. Most death occurred within 48 h of admission in Asia, between 4 days and 4 weeks in Africa and in Latin America. CFR was reduced by 41% (odds ratio: 0.59; 95% confidence interval: 0.46-0.76) when WHO guideline were applied. A 45% reduction in CFR was achieved after excluding human immunodeficiency virus positive cases. Dietary management also differed among WHO and conventional management. Children receiving SAM inpatient care as per WHO guideline have reduced CFR compared to conventional treatment. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  18. Radiation streaming with SAM-CE

    International Nuclear Information System (INIS)

    De Gangi, N.; Cohen, M.O.; Waluschka, E.; Steinberg, H.A.

    1980-01-01

    The SAM-CE Monte Carlo code has been employed to calculate doses, due to neutron streaming, on the operating floor and other locations of the Millstone Unit II Nuclear Power Facility. Calculated results were compared against measured doses

  19. On LAM's and SAM's for Halley's rotation

    Science.gov (United States)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  20. Short-term and sustained effects of a health system strengthening intervention to improve mortality trends for paediatric severe malnutrition in rural South African hospitals: An interrupted time series design

    Directory of Open Access Journals (Sweden)

    M Muzigaba

    2017-04-01

    Full Text Available Background. Case fatality rates for childhood severe acute malnutrition (SAM remain high in some resource-limited facilities in South Africa (SA, despite the widespread availability of the World Health Organization treatment guidelines. There is a need to develop reproducible interventions that reinforce the implementation of these guidelines and assess their effect and sustainability. Objectives. To assess the short-term and sustained effects of a health system strengthening intervention on mortality attributable to SAM in two hospitals located in the Eastern Cape Province of SA. Methods. This was a theory-driven evaluation conducted in two rural hospitals in SA over a 69-month period (2009 - 2014. In both facilities, a health system strengthening intervention was implemented within the first 32 months, and thereafter discontinued. Sixty-nine monthly data series were collected on: (i monthly total SAM case fatality rate (CFR; (ii monthly SAM CFR within 24 hours of admission; and (iii monthly SAM CFR among HIV-positive cases, to determine the intervention’s effect within the first 32 months and sustainability over the remaining 37 months. The data were analysed using Linden’s method for analysing interrupted time series data. Results. The study revealed that the intervention was associated with a statistically significant decrease of up to 0.4% in monthly total SAM CFR, a non-statistically significant decrease of up to 0.09% in monthly SAM CFR within 24 hours of admission and a non-statistically significant decrease of up to 0.11% in monthly SAM CFR among HIV-positive cases. The decrease in mortality trends for both outcomes was only slightly reversed upon the discontinuation of the intervention. No autocorrelation was detected in the regression models generated during data analyses. Conclusion. The study findings suggest that although the intervention was designed to be self-sustaining, this may not have been the case. A qualitative enquiry

  1. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  2. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    Science.gov (United States)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  3. Renewing Samsø

    DEFF Research Database (Denmark)

    Papazu, Irina

    2017-01-01

    and globally, I ask: if indeed such a process of renewal must be understood as a political process and the island’s energy transition as an inherently political event, what can Samsø teach us about the workings of politics and local democracy as enacted in practice? This is politics not as election result...... or ideological struggle over values, ideals and the distribution of goods, but as the down-to-earth but significant activity of creating something new together....

  4. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in [Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Division of Plant Biology, Bose Institute, Kolkata (India); Roychoudhury, Aryadeep [Post Graduate Department of Biotechnology, St. Xavier' s College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal (India); Sengupta, Dibyendu N. [Division of Plant Biology, Bose Institute, Kolkata (India)

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  5. Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.

    Science.gov (United States)

    Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed

    2016-07-01

    Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.

  6. Cfr and RlmN contain a single [4Fe-4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation.

    Science.gov (United States)

    Grove, Tyler L; Radle, Matthew I; Krebs, Carsten; Booker, Squire J

    2011-12-14

    The radical SAM (RS) proteins RlmN and Cfr catalyze methylation of carbons 2 and 8, respectively, of adenosine 2503 in 23S rRNA. Both reactions are similar in scope, entailing the synthesis of a methyl group partially derived from S-adenosylmethionine (SAM) onto electrophilic sp(2)-hybridized carbon atoms via the intermediacy of a protein S-methylcysteinyl (mCys) residue. Both proteins contain five conserved Cys residues, each required for turnover. Three cysteines lie in a canonical RS CxxxCxxC motif and coordinate a [4Fe-4S]-cluster cofactor; the remaining two are at opposite ends of the polypeptide. Here we show that each protein contains only the one "radical SAM" [4Fe-4S] cluster and the two remaining conserved cysteines do not coordinate additional iron-containing species. In addition, we show that, while wild-type RlmN bears the C355 mCys residue in its as-isolated state, RlmN that is either engineered to lack the [4Fe-4S] cluster by substitution of the coordinating cysteines or isolated from Escherichia coli cultured under iron-limiting conditions does not bear a C355 mCys residue. Reconstitution of the [4Fe-4S] cluster on wild-type apo RlmN followed by addition of SAM results in rapid production of S-adenosylhomocysteine (SAH) and the mCys residue, while treatment of apo RlmN with SAM affords no observable reaction. These results indicate that in Cfr and RlmN, SAM bound to the unique iron of the [4Fe-4S] cluster displays two reactivities. It serves to methylate C355 of RlmN (C338 of Cfr), or to generate the 5'-deoxyadenosyl 5'-radical, required for substrate-dependent methyl synthase activity. © 2011 American Chemical Society

  7. Study of radiation effects on the senescence accelerated mouse (SAM), 1

    International Nuclear Information System (INIS)

    Kishikawa, Masao; Iseki, Masachika; Kondo, Hisayoshi

    1989-01-01

    The study of age-related changes in the central nervous system due to irradiation is being carried out in our laboratory. The senescence accelerated mouse (SAM P/1, male) was used for this investigation concerning the one-trial passive avoidance reaction. The experimental group of SAM P/1 was irradiated with 4 Gy at 8 weeks old, and passive avoidance reaction (PAR) was measured for 180 seconds as a learning task. At the age of 7 months, statistical analysis of PAR was conducted using the life time analysis method. The passive avoidance reaction of the irradiated group was more impaired than that of the control group. The results of this investigation suggested that the learning and/or memory disturbance of irradiated SAM P/1 is similar to the changes of more aged SAM P/1. (author)

  8. CareSam

    DEFF Research Database (Denmark)

    Liveng, Anne; Christensen, Jonas

    2016-01-01

    negative cultural perceptions of help-needing elderly and the people who support them in everyday life? In answering these questions and thereby reflecting on our own work process we apply a caring, a learning and a political perspective. Hereby the article wishes to formulate a methodological point...... to maintain immediately conflicting dimensions in this kind of work.......This article presents findings and discussions generated on the basis of the Danish-Swedish development project CareSam. The article will on the one hand focus on how work in groups consisting of representatives from different levels in the elderly care sector at one time served as learning spaces...

  9. Amine terminated SAMs: Investigating why oxygen is present in these films

    International Nuclear Information System (INIS)

    Baio, J.E.; Weidner, T.; Brison, J.; Graham, D.J.; Gamble, Lara J.; Castner, David G.

    2009-01-01

    Self-assembled monolayers (SAMs) on gold prepared from amine-terminated alkanethiols have long been employed as model positively charged surfaces. Yet in previous studies significant amounts of unexpected oxygen containing species are always detected in amine terminated SAMs. Thus, the goal of this investigation was to determine the source of these oxygen species and minimize their presence in the SAM. The surface composition, structure, and order of amine-terminated SAMs on Au were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), sum frequency generation (SFG) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS determined compositions of amine-terminated SAMs in the current study exhibited oxygen concentrations of 2.4 ± 0.4 atomic %, a substantially lower amount of oxygen than reported in previously published studies. High-resolution XPS results from the S 2p , C 1s and N 1s regions did not detect any oxidized species. Angle-resolved XPS indicated that the small amount of oxygen detected was located at or near the amine head group. Small amounts of oxidized nitrogen, carbon and sulfur secondary ions, as well as ions attributed to water, were detected in the ToF-SIMS data due to the higher sensitivity of ToF-SIMS. The lack of N-O, S-O, and C-O stretches in the SFG spectra are consistent with the XPS and ToF-SIMS results and together show that oxidation of the amine-terminated thiols alone can only account for, at most, a small fraction of the oxygen detected by XPS. Both the SFG and angle-dependent NEXAFS indicated the presence of gauche defects in the amine SAMs. However, the SFG spectral features near 2865 cm -1 , assigned to the stretch of the methylene group next to the terminal amine unit, demonstrate the SAM is reasonably ordered. The SFG results also show another broad feature near 3200 cm -1 related to hydrogen-bonded water. From this multi-technique investigation it is

  10. The SAMS: Smartphone Addiction Management System and verification.

    Science.gov (United States)

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  11. Automated one-loop calculations with GoSam

    International Nuclear Information System (INIS)

    Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  12. Automated One-Loop Calculations with GoSam

    CERN Document Server

    Cullen, Gavin; Heinrich, Gudrun; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Reiter, Thomas; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop.

  13. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

    Science.gov (United States)

    Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo

    2017-11-01

    The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.

  14. Isolation and characterization of a gene encoding a S-adenosyl-l-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: Biogenic mechanism of CH(3)I emissions in oceans.

    Science.gov (United States)

    Toda, Hiroshi; Itoh, Nobuya

    2011-04-01

    Several marine algae including diatoms exhibit S-adenosyl-l-methionine (SAM) halide/thiol methyltransferase (HTMT) activity, which is involved in the emission of methyl halides. In this study, the in vivo biogenic emission of methyl iodide from the diatom Phaeodactylum tricornutum was found to be clearly correlated with iodide concentration in the incubation media. The gene encoding HTMT (Pthtmt) was isolated from P. tricornutum CCAP 1055/1, and expressed in Escherichia coli. The molecular weight of the enzyme was 29.7kDa including a histidine tag, and the optimal pH was around pH 7.0. The kinetic properties of recombinant PtHTMT towards Cl(-), Br(-), I(-), [SH](-), [SCN](-), and SAM were 637.88mM, 72.83mM, 8.60mM, 9.92mM, 7.9mM, and 0.016mM, respectively, and were similar to those of higher-plant HTMTs, except that the activity towards thiocyanate was lower. The biogenic emission of methyl halides from the cultured cells and the enzymatic properties of HTMT suggest that the HMT/HTMT reaction is key to understanding the biogenesis of methyl halides in oceanic environments as well as terrestrial ones. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    International Nuclear Information System (INIS)

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-01-01

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly

  16. SAMS: The synchronization and monitoring system for ATF [Advanced Toroidal Facility] data acquisition

    International Nuclear Information System (INIS)

    Greenwood, D.E.

    1987-01-01

    SAMS performs much of the synchronization of the distributed data acquisition system for the Advanced Toroidal Facility (ATF). SAMS is responsible for propagating shot information and managing te data system directories and logical names. This paper describes how SAMS communicates with other processes, both within the VAX cluster that supports most of the ATF data acquisition and on VAXes that are connected to the cluster via DECnet. 3 refs

  17. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  18. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  19. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    Science.gov (United States)

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  20. A classification model of Hyperion image base on SAM combined decision tree

    Science.gov (United States)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model

  1. Quality Control Guidelines for SAM Biotoxin Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  2. Quality Control Guidelines for SAM Radiochemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. Quality Control Guidelines for SAM Pathogen Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  4. Quality Control Guidelines for SAM Chemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  6. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  7. Monolignol 4-O-methyltransferases and uses thereof

    Science.gov (United States)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  8. Data handling with SAM and art at the NOνA experiment

    International Nuclear Information System (INIS)

    Aurisano, A; Backhouse, C; Davies, G S; Illingworth, R; Mengel, M; Norman, A; Mayer, N; Rocco, D; Zirnstein, J

    2015-01-01

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this paper we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment. (paper)

  9. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  10. A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization.

    Directory of Open Access Journals (Sweden)

    Suchandra DebRoy

    Full Text Available Glycine N-methyltransferase (GNMT, an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine. This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively. Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.

  11. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    Science.gov (United States)

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  12. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  13. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  14. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    International Nuclear Information System (INIS)

    Byrne, Robert T.; Whelan, Fiona; Aller, Pierre; Bird, Louise E.; Dowle, Adam; Lobley, Carina M. C.; Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J.; Antson, Alfred A.; Waterman, David G.

    2013-01-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo 5 U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo 5 U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM

  15. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Sam Wagstaffi unustatud kired / Ahto Külvet

    Index Scriptorium Estoniae

    Külvet, Ahto

    2008-01-01

    Dokumentaalfilm "Black, White & Gray: Sam Wagstaff and Robert Mapplethorpe" : autor ja režissöör James Crump : Ameerika Ühendriigid 2007. Filmi näidati filminädala "Art in America" raames Tallinnas

  17. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  18. Electronic patient self-assessment and management (SAM): a novel framework for cancer survivorship.

    Science.gov (United States)

    Vickers, Andrew J; Salz, Talya; Basch, Ethan; Cooperberg, Matthew R; Carroll, Peter R; Tighe, Foss; Eastham, James; Rosen, Raymond C

    2010-06-17

    We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  19. Electronic patient self-assessment and management (SAM: a novel framework for cancer survivorship

    Directory of Open Access Journals (Sweden)

    Tighe Foss

    2010-06-01

    Full Text Available Abstract Background We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM. SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Methods Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC and the University of California, San Francisco (UCSF for aiding the clinical management of patients after surgery for prostate cancer. Results Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate or security. Conclusion SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  20. The Performance of CSAM SAM when Cycle Length is extended

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Kyung-ho; Moon, Sang-rae [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    In order to verify validation of that, CPC Axial Power Distribution is compared with Axial Power Distribution based on ICI every week. The difference between CPC Axial Power Distribution and Axial Power Distribution based on ICI increases according as fuels are burned. It is called CPC Axial Power Distribution Root Mean Square Error (CPC RMS Error). SAM and calibration of ex-core detector are important factors influencing the magnitude of the difference. According to vendor, the difference is limited by 8%. Otherwise, CPC penalty increases as many as difference increase. Therefore, KHNP developed Constrained Simulated Annealing Method (CSAM), which has better performance than that of Least Square Method (LSM), to calculate SAM constant. The CSA SAM contributed largely to maintain CPC operating margin. Somewhat, KHNP is developing the technology to be able to operate nuclear power plants for 24 month to optimize their efficiency. This paper shows trends of CPC RMS Error in a case of 24 months operation. Trends are based on data of a few OPR1000s under operation. It is data of OPR1000s that CSA SAM is applied. KHNP is developing the technology to extend operation cycle length in order to optimize the operation efficiency of OPR1000. To verify effect of extended operation cycle length on CPC, CPC Axial Power Distribution RMS Error in a case of 24 months operation was expected using operation data of six cycles in OPR1000. In cases that CPC Axial Power Distribution RMS Error exceeds threshold, operation margin is decreased due to CPC penalty. To prevent CPC operation margin from being decreased, improved method to calculate SAM or to calibrate ex-core detector is required. KHNP will consider the way to maintain CPC operation margin along with 24 month operation technology development, hereafter.

  1. Celiac Disease in Children with Severe Acute Malnutrition (SAM): A Hospital Based Study.

    Science.gov (United States)

    Beniwal, Neetu; Ameta, Gaurav; Chahar, Chandra Kumar

    2017-05-01

    To evaluate the prevalence and clinical features of Celiac disease among children with severe acute malnutrition (SAM). This prospective observational study was conducted in PBM Children Hospital, Bikaner from July 2012 through December 2013. All consecutively admitted children with SAM were recruited. All subjects were screened for Celiac disease by serological test for IgA-anti tissue Transglutaminase (IgA tTG) antibodies. All seropositive children underwent upper gastrointestinal endoscopy for small bowel biopsy for the confirmation. Clinical features of patients with and without celiac disease were compared. The sero-prevalence (IgA tTg positivity) of Celiac disease was found to be 15.38% while prevalence of biopsy confirmed Celiac disease was 14.42% among SAM children. Abdominal distension, diarrhea, anorexia, constipation, pain in abdomen, vitamin deficiencies, edema, clubbing and mouth ulcers were more common in patients of Celiac disease compared to patients without Celiac disease but the difference was statistically significant only for abdominal distension and pain abdomen. There is a high prevalence of Celiac disease in SAM. Screening for Celiac disease (especially in presence of pain abdomen and abdominal distension) should be an essential part of work-up in all children with SAM.

  2. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    Science.gov (United States)

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  4. Multiple endmember spectral-angle-mapper (SAM) analysis improves discrimination of Savanna tree species

    CSIR Research Space (South Africa)

    Cho, Moses A

    2009-08-01

    Full Text Available of this paper was to evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach in discriminating seven common African savanna tree species and to compare the results with the traditional SAM classifier...

  5. GoSam. A program for automated one-loop calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, N.; Heinrich, G.; Reiter, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, G. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, G. [City Univ. of New York, NY (United States). New York City College of Technology; Tramontano, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-11-15

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples. (orig.)

  6. GoSam. A program for automated one-loop calculations

    International Nuclear Information System (INIS)

    Cullen, G.; Greiner, N.; Heinrich, G.; Reiter, T.; Luisoni, G.

    2011-11-01

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples. (orig.)

  7. GoSam: A program for automated one-loop calculations

    International Nuclear Information System (INIS)

    Cullen, G; Greiner, N; Heinrich, G; Mastrolia, P; Reiter, T; Luisoni, G; Ossola, G; Tramontano, F

    2012-01-01

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples.

  8. General Quality Control (QC) Guidelines for SAM Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Flavivirus methyltransferase as target for virus treatment

    Czech Academy of Sciences Publication Activity Database

    Krafčíková, Petra; Chalupská, Dominika; Hercík, Kamil; Nencka, Radim; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 216-217 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : flavivirus methyltransferase * antivirals Subject RIV: CE - Biochemistry

  10. The Porter-Whitesides Discrepancy: Revisiting Odd-Even Effects in Wetting Properties of n-Alkanethiolate SAMs

    Directory of Open Access Journals (Sweden)

    Zhengjia Wang

    2015-12-01

    Full Text Available This review discusses the Porter-Whitesides discrepancy in wetting properties of n-alkanethiolate self-assembled monolayers (SAMs. About 25 years ago, Whitesides and coworker failed to observe any odd-even effect in wetting, however, Porter and his coworker did, albeit in select cases. Most previous studies agreed with Whitesides’ results, suggesting the absence of the odd-even effect in hydrophobicity of n-alkanethiolate SAMs. Recent reports have, however, found the odd-even effect in hydrophobicity of n-alkanethiolate SAMs on smooth substrates, indicating that hydrophobicity, and analogous interfacial properties, of n-alkanethiolate SAMs significantly depends on the properties of substrate. Unfortunately, the Whitesides and Porter papers do not report on the quality of the surfaces used. Based on recent work, we inferred that the original discrepancy between Whitesides and Porter can be attributed to the quality of the surface. Odd-even effect of SAMs in charge transport, capacitance, friction, and SAM structure are also discussed in this review to inform the general discussion. The discrepancy between Porter's group and Whitesides’ group could be due to surface roughness, morphology, oxidation, and adventitious contaminants.

  11. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  12. Safety and Waste Management for SAM Biotoxin Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  13. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. ISO19770-1:2012 SAM process guidance

    CERN Document Server

    Canavan, Rory

    2012-01-01

    The pocket guide offers a concise summary of the principles of software asset management as conveyed by ISO 19770-1: 2012, and provides advice and guidance on how to kick-start your own SAM programme - something the Standard alone doesn't offer.

  15. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  16. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  17. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis.

    Science.gov (United States)

    Ganesan, Murali; Feng, Dan; Barton, Ryan W; Thomes, Paul G; McVicker, Benita L; Tuma, Dean J; Osna, Natalia A; Kharbanda, Kusum K

    2016-11-01

    Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis. Copyright © 2016 by the Research Society on Alcoholism.

  18. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    Science.gov (United States)

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo

    International Nuclear Information System (INIS)

    2003-01-01

    1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux

  20. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert T.; Whelan, Fiona [University of York, Heslington YO10 5DD (United Kingdom); Aller, Pierre [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Bird, Louise E. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Dowle, Adam [University of York, Heslington YO10 5DD (United Kingdom); Lobley, Carina M. C. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Antson, Alfred A. [University of York, Heslington YO10 5DD (United Kingdom); Waterman, David G., E-mail: david.waterman@stfc.ac.uk [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of York, Heslington YO10 5DD (United Kingdom)

    2013-06-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo{sup 5}U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo{sup 5}U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM.

  1. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  2. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  3. The ALICE Glance Shift Accounting Management System (SAMS)

    Science.gov (United States)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  4. [Gene cloning and bioinformatics analysis of SABATH methyltransferase in Lonicera japonica var. chinensis].

    Science.gov (United States)

    Yu, Xiao-Dan; Jiang, Chao; Huang, Lu-Qi; Qin, Shuang-Shuang; Zeng, Xiang-Mei; Chen, Ping; Yuan, Yuan

    2013-08-01

    To clone SABATH methyltransferase (rLjSABATHMT) gene in Lonicera japonica var. chinensis, and compare the gene expression and intron sequence of SABATH methyltransferase orthologous in L. japonica with L. japonica var. chinensis. It provide a basis for gene regulate the formation of L. japonica floral scents. The cDNA and genome sequences of LjSABATHMT from L. japonica var. chinensis were cloned according to the gene fragments in cDNA library. The LjSABATHMT protein was characterized by bioinformatics analysis. SABATH family phylogenetic tree were built by MEGA 5.0. The transcripted level of SABATHMT orthologous were analyzed in different organs and different flower periods of L. japonica and L. japonica var. chinensis using RT-PCR analysis. Intron sequences of SABATHMT orthologous were also analyzied. The cDNA of LjSABATHMT was 1 251 bp, had a complete coding frame with 365 amino acids. The protein had the conservative SABATHMT domain, and phylogenetic tree showed that it may be a salicylic acid/benzoic acid methyltransferase. Higher expression of SABATH methyltransferase orthologous was found in flower. The intron sequence of L. japonica and L. japonica var. chinensis had rich polymorphism, and two SNP are unique genotype of L. japonica var. chinensis. The motif elements in two orthologous genes were significant differences. The intron difference of SABATH methyltransferase orthologous could be inducing to difference of gene expression between L. japonica and L. japonica var. chinensis. These results will provide important base on regulating active compounds of L. japonica.

  5. Requirement of RIZ1 for cancer prevention by methyl-balanced diet

    OpenAIRE

    Wenyun Zhou; Sergio Alonso; Daisaku Takai; Shelly C. Lu; Fumiichiro Yamamoto; Manuel Perucho; Shi Huang

    2008-01-01

    Background The typical Western diet is not balanced in methyl nutrients that regulate the level of the methyl donor S-adenosylmethionine (SAM) and its derivative metabolite S-adenosylhomocysteine (SAH), which in turn may control the activity of certain methyltransferases. Feeding rodents with amino acid defined and methyl-imbalanced diet decreases hepatic SAM and causes liver cancers. RIZ1 (PRDM2 or KMT8) is a tumor suppressor and functions in transcriptional repression by methylating histone...

  6. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  7. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  8. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  9. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  10. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

    Science.gov (United States)

    Gong, Xiaoqing; Mei, Shenghui; Li, Xindi; Li, Xingang; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Yang, Li; Zhao, Zhigang; Zhang, Xinghu

    2018-06-01

    Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 8 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 8 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

  11. Annals of SAM meeting `96. National meeting on precious metals; Anales de las jornadas SAM `96. Encuentro nacional de metales preciosos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Works are presented at the SAM meeting `96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills.

  12. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  13. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  14. Kuula. Kuu artist Sam Sparro. Kuu plaat / Mart Juur

    Index Scriptorium Estoniae

    Juur, Mart, 1964-

    2008-01-01

    Artistist Sam Sparrost. Heliplaatidest: "Sex And The City" Original Motion Picture Soundtrack, "Maestro: Blue Note Trip", Melvin/Soo/Remmel/Julm "Geografix", Alanis Morrisette "Flavors Of Entanglement", Guillemots "Red"

  15. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  16. Studies on N5-methyltetrahydrofolate-homocystein methyltransferase in normal and leukemia leukocytes.

    Science.gov (United States)

    Peytremann, R; Thorndike, J; Beck, W S

    1975-11-01

    A cobalamin-dependent N5-methyltetra-hydrofolate-homocysteine methyltransferase (methyl-transferase) was demonstrated in unfractioned extracts of human normal and leukemia leukocytes. Activity was substantially reduced in the absence of an added cobalamin derivative. Presumably, this residual activity reflects the endogeneous level of holoenzyme. Enzyme activity was notably higher in lymphoid cells than in myeloid cells. Thus, mean specific activities (+/-SD) were: chronic lymphocytic leukemia lymphocytes, 2.15+/-1.16; normal lymphocytes, 0.91+/-0.59; normal mature granulocytes, 0.15+/-0.10; chronic myelocytic leukemia granulocytes, barely detectable activity. Properties of leukocytes enzymes resembled those of methyltransferases previously studied in bacteria and other animal cells. Granulocytes and chronic myelocytic leukemia cells contain a factor or factors that inhibits Escherichia coli enzyme. The data suggest that the prominence of this cobalamin-dependent enzyme in lymphocytes and other mononuclear cell types may be related to their potential for cell division.

  17. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  18. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin; Zeng, Hua Chun

    2008-01-01

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a

  19. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  20. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available Pentacene based double nano-floating gate memories (NFGM by using gold nanoparticles (Au NPs and reduced graphene oxide (rGO sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT self-assembled monolayers (SAM exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  1. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Science.gov (United States)

    Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.

    2018-02-01

    Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  2. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    Science.gov (United States)

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  3. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  4. A magnesium-induced triplex pre-organizes the SAM-II riboswitch.

    Directory of Open Access Journals (Sweden)

    Susmita Roy

    2017-03-01

    Full Text Available Our 13C- and 1H-chemical exchange saturation transfer (CEST experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.

  5. Simulated SAM A-scans on multilayer MEMS components

    DEFF Research Database (Denmark)

    Janting, Jakob; Petersen, Dirch Hjorth; Greisen, Christoffer

    2002-01-01

    A spreadsheet program for simulation of Scanning Acoustic Microscopy (SAM) A-scans on multilayer structures has been developed. Using this program, structure variations in samples can be analysed better. Further samples can be prepared to get optimal signal for enhanced failure and materials...

  6. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    2016-05-13

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  7. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    International Nuclear Information System (INIS)

    Wu, Weijie; Liu, Yuxi; Wang, Youhua

    2016-01-01

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  8. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration

    Directory of Open Access Journals (Sweden)

    Vítor Jorge MB

    2009-09-01

    Full Text Available Abstract Background Helicobacter pylori colonizes the human stomach and is associated with gastritis, peptic ulcer, and gastric cancer. This ubiquitous association between H. pylori and humans is thought to be present since the origin of modern humans. The H. pylori genome encodes for an exceptional number of restriction and modifications (R-M systems. To evaluate if R-M systems are an adequate tool to determine the geographic distribution of H. pylori strains, we typed 221 strains from Africa, America, Asia, and Europe, and evaluated the expression of different 29 methyltransferases. Results Independence tests and logistic regression models revealed that ten R-M systems correlate with geographical localization. The distribution pattern of these methyltransferases may have been originated by co-divergence of regional H. pylori after its human host migrated out of Africa. The expression of specific methyltransferases in the H. pylori population may also reflect the genetic and cultural background of its human host. Methyltransferases common to all strains, M. HhaI and M. NaeI, are likely conserved in H. pylori, and may have been present in the bacteria genome since the human diaspora out of Africa. Conclusion This study indicates that some methyltransferases are useful geomarkers, which allow discrimination of bacterial populations, and that can be added to our tools to investigate human migrations.

  9. Background of SAM atom-fraction profiles

    International Nuclear Information System (INIS)

    Ernst, Frank

    2017-01-01

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition

  10. Background of SAM atom-fraction profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank

    2017-03-15

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.

  11. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    Science.gov (United States)

    Gianoglio, Silvia; Moglia, Andrea; Acquadro, Alberto; Comino, Cinzia; Portis, Ezio

    2017-01-01

    Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltransferases). Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus) is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs) and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  12. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    Directory of Open Access Journals (Sweden)

    Silvia Gianoglio

    Full Text Available Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1, CMT (chromomethyltransferases and DRM (domains rearranged methyltransferases. Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  13. Nicotinamide -Methyltransferase in Health and Cancer

    Directory of Open Access Journals (Sweden)

    David B Ramsden

    2017-06-01

    Full Text Available Over the past decade, the roles of nicotinamide N -methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.

  14. Development of the criticality capability for the SAM-CE Monte Carlo System

    International Nuclear Information System (INIS)

    Lichtenstein, H.; Troubetzkoy, E.; Steinberg, H.; Cohen, M.O.

    1979-04-01

    A criticality capabilty has been developed and implemented in the SAM-CE Monte Carlo system. The data processing component, SAM-X, preserves, to any required accuracy, the data quality inherent in the ENDF/B library. The generated data is Doppler-broadened and includes (where applicable) probability tables for the unresolved resonance range, and thermal-scattering law data. Curves of several total and partial cross sections are generated and displayed. The Monte Carlo component, SAM-F, includes several eigenvalue estimators and variance reduction schemes. Stratification was found to effect significant improvement in calculational efficiency, but the usefulness of importance sampling is marginal in criticality problems. The entire system has been installed at BNL, for the analysis of TRX benchmarks. The TRX-1 and TRX-2 cell calculations have been performed, with estimated eigenvalues of 1.1751 +- 0.0016 and 1.1605 +- .0015, respectively. These results are shown to be statistically consistent with other sources

  15. A Rapid and Efficient Assay for the Characterization of Substrates and Inhibitors of Nicotinamide N-Methyltransferase

    NARCIS (Netherlands)

    van Haren, Matthijs J; Sastre Torano, Javier; Sartini, Davide; Emanuelli, Monica; Parsons, Richard B; Martin, Nathaniel I

    2016-01-01

    Nicotinamide N-methyltransferase (NNMT) is one of the most abundant small molecule methyltransferases in the human body and is primarily responsible for the N-methylation of the nicotinamide (vitamin B3). Employing the cofactor S-adenosyl-l-methionine, NNMT transfers a methyl group to the pyridine

  16. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  17. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  18. Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode.

    Science.gov (United States)

    Yang, Haifeng; Liu, Yanli; Liu, Zhimin; Yang, Yu; Jiang, Jianhui; Zhang, Zongrang; Shen, Guoli; Yu, Ruqin

    2005-02-24

    The self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) were formed at the roughened polycrystalline gold surfaces in acid and alkaline media. The time-dependent Raman mapping spectral analysis in conjunction with the quantum calculations for the vibrational modes using ab initio BLYP/6-31G method suggested that both of the resulted 6MP SAMs adopted the same adsorption mode through the S atom of pyrimidine moiety and the N7 atom of the imidazole moiety anchoring the gold surface in a vertical way. The in situ surface-enhanced Raman scattering spectroelectrochemical experiment was conducted to examine the stability of the SAMs at various bias potentials. It was found that the detaching process of the 6MP SAMs from the surface involved one electron reduction as the voltage was applied at ca. 0.7 V vs a standard calomel electrode.

  19. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS.

    Science.gov (United States)

    Chu, Hui; Yang, Haifeng; Huan, Shuangyan; Shen, Guoli; Yu, Ruqin

    2006-03-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on a silver electrode in acid and alkaline media were investigated by a combination protocol of the SERS technique with Raman mapping, and it was found that the adsorption mode of 6MP SAMs changed with the pH value of the environment. Quantum calculations for the vibrational mode were performed by the BLYP/6-31G method. 6MP was adsorbed on the silver electrode with a tilted orientation via S, N1, and N7 atoms in acid medium, while the SAMs adopted head-on adsorption modes with the S atom and the N1 atom anchoring the silver surface in alkaline medium. However, 6MP SAMs turned to the same upright orientation on the electrode through the S and N7 atoms when either acid or basic solution was removed. Stability of 6MP SAMs was observed by in situ SERS spectroelectrochemical measurements. The results reveal that the desorption potentials of 6MP SAMs formed under acid and alkaline conditions from the Ag electrode were at ca. -1.3 V and -1.6 V vs SCE, respectively.

  20. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase.

    Science.gov (United States)

    Shiraishi, A; Sakumi, K; Sekiguchi, M

    2000-10-01

    O(6)-methylguanine-DNA methyltransferase plays vital roles in preventing induction of mutations and cancer as well as cell death related to alkylating agents. Mice defective in the MGMT: gene, encoding the methyltransferase, were used to evaluate cell death-inducing and tumorigenic activities of therapeutic agents which have alkylation potential. MGMT(-/-) mice were considerably more sensitive to dacarbazine, a monofunctional triazene, than were wild-type mice, in terms of survival. When dacarbazine was administered i.p. to 6-week-old mice and survival at 30 days was enumerated, LD(50) values of MGMT(-/-) and MGMT(+/+) mice were 20 and 450 mg/kg body wt, respectively. Increased sensitivity of MGMT(-/-) mice to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosou rea (ACNU), a bifunctional nitrosourea, was also noted. On the other hand, there was no difference in survival of MGMT(+/+) and MGMT(-/-) mice exposed to cyclophosphamide, a bifunctional nitrogen mustard. It appears that dacarbazine and ACNU produce O(6)-alkylguanine as a major toxic lesion, while cyclophosphamide yields other types of modifications in DNA which are not subjected to the action of the methyltransferase. MGMT(-/-) mice seem to be less refractory to the tumor-inducing effect of dacarbazine than are MGMT(+/+) mice. Thus, the level of O(6)-methylguanine-DNA methyltransferase activity is an important factor when determining susceptibility to drugs with the potential for alkylation.

  1. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  2. CE-SAM: a conversational interface for ISR mission support

    Science.gov (United States)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  3. TRX and UO2 criticality benchmarks with SAM-CE

    International Nuclear Information System (INIS)

    Beer, M.; Troubetzkoy, E.S.; Lichtenstein, H.; Rose, P.F.

    1980-01-01

    A set of thermal reactor benchmark calculations with SAM-CE which have been conducted at both MAGI and at BNL are described. Their purpose was both validation of the SAM-CE reactor eigenvalue capability developed by MAGI and a substantial contribution to the data testing of both ENDF/B-IV and ENDF/B-V libraries. This experience also resulted in increased calculational efficiency of the code and an example is given. The benchmark analysis included the TRX-1 infinite cell using both ENDF/B-IV and ENDF/B-V cross section sets and calculations using ENDF/B-IV of the TRX-1 full core and TRX-2 cell. BAPL-UO2-1 calculations were conducted for the cell using both ENDF/B-IV and ENDF/B-V and for the full core with ENDF/B-V

  4. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  5. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    Science.gov (United States)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  6. Produksi Bahasa Tertulis Mahasiswa Penderita Disgrafia Di Fakultas Ilmu Budaya Universitas Sam Ratulangi

    OpenAIRE

    TANGKE, RIMA APRILIANA

    2015-01-01

    This research is entitled “Written Language Production of Student with Disgraphia in Faculty of Humanity Sam Ratulangi University”. The objectives of this research are to describe dysgraphia itself and to analyze the influences of dysgraphia on the written language production of the student in Faculty of Humanity, Sam Ratulangi University. This research uses a descriptive method. There are three steps to finish this research, the first step is preparation. In this step, the writer reads the r...

  7. THE MYTH OF MATERIAL SUCCESS AS REFLECTED IN SAM WALTON: MADE IN AMERICA-MY STORY

    Directory of Open Access Journals (Sweden)

    Utut Kurniati

    2015-12-01

    Full Text Available American myth of material success had been orchestrated five basic beliefs that were reflected in Sam Walton’s biography, Sam Walton: Made in America-My Story. Those beliefs were: 1 Having a strong will to be successful man in America, Sam Walton was aware that the American democracy allowed its citizens to rise above any limitation in which they may have been born; 2 Then, he rose up from his limitation by hard work. His hard work successfully brought him to the riches and physical comforts; 3 He believed that those rewards came to those who were deserving of them (virtuous; 4 He also believed that those rewards came to those who had the drive and ambition to attain them. Therefore, he was optimistic to attain success in America; 5 Hard work to attain success made Sam Walton a lucky man who received good luck in his life. As a result, his dream of being a successful man in America came true. Keywords: the myth of material success, American dream, hard work

  8. Analysis of the in-vessel phase of SAM strategy for a Korean 1000 MWe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Min; Oh, Seung-Jong [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering; Ain Shams Univ., Cairo (Egypt). Mechanical Power Engineering Dept.

    2017-12-15

    This paper focuses on the in-vessel phase of Severe Accident Management (SAM) strategy for a Korean 1000 MWe Pressurized Water Reactor (PWR) with reference to ROAAM+ framework approach. To apply ROAAM+, it is needed to identify epistemic and aleatory uncertainties. The selected scenario is a station blackout (SBO) and the corresponding SAM strategy is RCS depressurization followed by water injection into the reactor pressure vessel (RPV). The analysis considers the depressurization timing and the flow rate and timing of in-vessel injection for scenario variations. For the phenomenological uncertainties, the core melting and relocation process is considered to be the most important phenomenon in the in-vessel phase of SAM strategy. Accordingly, a sensitivity analysis is carried out to assess the impact of the cut-off porosity below which the flow area of a core node is zero (EPSCUT), and the critical temperature for cladding rupture (TCLMAX) on the core melting and relocation process. In this paper, the SAM strategy for maintaining the integrity of RPV is derived after quantification of the scenario and phenomenological uncertainties.

  9. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    Science.gov (United States)

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  10. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Science.gov (United States)

    2012-11-14

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of Rate Order Approving an Extension of Power Rate on an.... James K. McDonald, Assistant Administrator, Southwestern Power Administration, Department of Energy...

  11. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  12. SAM : an experiment dedicated to the Carbon Quest at Mars

    Science.gov (United States)

    Coll, Patrice; Mahaffy, Paul; Webster, Chris; Cabane, Michel; Tan, F.; Coscia, D.; Nolan, T.; Rahen, E.; Teinturier, S.; Goutail, J. P.; Martin, D.; Montaron, C.; Galic, A.

    SAM is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover. The SAM team consist of scientists and engineers at GSFC, U. Paris/CNRS, JPL, and Honeybee Robotics, along with many additional external partners. SAM's five science goals will address three of the most fundamental questions about the ability of Mars to support life -past, present, and future. Question 1: What does the inventory of carbon compounds near the surface of Mars tell us about its potential habitability? 1.Goal 1: Survey carbon compound sources and evaluate their possible mechanism of formation and destruction. 2.Goal 2: Search for organic compounds of biotic and prebiotic importance expecially methane. Question 2: What are the chemical and isotopic states of the lighter elements in the solids and atmosphere of Mars and what do they tell us about its potential habitability? 1.Goal 3: Reveal the chemical and isotopic state of elements (i.e., N, H, O, S and others) that are important for life as we know it. 2.Goal 4: Evaluate the habitability of Mars by studying its atmospheric chemistry and the composition of trace species that are evidence of interactions between the atmosphere and soil. Question 3: Were past habitability conditions different from today's? 1.Goal 5: Understand atmospheric and climatic evolution through measurements of noble gas and light element isotopes.

  13. The History of the Austin College Building and Old Main at Sam Houston State University

    Science.gov (United States)

    Singer, Erin; Shields, Samantha

    2017-01-01

    Austin Hall and Old Main serve as the heart of what is now Sam Houston State University. The buildings' rich histories help one to understand how Sam Houston State University and its proud teacher education heritage came to be. To begin with Austin Hall's story, the University's original building has a unique and interesting tale that journeys…

  14. Supplementary Material for: A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein

    KAUST Repository

    Smirnova, Ekaterina; Kwan, Jamie; Siu, Ryan; Gao, Xin; Zoidl, Georg; Demeler, Borries; Saridakis, Vivian; Donaldson, Logan

    2016-01-01

    Abstract Background CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions. Results We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size. Conclusions This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses.

  15. Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris

    International Nuclear Information System (INIS)

    Kallio, Juha Pekka; Jänis, Janne; Nyyssölä, Antti; Hakulinen, Nina; Rouvinen, Juha

    2009-01-01

    The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported. Sarcosine dimethylglycine methyltransferase (EC 2.1.1.157) is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution

  16. A pilot study investigating the feasibility of symptom assessment manager (SAM), a Web-based real-time tool for monitoring challenging behaviors.

    Science.gov (United States)

    Loi, Samantha M; Wanasinghage, Sangeeth; Goh, Anita; Lautenschlager, Nicola T; Darby, David G; Velakoulis, Dennis

    2018-04-01

    Improving and minimizing challenging behaviors seen in psychiatric conditions, including behavioral and psychological symptoms of dementia are important in the care of people with these conditions. Yet there is a lack of systematic evaluation of these as a part of routine clinical care. The Neuropsychiatric Inventory is a validated and reliable tool for rating the severity and disruptiveness of challenging behaviors. We report on the evaluation of a Web-based symptom assessment manager (SAM), designed to address the limitation of previous tools using some of the Neuropsychiatric Inventory functions, to monitor behaviors by staff caring for people with dementia and other psychiatric conditions in inpatient and residential care settings. The SAM was piloted in an 8-bed inpatient neuropsychiatry unit over 5 months. Eleven nurses and 4 clinicians were trained in usage of SAM. Primary outcomes were usage of SAM and perceived usability, utility, and acceptance of SAM. Secondary outcomes were the frequencies of documented behavior. Usage data were analyzed using chi-square and logistic regression analyses. The SAM was used for all admitted patients regardless of diagnosis, with a usage rate of 64% for nurses regularly employed in the unit. Staff provided positive feedback regarding the utility of SAM. The SAM appeared to offer individualized behavior assessment by providing a quick, structured, and standardized platform for assessing behavior in a real-world setting. Further research would involve trialing SAM with more staff in alternative settings such as in home or residential care settings. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  18. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  19. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    Science.gov (United States)

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  20. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    Science.gov (United States)

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  1. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  2. Geometry modeling for SAM-CE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Steinberg, H.A.; Troubetzkoy, E.S.

    1980-01-01

    Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described

  3. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  4. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    Science.gov (United States)

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  5. ASAMPSA-E guidance for level 2 PSA Volume 3. Verification and improvement of SAM strategies with L2 PSA

    International Nuclear Information System (INIS)

    Rahni, N.; Raimond, E.; Jan, P.; Lopez, J.; Loeffler, H.; Mildenberger, O.; Kubicek, J.; Vitazkova, J.; Ivanov, I.; Groudev, P.; Lajtha, G.; Serrano, C.; Zhabin, O.; Prosek, Andrej; Dirksen, G.; Yu, S.; Oury, L.; Hultqvist, G.

    2016-01-01

    For each NPP, severe accident management (SAM) strategies shall make use of components or systems and human resources to limit as far as possible the consequences of any severe accident on-site and off-site. L2 PSA is one of the tools that can be used to verify and improve these strategies. The present report (deliverable D40.5 of the project ASAMPSA-E) provides an opportunity for a comparison of objectives in the different countries in terms of SAM strategies verification and improvement. The report summarizes also experience of each partner (including potential deficiencies) involved in this activity, in order to derive some good practices and required progress, addressing: - SAM modeling in L2 PSA, - Positive and negative aspects in current SAM practices, - Discussion on possible criteria related to L2 PSA for verification and improvement: risk reduction (in relation with WP30 activities on risk metrics), reduction of uncertainties on the severe accident progression paths until NPP stabilization, reduction of human failure conditional probabilities (depending on the SAM strategy, the environmental conditions...), - Review with a perspective of verification and improvement of the main SAM strategies (corium cooling, RCS depressurization, control of flammable gases, reactivity control, containment function, containment pressure control, limitation of radioactive releases,...), - SAM strategies to be considered in the context of an extended L2 PSA (as far possible, depending on existing experience), taking into account all operating modes, accidents also occurring in the SFPs and long term and multi-unit accidents. The deliverable D40.5 is developed from the partners' experience. Many of the topics described here are beyond the common practices of L2 PSA applications: in some countries, L2 PSA application is limited to the calculations of frequencies of release categories with no formal requirement for SAM verification and improvement. (authors)

  6. Annals of SAM meeting '96. National meeting on precious metals

    International Nuclear Information System (INIS)

    1996-01-01

    Works are presented at the SAM meeting '96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills

  7. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia.

    Science.gov (United States)

    Cao, Fang; Townsend, Elizabeth C; Karatas, Hacer; Xu, Jing; Li, Li; Lee, Shirley; Liu, Liu; Chen, Yong; Ouillette, Peter; Zhu, Jidong; Hess, Jay L; Atadja, Peter; Lei, Ming; Qin, Zhaohui S; Malek, Sami; Wang, Shaomeng; Dou, Yali

    2014-01-23

    Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    International Nuclear Information System (INIS)

    Song, Yuan; Wu, Keqiang; Dhaubhadel, Sangeeta; An, Lizhe; Tian, Lining

    2010-01-01

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  9. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  10. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  11. Assessing the suitability of written stroke materials: an evaluation of the interrater reliability of the suitability assessment of materials (SAM) checklist.

    Science.gov (United States)

    Hoffmann, Tammy; Ladner, Yvette

    2012-01-01

    Written materials are frequently used to provide education to stroke patients and their carers. However, poor quality materials are a barrier to effective information provision. A quick and reliable method of evaluating material quality is needed. This study evaluated the interrater reliability of the Suitability Assessment of Materials (SAM) checklist in a sample of written stroke education materials. Two independent raters evaluated the materials (n = 25) using the SAM, and ratings were analyzed to reveal total percentage agreements and weighted kappa values for individual items and overall SAM rating. The majority of the individual SAM items had high interrater reliability, with 17 of the 22 items achieving substantial, almost perfect, or perfect weighted kappa value scores. The overall SAM rating achieved a weighted kappa value of 0.60, with a percentage total agreement of 96%. Health care professionals should evaluate the content and design characteristics of written education materials before using them with patients. A tool such as the SAM checklist can be used; however, raters should exercise caution when interpreting results from items with more subjective scoring criteria. Refinements to the scoring criteria for these items are recommended. The value of the SAM is that it can be used to identify specific elements that should be modified before education materials are provided to patients.

  12. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics

    DEFF Research Database (Denmark)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-01-01

    . The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects...... of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were...

  13. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  14. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao; (UAB); (UCR)

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  15. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.

    Science.gov (United States)

    Cázares-Flores, Paulo; Levac, Dylan; De Luca, Vincenzo

    2016-08-01

    Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. Rhodium deposition onto a 4-mercaptopyridine SAM on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Manolova, M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany); Kayser, M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany); Kolb, D.M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany)]. E-mail: dieter.kolb@uni-ulm.de; Boyen, H.-G. [Institute of Solid State Physics, University of Ulm, 89069 Ulm (Germany); Ziemann, P. [Institute of Solid State Physics, University of Ulm, 89069 Ulm (Germany); Mayer, D. [BASF Electronic Materials GmbH, 67056 Ludwigshafen (Germany); Wirth, A. [BASF Electronic Materials GmbH, 67056 Ludwigshafen (Germany)

    2007-02-10

    The application of a recently developed method for the deposition of Pd and Pt on top of a SAM, has been successfully extended to Rh, thus proving the versatility of the new concept. Experimental evidence from cyclic voltammetry, in situ STM and ex situ X-ray photoemission spectroscopy is presented for the deposition of monoatomic high rhodium islands onto a 4-mercaptopyridine self-assembled monolayer on a Au(1 1 1) electrode. By repetitive complexation of the Rh ions to the ring-nitrogen and reduction in a Rh-ion free solution, an almost completely covered SAM is obtained. The consequences of making contacts for molecular electronics are briefly discussed.

  17. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    Science.gov (United States)

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  19. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  20. Molecular basis of substrate promiscuity for the SAM-dependent O-methyltransferase NcsB1, involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

    Science.gov (United States)

    Cooke, Heather A; Guenther, Elizabeth L; Luo, Yinggang; Shen, Ben; Bruner, Steven D

    2009-10-13

    The small molecule component of chromoprotein enediyne antitumor antibiotics is biosynthesized through a convergent route, incorporating amino acid, polyketide, and carbohydrate building blocks around a central enediyne hydrocarbon core. The naphthoic acid moiety of the enediyne neocarzinostatin plays key roles in the biological activity of the natural product by interacting with both the carrier protein and duplex DNA at the site of action. We have previously described the in vitro characterization of an S-adenosylmethionine-dependent O-methyltransferase (NcsB1) in the neocarzinostatin biosynthetic pathway [Luo, Y., Lin, S., Zhang, J., Cooke, H. A., Bruner, S. D., and Shen, B. (2008) J. Biol. Chem. 283, 14694-14702]. Here we provide a structural basis for NcsB1 activity, illustrating that the enzyme shares an overall architecture with a large family of S-adenosylmethionine-dependent proteins. In addition, NcsB1 represents the first enzyme to be structurally characterized in the biosynthetic pathway of neocarzinostatin. By cocrystallizing the enzyme with various combinations of the cofactor and substrate analogues, details of the active site structure have been established. Changes in subdomain orientation were observed via comparison of structures in the presence and absence of substrate, suggesting that reorientation of the enzyme is involved in binding of the substrate. In addition, residues important for substrate discrimination were predicted and probed through site-directed mutagenesis and in vitro biochemical characterization.

  1. Potensi Tinggalan Arkeologis di Kawasan Bandar Udara Sam Ratulangi Manado: Upaya Pelestarian, Pemanfaatan, dan Pengembangan bagi Masyarakat

    Directory of Open Access Journals (Sweden)

    Irfanuddin W. Marzuki

    2016-08-01

    Full Text Available The area of Sam Ratulangi airport’s Manado has archaeological heritage which has been know as it is closed for public. This research used descriptive method, using inductive reasoning. Meanwhile, the analysis method used morphologyl, technology, and contextual analysis. This research aimed to find out the potential of archaeological heritage in Sam Ratulangi airport area of Manado. In addition to its strategy of preservation the haritage included veilbox, bungker, and waruga. The preservation can be conducted by doing protection, development, and utilization. The preservation both physical and non physical protection. The effort for its development and utilization was conducted for the purpose of science, education, culture, and tourism. Kawasan Bandar Udara Sam Ratulangi Manado mempunyai potensi tinggalan arkeologis yang selama ini tidak diketahui masyarakat luas, dikarenakan letak tinggalan yang berada dalam kawasan tertutup untuk umum. Penelitian menggunakan metode deskriptif dengan penalaran induktif. Metode analisis menggunakan analisis morfologi, teknologi dan kontekstual. Tujuan penelitian untuk mengetahui potensi tinggalan arkeologis yang terdapat di kawasan Bandar Udara Sam Ratulangi dan strategi pelestariannya. Tinggalan arkeologis yang terdapat di kawasan Bandar Udara Sam Ratulangi meliputi veilbox, bungker, dan waruga. Upaya pelestarian dapat dilakukan dengan cara perlindungan, pengembangan dan pemanfaatan. Upaya perlindungan meliputi perlindungan secara fisik dan non fisik. Upaya pengembangan dan pemanfaatan dilakukan untuk kepentingan ilmu pengetahuan, pendidikan, kebudayaan dan pariwisata.

  2. Carbon tax effects on the poor: a SAM-based approach

    Science.gov (United States)

    Chapa, Joana; Ortega, Araceli

    2017-09-01

    A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.

  3. Recruitment of DNA methyltransferase I to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M. Cristina; Leonhardt, Heinrich

    2005-01-01

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair. PMID:15956212

  4. FIGURAL FORMS OF KNOWLEDGE: A STUDY OF THE SHORT PROSE OF SAM SHEPARD

    Directory of Open Access Journals (Sweden)

    RICARDO DA SILVA SOBREIRA

    2008-11-01

    Full Text Available ABSTRACTThe paratactical style and the indeterminacies are literary strategies that resistthe conventional impulse of totalizing the elements projected by the text, becauseinstead of selecting the aspects of reality and subordinating the images andperceptions into a hierarchy, the use of these techniques favors the juxtapositionof multiple perspectives and the frustration of narrative closure. Thus, the useof parataxis and indeterminacies in the collection of short stories Great Dreamof Heaven (2002, by the American author Sam Shepard, tends to challenge theprocess of meaning production through the progressive erasure of narrative“certainties”.KEY WORDS: Postmodern, indeterminacy, parataxis, narrative, Sam Shepard.  

  5. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Directory of Open Access Journals (Sweden)

    Rohini Garg

    Full Text Available DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases, namely Methyltransferase (MET, Chromomethylase (CMT and Domains Rearranged Methyltransferase (DRM, which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2 subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  6. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?

    Science.gov (United States)

    Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa

    2017-09-01

    Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  8. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions

    International Nuclear Information System (INIS)

    Tsukada, K.; Abe, T.; Kuwahata, T.; Mitsui, K.

    1985-01-01

    Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous areas 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl- 3 H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells. 39 references, 1 figure, 2 tables

  9. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    Science.gov (United States)

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  10. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?

    Science.gov (United States)

    Bayraktar, Gonca; Kreutz, Michael R

    2018-04-01

    DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.

  11. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  12. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites.

    OpenAIRE

    Smalla, M.; Schmieder, P.; Kelly, M.; Ter Laak, A.; Krause, G.; Ball, L.; Wahl, M.; Bork, P.; Oschkinat, H.

    1999-01-01

    The sterile alpha motif (SAM) is a protein interaction domain of around 70 amino acids present predominantly in the N- and C-termini of more than 60 diverse proteins that participate in signal transduction and transcriptional repression. SAM domains have been shown to homo- and hetero-oligomerize and to mediate specific protein-protein interactions. A highly conserved subclass of SAM domains is present at the intracellular C-terminus of more than 40 Eph receptor tyrosine kinases that are invo...

  13. Smoking-Attributable Mortality, Morbidity, and Economic Costs (SAMMEC) - Smoking-Attributable Mortality (SAM)

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2005-2009. SAMMEC - Smoking-Attributable Mortality, Morbidity, and Economic Costs. Smoking-attributable mortality (SAM) is the number of deaths caused by cigarette...

  14. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  15. SAMS--a systems architecture for developing intelligent health information systems.

    Science.gov (United States)

    Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa

    2013-12-01

    In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.

  16. A mouse speciation gene encodes a meiotic histone H3 methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Trachtulec, Zdeněk; Vlček, Čestmír; Schimenti, J.C.; Forejt, Jiří

    2009-01-01

    Roč. 323, č. 5912 (2009), s. 373-375 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50520514 Keywords : hybrid sterility * histone H3K4 methyltransferase * Prdm9 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.747, year: 2009

  17. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-06-01

    The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon. © 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  18. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  19. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    Science.gov (United States)

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul

    2016-01-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4...... a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes....

  1. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ryberg, David Severin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  2. Niedualna uważność a stan samādhi w kontekście badań neurofenomenologicznych

    Directory of Open Access Journals (Sweden)

    Piotr PŁANETA

    2016-12-01

    Full Text Available The aim of this paper is to compare various meditative states, such as Buddhist dhyāna‑s, yogic nirbīja samādhi and nondual awareness (Tib. gñis‑med. The primary source texts I refere to are Yogasūtras of Patañjali, Ānāpānasmṛtisūtra (MN 118, Samādhisūtra (AN 4.41, The Tibetan Yogas of Dream and Sleep. I also discuss some relevant claims of contemporary empirical studies. First, I define the key terms used in Eastern meditation studies as well as in neurophenomenology, a contemporary method applied to examining the meditative states of mind, such as samādhi, dhyāna, and śamatha. Inspired by Shinzen Young, I distinguish three groups of meditative states that might be identified with nondual awareness. These three groups are: (1 the second, the third and fourth Buddhist dhyāna being equivalent to nirvicāra samādhi and nirānanda samādhi in the classical Indian yoga; (2 nirbīja samādhi and (3 nondual awareness, typical to the Mahayāna contemplative traditions. I explain why we can recognize each of the above states as nondual awareness and how they differ from each other. Then, I make a comparison between meditation practice explained in Ānāpānasmṛtisūtra and nondual awareness presented in the Tibetan Buddhism. Besides, I discuss the above kinds of mental states in terms of recent neurophenomenological findings. While doing so, I am trying to demonstrate that our understanding of meditation can benefit from the empirical studies which help us to objectify this kind of subjective experience, to some degree, if they are given an adequate place in our study.

  3. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format

    Directory of Open Access Journals (Sweden)

    Flemington Erik

    2011-01-01

    Full Text Available Abstract Background Next Generation Sequencing (NGS technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM or Binary SAM (BAM format is now standard, biomedical researchers still have difficulty accessing this information. Results We have developed a Graphical User Interface (GUI software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files. Conclusions With just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at http://sammate.sourceforge.net.

  4. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    Science.gov (United States)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  5. The Au-S bond and SAM-protein contact in long-range electron transfer of pure and biomimetic metalloproteins via functionalized alkanethiol linkers

    DEFF Research Database (Denmark)

    Chi, Qijin; Ford, Michael J.; Halder, Arnab

    disentangled a wealth of data to identify the nature of the crucial Au-S contact, all suggesting prevalence of a Au(0)-thiyl radical unit. Molecular packing is further determined by the SAM molecular structure and involves binding either to Au-atoms mined out of the surface or directly to a flat surface. We...... functionalized alkanethiols have emerged as core linkers. We have studied molecular linking in the long-range ET (LRET) processes in detail using electrochemistry, in situ STM and AFM, and electronic structure computations. A focus is the electronic structure of the Au-S link and the SAM packing. We have...... is exceedingly sensitive to the structure of the thiol-based SAM molecules, testifying to the crucial importance of SAM packing and Au-S binding, and of the SAM link to the protein. Some of the subtleties are illustrated simpler by similar size (5-6 nm) nanoparticles (NPs). Biomimetic NPs must possess a certain...

  6. REPRESENTASI HOMOSEKSUALITAS DI YOUTUBE: (Studi Semiotika pada Video Pernikahan Sam Tsui

    Directory of Open Access Journals (Sweden)

    Lilis Rucirisyanti

    2017-12-01

    Full Text Available Abstract. Social media is instrumental in giving effect to nitizens, good effects or bad effect, then social media can be also represent a person. Diserve social media make it interesting for nitizens. One of social media is Youtube. Many a lot of video at there, strat from tips and trick videos, journey or vacation video, wedding video, and ect. Everyone can publish their video on Youtube. No exception of same sex enthusiast, in this study are homosexual or gay. One of is a wedding video Sam Tsui and Casey Braves. This research is a qualitative research and this research uses semiotcs analysus of Roland Barthes. By doing an analysis of video that have been published by Sam on Youtube, also do document search and literature. The author sees the existence of verbal and non vebal forms of representation from same sex merriage video of men and men.

  7. Application of the SAM Computer Program for Truckee River Stable Channel Analysis

    National Research Council Canada - National Science Library

    Scott, Stephen H

    2006-01-01

    The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate the utility of the SAM computer programs for evaluating the stability of a stream restoration design on the Truckee River...

  8. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  9. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  10. Leucine 208 in human histamine N-methyltransferase emerges as a hotspot for protein stability rationalizing the role of the L208P variant in intellectual disability.

    Science.gov (United States)

    Tongsook, Chanakan; Niederhauser, Johannes; Kronegger, Elena; Straganz, Grit; Macheroux, Peter

    2017-01-01

    The degradation of histamine catalyzed by the SAM-dependent histamine N-methyltransferase (HNMT) is critically important for the maintenance of neurological processes. Recently, two mutations in the encoding human gene were reported to give rise to dysfunctional protein variants (G60D and L208P) leading to intellectual disability. In the present study, we have expressed eight L208 variants with either apolar (L208F and L208V), polar (L208N and L208T) or charged (L208D, L208H, L208K and L208R) amino acids to define the impact of side chain variations on protein structure and function. We found that the variants L208N, L208T, L208D and L208H were severely compromised in their stability. The other four variants were obtained in lower amounts in the order wild-type HNMT>L208F=L208V>L208K=L208R. Biochemical characterization of the two variants L208F and L208V exhibited similar Michaelis-Menten parameters for SAM and histamine while the enzymatic activity was reduced to 21% and 48%, respectively. A substantial loss of enzymatic activity and binding affinity for histamine was seen for the L208K and L208R variants. Similarly the thermal stability for the latter variants was reduced by 8 and 13°C, respectively. These findings demonstrate that position 208 is extremely sensitive to side chain variations and even conservative replacements affect enzymatic function. Molecular dynamics simulations showed that amino acid replacements in position 208 perturb the helical character and disrupt interactions with the adjacent β-strand, which is involved in the binding and correct positioning of histamine. This finding rationalizes the gradual loss of enzymatic activity observed in the L208 variants. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Must, valge + hall : Sam Wagstaffi ja Robert Mapplethorpe'i portree / Madis Palm

    Index Scriptorium Estoniae

    Palm, Madis

    2008-01-01

    Dokumentaalfilm "Black, White & Gray: Sam Wagstaff and Robert Mapplethorpe" : autor ja režissöör James Crump : Ameerika Ühendriigid 2007. Filmi näidati filminädala "Art in America" raames Tallinnas

  12. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  13. Congressmember Sam Farr: Five Decades of Public Service

    OpenAIRE

    Reti, Irene H.; Farr, Sam

    2017-01-01

    Congressmember Sam Farr (born July 4, 1941) represented California’s Central Coast in the United States House of Representatives for twenty-three years until his retirement from office in 2016.  Farr also served six years as a member of the Monterey County Board of Supervisors and twelve years in the California State Assembly. This oral history, a transcript of twenty-five hours of interviews conducted by Irene Reti, director of the UCSC Library’s Regional History Project, during the period i...

  14. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing

    DEFF Research Database (Denmark)

    Relling, M V; Gardner, E E; Sandborn, W J

    2011-01-01

    Thiopurine methyltransferase (TPMT) activity exhibits monogenic co-dominant inheritance, with ethnic differences in the frequency of occurrence of variant alleles. With conventional thiopurine doses, homozygous TPMT-deficient patients (~1 in 178 to 1 in 3,736 individuals with two nonfunctional TP...

  15. O6-methylguanine-DNA methyltransferase in wild-type and ada mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Mitra, S.; Pal, B.C.; Foote, R.S.

    1982-01-01

    O 6 -Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3 H-labeled O 6 -methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase

  16. The effect of thiopurine drugs on DNA methylation in relation to TPMT expression.

    Science.gov (United States)

    Hogarth, L A; Redfern, C P F; Teodoridis, J M; Hall, A G; Anderson, H; Case, M C; Coulthard, S A

    2008-10-15

    The thiopurine drugs 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are well-established agents for the treatment of leukaemia but their main modes of action are controversial. Thiopurine methyltransferase (TPMT) metabolises thiopurine drugs and influences their cytotoxic activity. TPMT, like DNA methyltransferases (DNMTs), transfers methyl groups from S-adenosylmethionine (SAM) and generates S-adenosylhomocysteine (SAH). Since SAM levels are dependent on de novo purine synthesis (DNPS) and the metabolic products of 6-TG and 6-MP differ in their ability to inhibit DNPS, we postulated that 6-TG compared to 6-MP would have differential effects on changes in SAM and SAH levels and global DNA methylation, depending on TPMT status. To test this hypothesis, we used a human embryonic kidney cell line with inducible TPMT. Although changes in SAM and SAH levels occurred with each drug, decrease in global DNA methylation more closely reflected a decrease in DNMT activity. Inhibition was influenced by TPMT for 6-TG, but not 6-MP. The decrease in global methylation and DNMT activity with 6-MP, or with 6-TG when TPMT expression was low, were comparable to 5-aza-2'-deoxycytidine. However, this was not reflected in changes in methylation at the level of an individual marker gene (MAGE1A). The results suggest that a non-TPMT metabolised metabolite of 6-MP and 6-TG and the TPMT-metabolised 6-MP metabolite 6-methylthioguanosine 5'-monophosphate, contribute to a decrease in DNMT levels and global DNA methylation. As demethylating agents have shown promise in leukaemia treatment, inhibition of DNA methylation by the thiopurine drugs may contribute to their cytotoxic affects.

  17. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  18. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  19. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68

    Science.gov (United States)

    Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril

    2016-01-01

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068

  20. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Science.gov (United States)

    Oliva Chávez, Adela S; Fairman, James W; Felsheim, Roderick F; Nelson, Curtis M; Herron, Michael J; Higgins, LeeAnn; Burkhardt, Nicole Y; Oliver, Jonathan D; Markowski, Todd W; Kurtti, Timothy J; Edwards, Thomas E; Munderloh, Ulrike G

    2015-01-01

    Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations.

  1. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Adela S Oliva Chávez

    Full Text Available Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA, is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6 at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4, but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8, the S-adenosine homocystein-bound (PDB_ID:4OA5, the SAH-Mn2+ bound (PDB_ID:4PCA, and SAM- Mn2+ bound (PDB_ID:4PCL X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary

  2. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    Science.gov (United States)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of 860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  3. Molecular tilt-dependent and tyrosine-enhanced electron transfer across ITO/SAM/[DPPC–Au NP–Tyrosine] Janus nanoparticle junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarangi, Nirod Kumar; Patnaik, Archita, E-mail: archita59@yahoo.com [Indian Institute of Technology Madras, Department of Chemistry (India)

    2016-09-15

    Enhanced interfacial electron transfer (ET) across the otherwise insulating indium tin oxide/alkanethiol self-assembled monolayer (SAM)/redox molecule junction was accomplished when a Janus gold nanoparticle (JNP) protected by bioinspired phosphatidylcholine (DPPC) lipid and tyrosine amino acid ligands was anchored on it. In addition to the most theoretical and experimental investigations on the distance-dependent ET across Metal–Organic SAM–Nanoparticle (NP) architectures, the current results succinctly illustrate molecular tilt angle of the SAM and the characteristic of JNP as key factors in expediting the ET rate via electron tunneling. In the absence of JNP, electron tunneling with a tunneling factor β = 1.1 Å{sup −1} across the SAM was the rate-limiting step, evidenced from electrochemical impedance spectroscopy (EIS). The apparent electron transfer rate constant (k{sub app}{sup 0}) for anchored SAM was enhanced by at least one order of magnitude than the DPPC-only protected nanoparticle, suggesting the potential role of tyrosine towards the enhanced ET. The asymmetric and biogenic nature of the construct sheds light on a potential bioelectronic device for novel electronic attributes.Graphical abstractEntry of TOC .

  4. Non-invasive vibrational SFG spectroscopy reveals that bacterial adhesion can alter the conformation of grafted "brush" chains on SAM.

    Science.gov (United States)

    Bulard, Emilie; Guo, Ziang; Zheng, Wanquan; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Bellon-Fontaine, Marie-Noëlle; Herry, Jean-Marie; Briandet, Romain; Bourguignon, Bernard

    2011-04-19

    Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials. © 2011 American Chemical Society

  5. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife

  6. Molecular junctions based on SAMs of cruciform oligo(phenylene ethynylene)s

    DEFF Research Database (Denmark)

    Wei, Zhongming; Li, Tao; Jennum, Karsten Stein

    2012-01-01

    Cruciform oligo(phenylene ethynylene)s (OPEs) with an extended tetrathiafulvalene (TTF) donor moiety (OPE5-TTF and OPE3-TTF) and their simple analogues (OPE5-S and OPE3) without conjugated substituents were used to form high quality self-assembled monolayers (SAMs) on ultra-flat gold substrates...

  7. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Directory of Open Access Journals (Sweden)

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  8. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  9. Jo Ann Baumgartner and Sam Earnshaw: Organizers and Farmers

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Jo Ann Baumgartner directs the Wild Farm Alliance, based in Watsonville, California. WFA’s mission, as described on the organization’s website, is “to promote agriculture that helps to protect and restore wild Nature.” Through research, publications, presentations, events, policy work, and consulting, the organization works to “connect food systems with ecosystems.” Sam Earnshaw is Central Coast regional coordinator of the Community Alliance with Family Farmers. Working with CAFF’s f...

  10. Reflections on Sam Harris' "Free Will"

    Directory of Open Access Journals (Sweden)

    Daniel C. Dennett

    2017-12-01

    Full Text Available In his book Free Will Sam Harris tries to persuade us to abandon the morally pernicious idea of free will. The following contribution articulates and defends a more sophisticated model of free will that is not only consistent with neuroscience and introspection but also grounds a variety of responsibility that justifies both praise and blame, reward and punishment. This begins with the long lasting parting of opinion between compatibilists (who argue that free will can live comfortably with determinism and incompatibilists (who deny this. While Harris dismisses compatibilism as a form of theology, this article aims at showing that Harris has underestimated and misinterpreted compatibilism and at defending a more sophisticated version of compatibilism that is imprevious to Harris’ criticism.

  11. Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro.

    Science.gov (United States)

    Armstrong, Vanessa L; Rakoczy, Sharlene; Rojanathammanee, Lalida; Brown-Borg, Holly M

    2014-08-01

    Methyltransferase expression and DNA methylation are linked to aging and age-related disease. We utilized 3-, 12-, and 24-month-old Ames dwarf and their wild-type siblings to examine the genotype and age-related differences in the expression of methyltransferase enzymes related to DNA methylation in the liver, glycine-N-methyltransferase and DNA methyltransferase (DNMT). We found that DNMT proteins and transcripts are differentially expressed in dwarf mice compared with wild-type siblings that can be attributed to age and/or genotype. However, DNMT1 protein expression is drastically reduced compared with wild-type controls at every age. DNMT3a protein levels coincide with differences observed in DNMT activity. Growth hormone appears to modulate expression of DNMT1 and 3a in dwarf liver tissue and primary hepatocytes. Therefore, growth hormone may contribute to age-related processes, DNA methylation, and, ultimately, longevity. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Time-dependent inactivation of human phenylethanolamine N-methyltransferase by 7-isothiocyanatotetrahydroisoquinoline

    Science.gov (United States)

    Wu, Qian; Caine, Joanne M.; Thomson, Stuart A.; Slavica, Meri; Grunewald, Gary L.

    2009-01-01

    Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we describe the synthesis and characterization of 7-SCN tetrahydroisoquinoline as an affinity label for human PNMT. PMID:19171483

  13. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    Science.gov (United States)

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  15. iSAM: An iPhone Stealth Airborne Malware

    OpenAIRE

    Damopoulos , Dimitrios; Kambourakis , Georgios; Gritzalis , Stefanos

    2011-01-01

    Part 2: Malware, Information Flow and DoS Attacks; International audience; Modern and powerful mobile devices comprise an attractive target for any potential intruder or malicious code. The usual goal of an attack is to acquire users’ sensitive data or compromise the device so as to use it as a stepping stone (or bot) to unleash a number of attacks to other targets. In this paper, we focus on the popular iPhone device.We create a new stealth and airborne malware namely iSAM able to wirelessly...

  16. Stealing the gold a celebration of the pioneering physics of Sam Edwards

    CERN Document Server

    Goldenfeld, Nigel; Sherrington, D C; Edwards, S F

    2004-01-01

    This title presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field highlight the historical development as well as new and emerging areas.

  17. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  18. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs

    Directory of Open Access Journals (Sweden)

    Alhosna Benjdia

    2017-11-01

    Full Text Available Ribosomally-synthesized and post-translationally modified peptides (RiPPs are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  19. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis

    Directory of Open Access Journals (Sweden)

    Obarska Agnieszka

    2006-01-01

    Full Text Available Abstract Background Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM. However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin. Results Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain. Conclusion The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily, but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.

  20. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  1. International ISOE Workshop - Direction Forward for the Finalization of the EG-SAM Report

    International Nuclear Information System (INIS)

    Okyar, H. Burcin

    2014-01-01

    The objective of the ISOE Expert Group on Occupational Radiation Protection in Severe Accident Management and Post-accident Recovery (EG-SAM) is to develop a report on best radiation protection management procedures for proper radiation protection job coverage during severe accident initial response and recovery efforts to identify good radiation protection practices and to organise and communicate radiation protection lessons learned from previous reactor accidents. The outcome of the work will be a new ISOE publication on Occupational Radiation Protection in severe accident management that will find broad use within the NPP radiation protection community. The EG-SAM has finalized an interim report which was presented at the Washington workshop. The interim report covered the following topics: RP Management and Organisation; RP Training and Exercises related to Severe Accident Management; Facility Configuration and Readiness; Overall Approach for Worker Protection; Monitoring and Managing the Radioactive Releases and Contamination; Key Lessons Learned from Past Accidents; Conclusions. Utilities and Regulatory Authorities have identified the factors and aspects which play key roles in achieving good practices on occupational radiation protection in severe accident management and post-accident recovery: knowledge, experience, technology, regulatory requirements and guidance, worker involvement, information exchange, training aspects, etc. They have analysed and quantified their impact on worker doses, and submitted recommendations for further work. The next step will be a final meeting of the EG-SAM for the finalization of the report with workshop inputs before its submission for approval

  2. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.

    Science.gov (United States)

    Sherkhanov, Saken; Korman, Tyler P; Clarke, Steven G; Bowie, James U

    2016-04-07

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.

  3. SAM - Sistema Automatizado del Método MECAP para Especificar Casos de Prueba

    Directory of Open Access Journals (Sweden)

    Kenyer Domínguez

    2010-12-01

    Full Text Available Existen cuatro elementos que son relevantes al momento de definir las pruebas: Confiabilidad, Costo, Tiempo y Calidad. El tiempo de desarrollo y el costo del producto se incrementan cuando se desean pruebas confiables y un software de calidad. Pero ¿qué se puede hacer para que los involucrados comprendan que las pruebas deben ser vistas como una red de seguridad? Si la calidad no se contempla antes de comenzar las pruebas, entonces ella no estará cuando se éstas terminen. El objetivo de este artículo es presentar la herramienta, SAM – Sistema Automatizado del Método MECAP que permite especificar Casos de Prueba a partir de Casos de Uso incorporando elementos que promueven la verificación y validación de la trazabilidad entre la Gestión de Requerimientos, el Análisis y Diseño y las Pruebas. SAM soporta el proceso de pruebas de forma automatizada, mejorando la confiabilidad de las mismas

  4. Progress in the development of a reactivity capability in the SAM-CE system for validating fuel management codes. Interim report

    International Nuclear Information System (INIS)

    Lichtenstein, H.; Steinberg, H.; Troubetzkoy, E.; Cohen, M.O.; Chui, C.

    1978-02-01

    The SAM-CE Monte Carlo system (for three dimensional neutron, gamma ray and electron transport) has been expanded to include a reactivity capability. The implemented code modifications have effected the following improvements: (a) Doppler broadening of ENDF/B-IV based nuclear data (including fission); (b) probability table representation for the unresolved resonance range; (c) utilization of thermal scattering law data for the moderator; (d) free gas model in the absence of thermal scattering law data; (e) generalization of the nuclear element data tape structure to facilitate data management; (f) generalization of data management routines; (g) extension of the SAM-CE Complex Combinatorial Geometry capability to facilitate treatment of hexagonal lattices; (h) simultaneous use of 4 different eigenvalue estimators; (i) estimation of the eigenfunction in user prescribed spatial domains; and (j) variance reduction via stratification of source (position, energy, direction) and absorption (based on a quota sampling technique), as well as optional suppression of absorption. The new coding has undergone extensive testing, both specific (via drivers and idealized data) and integral (via comparison with previous computations). Base data have been examined for internal consistency and checked for reasonableness. A documented TRX-1 benchmark calculation has been performed. Agreement with other calculations, as well as with experiment, has served to validate the reactivity mode of SAM-CE. Further refinement of the cross section data processing component of SAM-CE (i.e., SAM-X) is suggested

  5. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  6. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  7. Theorizing the place of evil within Sam Ukala's Radical Theatre: A ...

    African Journals Online (AJOL)

    The perspectives of evil in this essay will be drawn mainly from the works of such thinkers as Paul Ricoeur, St Augustine, and Friedrich Nietzsche, yet not excluding occasional insights from thinkers like Immanuel Kant, Richard B. Sewall, and so on. Sam Ukala's Akpakaland, Break a Boil and Odour of Justice are the plays to ...

  8. Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Christ, Andreas; Kellom, Tocher; Seidman, Seth; Nikoloski, Neviana; Beard, Brian; Kuster, Niels

    2005-01-01

    This paper presents new definitions for obtaining reproducible results in numerical phone dosimetry. Numerous numerical dosimetric studies have been published about the exposure of mobile phone users which concluded with conflicting results. However, many of these studies lack reproducibility due to shortcomings in the description of the phone positioning. The new approach was tested by two groups applying two different numerical program packages to compare the specific anthropomorphic mannequin (SAM) to 14 anatomically correct head models. A novel definition for the positioning of mobile phones next to anatomically correct head models is given along with other essential parameters to be reported. The definition is solely based on anatomical characteristics of the head. A simple up-to-date phone model was used to determine the peak spatial specific absorption rate (SAR) of mobile phones in SAM and in the anatomically correct head models. The results were validated by measurements. The study clearly shows that SAM gives a conservative estimate of the exposure in anatomically correct head models for head only tissue. Depending on frequency, phone position and head size the numerically calculated 10 g averaged SAR in the pinna can be up to 2.1 times greater than the peak spatial SAR in SAM. Measurements in small structures, such as the pinna, will significantly increase the uncertainty; therefore SAM was designed for SAR assessment in the head only. Whether SAM will provide a conservative value for the pinna depends on the pinna SAR limit of the safety standard considered

  9. MicroRNA-29a Alleviates Bile Duct Ligation Exacerbation of Hepatic Fibrosis in Mice through Epigenetic Control of Methyltransferases

    Directory of Open Access Journals (Sweden)

    Ya-Ling Yang

    2017-01-01

    Full Text Available MicroRNA-29 (miR-29 is found to modulate hepatic stellate cells’ (HSCs activation and, thereby, reduces liver fibrosis pathogenesis. Histone methyltransferase regulation of epigenetic reactions reportedly participates in hepatic fibrosis. This study is undertaken to investigate the miR-29a regulation of the methyltransferase signaling and epigenetic program in hepatic fibrosis progression. miR-29a transgenic mice (miR-29aTg mice and wild-type littermates were subjected to bile duct-ligation (BDL to develop cholestatic liver fibrosis. Primary HSCs were transfected with a miR-29a mimic and antisense inhibitor. Profibrogenic gene expression, histone methyltransferases and global genetic methylation were probed with real-time quantitative RT-PCR, immunohistochemical stain, Western blot and ELISA. Hepatic tissue in miR-29aTg mice displayed weak fibrotic matrix as evidenced by Sirius Red staining concomitant with low fibrotic matrix collagen 1α1 expression within affected tissues compared to the wild-type mice. miR-29a overexpression reduced the BDL exaggeration of methyltransferases, DNMT1, DNMT3b and SET domain containing 1A (SET1A expression. It also elevated phosphatase and tensin homolog deleted on chromosome 10 (PTEN signaling within liver tissue. In vitro, miR-29a mimic transfection lowered collagen 1α1, DNMT1, DNMT3b and SET1A expression in HSCs. Gain of miR-29a signaling resulted in DNA hypomethylation and high PTEN expression. This study shines a new light on miR-29a inhibition of methyltransferase, a protective effect to maintain the DNA hypomethylation state that decreases fibrogenic activities in HSC. These robust analyses also highlight the miR-29a regulation of epigenetic actions to ameliorate excessive fibrosis during cholestatic liver fibrosis development.

  10. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.

    Science.gov (United States)

    Jackman, Jane E; Montange, Rebecca K; Malik, Harmit S; Phizicky, Eric M

    2003-05-01

    Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

  11. Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases

    NARCIS (Netherlands)

    T.B. van Dijk (Thamar); N. Gillemans (Nynke); C. Stein (Claudia); P. Fanis (Pavlos); J.A.A. Demmers (Jeroen); M.P.C. van de Corput (Mariëtte); J. Essers (Jeroen); F.G. Grosveld (Frank); U.M. Bauer (Uta-Maria); J.N.J. Philipsen (Sjaak)

    2010-01-01

    textabstractWe describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified

  12. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.

    Science.gov (United States)

    Cuyàs, E; Fernández-Arroyo, S; Verdura, S; García, R Á-F; Stursa, J; Werner, L; Blanco-González, E; Montes-Bayón, M; Joven, J; Viollet, B; Neuzil, J; Menendez, J A

    2018-02-15

    The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.

  13. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  14. Interactions within the mammalian DNA methyltransferase family

    Science.gov (United States)

    Margot, Jean B; Ehrenhofer-Murray, Ann E; Leonhardt, Heinrich

    2003-01-01

    Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase. PMID:12777184

  15. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  16. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger

    OpenAIRE

    Manzanares-Miralles, Lara; Bayram, Ozgur; Sarikaya-Bayram, Ozlem; Smith, Elizabeth B.; Dolan, Stephen K.; Jones, Gary W.; Doyle, Sean

    2016-01-01

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus,which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p = 0.0018) ...

  17. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  18. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  19. Catechol-O-methyltransferase gene methylation and substance use in adolescents : the TRAILS study

    NARCIS (Netherlands)

    van der Knaap, L. J.; Schaefer, J. M.; Franken, I. H. A.; Verhulst, F. C.; van Oort, F. V. A.; Riese, H.

    Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val(108/158)Met polymorphism modulates COMT activity

  20. Catechol-O-methyltransferase gene methylation and substance use in adolescents: The TRAILS study

    NARCIS (Netherlands)

    L.J. van der Knaap (Lisette); J.M. Schäfer (Johanna); I.H.A. Franken (Ingmar); F.C. Verhulst (Frank); F.V.A. van Oort (Floor); H. Riese (Harriëtte)

    2014-01-01

    textabstractSubstance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism

  1. Franchising as a Potential Growth Strategy for a Small Business : A Case of Sam-Chi Fast Food Restaurant

    OpenAIRE

    Odunsi, Sadiq

    2015-01-01

    The purpose of this study was to find out whether Sam-Chi fast food restaurant can grow through franchising as well as to give the owners recommendations on how to effectively adopt the franchising business model as a means to grow their business. Sam-Chi restaurant is situated in Lagos, Nigeria and the restaurant is owned and operated by Samuel Okore and his wife Chichi Okore. The theoretical framework of this research is separated into two sections. The first section covers the growth of a ...

  2. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress.

    Science.gov (United States)

    Litholdo, Celso Gaspar; Eamens, Andrew Leigh; Waterhouse, Peter Michael

    2018-04-01

    In plants, microRNAs (miRNAs) have evolved in parallel to the protein-coding genes that they target for expression regulation, and miRNA-directed gene expression regulation is central to almost every cellular process. MicroRNA, miR163, is unique to the Arabidopsis genus and is processed into a 24-nucleotide (nt) mature small regulatory RNA (sRNA) from a single precursor transcript transcribed from a single locus, the MIR163 gene. The MIR163 locus is a result of a recent inverted duplication event of one of the five closely related S-ADENOSYL-METHYLTRANSFERASE genes that the mature miR163 sRNA targets for expression regulation. Currently, however, little is known about the role of the miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in response to biotic stress. Here, we document the expression domains of MIR163 and the S-ADENOSYL-METHYLTRANSFERASE target genes following fusion of their putative promoter sequences to the β-glucuronidase (GUS) reporter gene and subsequent in planta expression. Further, we report on our phenotypic and molecular assessment of Arabidopsis thaliana plants with altered miR163 accumulation, namely the mir163-1 and mir163-2 insertion knockout mutants and the miR163 overexpression line, the MIR163-OE plant. Finally, we reveal miR163 accumulation and S-ADENOSYL-METHYLTRANSFERASE target gene expression post treatment with the defence elicitors, salicylic acid and jasmonic acid, and following Fusarium oxysporum infection, wounding, and herbivory attack. Together, the work presented here provides a comprehensive new biological insight into the role played by the Arabidopsis genus-specific miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in normal A. thaliana development and during the exposure of A. thaliana plants to biotic stress.

  3. Severe accident management (SAM), operator training and instrumentation capabilities - Summary and conclusions

    International Nuclear Information System (INIS)

    2002-01-01

    The Workshop on Operator Training for Severe Accident Management (SAM) and Instrumentation Capabilities During Severe Accidents was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The Workshop was organised into five sessions: - 1: Introduction; - 2: Tools and Methods; - 3: Training Programmes and Experience; - 4: SAM Organisation Efficiency; - 5: Instrumentation Capabilities. It was concluded by a Panel and General Discussion. This report presents the summary and conclusions: the meeting confirmed that only limited information is needed for making required decisions

  4. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Bauer, J.; Ondrovičová, G.; Najmanová, Lucie; Pevala, V.; Kameník, Zdeněk; Koštan, J.; Janata, Jiří; Kutejová, Eva

    2014-01-01

    Roč. 70, APR 2014 (2014), s. 943-957 ISSN 0907-4449 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : CATECHOL-O-METHYLTRANSFERASE * SN2-LIKE TRANSITION-STATE * CRYSTAL-STRUCTURES Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  5. Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain.

    Science.gov (United States)

    Sun, Jing; Wei, Yongwei; Rauf, Abdul; Zhang, Yu; Ma, Yuanmei; Zhang, Xiaodong; Shilo, Konstantin; Yu, Qingzhong; Saif, Y M; Lu, Xingmeng; Yu, Lian; Li, Jianrong

    2014-11-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene

  6. Catecholamine-o-methyltransferase polymorphisms are associated with postoperative pain intensity.

    LENUS (Irish Health Repository)

    Lee, Peter J

    2011-02-01

    single nucleotide polymorphisms (SNPs) in the genes for catecholamine-O-methyltransferase (COMT), μ-opioid receptor and GTP cyclohydrolase (GCH1) have been linked to acute and chronic pain states. COMT polymorphisms are associated with experimental pain sensitivity and a chronic pain state. No such association has been identified perioperatively. We carried out a prospective observational clinical trial to examine associations between these parameters and the development of postoperative pain in patients undergoing third molar (M3) extraction.

  7. ISOE EG-SAM interim report - Report on behalf of the Sub expert Group

    International Nuclear Information System (INIS)

    Harris, Willie; Miller, David W.; Djeffal, Salah; Anderson, Ellen; Couasnon, Olivier; Hagemeyer, Derek; Sovijarvi, Jukka; Amaral, Marcos A.; Tarzia, J.P.; Schmidt, Claudia; Fritioff, Karin; Kaulard, Joerg; Lance, Benoit; Fritioff, Karin; Schieber, Caroline; Hayashida, Yoshihisa; Doty, Rick

    2014-01-01

    During its November 2012 meeting, the expert group decided to develop an interim (preliminary) report before the end of 2013 (with a general perspective and discussion of specific severe accident management worker dose issues), and to finalize the report by organizing the international workshop of 2014 to address national experiences, which will be incorporated to the report. The work of the EG-SAM focuses on radiation protection management and organization, radiation protection training and exercises related to severe accident management, facility configuration and readiness, worker protection, radioactive materials, contamination controls and logistics and key lessons learned especially from the TMI, Chernobyl and Fukushima Dai-ichi accidents. This interim report was completed through intensive work of all Group members nominated by the ISOE, and was accomplished during EG-SAM meetings through 2012-2013. This document gathers the different presentations given by the sub expert groups in charge of each chapter of the report

  8. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel; Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Cordoba (Spain)

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters. (author)

  9. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  10. The captain class : the hidden force that creates the world's greatest teams / Sam Walker

    Trove (Australia)

    Walker, Sam

    2017-01-01

    ... it is. It's not the coach. It's not the star. It's not chemistry. It's not a strategy. It's something else entirely. Several years ago, Sam Walker set out to answer one of the most hotly debated questions in sports ...

  11. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 Fenton-like system.

    Science.gov (United States)

    Cheng, Min; Zeng, Guangming; Huang, Danlian; Lai, Cui; Liu, Yang; Zhang, Chen; Wan, Jia; Hu, Liang; Zhou, Chengyun; Xiong, Weiping

    2018-07-01

    The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO 3 ) 2 ). The catalysts were characterized by N 2 -Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H 2 O 2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H 2 O 2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H 2 O 2 , SAM-SCS/H 2 O 2 , Co(NO 3 ) 2 /H 2 O 2 and SCS/H 2 O 2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17 mg/L and 2.36 mg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation. Copyright © 2018

  12. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  13. Global developmental delay in guanidionacetate methyltransferase deficiency : differences in formal testing and clinical observation

    NARCIS (Netherlands)

    Verbruggen, Krijn T.; Knijff, Wilma A.; Soorani-Lunsing, Roelineke J.; Sijens, Paul E.; Verhoeven, Nanda M.; Salomons, Gajja S.; Goorhuis-Brouwer, Siena M.; van Spronsen, Francjan J.

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient

  14. A Study to Evaluate the Organization and the Operating Procedures of the Patient Assistance Function at Brooke Army Medical Center, Fort Sam Houston, Texas

    Science.gov (United States)

    1979-08-01

    15 March 1979. 59Interview with Wendy L. Farace , Head Nurse, Obstetrics/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas, 8...6 February 1979. Farace , Wendy L. Head Nurse, Obstetrica/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas. Interview, 8 January

  15. Effect of aromatic SAMs molecules on graphene/silicon schottky diode performance

    OpenAIRE

    Yağmurcukardeş, Nesli; Aydın, Hasan; Can, Mustafa; Yanılmaz, Alper; Mermer, Ömer; Okur, Salih; Selamet, Yusuf

    2016-01-01

    Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino]isophthalic acid (MePIFA) and 5-(diphenyl)amino]isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron ...

  16. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    Science.gov (United States)

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  17. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  18. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Pang, Jinsong; Dong, Mingyue; Li, Ning; Zhao, Yanli; Liu, Bao

    2013-01-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  19. GoSam-2.0. A tool for automated one-loop calculations within the Standard Model and beyond

    International Nuclear Information System (INIS)

    Cullen, Gavin; Deurzen, Hans van; Greiner, Nicolas

    2014-05-01

    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the ''Binoth-Les-Houches-Accord'' interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.

  20. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  1. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, H.; Gregory, S; Dahlberg, A; Jogl, G

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N{sup 2}-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.

  2. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3',5'-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols.

    Science.gov (United States)

    Lücker, Joost; Martens, Stefan; Lund, Steven T

    2010-09-01

    At ripening initiation in red grapevine (Vitis vinifera) berries, the exocarp turns color from green to red and then to purple due to the accumulation and extent of methylation of anthocyanins. The accumulation of transcripts encoding an O-methyltransferase was recently shown to be closely correlated with the onset of ripening and the degree of blue/purple pigmentation in grapevine berries; however, the biochemical function of this gene has remained uncharacterized. In this study, an O-methyltransferase cDNA that showed a distinct expression pattern when compared to closely related sequences was expressed in Escherichia coli and enzyme assays were carried out with a broad array of anthocyanin and other flavonoid substrates. We demonstrate that this enzyme carries out 3',5'-O-methylation of anthocyanins and flavonol compounds in vitro, which are known to be present in grape berries, with a preference for glycosylated substrates. The highest relative specific activity for the enzyme was found with delphinidin 3-O-glucoside as substrate. The enzyme is not able to methylate flavan type skeletons with chiral centers, such as either catechins or dihydroquercetin. The enzyme showed negligible specific activity for caffeoyl-CoA, compared to flavonol and anthocyanin substrates. Phylogenetic analysis of the O-methyltransferase suggests that it may be a member of a distinct subclass of Type 2 bivalent metal-dependent S-adenosyl-methionine O-methyltransferases. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  3. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    International Nuclear Information System (INIS)

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P.

    1991-01-01

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A) + RNA

  4. Characterization of novel methyltransferases METTL22 and FAM86A.1

    OpenAIRE

    Ali, Qamar

    2012-01-01

    Proteins are subjected to various post-translational modifications (PTMs) that affect their activity, interaction and localization. Methylation is one such PTM that is well known to play a regulatory role in heterochromatin and euchromatin formation through methyl marks on histone tails, and it has recently been shown that regulation through methylation is also applicable to non-histone proteins. A recent characterization of protein methyltransferase (MTase) METTL21D led to the discovery of a...

  5. The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Bibhu P. Mishra

    2014-05-01

    Full Text Available Despite correlations between histone methyltransferase (HMT activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4 methyltransferase critical for maintaining hematopoietic stem cells (HSCs. Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16 acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.

  6. The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing

    International Nuclear Information System (INIS)

    Sato, Noriko; Kondo, Mitsumasa; Arai, Ken-ichi

    2006-01-01

    Somatic DNA methylation patterns are determined in part by the de novo methylation that occurs after early embryonic demethylation. Oct-3/4, a pluripotency gene, is unmethylated in the blastocyst, but undergoes de novo methylation and silencing during gastrulation. Here we show that the transcriptional repressor GCNF recruits DNA methyltransferase to the Oct-3/4 promoter and facilitates its methylation. Although acetylation of histone H3 at lysine 9 (K9) and/or 14 (K14) and methylation of H3 at lysine 4 (K4) decrease during this period, as do Oct-3/4 transcript levels, H3K9 and H3K27 methylation levels remain constant, indicating that DNA methylation does not require repressive histone modifications. We found that GCNF interacts directly with Dnmt3 molecule(s) and verified that this interaction induces the methylation of the Oct-3/4 promoter. Our finding suggests a model in which differentiation-induced GCNF recruits de novo DNA methyltransferase and facilitates the silencing of a pluripotency gene

  7. Methyltransferase Erm(37) Slips on rRNA to Confer Atypical Resistance in Mycobacterium tuberculosis

    Czech Academy of Sciences Publication Activity Database

    Madsen, Ch. T.; Jakobsen, L.; Buriánková, Karolína; Doucet-Populaire, F.; Perdonet, J. L.; Douthwaite, S.

    2005-01-01

    Roč. 280, č. 47 (2005), s. 38942-38947 ISSN 0021-9258 R&D Projects: GA ČR GA310/03/0292 Institutional research plan: CEZ:AV0Z50200510 Keywords : methyltransferase erm * mycobacterium tuberculosis * rRNA Subject RIV: EE - Microbiology, Virology Impact factor: 5.854, year: 2005

  8. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  9. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    Science.gov (United States)

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  10. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M

    2009-01-01

    The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small...... complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation...... at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits...

  11. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  12. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    Science.gov (United States)

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    Science.gov (United States)

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  14. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    Science.gov (United States)

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  15. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  16. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  17. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  18. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  19. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  20. Purification of 1-aminocyclopropane-1-carboxylate synthase from apple fruits using s-adenosyl [3,414C]-methionine (SAM) as a probe

    International Nuclear Information System (INIS)

    Yip, Wingkip; Dong, Jianguo; Yang, Shang Fa

    1989-01-01

    Tomato ACC synthase is inactivated by its substrate SAM, with the moiety of aminobutyrate being covalently linked to ACC synthase during the catalytic reactions. A partial purified ACC synthase (the catalytic activity 100 μmol/h·mg protein) from pellets of apple extract was incubated with [3,4 14 C] SAM. Only one radioactive peak was revealed in a C-4 reverse phase HPLC and one radioactive band on SDS-PAGE with an M.W. of 48 kDa. Apple ACC synthase in native form is resistant to V8, α-chromtrypsin and carboxylpeptidase A digestion, but effectively inactivated by trypsin and ficin, as demonstrated by both the activity assay and SAM labeling. The radioactive protein cut from the SDS-PAGE was injected to three mice, two of the mice showed responses to the protein in western blot analysis. The antibodies from mice is currently under characterization

  1. Substrates adoption methodology (SAM) to achieve “Fast, Flexible, Future (F3)” pharmaceutical production processes

    DEFF Research Database (Denmark)

    Singh, Ravendra; Rozada-Sanchez, Raquel; Wrate, Tim

    within the template. In this way the substrates adoption methodology helps to achieve “fast, flexible, future (F3)” pharmaceutical production processes by adapting a recently designed generic modular process-plant. The supporting tools for the substrate adoption are: (1) an ontological knowledge......There is a significant cost associated with process development of a portfolio of pharmaceutical products, few of which will reach the market. Continuous processing will increase the “chemical space” which can increase development efficiency. For example one, particularly attractive option...... is to develop manufacturing processes based on modular continuous systems; a flexible generic continuous modular plant which can be adapted for different substrates. In the work reported here, a substrates adoption methodology (SAM) has been developed. The proposed SAM identifies the necessary changes...

  2. Improved radioenzymatic assay for plasma norepinephrine using purified phenylethanolamine n-methyltransferase

    International Nuclear Information System (INIS)

    Bowsher, R.R.; Henry, D.P.

    1986-01-01

    Radioenzymatic assays have been developed for catecholamines using either catechol O-methyltransferase (COMT) or phenylethanolamine N-methyltransferase (PNMT). Assays using PNMT are specific for norepinephrine (NE) and require minimal manipulative effort but until now have been less sensitive than the more complex procedures using COMT. The authors report an improved purification scheme for bovine PNMT which has permitted development of an NE assay with dramatically improved sensitivity (0.5 pg), specificity and reproducibility (C.V. < 5%). PNMT was purified by sequential pH 5.0 treatment and dialysis and by column chromatographic procedures using DEAE-Sephacel, Sepharcryl S-200 and Phenyl-Boronate Agarose. Recovery of PNMT through the purification scheme was 50%, while blank recovery was <.001%. NE can be directly quantified in 25 ul of human plasma and an 80 tube assay can be completed within 4 h. The capillary to venous plasma NE gradient was examined in 8 normotensive male subjects. Capillary plasma (NE (211.2 +/- 61.3 pg/ml)) was lower than venous plasma NE (366.6 +/- 92.5 pg/ml) in all subjects (p < 0.005). This difference suggests that capillary (NE) may be a unique indicator of sympathetic nervous system activity in vivo. In conclusion, purification of PNMT has facilitated development of an improved radioenzymatic for NE with significantly improved sensitivity

  3. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain); Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain)], E-mail: tpineda@uco.es

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters.

  4. Tyrosine 87 is vital for the activity of human protein arginine methyltransferase 3 (PRMT3)

    Czech Academy of Sciences Publication Activity Database

    Handrková, H.; Petrák, J.; Halada, Petr; Pospíšilová, D.; Čmejla, R.

    2011-01-01

    Roč. 1814, č. 2 (2011), s. 277-282 ISSN 1570-9639 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : DIAMOND-BLACKFAN ANEMIA * SUBSTRATE -SPECIFICITY * N-METHYLTRANSFERASE Subject RIV: CE - Biochemistry Impact factor: 3.635, year: 2011

  5. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    Science.gov (United States)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  6. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  7. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M

    2015-06-10

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.

  8. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Dobos, S.; Janzou, S.; Gilman, P.; Freeman, J.; Kaffine, L.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  9. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction...

  10. Development of fluorescent methods for DNA methyltransferase assay

    Science.gov (United States)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  11. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  12. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    Li, Guoming; Tang, Zhenting; Meng, Geng; Dai, Kesheng; Zhao, Jindong; Zheng, Xiaofeng

    2009-01-01

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C222 1 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 , with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  13. Structure and Mechanism of the Rebeccamycin Sugar 4'-O-Methyltransferase RebM

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; McCoy, Jason G.; Zhang, Changsheng; Bingman, Craig A.; Phillips, Jr., George N.; Thorson, Jon S. (UW)

    2008-12-12

    The 2.65-{angstrom} crystal structure of the rebeccamycin 4'-O-methyltransferase RebM in complex with S-adenosyl-l-homocysteine revealed RebM to adopt a typical S-adenosylmethionine-binding fold of small molecule O-methyltransferases (O-MTases) and display a weak dimerization domain unique to MTases. Using this structure as a basis, the RebM substrate binding model implicated a predominance of nonspecific hydrophobic interactions consistent with the reported ability of RebM to methylate a wide range of indolocarbazole surrogates. This model also illuminated the three putative RebM catalytic residues (His{sup 140/141} and Asp{sup 166}) subsequently found to be highly conserved among sequence-related natural product O-MTases from GC-rich bacteria. Interrogation of these residues via site-directed mutagenesis in RebM demonstrated His{sup 140} and Asp{sup 166} to be most important for catalysis. This study reveals RebM to be a member of the general acid/base-dependent O-MTases and, as the first crystal structure for a sugar O-MTase, may also present a template toward the future engineering of natural product MTases for combinatorial applications.

  14. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  15. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  16. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  17. The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.

    Directory of Open Access Journals (Sweden)

    William N Pappano

    Full Text Available Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2 is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1, but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.

  18. Rainfall declines over Queensland from 1951-2007 and links to the Subtropical Ridge and the SAM

    International Nuclear Information System (INIS)

    Cottrill, D A; Ribbe, J

    2010-01-01

    Much of southern and eastern Australia including Queensland have experienced rainfall declines over recent decades affecting agricultural production and accelerating water infrastructure development. Rainfall declines from southern Australia have now been directly related to changes in the Southern Annular Mode (SAM) and the subtropical ridge. In southern and coastal Queensland, the rainfall declines have occurred mostly in the austral summer and autumn. Observations from this region reveal the rainfall decline is correlated to an increase in the mean sea level pressure (MSLP) at many stations. The largest increases in MSLP are over southeast Queensland and coastal regions, where some of the largest rainfall declines occur. This study indicates the subtropical ridge as one of the main factors in the rainfall decline over this region. SAM is also likely to be important, although its seasonal influence, apart from winter, is harder to determine.

  19. Influencia del Estado de Oxidación del Ión Cobalto en la Estabilidad de Electrodos Modificados con Monocapas SAM-TOA-ANTA-Con+-HRP-NHis.

    Directory of Open Access Journals (Sweden)

    Pedro R. Matheus*

    Full Text Available Influence of state oxidation of cobalt ion in the stability electrodes modified with monolayers SAM-TOA-ANTA-Con+-HRP-NHis. Quartz Crystal Microbalance (QCM was used to investigate the adsorption of the HRP-NHis enzyme (horseradish peroxidase, which was modified by the addition of a tail of six histidine on its extreme N-terminal. The QCM operating at flow of 0.025 mL min-1 on a crystal whose gold electrode was modified with monolayers of SAM-TOA-ANTA-Co2+ and SAM-TOA-ANTA -Co3+. The oxidize form was obtained from the electrochemical oxidation of a monolayer of SAM-TOA-ANTA-Co2+. The results suggest that the HRP-NHis is attached to both monolayers in a similar way; on the contrary, the desortion of the attached protein is dramatically different. Thus, whereas the ligand-Co2+ bonds are reversible, which allows that the anchored protein is easily replaced by imidazol molecules. The 3+ oxidation state of the metal does not allow the interchange of protein by the imidazol molecules.

  20. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  1. Increasing the Fill Factor of Inverted P3HT:PCBM Solar Cells Through Surface Modification of Al-Doped ZnO via Phosphonic Acid-Anchored C60 SAMs

    DEFF Research Database (Denmark)

    Stubhan, Tobias; Salinas, Michael; Ebel, Alexander

    2012-01-01

    The influence of aluminum-doped zinc oxide (AZO) electron extraction layers modified with self-assembled monolayers (SAMs) on inverted polymer solar cells is investigated. It is found that AZO modification with phosphonic acid-anchored Fullerene–SAMs leads to a reduction of the series resistance,...

  2. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Shah, M.S.

    2014-01-01

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  3. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA

  4. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  5. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    Science.gov (United States)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; hide

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of perchlorates. Even if the source of the organic carbon detected is still unknown, the chlorine source was likely Martian. Two mechanisms have been hypothesized for the formation of soil perchlorate: (1) Atmospheric oxidation of chlorine; and (2) UV photooxidation of

  6. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• “Free Radical” Is Never Free

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.

    2015-01-01

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449

  7. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sardo

    Full Text Available PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.

  8. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase

    Directory of Open Access Journals (Sweden)

    Harris Hugh

    2004-01-01

    Full Text Available Abstract Background It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress. Results By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and γ-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation. Conclusion These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.

  9. Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine methyltransferase-dependent manner.

    Science.gov (United States)

    Hoover, Spencer; Striker, Rob

    2008-04-01

    The family Flaviviridae comprises positive-strand RNA viral pathogens of humans and livestock with few treatment options. We have previously shown that azathioprine (AZA) has in vitro activity against bovine viral diarrhea virus (BVDV). While the mechanism of inhibition is unknown, AZA and related thiopurine nucleoside analogues have been used as immunosuppressants for decades and both AZA metabolites and cellular genes involved in AZA metabolism have been extensively characterized. Here, we show that only certain riboside metabolites have antiviral activity and identify the most potent known antiviral AZA metabolite as 6-methylmercaptopurine riboside (6MMPr). The antiviral activity of 6MMPr is antagonized by adenosine, and is specific to BVDV and not to the related yellow fever virus. An essential step in the conversion of AZA to 6MMPr is the addition of a methyl group onto the sulfur atom attached to position six of the purine ring. Intracellularly, the methyl group is added by thiopurine methyltransferase (TPMT), an S-adenosyl methionine-dependent methyltransferase. Either chemically bypassing or inhibiting TPMT modulates antiviral activity of AZA metabolites. TPMT exists in several variants with varying levels of activity and since 6MMPr is a potent antiviral, the antiviral activity of AZA may be modulated by host genetics.

  10. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    Science.gov (United States)

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  11. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Santoni-Rugiu, Eric; Simon, Ronald

    2011-01-01

    Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involved...

  12. Stool frequency recording in severe acute malnutrition ('StoolSAM'); an agreement study comparing maternal recall versus direct observation using diapers.

    Science.gov (United States)

    Voskuijl, Wieger; Potani, Isabel; Bandsma, Robert; Baan, Anne; White, Sarah; Bourdon, Celine; Kerac, Marko

    2017-06-07

    Approximately 50% of the deaths of children under the age of 5 can be attributed to undernutrition, which also encompasses severe acute malnutrition (SAM). Diarrhoea is strongly associated with these deaths and is commonly diagnosed solely based on stool frequency and consistency obtained through maternal recall. This trial aims to determine whether this approach is equivalent to a 'directly observed method' in which a health care worker directly observed stool frequency using diapers in hospitalised children with complicated SAM. This study was conducted at 'Moyo' Nutritional Rehabilitation Unit, Queen Elizabeth Central Hospital, Malawi. Participants were children aged 5-59 months admitted with SAM. We compared 2 days of stool frequency data obtained with next-day maternal-recall versus a 'gold standard' in which a health care worker observed stool frequency every 2 h using diapers. After study completion, guardians were asked their preferred method and their level of education. We found poor agreement between maternal recall and the 'gold standard' of directly observed diapers. The sensitivity to detect diarrhoea based on maternal recall was poor, with only 75 and 56% of diarrhoea cases identified on days 1 and 2, respectively. However, the specificity was higher with more than 80% of children correctly classified as not having diarrhoea. On day 1, the mean stool frequency difference between the two methods was -0.17 (SD; 1.68) with limits of agreement (of stool frequency) of -3.55 and 3.20 and, similarly on day 2, the mean difference was -0.2 (SD; 1.59) with limits of agreement of -3.38 and 2.98. These limits extend beyond the pre-specified 'acceptable' limits of agreement (±1.5 stool per day) and indicate that the 2 methods are non-equivalent. The higher the stool frequency, the more discrepant the two methods were. Most primary care givers strongly preferred using diapers. This study shows lack of agreement between the assessment of stool frequency in SAM

  13. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    NARCIS (Netherlands)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    BACKGROUND: Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT

  14. Crystallization of the novel S-adenosyl-l-methionine-dependent C-methyltransferase CouO from Streptomyces rishiriensis and preliminary diffraction data analysis

    International Nuclear Information System (INIS)

    Lyskowski, Andrzej; Tengg, Martin; Steinkellner, Georg; Schwab, Helmut; Gruber-Khadjawi, Mandana; Gruber, Karl

    2012-01-01

    Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. CouO was crystallized from a single condition in the Morpheus crystallization screen. A vitrified crystal diffracted to 2.05 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 33.02, b = 82.87, c = 76.77 Å, β = 96.93°

  15. Coastal lagoon sediments and benthic foraminifera as indicator for Holocene sea-level change: Samsø, southern Kattegat

    DEFF Research Database (Denmark)

    Sander, Lasse; Morigi, Caterina; Pejrup, Morten

    The island of Samsø is located in the southern Kattegat region of Denmark, a relatively sheltered micro-tidal environment. The area experienced a period of rapid transgression during the early Altantic period, reaching its maximum approx. 7,600 yr BP. Since then, isostatic uplift gradually caused....... Over time, an extensive beach ridge system formed, which eventually connected the islands, giving Samsø its characteristic shape. Ephemeral shallow-water lagoons evolved in topographic depressions along the shores of the island, most of which became inactive until today. A semi-enclosed coastal lagoon......-level and to investigate associated geomorphic responses in coastal lagoon and beach ridge systems. Vibracorings will be carried out in these sedimentary environments and will be supplemented with manual auger corings and ground penetrating radar (GPR) surveys to assess vertical variations in the deposited sediments...

  16. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  17. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low

  18. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-01-01

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl- 14 C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  19. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  20. Protein Arginine Methyltransferase 5 Inhibition Upregulates Foxp3+ Regulatory T Cells Frequency and Function during the Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Yingxia Zheng

    2017-05-01

    Full Text Available Ulcerative colitis (UC pathogenesis is related to imbalance of immune responses, and the equilibrium between inflammatory T cells and Foxp3+ regulatory T cells (Tregs plays an important role in the intestinal homeostasis. Protein arginine methyltransferases (PRMTs regulate chromatin remodeling and gene expression. Here, we investigated whether inhibition of PRMTs affects colitis pathogenesis in mice and inflammatory bowel disease patients and further explored the underlying mechanisms. In this study, we found that protein arginine N-methyltransferase inhibitor 1 (AMI-1 treatments increased Tregs frequency, function, and reduced colitis incidence. Adoptive transfer of AMI-1-treated Tregs could reduce the colitis incidence. Colitis was associated with increased local PRMT5 expression, which was inhibited by AMI-1 treatment. Additionally, PRMT5 knockdown T cells produced a better response to TGFβ and promoted Tregs differentiation through decreased DNA methyltransferase 1 (DNMT1 expression. PRMT5 also enhanced H3K27me3 and DNMT1 binding to Foxp3 promoter, which restricted Tregs differentiation. Furthermore, PRMT5 knockdown led to decreased Foxp3 promoter methylation during Tregs induction. PRMT5 expression had a negative relationship with Tregs in UC patients, knockdown of PRMT5 expression increased Tregs frequency and decreased TNFα, IL-6, and IL-13 levels. Our study outlines a novel regulation of PRMT5 on Tregs development and function. Strategies to decrease PRMT5 expression might have therapeutic potential to control UC.

  1. DNA (cytosine-5-methyltransferase 3B (DNMT 3B polymorphism and risk of Down syndrome offspring

    Directory of Open Access Journals (Sweden)

    Cláudia Melo de Moura

    2018-01-01

    Full Text Available Down syndrome (DS is the most common form of human genetic mental retardation. Several polymorphisms in genes coding folic acid cycle enzymes have been associated to the risk of bearing a DS child; however, the results are controversial. S-adenosyl-l-methionine (SAM is an important intermediate of folic acid pathway and acts as methyl donor and substrate for DNA (cytosine-5-methyltransferase 3B (DNMT3B – EC 2.1.1.37 de novo methylation processes during embryogenesis. Recent studies suggest that a functional polymorphism of DNMT 3B in maternal genotype may be associated with a decreased risk of having a DS child. We herein investigate the association of this polymorphism with the occurrence of DS in a Brazilian population. We have genotyped 111 mothers of DS infants (MDS and 212 control mothers (CM through PCR-RFLP. The observed genotypic frequencies were CC = 0.22; CT = 0.49 and TT = 0.29 in CM, and CC = 0.30; CT = 0.52 and TT = 0.18 in MDS. Allelic frequencies were C = 0.47 and T = 0.53 in CM and C = 0.56 and T = 0.44 in MDS. No deviation of HWE was observed, and both DNMT 3B rs2424913 genotype (χ2 = 4.53; DF = 1; P = 0.03 and allelic (χ2 = 4.90; DF = 1; P = 0.03 frequencies show significant differences between MDS and CM. The presence of the mutant DNMT 3B T allele decreases 30% the risk of bearing a DS child (OR = 0.69; 95% CI: 0.50–0.96; P = 0.03, and the risk is diminished up to 45% in association with the homozygous genotype (OR = 0.54; 95% CI: 0.31–0.96; P = 0.04. Our results suggest that women harboring the single nucleotide polymorphism DNMT 3B rs2424913 have a decreased risk of a DS pregnancy, and further studies are necessary to confirm this protective effect.

  2. 78 FR 77334 - Small Business Size Standards: Construction

    Science.gov (United States)

    2013-12-23

    ... enrollment in the System of Award Management's (SAM) Dynamic Small Business Search database, and more firms... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG37 Small Business Size Standards: Construction AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small...

  3. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    Science.gov (United States)

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  4. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    Science.gov (United States)

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  5. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  6. Betaine reduces hepatic lipidosis induced by carbon tetrachloride in Sprague-Dawley rats.

    Science.gov (United States)

    Junnila, M; Barak, A J; Beckenhauer, H C; Rahko, T

    1998-10-01

    Carbon tetrachloride-injected rats were given liquid diets with and without betaine for 7 d. Hepatic lipidosis was induced by 4 daily injections of carbon tetrachloride (CCl4). Animals were killed and their livers and blood taken for analysis of betaine, S-adenosylmethionine (SAM), betaine homocysteine methyltransferase (BHMT), triglyceride, alanine aminotransferase and aspartate aminotransferase. Liver samples were also processed and stained for histological examination. Supplemental betaine reduced triglyceride in the liver and centrilobular hepatic lipidosis induced by the CCl4 injections. In both the control and experimental groups receiving betaine, liver betaine, BHMT and SAM were significantly higher than in their respective groups not receiving betaine. This study provides evidence that betaine protects the liver against CCl4-induced lipidosis and may be a useful therapeutic and prophylactic agent in ameliorating the harmful effects of CCl4.

  7. Paradoxical elevated thiopurine S-methyltransferase activity after pancytopenia during azathioprine therapy: potential influence of red blood cell age

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; van Bodegraven, Adriaan A.; de Graaf, Peer; van der Hulst, Rene W. M.; Zoetekouw, Lida; van Kuilenburg, André B. P.

    2008-01-01

    There is an increased risk of developing bone marrow depression and infections during azathioprine therapy for inflammatory bowel disease. Patients with low or absent thiopurine S-methyltransferase (TPMT) activity have an increased risk of developing myelotoxicity. We describe a patient who

  8. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Science.gov (United States)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  9. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  10. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    Ehrlich, K.; Malbroue, C.

    1987-01-01

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [ 3 H]AdoMet incorporated into acid precipitable material per h at 30 0 ). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 30 0

  11. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  12. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  13. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  14. Improving discrimination of savanna tree species through a multiple endmember spectral-angle-mapper (SAM) approach: canopy level analysis

    CSIR Research Space (South Africa)

    Cho, Moses A

    2010-11-01

    Full Text Available sensing. The objectives of this paper were to (i) evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach (conventionally known as the nearest neighbour) in discriminating ten common African...

  15. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  16. Séries temporais de NDVI do sensor SPOT Vegetation e algoritmo SAM aplicados ao mapeamento de cana‑de‑açúcar

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Vicente

    2012-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o mapeamento de área de cana‑de‑açúcar por meio de série temporal, de seis anos de dados do índice de vegetação por diferença normalizada (NDVI, oriundos do sensor Vegetation, a bordo do satélite "système pour l'observation de la Terre" (SPOT. Três classes de cobertura do solo (cana‑de‑açúcar, pasto e floresta, do Estado de São Paulo, foram selecionadas como assinaturas espectro‑temporais de referência, que serviram como membros extremos ("endmembers" para classificação com o algoritmo "spectral angle mapper" (SAM. A partir desta classificação, o mapeamento da área de cana‑de‑açúcar foi realizado com uso de limiares na imagem-regra do SAM, gerados a partir dos valores dos espectros de referência. Os resultados mostram que o algoritmo SAM pode ser aplicado a séries de dados multitemporais de resolução moderada, o que permite eficiente mapeamento de alvo agrícola em escala mesorregional. Dados oficiais de áreas de cana‑de‑açúcar, para as microrregiões paulistas, apresentam boa correlação (r² = 0,8 com os dados obtidos pelo método avaliado. A aplicação do algoritmo SAM mostrou ser útil em análises temporais. As séries temporais de NDVI do sensor SPOT Vegetation podem ser utilizadas para mapeamento da área de cana‑de‑açúcar em baixa resolução.

  17. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    Science.gov (United States)

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment. In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25μm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources

  18. Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O-Methyltransferase 5

    DEFF Research Database (Denmark)

    Pfalz, Marina; Mukhaimar, Maisara; Perreau, François

    2016-01-01

    in position 1 (1-IG modification) or 4 (4-IG modification). Products of the 4-IG modification pathway mediate plant-enemy interactions and are particularly important for Arabidopsis innate immunity. While CYP81Fs encoding cytochrome P450 monooxygenases and IGMTs encoding indole glucosinolate O...... with moderate similarity to previously characterized IGMTs, encodes the methyltransferase that is responsible for the conversion of 1OHI3M to 1MOI3M. Disruption of IGMT5 function increases resistance against the root-knot nematode Meloidogyne javanica and suggests a potential role for the 1-IG modification...

  19. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    Science.gov (United States)

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  20. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  1. Systematic substrate adoption methodology (SAM) for future flexible, generic pharmaceutical production processes

    DEFF Research Database (Denmark)

    Singh, Ravendra; Godfrey, Andy; Gregertsen, Björn

    2013-01-01

    (APIs) for early delivery campaigns. Of these candidates only a few will be successful such that further development is required to scale-up the process. Systematic computer-aided methods and tools are required for faster manufacturing of these API candidates. In this work, a substrate adoption...... methodology (SAM) for a series of substrates with similar molecular functionality has been developed. The objective is to achieve “flexible, fast and future” pharmaceutical production processes by adapting a generic modular process template. Application of the methodology is illustrated through a case study...

  2. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    Science.gov (United States)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  3. Crystal structure of Mycobacterium tuberculosis O-6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA

    Czech Academy of Sciences Publication Activity Database

    Miggiano, R.; Perugino, G.; Ciaramella, M.; Serpe, M.; Rejman, Dominik; Páv, Ondřej; Pohl, Radek; Garavaglia, S.; Lahiri, S.; Rizzi, M.; Rossi, F.

    2016-01-01

    Roč. 473, č. 2 (2016), s. 123-133 ISSN 0264-6021 EU Projects: European Commission(XE) 241587 - SYSTEMTB Institutional support: RVO:61388963 Keywords : DNA repair * DNA-binding protein * Mycobacterium tuberculosis * O-6-methylguanine-DNA methyltransferase * co-operativity * crystal structure Subject RIV: CE - Biochemistry Impact factor: 3.797, year: 2016

  4. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza

    OpenAIRE

    Jiang Li; Caili Li; Shanfa Lu

    2018-01-01

    Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, ei...

  5. Carrier frequency of guanidinoacetate methyltransferase deficiency in the general population by functional characterization of missense variants in the GAMT gene

    NARCIS (Netherlands)

    Desroches, C.L.; Patel, J.; Wang, P.X.; Minassian, B.; Marshall, C.R.; Salomons, G.; Mercimek-Mahmutoglu, S.

    2015-01-01

    Guanidinoacetate methyltransferase (GAMT) deficiency is a neurodegenerative disease. Although no symptomatic patients on treatment achieved normal neurodevelopment, three asymptomatic newborns were reported with normal neurodevelopmental outcome on neonatal treatment. GAMT deficiency is therefore a

  6. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene

    DEFF Research Database (Denmark)

    Mercimek-Mahmutoglu, Saadet; Ndika, Joseph; Kanhai, Warsha

    2014-01-01

    Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients 5...

  7. PDS4 vs PDS3 - A Comparison of PDS Data for Two Mars Rovers - Existing Mars Curiosity Mission Mass Spectrometer (SAM) PDS3 Data vs Future ExoMars Rover Mass Spectrometer (MOMA) PDS4 Data

    Science.gov (United States)

    Lyness, E.; Franz, H. B.; Prats, B.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.

  8. Efecto bioestimulante de Trichoderma harzianum Rifai en posturas de Leucaena, Cedro y Samán

    Directory of Open Access Journals (Sweden)

    Leonides Castellanos González

    2018-01-01

    Full Text Available El presente artículo evaluó el efecto bioestimulante de Trichoderma harzianum Rifai en la producción de postura de Leucaena leucocephala (Lam de Wit., Cedrela odorata L. y Albizia saman (Jacq. Merr. Se desarrollaron tres experimentos en condiciones de vivero, uno para cada especie. Se empleó un diseño completamente aleatorio con cuatro parcelas por tratamiento. En cada experimento los tratamientos fueron: Trichoderma harzianum a razón de 20 g.L-1, 40 g.L-1 y un testigo. Se evaluó el porcentaje de germinación y las variables morfométricas diámetro y altura del tallo, así como biomasa seca en raíz y parte aérea de la planta. Los tratamientos con Trichoderma no incrementaron el porcentaje de germinación en cedro, samán y leucaena. T. harzianum incrementó la altura, el número de hojas y la biomasa seca del área foliar en las plántulas de cedro, mientras que en leucaena y samán solo provocó incrementos del diámetro basal de las plántulas.

  9. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    Science.gov (United States)

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  10. Orientational Analysis of Dodecanethiol and P-Nitrothiophenol SAMs on Metals with Polarisation - dependent SFG spectroscopy

    International Nuclear Information System (INIS)

    Manea, A.

    2011-01-01

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitro thiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarizations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarizations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces. (author)

  11. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases

    Czech Academy of Sciences Publication Activity Database

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-01-01

    Roč. 24, č. 6 (2016), s. 1268-1276 ISSN 0968-0896 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : nucleosides * nucleotides * pyrimidines * DNA methyltransferases * DNA polymerases Subject RIV: CC - Organic Chemistry Impact factor: 2.930, year: 2016

  12. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Science.gov (United States)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  13. Effectivity System of Management Information in Information Tehcnology Center University of Sam Ratulangi Manado.

    OpenAIRE

    Kalalo, Intani Kirana; Mandey, Jantje; Pombengi, Jericho

    2015-01-01

    In accordance with Regulation of the Minister of Education and Culture of the Republic of Indonesia on the Organization and Work of Sam Ratulangi University of article 105, paragraph 1, which states that the Information and Communication Technology Unit is a unit of the technical implementation in the field of development and management of systems and information and communication technology. And Article 106, namely, Information and Communication Technology Unit has the t...

  14. Kualitas Udara Beberapa Ruang Perpustakaan Di Universitas Sam Ratulangi Manado Berdasarkan Uji Kualitas Fisika

    OpenAIRE

    Sahilatua, Josefine D

    2014-01-01

    : Air pollution not only comes from the outdoors but also indoors. Library is indoors that could potentially by polluted. Level of air quality that not complies the standard will cause symptoms such as sneezing, coughing, skin irritation, shortness of breathing, eye irritation and headache on library users. This research conducted on the five libraries at the Sam Ratulangi University using observational methods. Data collected was content of physical air quality. The variables were air temper...

  15. Surface barrier analysis of semi-insulating and n{sup +}-type GaAs(0 0 1) following passivation with n-alkanethiol SAMs

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Gregory M. [Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada); Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6 (Canada); Bensebaa, Farid [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6 (Canada); Dubowski, Jan J., E-mail: jan.j.dubowski@usherbrooke.ca [Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)

    2011-02-15

    The surface Fermi level of semi-insulating and n{sup +}-type GaAs(0 0 1) was determined before and after passivation with n-alkanethiol self-assembled monolayers (SAMs) by X-ray photoelectron spectroscopy. Fermi level positioning was achieved using Au calibration pads integrated directly onto the GaAs surface, prior to SAM deposition, in order to provide a surface equipotential binding energy reference. Fermi level pinning within 50 meV and surface barrier characteristics according to the Advanced Unified Defect Model were observed. Our results demonstrate the effectiveness of the Au integration technique for the determination of band-edge referenced Fermi level positions and are relevant to an understanding of emerging technologies based on the molecular-semiconductor junction.

  16. Specialized (iso)eugenol-4-O-methyltransferases (s-IEMTs) and methods of making and using the same

    Science.gov (United States)

    Liu, Chang-Jun; Cai, Yuanheng

    2017-01-31

    Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.

  17. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  18. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    Science.gov (United States)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  19. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  20. HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder.

    Science.gov (United States)

    Bitsika, Vicki; Sharpley, Christopher F; Sweeney, John A; McFarlane, James R

    2014-03-29

    Anxiety and Autistic Disorder (AD) are both neurological conditions and both disorders share some features that make it difficult to precisely allocate specific symptoms to each disorder. HPA and SAM axis activities have been conclusively associated with anxiety, and may provide a method of validating anxiety rating scale assessments given by parents and their children with AD about those children. Data from HPA axis (salivary cortisol) and SAM axis (salivary alpha amylase) responses were collected from a sample of 32 high-functioning boys (M age=11yr) with an Autistic Disorder (AD) and were compared with the boys' and their mothers' ratings of the boys' anxiety. There was a significant difference between the self-ratings given by the boys and ratings given about them by their mothers. Further, only the boys' self-ratings of their anxiety significantly predicted the HPA axis responses and neither were significantly related to SAM axis responses. Some boys showed cortisol responses which were similar to that previously reported in children who had suffered chronic and severe anxiety arising from stressful social interactions. As well as suggesting that some boys with an AD can provide valid self-assessments of their anxiety, these data also point to the presence of very high levels of chronic HPA-axis arousal and consequent chronic anxiety in these boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Guo, Dianjing; Chen, Fang; Dixon, Richard A

    2002-11-01

    Microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.) contained coniferaldehyde 5-hydroxylase activity and immunodetectable caffeic acid 3-O-methyltransferase (COMT), and catalyzed the S-adenosyl L-methionine (SAM) dependent methylation of caffeic acid, caffeyl aldehyde and caffeyl alcohol. When supplied with NADPH and SAM, the microsomes converted caffeyl aldehyde to coniferaldehyde, 5-hydroxyconiferaldehyde, and traces of sinapaldehyde. Coniferaldehyde was a better precursor of sinapaldehyde than was 5-hydroxyconiferaldehyde. The alfalfa microsomes could not metabolize 4-coumaric acid, 4-coumaraldehyde, 4-coumaroyl CoA, or ferulic acid. No metabolism of monolignol precursors was observed in microsomal preparations from transgenic alfalfa down-regulated in COMT expression. In most microsomal preparations, the level of the metabolic conversions was independent of added recombinant COMT. Taken together, the data provide only limited support for the concept of metabolic channeling in the biosynthesis of S monolignols via coniferaldehyde.

  2. Boron (B) deprivation increases plasma homocysteine and decreases liver S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in rats

    Science.gov (United States)

    The diverse effects of B deprivation suggest that B affects a biomolecule involved in a variety of biochemical reactions. An experiment was conducted to determine whether dietary B affects the liver concentration of SAM, a frequently used enzyme substrate, especially for methylation reactions that y...

  3. Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort

    Directory of Open Access Journals (Sweden)

    Kyungsoo Ha

    2016-11-01

    Full Text Available Most histone methyltransferases (HMTase harbor a predicted Su(var3–9, Enhancer-of-zeste, Trithorax (SET domain, which transfers a methyl group to a lysine residue in their substrates. Mutations of the SET domains were reported to cause intellectual disability syndromes such as Sotos, Weaver, or Kabuki syndromes. Sotos syndrome is an overgrowth syndrome with intellectual disability caused by haploinsufficiency of the nuclear receptor binding SET domain protein 1 (NSD1 gene, an HMTase at 5q35.2–35.3. Here, we analyzed NSD1 in 34 Brazilian Sotos patients and identified three novel and eight known mutations. Using protein modeling and bioinformatic approaches, we evaluated the effects of one novel (I2007F and 21 previously reported missense mutations in the SET domain. For the I2007F mutation, we observed conformational change and loss of structural stability in Molecular Dynamics (MD simulations which may lead to loss-of-function of the SET domain. For six mutations near the ligand-binding site we observed in simulations steric clashes with neighboring side chains near the substrate S-Adenosyl methionine (SAM binding site, which may disrupt the enzymatic activity of NSD1. These results point to a structural mechanism underlying the pathology of the NSD1 missense mutations in the SET domain in Sotos syndrome. NSD1 mutations were identified in only 32% of the Brazilian Sotos patients in our study cohort suggesting other genes (including unknown disease genes underlie the molecular etiology for the majority of these patients. Our studies also found NSD1 expression to be profound in human fetal brain and cerebellum, accounting for prenatal onset and hypoplasia of cerebellar vermis seen in Sotos syndrome.

  4. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA.

  5. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard

    International Nuclear Information System (INIS)

    LeDuc, Danika L.; AbdelSamie, Manal; Montes-Bayon, Maria; Wu, Carol P.; Reisinger, Sarah J.; Terry, Norman

    2006-01-01

    A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., Boeck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APS x SMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT. - Simultaneous overexpression of APS and SMT genes in Indian mustard greatly increases ability to accumulate selenate

  6. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Kano

    Full Text Available Spermine and spermidine, natural polyamines, suppress lymphocyte function-associated antigen 1 (LFA-1 expression and its associated cellular functions through mechanisms that remain unknown. Inhibition of ornithine decarboxylase, which is required for polyamine synthesis, in Jurkat cells by 3 mM D,L-alpha-difluoromethylornithine hydrochloride (DFMO significantly decreased spermine and spermidine concentrations and was associated with decreased DNA methyltransferase (Dnmt activity, enhanced demethylation of the LFA-1 gene (ITGAL promoter area, and increased CD11a expression. Supplementation with extracellular spermine (500 µM of cells pretreated with DFMO significantly increased polyamine concentrations, increased Dnmt activity, enhanced methylation of the ITGAL promoter, and decreased CD11a expression. It has been shown that changes in intracellular polyamine concentrations affect activities of -adenosyl-L-methionine-decaroboxylase, and, as a result, affect concentrations of the methyl group donor, S-adenosylmethionine (SAM, and of the competitive Dnmt inhibitor, decarboxylated SAM. Additional treatments designed to increase the amount of SAM and decrease the amount of decarboxylated SAM-such as treatment with methylglyoxal bis-guanylhydrazone (an inhibitor of S-adenosyl-L-methionine-decaroboxylase and SAM supplementation-successfully decreased CD11a expression. Western blot analyses revealed that neither DFMO nor spermine supplementation affected the amount of active Ras-proximate-1, a member of the Ras superfamily of small GTPases and a key protein for regulation of CD11a expression. The results of this study suggest that polyamine-induced suppression of LFA-1 expression occurs via enhanced methylation of ITGAL.

  7. Increasing the fill factor of inverted P3HT:PCBM solar cells through surface modification of Al-doped ZnO via phosphonic acid-anchored C60 SAMs

    Energy Technology Data Exchange (ETDEWEB)

    Stubhan, Tobias [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Salinas, Michael; Halik, Marcus [Organic Materials and Devices (OMD)-Institute of Polymer Materials, University Erlangen-Nuremberg, Erlangen (Germany); Ebel, Alexander; Hirsch, Andreas [Institute for Organic Chemistry II, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Krebs, Frederick C. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Brabec, Christoph J. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany)

    2012-05-15

    The influence of aluminum-doped zinc oxide (AZO) electron extraction layers modified with self-assembled monolayers (SAMs) on inverted polymer solar cells is investigated. It is found that AZO modification with phosphonic acid-anchored Fullerene-SAMs leads to a reduction of the series resistance, while increasing the parallel resistance. This results in an increased efficiency from 2.9 to 3.3%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Kto samõi bogatõi v Estonii / Sten-Aleks Pihlak, Kärt Blumberg, Lemmi Kann

    Index Scriptorium Estoniae

    Pihlak, Sten-Aleks

    2008-01-01

    Eesti laevatranspordi kolmik - Ain Hanschmidt, Enn Pant ja Kalev Järvelill on Äripäeva rikaste edetabelis esimesed. Viimaste kuude suure aktsiahinnalanguse tõttu on paljud Äripäeva rikaste edetabelis olijad kaotanud igast kolmest kroonist kaks. Artiklis selgitatakse miks on Äripäeva Rikaste TOPis vähe naisi. Lisad: Iz TOP-500 samõhh bogatõhh ljudei v Estonii; Reitingi bogatshei za prezhnije godõ; Metodika

  9. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong

    2012-01-01

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  10. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  11. Determination of catechol O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection

    NARCIS (Netherlands)

    Smit, N. P.; Pavel, S.; Kammeyer, A.; Westerhof, W.

    1990-01-01

    A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated

  12. A phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours

    NARCIS (Netherlands)

    Paridaens, R; Uges, DRA; Barbet, N; Choi, L; Seeghers, M; van der Graaf, WTA; Groen, HJM; Dumez, H; Van Buuren, [No Value; Muskiet, F; Capdeville, R; van Oosterom, AT; de Vries, EGE

    Because tumour cell proliferation is highly dependent upon up-regulation of de-novo polyamine synthesis, inhibition of the polyamine synthesis pathway represents a potential target for anticancer therapy. SAM486A (CGP 48664) is a new inhibitor of the polyamine biosynthetic enzyme

  13. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    International Nuclear Information System (INIS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-01-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  14. Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianbin, E-mail: xbliu@imr.ac.cn; Shan, Dayong; Song, Yingwei; Han, En-hou

    2015-01-15

    The influence of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism have been investigated by electrochemical measurements, scanning electron microscopy (SEM) observation and X-ray photoelectron spectroscopy (XPS) analysis. The self-assembled experiment on the AM60B magnesium alloy indicates that the corrosion susceptibility decreases with increasing assembled time until 24 h on cast AM60B alloy and then increases with increase of the assembled time proved by EIS measurement and potentiodynamic curves. The self-assembled experiments on pure magnesium and various heat treated cast AM60B magnesium alloy illuminate that the dissolved aluminum in magnesium solid solution is the key factor for assembled efficiency and is hard to self-assemble on the pure magnesium without aluminum. The corrosion resistance of self-assembled film on AM60B magnesium alloy is monotonically increasing with the dissolved aluminum. The results of XPS analysis reveal the assembled mechanism on AM60B and corroborate the function of Al element. - Highlights: • It is hard to self-assemble on the pure magnesium. • 24 h assembled film has the low corrosion susceptibility by EIS and polarization. • The corrosion susceptibility of SAMs film lie on the Al atom state in AM60B. • The corrosion susceptibility of SAMs film is decreasing with the dissolved Al.

  15. Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism

    International Nuclear Information System (INIS)

    Liu, Xianbin; Shan, Dayong; Song, Yingwei; Han, En-hou

    2015-01-01

    The influence of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism have been investigated by electrochemical measurements, scanning electron microscopy (SEM) observation and X-ray photoelectron spectroscopy (XPS) analysis. The self-assembled experiment on the AM60B magnesium alloy indicates that the corrosion susceptibility decreases with increasing assembled time until 24 h on cast AM60B alloy and then increases with increase of the assembled time proved by EIS measurement and potentiodynamic curves. The self-assembled experiments on pure magnesium and various heat treated cast AM60B magnesium alloy illuminate that the dissolved aluminum in magnesium solid solution is the key factor for assembled efficiency and is hard to self-assemble on the pure magnesium without aluminum. The corrosion resistance of self-assembled film on AM60B magnesium alloy is monotonically increasing with the dissolved aluminum. The results of XPS analysis reveal the assembled mechanism on AM60B and corroborate the function of Al element. - Highlights: • It is hard to self-assemble on the pure magnesium. • 24 h assembled film has the low corrosion susceptibility by EIS and polarization. • The corrosion susceptibility of SAMs film lie on the Al atom state in AM60B. • The corrosion susceptibility of SAMs film is decreasing with the dissolved Al

  16. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen, E-mail: carmen.moldovan@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Mihailescu, Carmen, E-mail: carmen_mihail28@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Stan, Dana, E-mail: dana_stan2005@yahoo.com [DDS Diagnostic, 1 Segovia Street, Bucharest (Romania); Ruta, Lavinia, E-mail: laviniacoco@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Iosub, Rodica, E-mail: rodica.iosub@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Gavrila, Raluca, E-mail: raluca.gavrila@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Purica, Munizer, E-mail: munizer.purica@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Vasilica, Schiopu, E-mail: vasilica.schiopu@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania)

    2009-08-30

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab'){sub 2} fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  17. Simultaneous determination of four active components in Alisma orientale (Sam. Juz. by HPLC–DAD using a single reference standard

    Directory of Open Access Journals (Sweden)

    Yao-Wen Zhang

    2015-04-01

    Full Text Available A rapid, simple and practical high-performance liquid chromatography method coupled with diode array detector (HPLC–DAD was developed to evaluate the quality of Alisma orientale (Sam. Juz. through a simultaneous determination of four major active triterpenes using a single standard to determine the multi-components (SSDMCs. Alisol B 23-acetate was selected as the reference compound for calculating the relative response factors. All calibration curves showed good linearity (R2>0.9998 within test ranges. RSDs for intra- and inter-day of four analytes were less than 3.6% and 2.3%; the overall recovery was 92.1–110.2% (SSDMC. The proposed method was successfully applied to quantify the four components in 20 samples from different localities in China. Moreover, significant variations were demonstrated in the content of these compounds. In addition, hierarchical clustering analysis (HCA and principal components analysis (PCA were performed to differentiate and classify the samples based on the contents of Alisol C 23-acetate, Alisol A, Alisol A 24-acetate and Alisol B 23-acetate. This simple, rapid, low-cost and reliable HPLC–DAD method using SSDMC is suitable for routine quantitative analysis and quality control of A. orientale (Sam. Juz. Keywords: SSDMC, Alisma orientale (Sam. Juz, Quality control, HCA, PCA

  18. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  19. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  20. Reflections on the individual–collective relation in change agency formation in the Samsø renewable energy island project

    DEFF Research Database (Denmark)

    Carlsson, Monica Susanne

    2018-01-01

    This paper offers reflections on change agency formation in the Renewable Energy Island (REI) project on Samsø, following a field visit to the island in June 2016. Both individual and collective agency are set out as central for the processes leading to the change in the REI project, spurring ref...

  1. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    OpenAIRE

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted...

  2. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  3. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    Science.gov (United States)

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  4. Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA) as Critical In Situ Investigation for Targeting Mars Returned Samples

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team

    2018-04-01

    SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.

  5. Chemical imaging of structured SAMs with a novel SFG microscope

    Science.gov (United States)

    Hoffmann, Dominik M. P.; Kuhnke, Klaus; Kern, Klaus

    2002-11-01

    We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.

  6. Stool frequency recording in severe acute malnutrition ('StoolSAM'); an agreement study comparing maternal recall versus direct observation using diapers

    NARCIS (Netherlands)

    Voskuijl, Wieger; Potani, Isabel; Bandsma, Robert; Baan, Anne; White, Sarah; Bourdon, Celine; Kerac, Marko

    2017-01-01

    Background: Approximately 50% of the deaths of children under the age of 5 can be attributed to undernutrition, which also encompasses severe acute malnutrition (SAM). Diarrhoea is strongly associated with these deaths and is commonly diagnosed solely based on stool frequency and consistency

  7. Efecto de la polietilenimina en la actividad catalítica de la peroxidasa de rábano (horseradish peroxidase inmovilizada en electrodos de oro modificados con monocapas autoensambladas de tioles (SAMs.

    Directory of Open Access Journals (Sweden)

    Pedro R. Matheus

    2009-05-01

    Full Text Available Effect of the Polyethyleneimine in the Activity Catalytic of the horseradish peroxidase Immobilized on Gold Electrodes Modified with a Self-assembled Monolayer of Thiols (SAMs. Studies were conducted bycyclic voltammetry (CV to investigate the effect of the polymer polyethyleneimine (PEI in the electrochemical reversibility of the mediator thionine and thus the catalytic activity of the enzyme horseradish peroxidase of recombinant HRP-NHis (horseradish peroxidase to the has been added to a chain of six histidine in the extreme N-terminal protein. This self produced monolayers of thiols (SAMS on gold electrodes, with chemical modifications obtained through successive stages in the solid phase of the electrode. The gold electrodes were modified with monolayer SAM-TOA-[ANTA/DADOO] -Co2+ [SAM: self-assembled monolayers of thiols, TOA: dithioctic acid, ANTA: nitrilotriacetic acid, DADOO: 1,8-diamino-3,6-dioxa octane]. The results showed that the presence of the polymer improves the electrochemical reversibility of the mediator to endure catalyticcurrents as high as those that are obtained with molar ratios ANTA:DADOO 10:1 in the absence of PEI, and improve the response voltammetric obtained.

  8. GoSam 2.0. Automated one loop calculations within and beyond the standard model

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Deutsches Elektronen-Synchrotron

    2014-10-01

    We present GoSam 2.0, a fully automated framework for the generation and evaluation of one loop amplitudes in multi leg processes. The new version offers numerous improvements both on generational aspects as well as on the reduction side. This leads to a faster and more stable code for calculations within and beyond the Standard Model. Furthermore it contains the extended version of the standardized interface to Monte Carlo programs which allows for an easy combination with other existing tools. We briefly describe the conceptual innovations and present some phenomenological results.

  9. Isolation and Molecular Characterization of Two Lectins from Dwarf Elder (Sambucus ebulus L. Blossoms Related to the Sam n1 Allergen

    Directory of Open Access Journals (Sweden)

    Tomas Girbes

    2013-10-01

    Full Text Available Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L. blossoms express two D-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin and SELblo (B-B lectin—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.

  10. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    International Nuclear Information System (INIS)

    Cicmil, Nenad

    2008-01-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N 5 ,N 10 -methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å

  11. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  12. Granular statistical mechanics - Building on the legacy of Sir Sam Edwards

    Science.gov (United States)

    Blumenfeld, Raphael

    When Sir Sam Edwards laid down the foundations for the statistical mechanics of jammed granular materials he opened a new field in soft condensed matter and many followed. In this presentation we review briefly the Edwards formalism and some of its less discussed consequences. We point out that the formalism is useful for other classes of systems - cellular and porous materials. A certain shortcoming of the original formalism is then discussed and a modification to overcome it is proposed. Finally, a derivation of an equation of state with the new formalism is presented; the equation of state is analogous to the PVT relation for thermal gases, relating the volume, the boundary stress and measures of the structural and stress fluctuations. NUDT, Changsha, China, Imperial College London, UK, Cambridge University, UK.

  13. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  14. O6-Methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents.

    Science.gov (United States)

    Walter, T; van Brakel, B; Vercherat, C; Hervieu, V; Forestier, J; Chayvialle, J-A; Molin, Y; Lombard-Bohas, C; Joly, M-O; Scoazec, J-Y

    2015-02-03

    O(6)-Methylguanine-DNA methyltransferase (MGMT) loss of expression has been suggested to be predictive of response to temozolomide in neuroendocrine tumours (NETs), but so far, only limited data are available. We evaluated the prognostic and predictive value of MGMT status, assessed by two molecular methods and immunohistochemistry, in a large series of NETs of different origins. A total of 107 patients, including 53 treated by alkylants (temozolomide, dacarbazine or streptozotocin), were retrospectively studied. In each case, we used methyl-specific PCR (MS-PCR) and pyrosequencing for evaluation of promoter methylation and immunohistochemistry for evaluation of protein status. MGMT promoter methylation was detected in 12 out of 99 (12%) interpretable cases by MS-PCR and in 24 out of 99 (24%) by pyrosequencing. O(6)-Methylguanine-DNA methyltransferase loss of expression was observed in 29 out of 89 (33%) interpretable cases. Status of MGMT was not correlated with overall survival (OS) from diagnosis. Progression-free survival and OS from first alkylant use (temozolomide, dacarbazine and streptozotocin) were higher in patients with MGMT protein loss (respectively, 20.2 vs 7.6 months, Palkylant-based chemotherapy in NETs.

  15. Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II)

    DEFF Research Database (Denmark)

    Lebars, Isabelle; Husson, Clotilde; Yoshizawa, Satoko

    2007-01-01

    The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide......RNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar...

  16. The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Gohain, Neelakshi; Thomashow, Linda S.; Mavrodi, Dmitri V.; Blankenfeldt, Wulf

    2006-01-01

    PhzM, an S-adenosylmethionine-dependent methyltransferase enzyme that catalyzes a reaction involved in the biosynthesis of pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and selenomethionine-labelled crystals is reported. Pyocyanin, phenazine-1-carboxylic acid and more than 70 related compounds collectively known as phenazines are produced by various species of Pseudomonas, including the fluorescent pseudomonad P. aeruginosa, a Gram-negative opportunistic pathogen in humans and animals. P. aeruginosa synthesizes a characteristic blue water-soluble compound called pyocyanin (1-hydroxy-5-methyl-phenazine). Two enzymes designated PhzM and PhzS are involved in the terminal steps of its synthesis and very little is known about these enzymes. In this study, PhzM, a dimeric S-adenosylmethionine-dependent methyltransferase, was purified and crystallized from PEG 3350/sodium cacodylate/sodium citrate pH 6.5. The crystals belong to space group P1, with unit-cell parameters a = 46.1, b = 61.8, c = 69.6 Å, α = 96.3, β = 106.6, γ = 106.9°. They contain one dimer in the asymmetric unit and diffract to a resolution of 1.8 Å. Anomalous data to 2.3 Å resolution have been collected from seleno-l-methionine-labelled PhzM

  17. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    Kanno, Yuichiro; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-01-01

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR

  18. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.

  19. Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) S-adenosylmethionine methyltransferase

    International Nuclear Information System (INIS)

    Marapakala, Kavitha; Ajees, A. Abdul; Qin, Jie; Sankaran, Banumathi; Rosen, Barry P.

    2010-01-01

    A common biotransformation of arsenic is methylation to monomethylated, dimethylated and trimethylated species, which is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase. ArsM from the acidothermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized by the hanging-drop vapor-diffusion method and diffraction data were collected to 1.76 Å resolution. Arsenic is the most ubiquitous environmental toxin and carcinogen and consequently ranks first on the Environmental Protection Agency’s Superfund Priority List of Hazardous Substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. A common biotransformation is methylation to monomethylated, dimethylated and trimethylated species. Methylation is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase, an enzyme (EC 2.1.1.137) that is found in members of every kingdom from bacteria to humans. ArsM from the thermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 84.85, b = 46.89, c = 100.35 Å, β = 114.25° and one molecule in the asymmetric unit. Diffraction data were collected at the Advanced Light Source and were processed to a resolution of 1.76 Å

  20. Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Kim, Seon-Hee; Cho, Hye-Jeong; Sohn, Woon-Mok; Ahn, Chun-Seob; Kong, Yoon; Yang, Hyun-Jong; Bae, Young-An

    2015-08-01

    Despite recent reports regarding the biology of cytosine methylation in Schistosoma mansoni, the impact of the regulatory machinery remains unclear in diverse platyhelminthes. This ambiguity is reinforced by discoveries of DNA methyltransferase 2 (DNMT2)-only organisms and the substrate specificity of DNMT2 preferential to RNA molecules. Here, we characterized a novel DNA methyltransferase, named CsDNMT2, in a liver fluke Clonorchis sinensis. The protein exhibited structural properties conserved in other members of the DNMT2 family. The native and recombinant CsDNMT2 exhibited considerable enzymatic activity on DNA. The spatiotemporal expression of CsDNMT2 mirrored that of 5-methylcytosine (5 mC), both of which were elevated in the C. sinensis eggs. However, CsDNMT2 and 5 mC were marginally detected in other histological regions of C. sinensis adults including ovaries and seminal receptacle. The methylation site seemed not related to genomic loci occupied by progenies of an active long-terminal-repeat retrotransposon. Taken together, our data strongly suggest that C. sinensis has preserved the functional DNA methylation machinery and that DNMT2 acts as a genuine alternative to DNMT1/DNMT3 to methylate DNA in the DNMT2-only organism. The epigenetic regulation would target functional genes primarily involved in the formation and/or maturation of eggs, rather than retrotransposons.

  1. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  2. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Replacing -CH2CH2- with -CONH- does not significantly change rates of charge transport through Ag(TS)-SAM//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Thuo, Martin M; Reus, William F; Simeone, Felice C; Kim, Choongik; Schulz, Michael D; Yoon, Hyo Jae; Whitesides, George M

    2012-07-04

    This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.

  4. Brain Histamine -Methyltransferase as a Possible Target of Treatment for Methamphetamine Overdose

    Directory of Open Access Journals (Sweden)

    Junichi Kitanaka

    2016-01-01

    Full Text Available Stereotypical behaviors induced by methamphetamine (METH overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N -methyltransferase (HMT is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood-brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose.

  5. Biodistribution of samarium-153-EDTMP in rats treated with docetaxel Biodistribuição de EDTMP-153-samário em ratos tratados com docetaxel

    Directory of Open Access Journals (Sweden)

    Arthur Villarim Neto

    2009-02-01

    Full Text Available PURPOSE: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. METHODS: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium group received docetaxel (15 mg/kg intraperitoneally in two cycles 11 days apart. The S (samarium/control group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25µCi. After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland. RESULTS: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g compared (pOBJETIVO: Muitos pacientes com metástases ósseas são tratados com radiofármacos associados com quimioterapia para alívio da dor óssea. O objetivo do trabalho foi estudar a influência do docetaxel na biodistribuição do EDTMP-153-samário nos ossos e outros órgãos de ratos. MÉTODOS: Ratos Wistar foram aleatoriamente alocados em 2 grupos de 6 animais cada. O grupo DS (docetaxel/samário recebeu docetaxel (15 mg/kg intraperitoneal em dois ciclos com 11 dias de intervalo. Os ratos do grupo S (samário/controle não foram tratados com docetaxel. Nove dias após a quimioterapia, todos os animais receberam 0,1ml de EDTMP-153-samário via plexo orbital (25µCi. Após 2 horas, os animais foram mortos e feitas biópsias de cérebro, tireóide, pulmão, coração, estômago, cólon, fígado, rim e fêmures. O percentual de radioatividade por grama (%ATI/g de tecido de cada bi

  6. H-1 chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    NARCIS (Netherlands)

    Sijens, PE; Verbruggen, KT; Meiners, LC; Soorani-Lunsing, RJ; Rake, JP; Oudkerk, M

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR

  7. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency.

    NARCIS (Netherlands)

    Schmidt, A.; Marescau, B.; Boehm, E.A.; Renema, W.K.J.; Peco, R.; Das, A.; Steinfeld, R.; Chan, S.; Wallis, J.; Davidoff, M.; Ullrich, K.; Waldschutz, R.; Heerschap, A.; Deyn, P.P. de; Neubauer, S.; Isbrandt, D.

    2004-01-01

    We generated a knockout mouse model for guanidinoacetate N-methyltransferase (GAMT) deficiency (MIM 601240), the first discovered human creatine deficiency syndrome, by gene targeting in embryonic stem cells. Disruption of the open reading frame of the murine GAMT gene in the first exon resulted in

  8. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186

    International Nuclear Information System (INIS)

    Som, S.; Friedman, S.

    1991-01-01

    DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet. The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase

  9. Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study

    Science.gov (United States)

    Canepa, M.; Lavagnino, L.; Pasquali, L.; Moroni, R.; Bisio, F.; DeRenzi, V.; Terreni, S.; Mattera, L.

    2009-07-01

    We report on a metastable deexcitation spectroscopy investigation of the growth of L-cysteine layers deposited under UHV conditions on well-defined Au(110)- (1 × 2) and Au(111) surfaces. The interaction of He* with molecular orbitals gave rise to well-defined UPS-like Penning spectra which provided information on the SAM assembly dynamics and adsorption configurations. Penning spectra have been interpreted through comparison with molecular orbital DFT calculations of the free molecule and have been compared with XPS results of previous works. Regarding adsorption of first-layer molecules at room temperature (RT), two different growth regimes were observed. On Au(110), the absence of spectral features related to orbitals associated with SH groups indicated the formation of a compact SAM of thiolate molecules. On Au(111), the data demonstrated the simultaneous presence, since the early stages of growth, of strongly and weakly bound molecules, the latter showing intact SH groups. The different growth mode was tentatively assigned to the added rows of the reconstructed Au(110) surface which behave as extended defects effectively promoting the formation of the S-Au bond. The growth of the second molecular layer was instead observed to proceed similarly for both substrates. Second-layer molecules preferably adopt an adsorption configuration in which the SH group protrudes into the vacuum side.

  10. Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study

    International Nuclear Information System (INIS)

    Canepa, M; Lavagnino, L; Moroni, R; Bisio, F; Terreni, S; Mattera, L; Pasquali, L; De Renzi, V

    2009-01-01

    We report on a metastable deexcitation spectroscopy investigation of the growth of L-cysteine layers deposited under UHV conditions on well-defined Au(110)- (1 x 2) and Au(111) surfaces. The interaction of He* with molecular orbitals gave rise to well-defined UPS-like Penning spectra which provided information on the SAM assembly dynamics and adsorption configurations. Penning spectra have been interpreted through comparison with molecular orbital DFT calculations of the free molecule and have been compared with XPS results of previous works. Regarding adsorption of first-layer molecules at room temperature (RT), two different growth regimes were observed. On Au(110), the absence of spectral features related to orbitals associated with SH groups indicated the formation of a compact SAM of thiolate molecules. On Au(111), the data demonstrated the simultaneous presence, since the early stages of growth, of strongly and weakly bound molecules, the latter showing intact SH groups. The different growth mode was tentatively assigned to the added rows of the reconstructed Au(110) surface which behave as extended defects effectively promoting the formation of the S-Au bond. The growth of the second molecular layer was instead observed to proceed similarly for both substrates. Second-layer molecules preferably adopt an adsorption configuration in which the SH group protrudes into the vacuum side.

  11. DNA Electrochemistry Shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors.

    Science.gov (United States)

    Furst, Ariel L; Barton, Jacqueline K

    2015-07-23

    DNMT1, the most abundant human methyltransferase, is responsible for translating the correct methylation pattern during DNA replication, and aberrant methylation by DNMT1 has been linked to tumorigenesis. We have developed a sensitive signal-on electrochemical assay for the measurement of DNMT1 activity in crude tissue lysates. We have further analyzed ten tumor sets and have found a direct correlation between DNMT1 hyperactivity and tumorous tissue. In the majority of samples analyzed, the tumorous tissue has significantly higher DNMT1 activity than the healthy adjacent tissue. No such correlation is observed in measurements of DNMT1 expression by qPCR, DNMT1 protein abundance by western blotting, or DNMT1 activity using a radiometric DNA labeling assay. DNMT1 hyperactivity can result from both protein overexpression and enzyme hyperactivity. DNMT1 activity measured electrochemically provides a direct measure of activity in cell lysates and, as a result, provides a sensitive and early indication of cancerous transformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  13. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Cicmil, Nenad, E-mail: cicmil@uiuc.edu [Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2008-03-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N{sup 5},N{sup 10}-methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å.

  14. Turning a Substrate Peptide into a Potent Inhibitor for the Histone Methyltransferase SETD8

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Russell A.; Zhu, Haizhong; Upadhyay, Anup K.; Bodelle, Pierre M.; Hutchins, Charles W.; Torrent, Maricel; Marin, Violeta L.; Yu, Wenyu; Vedadi, Masoud; Li, Fengling; Brown, Peter J.; Pappano, William N.; Sun, Chaohong; Petros, Andrew M.

    2016-12-08

    SETD8 is a histone H4–K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 μM) and selective norleucine containing peptide inhibitor has been obtained.

  15. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    Science.gov (United States)

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (pniger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  17. The two umuDC-like operons, samAB and umuDCST, in Salmonella typhimurium: The umuDCST operon may reduce UV-mutagenesis-promoting ability of the samAB operon

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Hakura, Atsushi; Watanabe, Masahiko; Yamada, Masami; Sofuni, Toshio; Nakai, Yasuharu; Murayama, Somay Y.

    1993-01-01

    Salmonella typhimurium, especially its derivatives containing pKM101 plasmid, has been widely used in the Ames test for the detection of environmental mutagens and carcinogens. It is known, however, that if the pKM101 plasmid is eliminated, S. typhimurium itself shows a much weaker mutagenic response to UV and some chemical mutagens than does Escherichia coli. In fact, certain potent base-change type mutagens, such as furylfuramide and aflatoxin B 1 , are nonmutagenic to S. typhimurium in the absence of pKM101, whereas they are strongly mutagenic to S. typhimurium in the presence of pKM101 plasmid as well as to E. coli. The low mutability can be restored to levels comparable to E. coli by introducing the plasmid carrying the E. coli umuDC operon or the pKM101 plasmid carrying mucAB operon. Salmonella typhimurium has an SOS regulatory system which resembles that of E. coli. Thus, it was suggested that S. typhimurium is deficient in the function of umuDC operon, which plays an essential role in UV and most chemical mutagenesis in E. coli. In order to clarify the implications of umuDC genes in mutagenesis and antimutagenesis in typhimurium, we have independently screened the umuDC-like genes of S. typhimurium TA1538. Consequently, we have cloned another umuDC-like operon which is 40% diverged from the aforementioned umuDC operon of S. typhimurium LT2 at the nucleotide level (16). We have termed the cloned DNA the samAB (Salmonella; mutagenesis) operon, and tentatively referred to the umuDC operon cloned from S. typhimurium LT2 (27,31) as the umuDC ST operon. Based on the results of the Southern hybridization experiment, we concluded that the two sets of umuDC-like operons reside in the same cells of S. typhimurium LT2 and TA1538. Our results also suggested that the umuDC ST operon reduces the UV-mutagenesis promoting ability of the samAB operon when the two operons are present on the same multi-copy number plasmid

  18. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  19. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  20. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.

    Science.gov (United States)

    Kunjapur, Aditya M; Hyun, Jason C; Prather, Kristala L J

    2016-04-11

    Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and L-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-L-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33% (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25% increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 ± 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or

  1. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  2. Konsep Kehidupan Dalam Ruang Pada Kelenteng Sam Kouw Di Surakarta Studi Kasus : Kelenteng T’ien Kok Sie, Kelenteng Poo An Kiong Dan Cetiya Ksiti Garbha

    Directory of Open Access Journals (Sweden)

    Dyah Susilowati Pradnya Paramita

    2008-09-01

    Full Text Available The kelenteng was used by three traditional religions brought by Chinese traders, namely Tao, Khonghucu and Buddhism which then together named Sam Kouw (Tri Darma The kelenteng Sam Kouw had many worshiped sculptures to which their worship ritualwas based. The kelenteng was taken care by a suhu acted as a mediator during the worship. Due to his role in worship, the Suhu and his family also stayed in the kelenteng.Based on that phenomenon, this research is focused on the rooms usage in kelenteng as a place of interaction of both worship and household routines. This research applies naturalistic qualitative methodology. The researcher played as the main instrument in collecting the data by observation, interview. The data gained during the research was formulated to some topics analyzed inductively before the researcher conducted an inter -topic dialog.. Thi s researched was conducted in three objects with cross sectional method to strengthen the data and sharpen the focus of observation. The three objects are: 1 Kelenteng T’ien Kok Sie in Ketandan; 2 Kelenteng Poo An Kiong in Coyudan, and 3 Cetiya Ksiti Garbha in Srambatan  The result of the research shows that kelenteng Sam Kouw has a public worship room in front of kelenteng , has a particular worship room in behind of kelenteng , and always has a meditation room that has always perpendicular a prominent god altar.

  3. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells.

    Science.gov (United States)

    Cai, Yi; Tsai, Hsing-Chen; Yen, Ray-Whay Chiu; Zhang, Yang W; Kong, Xiangqian; Wang, Wei; Xia, Limin; Baylin, Stephen B

    2017-04-01

    Reversing DNA methylation abnormalities and associated gene silencing, through inhibiting DNA methyltransferases (DNMTs) is an important potential cancer therapy paradigm. Maximizing this potential requires defining precisely how these enzymes maintain genome-wide, cancer-specific DNA methylation. To date, there is incomplete understanding of precisely how the three DNMTs, 1, 3A, and 3B, interact for maintaining DNA methylation abnormalities in cancer. By combining genetic and shRNA depletion strategies, we define not only a dominant role for DNA methyltransferase 1 (DNMT1) but also distinct roles of 3A and 3B in genome-wide DNA methylation maintenance. Lowering DNMT1 below a threshold level is required for maximal loss of DNA methylation at all genomic regions, including gene body and enhancer regions, and for maximally reversing abnormal promoter DNA hypermethylation and associated gene silencing to reexpress key genes. It is difficult to reach this threshold with patient-tolerable doses of current DNMT inhibitors (DNMTIs). We show that new approaches, like decreasing the DNMT targeting protein, UHRF1, can augment the DNA demethylation capacities of existing DNA methylation inhibitors for fully realizing their therapeutic potential. © 2017 Cai et al.; Published by Cold Spring Harbor Laboratory Press.

  4. The 2’-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zamudio, J. R.; Mittra, B.; Foldynová-Trantírková, Silvie; Zeiner, G. M.; Lukeš, Julius; Bujnicki, J. M.; Sturm, N. R.; Campbell, D. A.

    2007-01-01

    Roč. 27, č. 17 (2007), s. 6084-6092 ISSN 0270-7306 R&D Projects: GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : methylation * Trypanosoma brucei * methyltransferase * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.420, year: 2007

  5. Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: evidence for covalent catalysis

    International Nuclear Information System (INIS)

    Santi, D.V.; Hardy, L.W.

    1987-01-01

    tRNA (Ura-5-) methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the 5-carbon of a specific Urd residue in tRNA. This results in stoichiometric release of tritium from [5- 3 H] Urd-labeled substrate tRNA isolated from methyltransferase-deficient Escherichia coli. The enzyme also catalyzes an AdoMet-independent exchange reaction between [5- 3 H]-Urd-labeled substrate tRNA and protons of water at a rate that is about 1% that of the normal methylation reaction, but with identical stoichiometry. S-Adenosylhomocysteine inhibits the rate of the exchange reaction by 2-3-fold, whereas an analog having the sulfur of AdoMet replaced by nitrogen accelerates the exchange reaction 9-fold. In the presence (but not absence) of AdoMet, 5-fluorouracil-substituted tRNA (FUra-tRNA) leads to the first-order inactivation of the enzyme. This is accompanied by the formation of a stable covalent complex containing the enzyme, FUra-tRNA, and the methyl group AdoMet. A mechanism for catalysis is proposed that explains both the 5-H exchange reaction and the inhibition by FUra-tRNA: the enzyme forms a covalent Michael adduct with substrate or inhibitor tRNA by attack of a nucleophilic group of the enzyme at carbon 6 of the pyrimidine residue to be modified. As a result, an anion equivalent is generated at carbon 5 that is sufficiently reactive to be methylated by AdoMet. Preliminary experiments and precedents suggest that the nucleophilic catalyst of the enzyme is a thiol group of cysteine. The potent irreversible inhibition by FUra-tRNA suggest that a mechanism for the RNA effects of FUra may also involve irreversible inhibition of RNA-modifying enzymes

  6. Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylation damage in fission yeast.

    Science.gov (United States)

    Lim, Kim Kiat; Nguyen, Thi Thuy Trang; Li, Adelicia Yongling; Yeo, Yee Phan; Chen, Ee Sin

    2018-04-09

    The Set2 methyltransferase and its target, histone H3 lysine 36 (H3K36), affect chromatin architecture during the transcription and repair of DNA double-stranded breaks. Set2 also confers resistance against the alkylating agent, methyl methanesulfonate (MMS), through an unknown mechanism. Here, we show that Schizosaccharomyces pombe (S. pombe) exhibit MMS hypersensitivity when expressing a set2 mutant lacking the catalytic histone methyltransferase domain or a H3K36R mutant (reminiscent of a set2-null mutant). Set2 acts synergistically with base excision repair factors but epistatically with nucleotide excision repair (NER) factors, and determines the timely nuclear accumulation of the NER initiator, Rhp23, in response to MMS. Set2 facilitates Rhp23 recruitment to chromatin at the brc1+ locus, presumably to repair alkylating damage and regulate the expression of brc1+ in response to MMS. Set2 also show epistasis with DNA damage checkpoint proteins; regulates the activation of Chk1, a DNA damage response effector kinase; and acts in a similar functional group as proteins involved in homologous recombination. Consistently, Set2 and H3K36 ensure the dynamicity of Rhp54 in DNA repair foci formation after MMS treatment. Overall, our results indicate a novel role for Set2/H3K36me in coordinating the recruitment of DNA repair machineries to timely manage alkylating damage.

  7. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli.

    Science.gov (United States)

    Li, Kunhua; Li, Gengnan; Bradbury, Louis M T; Hanson, Andrew D; Bruner, Steven D

    2016-02-01

    Homocysteine S-methyltransferases (HMTs, EC 2.1.1.0) catalyse the conversion of homocysteine to methionine using S-methylmethionine or S-adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among micro-organisms, plants and animals. Additionally, HMTs play a role in metabolite repair of S-adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted zinc-binding motif in the enzyme active site. In the present study, we demonstrate X-ray structures for MmuM in oxidized, apo and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate-binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and cofactor repair. © 2016 Authors; published by Portland Press Limited.

  8. Protective Role of Maternal P.VAL158MET Catechol-O-methyltransferase Polymorphism against Early-Onset Preeclampsia and its Complications

    Directory of Open Access Journals (Sweden)

    Krnjeta Tijana

    2016-09-01

    Full Text Available Background: Up until now there have been contradictory data about the association between p.Val158Met catechol-O-methyltransferase (COMT polymorphism and risk of preeclampsia (PE. The goal of this study was to assess the potential correlation between p.Val158Met COMT polymorphism and risk of early-onset PE, risk of a severe form of early-onset PE, as well as risk of small-for-gestationalage (SGA complicating PE.

  9. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    Science.gov (United States)

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  10. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  11. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  12. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis.

    Science.gov (United States)

    Wang, Yaya; Deng, Zixin; Qu, Xudong

    2014-01-01

    Fluorination has been widely used in chemical synthesis, but is rare in nature. The only known biological fluorination scope is represented by the fl pathway from Streptomyces cattleya that produces fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Here we report the identification of a novel pathway for FAc and 4-FT biosynthesis from the actinomycetoma-causing pathogen Nocardia brasiliensis ATCC 700358. The new pathway shares overall conservation with the fl pathway in S. cattleya. Biochemical characterization of the conserved domains revealed a novel fluorinase NobA that can biosynthesize 5'-fluoro-5'-deoxyadenosine (5'-FDA) from inorganic fluoride and S-adenosyl-l-methionine (SAM). The NobA shows similar halide specificity and characteristics to the fluorination enzyme FlA of the fl pathway. Kinetic parameters for fluoride ( K m 4153 μM, k cat 0.073 min (-1)) and SAM ( K m 416 μM, k cat 0.139 min (-1)) have been determined, revealing that NobA is slightly (2.3 fold) slower than FlA. Upon sequence comparison, we finally identified a distinct loop region in the fluorinases that probably accounts for the disparity of fluorination activity.

  13. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    Science.gov (United States)

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  14. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  15. DNA (Cytosine-C5) Methyltransferase Inhibition by Oligodeoxyribonucleotides Containing 2-(1H)-Pyrimidinone (Zebularine Aglycon) at the Enzymatic Target Site

    OpenAIRE

    van Bemmel, Dana M.; Brank, Adam S.; Eritja, Ramon; Marquez, Victor E.; Christman, Judith K.

    2009-01-01

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferas...

  16. Recoding painting? Repeated use of artwork in Cindy Sherman and Sam Taylor Wood

    Directory of Open Access Journals (Sweden)

    Dunja Radetic

    2012-12-01

    Through a theoretical analysis of two contemporary artworks by Cindy Sherman and Sam Taylor Wood, both based on earlier visual tradition, we will consider the effects of re-production of images as the re-production of deferred meaning. The intersystemic quotation such as painting - tableau vivant – coding by photographic and video technologies, works at different levels and creates high degree of ambiguity between the media and the images involved. This mediation produces disturbing effects on the viewer who has to recognize in the artwork an contaminated and elusive visual tradition, which displays a latent meanings and (reactivates memory images. In order to understand these complex layers it is necessary to consider the work and its subtext in terms of a shared temporality in which images, media and extratextual memories, interact.

  17. The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study

    Science.gov (United States)

    Manz, Christoph; Kobitski, Andrei Yu.; Samanta, Ayan; Jäschke, Andres; Nienhaus, G. Ulrich

    2018-03-01

    RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs

  18. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    Science.gov (United States)

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (peffects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase | Center for Cancer Research

    Science.gov (United States)

    HHAI methyltransferase (blue ribbon) bound to oligonucleotide (strands with bonds colored yellow and green) containing a pseudorotationally constrained sugar analogue at the target position (orange bonds with cyan atoms). The south-constrained pseudosugar is rotated about its flanking phosphodiester bonds, 90° from its initial position in B-form DNA, but short of a completely

  20. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample

    Directory of Open Access Journals (Sweden)

    Yu F

    2018-01-01

    Full Text Available Fei Yu,1,* Ya-min Xiong,1,* Song-cheng Yu,1 Lei-liang He,1 Shan-shan Niu,1 Yu-ming Wu,1 Jie Liu,1 Ling-bo Qu,2 Li-e Liu,1 Yong-jun Wu1 1College of Public Health, 2College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China *These authors contributed equally to this work Background: DNA methyltransferase 1 (DNMT1, a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase detection have focused on the prokaryote MTase and its activity.Methods: A magnetic fluorescence-linked immunosorbent assay (FLISA using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized.Results: Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1–1,500 ng/mL, the recovery was 91.67%–106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%–11.29% and 7.03%–11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001. The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter