WorldWideScience

Sample records for salt-and freshwater ice

  1. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  2. Investigation of road salts and biotic stressors on freshwater wetland communities.

    Science.gov (United States)

    Jones, Devin K; Mattes, Brian M; Hintz, William D; Schuler, Matthew S; Stoler, Aaron B; Lind, Lovisa A; Cooper, Reilly O; Relyea, Rick A

    2017-02-01

    The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl 2 ), at three environmentally relevant concentrations (150, 470, and 780 mg Cl - /L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Low-latitude ice cores and freshwater availability

    Science.gov (United States)

    Kehrwald, Natalie Marie

    2009-12-01

    Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of

  4. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  5. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  6. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    Science.gov (United States)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  7. Delicious ice cream, why does salt thaw ice?

    Science.gov (United States)

    Bagnoli, Franco

    2016-03-01

    Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.

  8. Influence of freshwater input on the skill of decadal forecast of sea ice in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    V. Zunz

    2015-03-01

    Full Text Available Recent studies have investigated the potential link between the freshwater input derived from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the trend in sea ice extent and concentration in simulations with data assimilation, spanning the period 1850–2009, as well as in retrospective forecasts (hindcasts initialised in 1980. In the simulations with data assimilation, the inclusion of an additional freshwater flux that follows an autoregressive process improves the reconstruction of the trend in ice extent and concentration between 1980 and 2009. This is linked to a better efficiency of the data assimilation procedure but can also be due to a better representation of the freshwater cycle in the Southern Ocean. The results of the hindcast simulations show that an adequate initial state, reconstructed thanks to the data assimilation procedure including an additional freshwater flux, can lead to an increase in the sea ice extent spanning several decades that is in agreement with satellite observations. In our hindcast simulations, an increase in sea ice extent is obtained even in the absence of any major change in the freshwater input over the last decades. Therefore, while the additional freshwater flux appears to play a key role in the reconstruction of the evolution of the sea ice in the simulation with data assimilation, it does not seem to be required in the hindcast simulations. The present work thus provides encouraging results for sea ice predictions in the Southern Ocean, as in our simulation the positive trend in ice extent over the last 30 years is largely determined by the state of the system in the late 1970s.

  9. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA.

    Science.gov (United States)

    Pietsch, Renée B; Vinatzer, Boris A; Schmale, David G

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas , respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae . Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae . Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae -caused plant disease outbreaks.

  10. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  11. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  12. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  13. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  14. The effects of snow and salt on ice table stability in University Valley, Antarctica

    Science.gov (United States)

    Williams, Kaj; Heldmann, Jennifer L.; McKay, Christopher P.; Mellon, Michael T.

    2018-01-01

    The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits and ii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.

  15. Interannual Variability of the Sea-Ice-Induced Salt Flux in the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, M.D.

    2001-01-01

    The Greenland Sea is one of the few places in the World Ocean where deep convection takes place. The convection process is initiated by a density increase originating from rapid cooling and/or a salt flux to the upper layer of the ocean due to brine rejection from ice formation (Rudels, 1990......; Visbeck and others, 1995). The predominant ice types in the Greenland Sea arc frazil/grease ice and pancake ice. A numerical model has been developed relating ice formation and decay of these ice types as observed by the SMMR and SSM/I microwave radiometers and evaluating their contribution to salt...... redistribution in the Greenland Sea. The model has been used to calculate spatial distribution of the annual integrated net salt flux to the Greenland Sea from ice production and advection for the period 1979-97....

  16. Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)

    Science.gov (United States)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.

    2017-12-01

    The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and

  17. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  18. Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt

    Science.gov (United States)

    Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro

    2015-01-01

    We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…

  19. Influence of de-icing salt chemistry on the corrosion behavior of AA6016

    DEFF Research Database (Denmark)

    Schoukens, Ine; Cavezza, Francesca; Cerezo, Jose

    2017-01-01

    De-icing salts are commonly used on European roads during winter and are usually based on chlorides of sodium, magnesium, or calcium. The salt selection depends on the local climate and legislation. Therefore, the chemical composition of the de-icing mixture can be very different within Europe. T...

  20. Sea-ice transport driving Southern Ocean salinity and its recent trends.

    Science.gov (United States)

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan

    2016-09-01

    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  1. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter–spring

    Directory of Open Access Journals (Sweden)

    K. Hara

    2017-07-01

    Full Text Available Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl−, Mg2+, K+, Ca2+, Br−, and iodine. Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14–3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl−, Br−, and iodine in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS SO42−. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  2. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    Science.gov (United States)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  3. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic

    DEFF Research Database (Denmark)

    Møller, Annette; Barkay, Tamar; Abu Al-Soud, Waleed

    2011-01-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial...... densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but...

  4. Impact of ice cover and freshwater discharge on the pelagic food web

    DEFF Research Database (Denmark)

    Nielsen, Torkel Gissel

    -scale ocean and the ice sheet - for two reasons. First, it is plausible that a sizable portion of the observed glacier acceleration and retreat was triggered by increased submarine melting of the glaciers’ margins. Second, the melt water from Greenland must transit through the fjord before reaching Greenland......Mass loss from the Greenland Ice Sheet (GrIS) quadrupled over the past two decades owing to increased surface melt and the widespread retreat and speedup of marine-terminating glaciers. These physical changes have sparked interest in Greenland’s glacial fjords - the conduits between the large......’s continental shelves - where it can impact the ocean circulation and the downstream marine ecosystems. Using data collected from several Greenland fjord/glacier systems we show that the freshwater discharge in these coastal waters is mediated by a complex interplay of atmospheric forcing, subglacial processes...

  5. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    Science.gov (United States)

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  7. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    Science.gov (United States)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  8. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile)

    Science.gov (United States)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C.

    2018-06-01

    Salt flat brines are a major source of minerals and especially lithium. Moreover, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats. Therefore, the efficient and sustainable exploitation of the brines they contain requires detailed knowledge about the hydrogeology of the system. A critical issue is the freshwater-brine mixing zone, which develops as a result of the mass balance between the recharged freshwater and the evaporating brine. The complex processes occurring in salt flats require a three-dimensional (3D) approach to assess the mixing zone geometry. In this study, a 3D map of the mixing zone in a salt flat is presented, using the Salar de Atacama as an example. This mapping procedure is proposed as the basis of computationally efficient three-dimensional numerical models, provided that the hydraulic heads of freshwater and mixed waters are corrected based on their density variations to convert them into brine heads. After this correction, the locations of lagoons and wetlands that are characteristic of the marginal zones of the salt flats coincide with the regional minimum water (brine) heads. The different morphologies of the mixing zone resulting from this 3D mapping have been interpreted using a two-dimensional (2D) flow and transport numerical model of an idealized cross-section of the mixing zone. The result of the model shows a slope of the mixing zone that is similar to that obtained by 3D mapping and lower than in previous models. To explain this geometry, the 2D model was used to evaluate the effects of heterogeneity in the mixing zone geometry. The higher the permeability of the upper aquifer is, the lower the slope and the shallower the mixing zone become. This occurs because most of the freshwater lateral recharge flows through the upper aquifer due to its much higher transmissivity, thus reducing the freshwater head. The presence of a few meters of highly permeable materials in the upper part of

  9. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  10. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    Science.gov (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  11. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    Science.gov (United States)

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  12. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica

    Science.gov (United States)

    Regan, Heather C.; Holland, Paul R.; Meredith, Michael P.; Pike, Jennifer

    2018-03-01

    During the second half of the twentieth century, the Antarctic Peninsula was subjected to a rapid increase in air temperatures. This was accompanied by a reduction in sea ice extent, increased precipitation and a dramatic retreat of glaciers associated with an increase in heat flux from deep ocean water masses. Isotopic tracers have been used previously to investigate the relative importance of the different freshwater sources to the adjacent Bellingshausen Sea (BS), but the data coverage is strongly biased toward summer. Here we use a regional model to investigate the ocean's response to the observed changes in its different freshwater inputs (sea ice melt/freeze, precipitation, evaporation, iceberg/glacier melt, and ice shelf melt). The model successfully recreates BS water masses and performs well against available freshwater data. By tracing the sources and pathways of the individual components of the freshwater budget, we find that sea ice dominates seasonal changes in the total freshwater content and flux, but all sources make a comparable contribution to the annual-mean. Interannual variability is dominated by sea ice and precipitation. Decadal trends in the salinity and stratification of the ocean are investigated, and a 20-year surface freshening from 1992 to 2011 is found to be predominantly driven by decreasing autumn sea ice growth. These findings will help to elucidate the role of freshwater in driving circulation and water column structure changes in this climatically-sensitive region.

  14. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    Science.gov (United States)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  15. Phytodesalinization potential of Typha angustifolia, Juncus maritimus, and Eleocharis palustris for removal of de-icing salts from runoff water.

    Science.gov (United States)

    Guesdon, Gaëlle; de Santiago-Martín, Ana; Galvez-Cloutier, Rosa

    2016-10-01

    Typha angustifolia, Juncus maritimus, and Eleocharis palustris were evaluated for de-icing salt removal from runoff water. Plants were exposed to a range of de-icing salt levels (0.2, 0.7, 4, 8, and 13 dS m(-1)) in laboratory-scale subsurface constructed wetlands (CWs) for 2 months under greenhouse conditions. Effluent characteristics, plant height, biomass, and Cl and Na removal rates and uptake were monitored. More water volume was retained in CWs of T. angustifolia (∼60 %) than of J. maritimus and E. palustris (∼37.5 %), which accounted for the electrical conductivity increase in effluents (1.3-1.9-fold). Based on the NaCl removal rate, T. angustifolia showed the greatest phytodesalinization ability (31-60 %) with the highest removal at the lowest salt levels (0.2-0.7 dS m(-1)), followed by J. maritimus (22-36 %) without differences in removal among levels, and E. palustris (3-26 %) presenting a removal rate highly decreased with increasing salt levels. Plant height and biomass were stimulated at low de-icing salt levels, but, at higher levels, T. angustifolia and E. palustris growth was inhibited (tolerance index ∼67 and 10 %, respectively, in the worst cases). Salt amounts in aboveground biomass in g m(-2) differed among levels and ranged as follows: 13.6-29.1 (Cl), 4.2-9.3 (Na; T. angustifolia); 7.0-12.0 (Cl), 2.7-6.4 (Na; J. maritimus); and 0.9-7.6 (Cl), 0.3-1.6 (Na; E. palustris). Chloride and Na translocation decreased with de-icing salt increase in T. angustifolia, while no significant differences were found in J. maritimus, which is interesting for harvesting purposes.

  16. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  17. Experimental study of natural convection melting of ice in salt solutions

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory

  18. Flow induced on a salt waterbody due to the impingement of a freshwater drop

    Science.gov (United States)

    Benouaguef, Islam; Amah, Edison; Musunuri, Naga; Blackmore, Denis; Fischer, Ian; Singh, Pushpendra

    2017-11-01

    The particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques are used to study the flow induced on the surface of a salt waterbody when a drop impinges on the surface. The measurements show that the impingement of a fresh water drop causes a strong axisymmetric solutocapillary flow about the vertical line passing through the center of impact. The fluid directly below the center of impact rises upward, and near the surface it moves away from the center of impact. The flow, which develops within a fraction of second after the impact, persists for several seconds and the volume of water circulated is two orders of magnitude larger than the volume circulated when a freshwater drop falls on a freshwater body.

  19. A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2008-01-01

    We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3 -, SO4 2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores...... on individual salt inclusions. The abundances in the ice cores are shown to reflect differences in climatic periods (the acidic environment of the Holocene versus the reductive environment of the last glacial maximum) and regional conditions (the marine environment of Antarctica versus the continental...

  20. IMPACTS OF ROAD DE-ICING SALTS ON MANGANESE TRANSPORT TO GROUNDWATER IN ROADSIDE SOILS

    OpenAIRE

    Wen, Yingrong

    2012-01-01

    Manganese (Mn) is an important element in soil, it occur natural in minerals and precipitated as Mn-oxides. Several factors could decide the solubility and mobility of Mn in soil water. In this study, the impact of road de-icing salts (NaCl) on manganese mobilization and transport to groundwater in roadside soils has been investigated by leaching tests. Generally, in the salt solution leachates, the water-soluble concentrations of Mn tended to increase with elevated salt concentrations, sugge...

  1. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  2. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  3. Assessing the toxicity and risk of salt-impacted winter road runoff to the early life stages of freshwater mussels in the Canadian province of Ontario.

    Science.gov (United States)

    Prosser, R S; Rochfort, Q; McInnis, R; Exall, K; Gillis, P L

    2017-11-01

    In temperate urbanized areas where road salting is used for winter road maintenance, the level of chloride in surface waters has been increasing. While a number of studies have shown that the early-life stages of freshwater mussels are particularly sensitive to salt; few studies have examined the toxicity of salt-impacted winter road runoff to the early-life stages of freshwater mussels to confirm that chloride is the driver of toxicity in this mixture. This study examines the acute toxicity of field-collected winter road runoff to the glochidia of wavy-rayed lampmussels (Lampsilis fasciola) (48 h exposure) and newly released juvenile fatmucket mussels (Lampsilis siliquoidea) (road run-off created with moderately hard synthetic water (∼80 mg CaCO 3 /L) were 1177 (95% confidence interval (CI): 1011-1344 mg Cl - /L) and 2276 mg Cl - /L (95% CI: 1698-2854 mg Cl - /L), respectively. These effect concentrations correspond with the toxicity of chloride reported in other studies, indicating that chloride is likely the driver of toxicity in salt-impacted road-runoff, with other contaminants (e.g., metals, polycyclic aromatic hydrocarbons) playing a de minimis role. Toxicity data from the current study and literature and concentrations of chloride in the surface waters of Ontario were used to conduct a probabilistic risk assessment of chloride to early-life stage freshwater mussels. The assessment indicated that chronic exposure to elevated chloride levels could pose a risk to freshwater mussels; further investigation is warranted to ensure that the most sensitive organisms are protected. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  5. Freshwater flux to Sermilik Fjord, SE Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2010-10-01

    Full Text Available Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9×109 m3 y−1 was found (1999–2008, with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier, 11% from terrestrial surface runoff (from melt water and rain, 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4×109 m3 y−1 in 1999 to 5.9 ± 0.9×109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.

  6. Freshwater and fish

    International Nuclear Information System (INIS)

    Saxen, R.

    1997-01-01

    Severe radioactive contamination of the freshwater environment could have serious consequences for both drinking water and fish. Most of the Nordic countries have an abundance of freshwater lakes and rivers. Finland alone has about 56,000 lakes, each with a surface area of 1 hectare or more. Nearly 10% of Finland's surface is covered with lakes and rivers. In Sweden, about 9% of the surface area is freshwater, in Norway about 5%, and in Denmark only about 2%. Freshwater plays a minor role in Iceland, but even there numerous rivers discharge from the volcanic soils to the Ocean. Cs-137 and 90 Sr are likely to be the most important radionuclides with respect to long term radioactive contamination of freshwater. If radioactive deposition occurs in the absence of snow and ice radionuclides will contaminate the surface water directly and may rapidly enter the aquatic food chain. Fish which eat contaminated plankton become contaminated almost immediately. Deposition during summer increases the transfer for radionuclides to fish since fish metabolism is faster during the warm season. During the cold period, fish metabolism is slow and thus uptake and excretion of radiocaesium are also slow. (EG)

  7. The origin of sea salt in snow on Arctic sea ice and in coastal regions

    Directory of Open Access Journals (Sweden)

    F. Domine

    2004-01-01

    Full Text Available Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds that originate from sea salt bromide. Bromide may be supplied to the snow surface by upward migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosol generated by sea spray. We investigate here the relative importance of these processes by analyzing ions in snow near Alert and Ny-Ålesund (Canadian and European high Arctic in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt to heights of at least 17cm was observed in winter snow, leading to Cl- concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl- concentrations of several hundred µM, so that both diffusion from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it comes from sea spray rather than frost flowers. Estimations based on our results suggest that the marine snowpack contains about 10 times more Na+ than the frost flowers, so that both the marine snowpack and frost flowers need to be considered as sea salt sources. Our data suggest that ozone depletion chemistry can significantly enhance the Br- content of snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters

  8. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2011-04-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86 × 106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  9. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    Science.gov (United States)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  10. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  11. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    International Nuclear Information System (INIS)

    Sanzo, Domenico; Hecnar, Stephen J.

    2006-01-01

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations

  13. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzo, Domenico [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada); Hecnar, Stephen J. [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada)]. E-mail: stephen.hecnar@lakeheadu.ca

    2006-03-15

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations.

  14. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    Science.gov (United States)

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical.

  15. Desalination - an alternative freshwater resource

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Global water constitutes 94 percent salt water that is from the oceans and 6% is in the form of freshwater. Out of this 6% freshwater approximately 27% is trapped in glaciers and 72% is underground. The sea water is important for transportation, fisheries. Oceans regulate climate through air sea interaction. However direct consumption of sea water is too salty to sustain human life. Water with a dissolved solids (salt) content generally below about 1000 milligrams per liter (mg/L) is considered acceptable for human consumption. The application of desalting technologies over the past 50 years have been in many of the arid zone where freshwater is available. Pakistan lies in the Sun Belt. It is considered a wide margin coastal belt (990 km), having an Exclusive Economic Zone of 240,000 km/sup 2/, that strokes trillion cubic meters of sea water that can be made available as freshwater source to meet the shortfall in the supply of domestic water through desalination along the coastal belt of Pakistan. The freshwater obtained from the other desalination processes is slightly expensive, but the cost of desalination can be considerably reduced provided that the available inexpensive or free waste energy is utilized mainly. (author)

  16. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    Science.gov (United States)

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  17. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    Science.gov (United States)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  18. Freshwater fluxes into the subpolar North Atlantic from secular trends in Arctic land ice mass balance

    Science.gov (United States)

    Bamber, J. L.; Enderlin, E. M.; Howat, I. M.; Wouters, B.; van den Broeke, M.

    2015-12-01

    Freshwater fluxes (FWF) from river runoff and precipitation minus evaporation for the pan Arctic seas are relatively well documented and prescribed in ocean GCMs. Fluxes from Greenland and Arctic glaciers and ice caps on the other hand are generally ignored, despite their potential impacts on ocean circulation and marine biology and growing evidence for changes to the hydrography of parts of the subpolar North Atlantic. In a previous study we determined the FWF from Greenland for the period 1958-2010 using a combination of observations and regional climate modeling. Here, we update the analysis with data from new satellite observations to extend the record both in space and time. The new FWF estimates cover the period 1958-2014 and include the Canadian, Russian and Norwegian Arctic (Svalbard) in addition to the contributions from Greenland. We combine satellite altimetry (including CryoSat 2) with grounding line flux data, regional climate modeling of surface mass balance and gravimetry to produce consistent estimates of solid ice and liquid FWF into the Arctic and North Atlantic Oceans. The total cumulative FWF anomaly from land ice mass loss started to increase significantly in the mid 1990s and now exceeds 5000 km^3, a value that is about half of the Great Salinity Anomaly of the 1970s. The majority of the anomaly is entering two key areas of deep water overturning in the Labrador and Irminger Seas, at a rate that has been increasing steadily over the last ~20 years. Since the mid 2000s, however, the Canadian Arctic archipelago has been making a significant contribution to the FW anomaly entering Baffin Bay. Tracer experiments with eddy-permitting ocean GCMs suggest that the FW input from southern Greenland and the Canadian Arctic should accumulate in Baffin Bay with the potential to affect geostrophic circulation, stratification in the region and possibly the strength of the Atlantic Meridional Overturning Circulation. We also examine the trajectory of

  19. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  20. De-Icing Salts and the Environment.

    Science.gov (United States)

    Massachusetts Audubon Society, Lincoln.

    Reported is an examination of the use and effects of chlorides as de-icing products for removal of snow and ice from roads immediately following storms. Increasing evidence of detrimental side effects led to a closer look and more careful evaluation of the overall significance of the so-called "bare pavement maintenance." The side…

  1. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    Science.gov (United States)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  2. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  3. The influence of temperature and salt on metal and sediment removal in stormwater biofilters.

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2014-01-01

    Stormwater biofilters are used to treat stormwater runoff. In countries with cold winter climates, biofilters are subject to low temperatures which, in some cases, are combined with potentially high salt concentrations from road de-icing, potentially affecting the biofilter's performance. Since stormwater biofilters have been developed without consideration of their critical winter use, a laboratory study was carried out to evaluate the performance of stormwater biofilters subjected to low and high temperatures, with and without salt. Both factors and their interaction had a significant effect on outflow concentrations and removal percentages. Salt had a negative impact on outflow concentrations, causing lower removal percentages for (especially dissolved) metals, this impact being most pronounced for Cu and Pb. The unrealistic combination of salt with high temperature seemed to further amplify the negative impacts of salt despite the fact that temperature alone did not cause significant differences in outflow concentrations and removal percentages. Still, biofilters showed the ability to treat stormwater efficiently under the simulated winter conditions; outflow concentrations for total metals as a minimum met the class 4 threshold value defined in the Swedish freshwater quality guidelines, while inflow concentrations clearly exceeded the threshold value for class 5. The relatively coarse filter material (which is recommended to facilitate infiltration during winter) did not seem to exacerbate biofilter performance.

  4. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters.

    Science.gov (United States)

    Hintz, William D; Relyea, Rick A

    2017-04-01

    The use of road deicing salts in regions that experience cold winters is increasing the salinity of freshwater ecosystems, which threatens freshwater resources. Yet, the impacts of environmentally relevant road salt concentrations on freshwater organisms are not well understood, particularly in stream ecosystems where salinization is most severe. We tested the impacts of deicing salts-sodium chloride (NaCl), magnesium chloride (MgCl 2 ), and calcium chloride (CaCl 2 )-on the growth and development of newly hatched rainbow trout (Oncorhynchus mykiss). We exposed rainbow trout to a wide range of environmentally relevant chloride concentrations (25, 230, 860, 1500, and 3000 mg Cl -  L -1 ) over an ecologically relevant time period (25 d). We found that the deicing salts studied had distinct effects. MgCl 2 did not affect rainbow trout growth at any concentration. NaCl had no effects at the lowest three concentrations, but rainbow trout length was reduced by 9% and mass by 27% at 3000 mg Cl -  L -1 . CaCl 2 affected rainbow trout growth at 860 mg Cl -  L -1 (5% reduced length; 16% reduced mass) and these effects became larger at higher concentrations (11% reduced length; 31% reduced mass). None of the deicing salts affected rainbow trout development. At sub-lethal and environmentally relevant concentrations, our results do not support the paradigm that MgCl 2 is the most toxic deicing salt to fish, perhaps due to hydration effects on the Mg 2+ cation. Our results do suggest different pathways for lethal and sub-lethal effects of road salts. Scaled to the population level, the reduced growth caused by NaCl and CaCl 2 at critical early-life stages has the potential to negatively affect salmonid recruitment and population dynamics. Our findings have implications for environmental policy and management strategies that aim to reduce the impacts of salinization on freshwater organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Drainage of ice-dammed lakes and glacier retreat - a link

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjaer, K. H.; Rysgaard, Søren

    2011-01-01

    surface freshwater run-off is found in the top of the water column in the fjord while sub-glacial meltwater is entrained deeper in the water column. The latter is highly important as this colder buoyant freshwater is pushed to the water surface followed by a compensating deeper landward current bringing...... in the fjord. The large quantity of buoyant freshwater changed the osmotic pressure and pushed redfish to the water surface causing them to die from divers disease. Further investigation suggested that three ice-dammed lakes adjacent to the Narssap Sermia glacier had drained within the previous year. Analysis......-30 times the volume of an ice-dammed lake prior to drainage. The warm water influx in turn causes the glacier to retreat and to gradually become thinner which feeds back to an increase in drainage events of ice-dammed lakes over time. On a larger scale the feedback mechanism between the drainage of lakes...

  7. An approach to estimate the freshwater contribution from glacial melt and precipitation in East Greenland shelf waters using colored dissolved organic matter (CDOM)

    DEFF Research Database (Denmark)

    Stedmon, Colin; Granskog, Mats A.; Dodd, Paul A.

    2015-01-01

    Changes in the supply and storage of freshwater in the Arctic Ocean and its subsequent export to the North Atlantic can potentially influence ocean circulation and climate. In order to understand how the Arctic freshwater budget is changing and the potential impacts, it is important to develop......, and precipitation) and sea ice melt. We develop this approach further and investigate the use of an additional tracer, colored dissolved organic matter (CDOM), which is largely specific to freshwater originating from Arctic rivers. A robust relationship between the freshwater contribution from meteoric water...... processes (riverine input and sea ice formation), while previously, these waters where thought to be derived from open sea processes (cooling and sea ice formation) in the northern Barents and Kara Seas. In Greenlandic coastal waters the meteoric water contribution is influenced by Greenland ice sheet...

  8. Modelling the surface mass balance of the Greenland ice sheet and neighbouring ice caps : A dynamical and statistical downscaling approach

    NARCIS (Netherlands)

    Noël, B.P.Y.

    2018-01-01

    The Greenland ice sheet (GrIS) is the world’s second largest ice mass, storing about one tenth of the Earth’s freshwater. If totally melted, global sea level would rise by 7.4 m, affecting low-lying regions worldwide. Since the mid-1990s, increased atmospheric and oceanic temperatures have

  9. Characteristics and limitations of GPS L1 observations from submerged antennas - Theoretical investigation in snow, ice, and freshwater and practical observations within a freshwater layer

    Science.gov (United States)

    Steiner, Ladina; Meindl, Michael; Geiger, Alain

    2018-05-01

    Observations from a submerged GNSS antenna underneath a snowpack need to be analyzed to investigate its potential for snowpack characterization. The magnitude of the main interaction processes involved in the GPS L1 signal propagation through different layers of snow, ice, or freshwater is examined theoretically in the present paper. For this purpose, the GPS signal penetration depth, attenuation, reflection, refraction as well as the excess path length are theoretically investigated. Liquid water exerts the largest influence on GPS signal propagation through a snowpack. An experiment is thus set up with a submerged geodetic GPS antenna to investigate the influence of liquid water on the GPS observations. The experimental results correspond well with theory and show that the GPS signal penetrates the liquid water up to three centimeters. The error in the height component due to the signal propagation delay in water can be corrected with a newly derived model. The water level above the submerged antenna could also be estimated.

  10. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  11. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic.

    Science.gov (United States)

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W

    2011-03-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.

  12. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  13. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  14. Long-term ice phenology records from eastern-central Europe

    Science.gov (United States)

    Takács, Katalin; Kern, Zoltán; Pásztor, László

    2018-03-01

    A dataset of annual freshwater ice phenology was compiled for the largest river (Danube) and the largest lake (Lake Balaton) in eastern-central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12-30 and 4-13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7-13 and 9-27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleo)climatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056" target="_blank">https://doi.org/10.1594/PANGAEA.881056.

  15. Long-term ice phenology records from eastern–central Europe

    Directory of Open Access Journals (Sweden)

    K. Takács

    2018-03-01

    Full Text Available A dataset of annual freshwater ice phenology was compiled for the largest river (Danube and the largest lake (Lake Balaton in eastern–central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12–30 and 4–13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7–13 and 9–27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleoclimatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056.

  16. Rapid evolution of tolerance to road salt in zooplankton.

    Science.gov (United States)

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl -  L -1 ). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl -  L -1 ). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl -  L -1 ) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl -  L -1 ). At the intermediate concentration (1300 mg Cl -  L -1 ), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl -  L -1 ) had higher survival than populations previously exposed to natural background levels (15 mg Cl -  L -1 ). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl -  L -1 ). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  17. Predicting salt intrusion into freshwater aquifers resulting from CO2 injection – A study on the influence of conservative assumptions

    DEFF Research Database (Denmark)

    Walter, Lena; Binning, Philip John; Class, Holger

    2013-01-01

    . A crucial task is to choose an appropriate conceptual model and relevant scenarios. Overly conservative assumptions may lead to estimation of unacceptably high risks, and thus prevent the implementation of a CO2 storage project unnecessarily. On the other hand, risk assessment should not lead...... to an underestimation of hazards. This study compares two conceptual model approaches for the numerical simulation of brine-migration scenarios through a vertical fault and salt intrusion into a fresh water aquifer. The first approach calculates salt discharge into freshwater using an immiscible two-phase model...... with constant salinity in the brine phase. The second approach takes compositional effects into account and considers salinity as a variable parameter in the water phase. A spatial model coupling is introduced to adapt the increased model complexity to the required complexity of the physics. The immiscible two...

  18. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  19. Detrital Carbonate Events on the Labrador Shelf, a 13 to 7 kyr Template for Freshwater Forcing From the Laurentide Ice Sheet

    Science.gov (United States)

    Jennings, A. E.; Andrews, J. T.

    2008-12-01

    A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts

  20. Cumulative effects of road de-icing salt on amphibian behavior.

    Science.gov (United States)

    Denoël, Mathieu; Bichot, Marion; Ficetola, Gentile Francesco; Delcourt, Johann; Ylieff, Marc; Kestemont, Patrick; Poncin, Pascal

    2010-08-15

    Despite growing evidence of the detrimental effect of chemical substances on organisms, limited research has focused on changes in behavioral patterns, in part due to the difficulties to obtain detailed quantitative data. Recent developments in efficient computer-based video analyses have allowed testing pesticide effects on model species such as the zebrafish. However, these new techniques have not yet been applied to amphibians and directly to conservation issues, i.e., to assess toxicological risks on threatened species. We used video-tracking analyses to test a quantitative effect of an environmental contaminant on the locomotion of amphibian tadpoles (Rana temporaria) by taking into account cumulative effects. Because recent research has demonstrated effects of de-icing salts on survival and community structure, we used sodium chloride in our experimental design (25 replicates, 4 concentrations, 4 times) to test for an effect at the scale of behavior at environmentally relevant concentrations. Analysis of 372 1-h video-tracks (5 samples/s) showed a complex action of salts on behavioral patterns with a dose and cumulative response over time. Although no effects were found on mortality or growth, the highest salt concentrations reduced the speed and movement of tadpoles in comparison with control treatments. The reduced locomotor performance could have detrimental consequences in terms of tadpoles' responses to competition and predation and may be an indicator of the low concentration effect of the contaminant. On one hand, this study demonstrates the usefulness of examining behavior to address conservation issues and understand the complex action of environmental factors and, more particularly, pollutants on organisms. On the other hand, our results highlight the need of new computerized techniques to quantitatively analyze these patterns. (c) 2010 Elsevier B.V. All rights reserved.

  1. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  2. The making of salty ice

    International Nuclear Information System (INIS)

    Bove, L.E.

    2009-01-01

    Full text: It is widely accepted that ice, no matter what phase, is unable to incorporate large amount of salt into its structure. This conclusion is based on the observation that upon freezing of saltwater, ice expels the salt almost entirely into brine, a fact which can be exploited to desalinate seawater. Here we show, by neutron diffraction under high pressure, that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate that substantial am mounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallisation of its glassy state under pressure [1]. Such highly doped or alloyed ice VII has significantly different structural properties compared to pure ice VII, such as a 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure, plasticity, and most likely ionic conductivity. Our study suggests that there could be a whole new class of salty ices based on various kinds of solutes and high pressure ice forms. (author)

  3. The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Flavio; Raible, Christoph C.; Hofer, Dominik; Stocker, Thomas F. [University of Bern, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2012-07-15

    The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude's Southern Ocean as a source of liquid freshwater to lower latitude oceans. (orig.)

  4. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  5. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Patricia L., E-mail: patty.gillis@ec.gc.ca [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R-4A6 (Canada)

    2011-06-15

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L{sup -1} (reconstituted water, 100 mg CaCO{sub 3} L{sup -1}). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO{sub 3} L{sup -1}) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L{sup -1}) than in reconstituted water (EC50 285 mg L{sup -1}). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L{sup -1}). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: > Compared to other aquatic organisms glochidia are very sensitive to chloride. > Glochidia were less sensitive to salt in natural water than in reconstituted water. > Glochidia were less sensitive to salt in hard water than in soft water. > Road salt runoff may pose a threat to the reproduction of freshwater mussels. > Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  6. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    International Nuclear Information System (INIS)

    Gillis, Patricia L.

    2011-01-01

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L -1 (reconstituted water, 100 mg CaCO 3 L -1 ). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO 3 L -1 ) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L -1 ) than in reconstituted water (EC50 285 mg L -1 ). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L -1 ). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: → Compared to other aquatic organisms glochidia are very sensitive to chloride. → Glochidia were less sensitive to salt in natural water than in reconstituted water. → Glochidia were less sensitive to salt in hard water than in soft water. → Road salt runoff may pose a threat to the reproduction of freshwater mussels. → Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  7. Status and Impacts of Arctic Freshwater Export

    Science.gov (United States)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  8. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  9. Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions

    International Nuclear Information System (INIS)

    Dunford, Robert W.; Donoghue, Daniel N.M.; Burt, Tim P.

    2012-01-01

    Evidence from a multi-date regional-scale analysis of both high-flow and annual-average water quality data from Galloway, south-west Scotland, demonstrates that forest land cover continues to exacerbate freshwater acidification. This is in spite of significant reductions in airborne pollutants. The relationship between freshwater sulphate and forest cover has decreased from 1996 to 2006 indicating a decrease in pollutant scavenging. The relationship between forest cover and freshwater acidity (pH) is, however, still present over the same period, and does not show conclusive signs of having declined. Furthermore, evidence for forest cover contributing to a chlorine bias in marine ion capture suggests that forest scavenging of sea-salts may mean that the forest acidification effect may continue in the absence of anthropogenic pollutant inputs, particularly in coastal areas. - Highlights: ► Forest cover and water chemistry remain linked despite decreased sulphate emissions. ► Forest cover has significant relationships SO 4 2− , Cl − , Na + , pH, ANC and Na:Cl ratio. ► Forest cover: pH relationships shows some evidence of decline 1996–2006. ► Forest cover: freshwater sulphate relationships show evidence of decline 1996–2006. ► Natural forest-mechanisms may exacerbate acidification, particularly sea-salt scavenging. - Relationships between forest land cover and freshwater pH continue to be evident despite declines in anthropogenic pollutant sulphate deposition; sea-salt scavenging may play a role.

  10. Modification of fatty acid profile of cow milk by calcium salts of fatty acids and its use in ice cream.

    Science.gov (United States)

    Nadeem, Muhammad; Abdullah, Muhammad; Hussain, Imtiaz; Inayat, Saima

    2015-02-01

    This study was conducted to determine the effect of calcium salts of fatty acids (CSFA) on fatty acid profile of milk of "Sahiwal" cows and suitability of milk with modified fatty acids in the formulation of ice cream. Fatty acid profile of cow milk was modified by feeding CSFA to eighteen randomly stratified "Sahiwal" cows of first and early lactation divided into three groups. CSFA were offered at two different levels i.e. T1 (150 g per cow per day) T2 (300 g per cow per day) both treatments were compared with a control (T0) without any addition of calcium salts of fatty acids. Iso caloric and iso nitrogenous feeds were given to both experimental groups and control. Concentrations of short chain fatty acids in T0, T1 and T2 were 9.85 ± 0.48a, 8.8 ± 0.24b and 7.1 ± 0.37c %, respectively and the concentrations of C18:1 and C18:2 increased (P ice cream did not have any adverse effect on pH, acidity and compositional attributes of ice cream. Viscosity of T1 was 67.94 ± 3.77a as compared to (T0) control 68.75 ± 2.46a (CP). Firmness of experimental samples and control were almost similar (P > 0.05) overall acceptability score of T2 was 7.1 ± 0.28b out of 9 (total score) which was more than 78 ± 2.92 %. It was concluded that CSFA may be successfully incorporated up to T2 level (300 g per cow per day) into the feed of "Sahiwal" cows to produce milk with higher content of unsaturated fatty acids and it may be used in the formulation of ice cream with acceptable sensory characteristics and increased health benefits.

  11. Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW

    Directory of Open Access Journals (Sweden)

    Szymkiewicz Adam

    2018-06-01

    Full Text Available The paper presents an evaluation of the combined use of the HYDRUS and SWI2 packages for MODFLOW as a potential tool for modeling recharge in coastal aquifers subject to saltwater intrusion. The HYDRUS package for MODFLOW solves numerically the one-dimensional form of the Richards equation describing water flow in variablysaturated media. The code computes groundwater recharge to or capillary rise from the groundwater table while considering weather, vegetation, and soil hydraulic property data. The SWI2 package represents in a simplified way variable-density flow associated with saltwater intrusion in coastal aquifers. Combining these two packages within the MODFLOW framework provides a more accurate description of vadose zone processes in subsurface systems with shallow aquifers, which strongly depend upon infiltration. The two packages were applied to a two-dimensional problem of recharge of a freshwater lens in a sandy peninsula, which is a typical geomorphologic form along the Baltic and the North Sea coasts, among other places. Results highlighted the sensitivity of calculated recharge rates to the temporal resolution of weather data. Using daily values of precipitation and potential evapotranspiration produced average recharge rates more than 20% larger than those obtained with weekly or monthly averaged weather data, leading to different trends in the evolution of freshwater-saltwater interfaces. Root water uptake significantly influenced both the recharge rate and the position of the freshwater-saltwater interface. The results were less sensitive to changes in soil hydraulic parameters, which in our study were found to affect average yearly recharge rates by up to 13%.

  12. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2010-07-01

    Full Text Available In a sensitivity experiment, an eddy-permitting ocean general circulation model is forced with realistic freshwater fluxes from the Greenland Ice Sheet, averaged for the period 1991–2000. The fluxes are obtained with a mass balance model for the ice sheet, forced with the ERA-40 reanalysis dataset. The freshwater flux is distributed around Greenland as an additional term in prescribed runoff, representing seasonal melting of the ice sheet and a fixed year-round iceberg calving flux, for 8.5 model years. By adding Greenland freshwater fluxes with realistic geographical distribution and seasonality, the experiment is designed to investigate the oceanic response to a sudden and spatially/temporally uniform amplification of ice sheet melting and discharge, rather than localized or gradual changes in freshwater flux. The impacts on regional hydrography and circulation are investigated by comparing the sensitivity experiment to a control experiment, without additional fluxes. By the end of the sensitivity experiment, the majority of additional fresh water has accumulated in Baffin Bay, and only a small fraction has reached the interior of the Labrador Sea, where winter mixed layer depth is sensitive to small changes in salinity. As a consequence, the impact on large-scale circulation is very slight. An indirect impact of strong freshening off the west coast of Greenland is a small anti-cyclonic component to the circulation around Greenland, which opposes the wind-driven cyclonic circulation and reduces net southward flow through the Canadian Archipelago by ~10%. Implications for the post-2000 acceleration of Greenland mass loss are discussed.

  13. Arctic Freshwater Switchyard Project: Spring temperature and Salinity data collected by aircraft in the Arctic Ocean, May 2006 - May 2007 (NODC Accession 0057319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A program to study freshwater circulation (sea ice + upper ocean) in the "freshwater switchyard" between Alert (Ellesmere Island) and the North Pole. The project...

  14. Sea and Freshwater Ice Concentration from VIIRS on Suomi NPP and the Future JPSS Satellites

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2016-06-01

    Full Text Available Information on ice is important for shipping, weather forecasting, and climate monitoring. Historically, ice cover has been detected and ice concentration has been measured using relatively low-resolution space-based passive microwave data. This study presents an algorithm to detect ice and estimate ice concentration in clear-sky areas over the ocean and inland lakes and rivers using high-resolution data from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar Orbiting Partnership (S-NPP and on future Joint Polar Satellite System (JPSS satellites, providing spatial detail that cannot be obtained with passive microwave data. A threshold method is employed with visible and infrared observations to identify ice, then a tie-point algorithm is used to determine the representative reflectance/temperature of pure ice, estimate the ice concentration, and refine the ice cover mask. The VIIRS ice concentration is validated using observations from Landsat 8. Results show that VIIRS has an overall bias of −0.3% compared to Landsat 8 ice concentration, with a precision (uncertainty of 9.5%. Biases and precision values for different ice concentration subranges from 0% to 100% can be larger.

  15. Causes and impacts of changes in the Arctic freshwater budget during the twentieth and twenty-first centuries in an AOGCM

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [University of New South Wales, Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, Sydney, NSW (Australia); Fichefet, Thierry; Goosse, Hugues [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Louvain-la-Neuve (Belgium); Dufresne, Jean-Louis [Institut Pierre Simon Laplace UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France)

    2008-01-15

    The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990-2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic

  16. Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

    Science.gov (United States)

    Huang, Bohua; Zhu, Jieshun; Marx, Lawrence; Wu, Xingren; Kumar, Arun; Hu, Zeng-Zhen; Balmaseda, Magdalena A.; Zhang, Shaoqing; Lu, Jian; Schneider, Edwin K.; Kinter, James L., III

    2015-01-01

    There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean-atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model's fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

  17. Transport and degradation of dissolved organic matter and associated freshwater pathways in the Laptev Sea (Siberian Arctic)

    Science.gov (United States)

    Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid

    2016-04-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  18. Deglacial climate modulated by the storage and release of Arctic sea ice

    Science.gov (United States)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  19. Ice-­Ocean Thermodynamic Interface and Small-­Scale Issues

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Adrian K. [Los Alamos National Laboratory

    2012-07-02

    This presentation discusses: (1) Stefan condition, (2) lower boundary condition of mushy layers, (3) salt flux to ocean from gravity drainage, (4) distribution of salt flux in the ocean, (5) under ice melt ponds and false bottoms, and (6) basal ablation.

  20. Future climate warming increases Greenland ice sheet surface mass balance variability

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  1. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NARCIS (Netherlands)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; Van Den Broeke, M. R.|info:eu-repo/dai/nl/073765643

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW),

  2. Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter

    Science.gov (United States)

    Granskog, Mats A.; MacDonald, Robie W.; Kuzyk, Zou Zou A.; Senneville, Simon; Mundy, Christopher-John; Barber, David G.; Stern, Gary A.; Saucier, Francois

    2009-08-01

    Distributions of freshwater (sea-ice melt and runoff) were investigated along inshore-offshore sections in southwestern Hudson Bay for fall conditions. Conductivity-temperature-density profiles and bottle samples collected for salinity, oxygen isotope (δ18O), and colored dissolved organic matter (CDOM) analyses were used to discriminate between contributions of river water (RW) and sea-ice melt (SIM). Stations had a fresh summer surface mixed layer 5-25 m thick overlying a cold subsurface layer indicative of the previous winter's polar mixed layer (PML). The fraction of RW decreased strongly with distance from shore, while the opposite was true for SIM. The majority of RW was constrained in a coastal domain within 100-150 km from shore, which, because of high alongshore velocities, accounts for the majority of freshwater and volume transports. On the basis of freshwater inventories and composition, brine and RW accumulate in the PML over winter because of ice formation and downward mixing. The summer surface circulation results in an annual net export of SIM from the region. Residence times for freshwater components in the southwestern sector of the bay, based on currents derived from a 3-D ocean model for Hudson Bay, are about 1-10 months, implying rapid transit of freshwater. Despite the short residence time for RW (1-3 months), CDOM is significantly photobleached and provides an unreliable tracer for RW. Photobleaching represents an important sink for dissolved organic carbon entering from rivers and could, in part, explain why Hudson Bay is only a minor sink for atmospheric CO2 in the open water season.

  3. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)

    Science.gov (United States)

    Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.

    2017-07-01

    Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.

  4. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    Science.gov (United States)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  5. Periodic fluctuations in deep water formation due to sea ice

    Science.gov (United States)

    Saha, R.

    2012-12-01

    During the last ice age, several abrupt warming events took place, known as Dansgaard-Oeschger (D-O) events. Their effects were felt globally, although the North Atlantic experienced the largest temperature increase. The leading hypothesis to explain their occurrence postulates that the warming was caused by abrupt disruptions of the North Atlantic Current due to meltwater discharge from destabilized ice sheets (Heinrich events). However, the number of warming events outnumber the those of ice-sheet collapse. Thus, the majority of D-O events are not attributed to surface freshwater anomalies, and the underlying mechanism behind their occurrence remain unexplained. Using a simple dynamical model of sea ice and an overturning circulation, I show the existence of self-sustained relaxation oscillations in the overturning circulation. The insulating effect of sea ice is shown to paradoxically lead to a net loss of heat from the top layer of the polar ocean when sea ice retreats. Repeated heat loss results in a denser top layer and a destabilized water column, which triggers convection. The convective state pulls the system out of its preferred mode of circulation, setting up relaxation oscillations. The period of oscillations in this case is linked to the geometry of the ocean basin, if solar forcing is assumed to remain constant. If appropriate glacial freshwater forcing is applied to the model, a pattern of oscillation is produced that bears remarkable similarity to the observed fluctuations in North Atlantic climate between 50,000 and 30,000 years before present.; Comparison of NGRIP δ 18-O (proxy for near surface air temperature) between 50,000 and 30,000 years before present, showing Bond cycles (left) with the model output when forced with appropriate glacial freshwater forcing (right).

  6. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  7. Organophosphate inhibition of avian salt gland Na, K-ATPase activity

    Science.gov (United States)

    Eastin, W.C.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    1. Adult black ducks (Anas rubripes) were given freshwater or saltwater (1.5% NaCl) for 11 days and half of each group was also given an organophosphate (17 p.p.m. fenthion) in the diet on days 6–11.2. After 11 days, ducks drinking saltrwater had lost more weight and had higher plasma Na and uric acid concentration and osmolalities than birds drinking freshwater.3. Saltwater treatment stimulated the salt gland to increased weight and Na, K-ATPase activity.4. Fenthion generally reduced plasma and brain cholinesterase activity and depressed cholinesterase and Na, K-ATPase activities in salt glands of birds drinking saltwater.

  8. Towards an assessment of the balance state of the Greenland Ice Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Boeggild, C.E.; Mayer, C.; Podlech, S.; Taurisano, A.; Nielsen, S.

    2004-07-01

    The climate of Europe is strongly influenced by heat transport by ocean currents flowing from equatorial regions towards the Arctic. During recent years, research has been increasingly focused on factors affecting this circulation, e.g. the freshwater budget of the Arctic that is influenced by glacial melt water from north and East Greenland outlet glaciers. Furthermore, the climate is affected by snow cover, which, apart from its contribution to the freshwater budget, provides feedback effects in that it reflects most of the solar radiation. Apart from Arctic sea-ice cover, the Greenland Ice Sheet is the largest permanent ice- and snow-covered area in the northern hemisphere, with an area of 1.67 x 10{sup 6} km{sup 2} and by far the largest storage of ice with a volume of 2.93 x 10{sup 6} km{sup 3}. Most of the mass loss from the Greenland Ice Sheet occurs in the marginal region of the ice sheet, which is also the area where the largest changes in albedo occur. The Geological Survey of Denmark and Greenland (GEUS) has for many years carried out research along the Greenland Ice Sheet margin to monitor changes of mass balance and melt conditions. (BA)

  9. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  10. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  11. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  12. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk

    International Nuclear Information System (INIS)

    Todd, Aaron K.; Kaltenecker, M. Georgina

    2012-01-01

    Warm season (May–October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975–2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. - Highlights: ► Warm season chloride concentrations were assessed in habitats of mussel species at risk. ► Concentrations increased significantly at 96% of 24 long-term monitoring sites. ► Concentrations increased with increases in road density and road salt use. ► Retention of road salt likely contributed to elevated warm season concentrations. ► Glochidia exposure to increasing concentrations may affect mussel reproduction. - Warm season chloride concentrations increased in southern Ontario streams with road salt use, such that reproduction of freshwater mussel species at risk may be affected.

  13. Mapping Arctic Bottomfast Sea Ice Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Dyre O. Dammann

    2018-05-01

    Full Text Available Bottomfast sea ice is an integral part of many near-coastal Arctic ecosystems with implications for subsea permafrost, coastal stability and morphology. Bottomfast sea ice is also of great relevance to over-ice travel by coastal communities, industrial ice roads, and marine habitats. There are currently large uncertainties around where and how much bottomfast ice is present in the Arctic due to the lack of effective approaches for detecting bottomfast sea ice on large spatial scales. Here, we suggest a robust method capable of detecting bottomfast sea ice using spaceborne synthetic aperture radar interferometry. This approach is used to discriminate between slowly deforming floating ice and completely stationary bottomfast ice based on the interferometric phase. We validate the approach over freshwater ice in the Mackenzie Delta, Canada, and over sea ice in the Colville Delta and Elson Lagoon, Alaska. For these areas, bottomfast ice, as interpreted from the interferometric phase, shows high correlation with local bathymetry and in-situ ice auger and ground penetrating radar measurements. The technique is further used to track the seasonal evolution of bottomfast ice in the Kasegaluk Lagoon, Alaska, by identifying freeze-up progression and areas of liquid water throughout winter.

  14. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  15. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome

  16. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  17. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  18. Experimental study of a sustainable hybrid system for thermoelectric generation and freshwater production

    Science.gov (United States)

    de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit

    2017-04-01

    The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.

  19. The multiphase physics of sea ice: a review for model developers

    Directory of Open Access Journals (Sweden)

    E. C. Hunke

    2011-11-01

    Full Text Available Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be incorporated into lattice sites in the pure ice component of sea ice, but remains in liquid solution. Depending on the ice permeability (determined by temperature, salinity and gas content, this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward "earth system" simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems.

  20. The principal factors contributing to the flux of salt in a narrow, partially stratified estuary

    Science.gov (United States)

    Lewis, R. E.; Lewis, J. O.

    1983-06-01

    Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides. The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation. The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt. At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity

  1. Identification and Characterization of Differentially Expressed Transcripts in the Gills of Freshwater Prawn (Macrobrachium rosenbergii under Salt Stress

    Directory of Open Access Journals (Sweden)

    Hirak Kumar Barman

    2012-01-01

    Full Text Available The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important species. It is a euryhaline shrimp, surviving in wide-range salinity conditions. A change in gene expression has been suggested as an important component for stress management. To better understand the osmoregulatory mechanisms mediated by the gill, a subtractive and suppressive hybridization (SSH tool was used to identify expressed transcripts linked to adaptations in saline water. A total of 117 transcripts represented potentially expressed under salinity conditions. BLAST analysis identified 22% as known genes, 9% as uncharacterized showing homologous to unannotated ESTs, and 69% as unknown sequences. All the identified known genes representing broad spectrum of biological pathways were particularly linked to stress tolerance including salinity tolerance. Expression analysis of 10 known genes and 7 unknown/uncharacterized genes suggested their upregulation in the gills of prawn exposed to saline water as compared to control indicating that these are likely to be associated with salinity acclimation. Rapid amplification of cDNA ends (RACE was used for obtaining full-length cDNA of MRSW-40 clone that was highly upregulated during salt exposure. The sequenced ESTs presented here will have potential implications for future understanding about salinity acclimation and/or tolerance of the prawn.

  2. Marginal Ice Zone Bibliography.

    Science.gov (United States)

    1985-06-01

    Tsunamis, Gravimetry , Earth Tides, World Data Center A: Oceanography Recent Movements of the Earth’s National Oceanographic Data Center Crust...sufficiently low, the dissolved salts precipitate out in the form of solid hydrates. It has been proposed that these solid hydrates add to the overall...strength of the ice. The first salt hydrate to precipitate should be that of sodium sul- * fate, Na2SO4IOH2O (the sulfate ion is the second most

  3. Anti-icing and de-icing superhydrophobic concrete to improve the safety on critical elements on roadway pavements.

    Science.gov (United States)

    2013-09-01

    Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce ice formation on roadways to an extent, however also result in detrimental effects ...

  4. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    NARCIS (Netherlands)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-01-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the

  5. The sea ice in Young Sound: Implications for carbon cycling

    DEFF Research Database (Denmark)

    Glud, Ronnie Nøhr; Rysgaard, Søren; Kühl, Michael

    2007-01-01

    on the available nutrients. The sea-ice algal community adapts effi ciently to the local light environment, and in areas with natural (or man-made) holes and cracks sea-ice algae bloom. However, despite ample nutrients, the overall phototrophic biomass in Young Sound remains very low, with maximum values of c. 15......–30 μg Chl a l-1 sea ice at the underside of the ice and with maximum area integrated values of c. 3 mg Chl a m-2. We speculate that the extreme dynamics in sea-ice appearance, structure and brine percolation, which is driven primarily by large but variable freshwater inputs during snow melt...... the sea-ice matrix were extremely dynamic and strongly regulated by physical processes related to freezing and thawing of sea water rather than biological activity. Enclosure experiments on sea-ice samples performed in June 2002 revealed a high heterotrophic potential causing the sea-ice environment...

  6. A simulation study of homogeneous ice nucleation in supercooled salty water

    Science.gov (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  7. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  8. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  9. Man in the Arctic, The Changing Nature of His Quest for Food and Water as Related to Snow, Ice, and Permafrost

    Science.gov (United States)

    1962-01-01

    the general dura - tion of freshwater ice approaches ten months, al- though occasionally ice remains in some of the larger lakes throughout the... Marguerite G. "Marooned in the clouds," Atlantic Monthly, CLXXXI, no. 2 (j948), 34-46. Taylor, Andrew. "Snow compaction." SIPRE Report 13 (1953), pp. xxiv

  10. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    Collins, Sara J.; Russell, Ronald W.

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC 50 ) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  11. Road salt application planning tool for winter de-icing operations

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram; Perera, Nandana

    2015-05-01

    Road authorities, who are charged with the task of maintaining safe, driveable road conditions during severe winter storm events are coming under increasing pressure to protect salt vulnerable areas (SVAs). For the purpose of modelling urban winter hydrology, the temperature index method was modified to incorporate ploughing and salting considerations and was calibrated using winter field data from two sites in Southern Ontario and validated using data collected from a section of Highway 401 - Canada's busiest highway. The modified temperature index model (MTIM) accurately predicted salt-induced melt (R2 = 0.98 and 0.99, RMSE = 19.9 and 282.4 m3, CRM = -0.003 and 0.006 for calibration and validation sites respectively), and showed a demonstrable ability to calculate the Bare Pavement Regain Time (BPRT). The BPRT is a key factor on road safety and the basis for many winter maintenance performance standards for different classes of highways. Optimizing salt application rate scenarios can be achieved using the MTIM with only two meteorological forecast inputs for the storm event - readily available on-line through the Road Weather Information System (RWIS) - and can serve as a simple yet effective tool for winter road maintenance practitioners seeking to optimize salt application rates for a given storm event in salt vulnerable areas.

  12. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  13. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length.

    Science.gov (United States)

    Hintz, William D; Mattes, Brian M; Schuler, Matthew S; Jones, Devin K; Stoler, Aaron B; Lind, Lovisa; Relyea, Rick A

    2017-04-01

    The application of road deicing salts in northern regions worldwide is changing the chemical environment of freshwater ecosystems. Chloride levels in many lakes, streams, and wetlands exceed the chronic and acute thresholds established by the United States and Canada for the protection of freshwater biota. Few studies have identified the impacts of deicing salts in stream and wetland communities and none have examined impacts in lake communities. We tested how relevant concentrations of road salt (15, 100, 250, 500, and 1000 mg Cl - /L) interacted with experimental communities containing two or three trophic levels (i.e., no fish vs. predatory fish). We hypothesized that road salt and fish would have a negative synergistic effect on zooplankton, which would then induce a trophic cascade. We tested this hypothesis in outdoor mesocosms containing filamentous algae, periphyton, phytoplankton, zooplankton, several macroinvertebrate species, and fish. We found that the presence of fish and high salt had a negative synergistic effect on the zooplankton community, which in turn caused an increase in phytoplankton. Contributing to the magnitude of this trophic cascade was a direct positive effect of high salinity on phytoplankton abundance. Cascading effects were limited with respect to impacts on the benthic food web. Periphyton and snail grazers were unaffected by the salt-induced trophic cascade, but the biomass of filamentous algae decreased as a result of competition with phytoplankton for light or nutrients. We also found direct negative effects of high salinity on the biomass of filamentous algae and amphipods (Hyalella azteca) and the mortality of banded mystery snails (Viviparus georgianus) and fingernail clams (Sphaerium simile). Clam mortality was dependent on the presence of fish, suggesting a non-consumptive interactive effect with salt. Our results indicate that globally increasing concentrations of road salt can alter community structure via both direct

  14. The effects of freshwater inflow, inlet conveyance and sea level rise on the salinity regime in the Loxahatchee Estuary

    International Nuclear Information System (INIS)

    Hu, G.

    2002-01-01

    The upstream migration of salt water into the historic freshwater reaches of the Loxahatchee River is the likely cause of the altered floodplain cypress forest community along the Northwest Fork and some of its tributaries. Mangroves are replacing cypress forest and areas of mixed swamp hardwoods have reacted to different degrees to the saltwater stress. A hydrodynamic/salinity model was developed to study the influence of freshwater input, tidal inlet deepening and sea level rise on the salinity regime in the estuary. Field data analysis and model simulations indicate that the salinity condition in the estuary is sensitive to the amount of freshwater input from the watershed. During dry seasons the salt front advances into areas that were historically freshwater habitats. Historic evidence indicates that the Loxahatchee estuary was periodically closed and opened to the sea. Due to the active long shore sediment transport, the tidal inlet was probably characterized by shifting sandbars through which ran a narrow and unstable channel. Inlet dredging in the past several decades has increased the hydraulic conveyance of the inlet and the tidal influence into the estuary. The sea level record from a site in south Florida indicates that the sea level has been rising at a rate of approximately 2.3-mm per year. The rise of sea level in the past century has probably raised the mean tide level by about 23 centimeters. If the sea level rise continues as predicted, it is foreseeable that the salt front will move further upstream along with the sea level rise. Field data analysis and the preliminary model output led us to believe that the advance of seawater up the estuary is the combined effect of watershed hydrological changes, inlet deepening and sea level rise. (author)

  15. Impact of salinity and pH on phytoplankton communities in a tropical freshwater system: An investigation with pigment analysis by HPLC

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Acharyya, T.; Babu, P.V.R.; Bandyopadhyay, D.

    towards the fluctuating pH. These findings are environmentally relevant to understand the likely impact of salt water intrusion and pH variation on phytoplankton communities in a tropical freshwater system....

  16. Physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13.

    Science.gov (United States)

    Min, K R; Zimmer, M N; Rickard, A H

    2010-11-01

    The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3-10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.

  17. Freshwater ice as habitat: partitioning of phytoplankton and bacteria between ice and water in central European reservoirs

    Czech Academy of Sciences Publication Activity Database

    McKay, R.M.L.; Prášil, Ondřej; Pechar, L.; Lawrenz, Evelyn; Rozmarynowycz, M.; Bullerjahn, G. S.

    2015-01-01

    Roč. 7, č. 6 (2015), s. 887-898 ISSN 1758-2229 R&D Projects: GA MŠk LO1416; GA MŠk EE2.3.30.0059 Institutional support: RVO:61388971 Keywords : COVERED LAKE-ERIE * ANTARCTIC SEA-ICE * LONG-TERM CHANGES Subject RIV: EE - Microbiology, Virology Impact factor: 3.500, year: 2015

  18. Trends in Arctic Ocean bottom pressure, sea surface height and freshwater content using GRACE and the ice-ocean model PIOMAS from 2008-2012

    Science.gov (United States)

    Peralta-Ferriz, Cecilia; Morison, James; Zhang, Jinlun; Bonin, Jennifer

    2014-05-01

    shape and strength of the Arctic Oscillation (AO) and the wind patterns, as well as with the changes in sea ice conditions will be explored. References: Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele, Changing Arctic Ocean Freshwater Pathways Measured With ICESat and GRACE, Nature, 481, 66-70, DOI: 10.1038/nature10705, 2012. de Steur, L., et al. (2013), Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010, J. Geophys. Res. Oceans, 118, 4699-4715, doi:10.1002/jgrc.20341.

  19. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  20. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  1. The late Cainozoic East Antarctic ice sheet

    International Nuclear Information System (INIS)

    Colhoun, E.A.

    1999-01-01

    A review, mainly of East Antarctic late Cainozoic (post 40 Ma) geological and geomorphological evidence, supports the hypothesis of the continuous presence of an ice sheet, of about the present size, since the late Miocene. Evidence is presented and the view advanced that, during the late Wisconsin maximum of isotope stage 2, ice was not nearly as thick or extensive over the continental shelf as required by the model of 'maximum' Antarctic glaciation. Some of the factors influencing the contribution of Antarctica to post-glacial sea-level rise are discussed. It is considered that Antarctica's contribution was probably considerably less than previously estimated. The dating of marine and freshwater sequences in the Vestfold and Bunger Hills is consistent with deglaciation around the Pleistocene Holocene boundary, after the Late Wisconsin maximum. A date of ∼25 ka BP from permafrost in the Larsemann Hills means that either the Larsemann Hills were not glaciated during the Late Wisconsin or the ice failed to erode much of the permafrost surface. The degree of weathering of rock and glacial drifts in the Vestfold, Larsemann and Bunger Hills suggests a long time for formation, perhaps considerably longer than indicated by the dated marine and freshwater sediment sequences. Cosmogenic isotope dating in the Vestfold Hills has provided equivocal ages for deglaciation. While the results could indicate deglaciation before 80 ka BP, they do not confirm such early deglaciation. If the ice cover was thin and failed to remove the previous rock exposure profile, then the assays could predate the last ice advance. Weathered iron crust fragments in the till suggest little erosion. The raised beaches of the oases are Holocene. Assuming they have been produced by post Late Wisconsin isostatic uplift and by the Holocene transgression, calculations show that the Antarctic continental ice sheet could not have been more than ∼500 m thicker in the inner shelf-coastal zone. The

  2. Evidence of Road Salt in New Hampshire’s Snowpack Hundreds of Meters from Roadways

    Directory of Open Access Journals (Sweden)

    James Lazarcik

    2017-07-01

    Full Text Available Salinization of surface and groundwater has been directly linked to the area of road surfaces in a watershed and the subsequent wintertime maintenance used to keep roads free of snow and ice. Most studies that explore road salt in snow along roadways limit the study to within 100 m from a roadway and conclude that there is negligible deposition of de-icing salt at distances greater than 100 m. In this study, we analyze the ion content of the southern New Hampshire snowpack and use Mg2+ as a conservative sea-salt tracer to calculate sea salt and non-sea salt fractions of Cl−. There is a minimum of 60% non-sea salt Cl−, which we attribute to road salt, in the snowpack at our study sites 115 to 350 m from the nearest maintained roadways. This suggests that larger areas need to be considered when investigating the negative impact of Cl− loading due to winter-time maintenance.

  3. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    Science.gov (United States)

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  4. Trade-offs in osmoregulation and parallel shifts in molecular function follow ecological transitions to freshwater in the Alewife

    Science.gov (United States)

    Velotta, Jonathan P.; McCormick, Stephen; Schultz, Eric T.

    2015-01-01

    Adaptation to freshwater may be expected to reduce performance in seawater because these environments represent opposing selective regimes. We tested for such a trade-off in populations of the Alewife (Alosa pseudoharengus). Alewives are ancestrally anadromous, and multiple populations have been independently restricted to freshwater (landlocked). We conducted salinity challenge experiments, whereby juvenile Alewives from one anadromous and multiple landlocked populations were exposed to freshwater and seawater on acute and acclimation timescales. In response to acute salinity challenge trials, independently derived landlocked populations varied in the degree to which seawater tolerance has been lost. In laboratory-acclimation experiments, landlocked Alewives exhibited improved freshwater tolerance, which was correlated with reductions in seawater tolerance and hypo-osmotic balance, suggesting that trade-offs in osmoregulation may be associated with local adaptation to freshwater. We detected differentiation between life-history forms in the expression of an ion-uptake gene (NHE3), and in gill Na+/K+-ATPase activity. Trade-offs in osmoregulation, therefore, may be mediated by differentiation in ion-uptake and salt-secreting pathways.

  5. Toxicity of road salt to Nova Scotia amphibians.

    Science.gov (United States)

    Collins, Sara J; Russell, Ronald W

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC(50)) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species.

  6. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat.

    Science.gov (United States)

    Carrizo, Savrina F; Jähnig, Sonja C; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-10-01

    Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

  7. Recycling of salt-contaminated stormwater runoff for brine production at Virginia Department of Transportation road-salt storage facilities.

    Science.gov (United States)

    2008-01-01

    A large part of the Virginia Department of Transportation's (VDOT's) maintenance effort comprises the implementation of its snow removal and ice control program. Earlier research confirmed that VDOT captures significant volumes of salt-laden stormwat...

  8. Positron Lifetimes in Pure and Doped Ice and in Water

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Mogensen, O.; Trumpy, Georg

    1972-01-01

    for the other components show a complex behavior. The spectra for mono- and polycrystalline light ice and for polycrystalline heavy ice are identical. For water long lifetime components attributed to ortho-Ps are 1.86 nsec, 27% for H2O and 2.01 nsec, 22% for D2O. Theoretical explanations are suggested. Fast......Positron lifetime spectra were measured in mono- and polycrystalline light ice, polycrystalline heavy ice, doped light ice, as well as in light and heavy water. All spectra were resolved into three components. At temperatures between −196° and −100°C the lifetimes and relative intensities...... of the spectra are found by heating above approximately −120°C. Measurements on a number of fast frozen aqueous solutions of acids, bases, and salts are reported, none of them showing as strong influence on the ortho-Ps lifetime as HF. ©1972 The American Institute of Physics...

  9. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  10. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  11. Tracking animals in freshwater with electronic tags: past, present and future

    Science.gov (United States)

    Cooke, Steven J.; Midwood, Jonathan D.; Thiem, Jason D.; Klimley, Peter; Lucas, Martyn C.; Thorstad, Eva B.; Eiler, John; Holbrook, Chris; Ebner, Brendan C.

    2013-01-01

    Considerable technical developments over the past half century have enabled widespread application of electronic tags to the study of animals in the wild, including in freshwater environments. We review the constraints associated with freshwater telemetry and biologging and the technical developments relevant to their use. Technical constraints for tracking animals are often influenced by the characteristics of the animals being studied and the environment they inhabit. Collectively, they influence which and how technologies can be used and their relative effectiveness. Although radio telemetry has historically been the most commonly used technology in freshwater, passive integrated transponder (PIT) technology, acoustic telemetry and biologgers are becoming more popular. Most telemetry studies have focused on fish, although an increasing number have focused on other taxa, such as turtles, crustaceans and molluscs. Key technical developments for freshwater systems include: miniaturization of tags for tracking small-size life stages and species, fixed stations and coded tags for tracking large samples of animals over long distances and large temporal scales, inexpensive PIT systems that enable mass tagging to yield population- and community-level relevant sample sizes, incorporation of sensors into electronic tags, validation of tag attachment procedures with a focus on maintaining animal welfare, incorporation of different techniques (for example, genetics, stable isotopes) and peripheral technologies (for example, geographic information systems, hydroacoustics), development of novel analytical techniques, and extensive international collaboration. Innovations are still needed in tag miniaturization, data analysis and visualization, and in tracking animals over larger spatial scales (for example, pelagic areas of lakes) and in challenging environments (for example, large dynamic floodplain systems, under ice). There seems to be a particular need for adapting

  12. Wheel-Based Ice Sensors for Road Vehicles

    Science.gov (United States)

    Arndt, G. Dickey; Fink, Patrick W.; Ngo, Phong H.; Carl, James R.

    2011-01-01

    Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another

  13. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods

    Science.gov (United States)

    Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo

    2012-01-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.

  14. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  15. Salt fluxes in a complex river mouth system of Portugal.

    Directory of Open Access Journals (Sweden)

    Nuno Vaz

    Full Text Available Measurements of velocity and salinity near the mouth and head of the Espinheiro channel (Ria de Aveiro lagoon, Portugal are used to study the local variation of physical water properties and to assess the balance, under steady conditions, between the seaward salt transport induced by river discharge and the landward dispersion induced by various mixing mechanisms. This assessment is made using data sampled during complete tidal cycles. Under the assumption that the estuarine tidal channel is laterally homogeneous and during moderate tidal periods (except for one survey, currents and salinity data were decomposed into various spatial and temporal means and their deviations. Near the channel's mouth, the main contributions to the salt transport are the terms due to freshwater discharge and the tidal correlation. Near the channel's head, this last term is less important than the density driven circulation, which is enhanced by the increase in freshwater discharge. The remaining terms, which are dependent on the deviations from the mean depth have a smaller role in the results of salt transport. The computed salt transport per unit width of a section perpendicular to the mean flow is in close agreement to the sum of the advective and dispersive terms (within or very close to 12%. An imbalance of the salt budget across the sections is observed for all the surveys. Considerations are made on how this approach can inform the management of hazardous contamination and how to use these results to best time the release of environmental flows during dry months.

  16. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    Science.gov (United States)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  17. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.

    2010-01-01

    Sea-level rise and anthropogenic activity promote salinity incursion into many tidal freshwater forested wetlands. Interestingly, individual trees can persist for decades after salt impact. To understand why, we documented sapflow (Js), reduction in Js with sapwood depth, and water use (F) of baldcypress (Taxodium distichum (L.) Rich.) trees undergoing exposure to salinity. The mean Js of individual trees was reduced by 2.8 g H2O??m-2??s-1 (or by 18%) in the outer sapwood on a saline site versus a freshwater site; however, the smallest trees, present only on the saline site, also registered the lowest Js. Hence, tree size significantly influenced the overall site effect on Js. Trees undergoing perennial exposure to salt used greater relative amounts of water in outer sapwood than in inner sapwood depths, which identifies a potentially different strategy for baldcypress trees coping with saline site conditions over decades. Overall, individual trees used 100 kg H2O??day-1 on a site that remained relatively fresh versus 23.9 kg H2O??day-1 on the saline site. We surmise that perennial salinization of coastal freshwater forests forces shifts in individual-tree osmotic balance and water-use strategy to extend survival time on suboptimal sites, which further influences growth and morphology.

  18. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Sulphate and chloride aerosols during Holocene and last glacial periods preserved in the Talos Dome Ice Core, a peripheral region of Antarctica

    Directory of Open Access Journals (Sweden)

    Yoshinori Iizuka

    2013-04-01

    Full Text Available Antarctic ice cores preserve the record of past aerosols, an important proxy of past atmospheric chemistry. Here we present the aerosol compositions of sulphate and chloride particles in the Talos Dome (TD ice core from the Holocene and Last Glacial Period. We find that the main salt types of both periods are NaCl, Na2SO4 and CaSO4, indicating that TD ice contains relatively abundant sea salt (NaCl from marine primary particles. By evaluating the molar ratio of NaCl to Na2SO4, we show that about half of the sea salt does not undergo sulphatisation during late Holocene. Compared to in inland Antarctica, the lower sulphatisation rate at TD is probably due to relatively little contact between sea salt and sulphuric acid. This low contact rate can be related to a reduced time of reaction for marine-sourced aerosol before reaching TD and/or to a reduced post-depositional effect from the higher accumulation rate at TD. Many sulphate and chloride salts are adhered to silicate minerals. The ratio of sulphate-adhered mineral to particle mass and the corresponding ratio of chloride-adhered mineral both increase with increasing dust concentration. Also, the TD ice appears to contain Ca(NO32 or CaCO3 particles, thus differing from aerosol compositions in inland Antarctica, and indicating the proximity of peripheral regions to marine aerosols.

  20. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  1. Freshwater Microbialites of Pavilion Lake, British Columbia, Canada: A Limnological Investigation

    Science.gov (United States)

    Lim, D. S. S.; McKay, C. P.; Laval, B.; Bird, J.; Cady, S.

    2004-01-01

    Pavillion Lake is 5.7km long and an average of 0.8 km in width, and is located in Marble Canyon in the interior of British Columbia, Canada. It is a slightly alkaline, freshwater lake with a maximum-recorded depth of 65m. The basin walls of Pavilion Lake are lined with microbialite structures that are oriented perpendicularly to the shoreline, and which are found from depths of 5 meters to the bottom of the photic zone (light levels 1% of ambient; approximately 30m depth). These structures are speculated to have begun formation nearly 11,000 years ago, after the glacial retreat of the Cordilleran Ice Sheet. They are likely a distinctive assemblage of freshwater calcite microbialites, which display micromorphologies possibly related to the ancient Epiphyton and Girvanella classes of calcareous organosedimentary structures.

  2. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    the modal freeboard heights of 55 cm retrieved from the laser scanner data with the 25 cm retrieved from CryoSat-2 indicates a snow layer of 30 cm, due to the theory that a laser is reflected at the air/snow interface, while the radar is reflected at the snow/ice interface. In the other area, the modal...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...... and in fjord systems. The Greenland fjords exhange freshwater between the glaciers and the ocean. Measuring a snapshot of the ice mélange in front of Kangiata Nunˆta Sermia in southwest Greenland with airborne LiDAR, gives an estimate of the ice disharge since last autuum. The total volume of 1:70 _ 1:26 GT...

  3. World in the drift-ice; Ryuhyo no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Aota, M. [Hokkaido Univ., Hokkaido (Japan)

    1999-06-07

    What freezes in the sea in the circumference in our country is only Sea of Okhotsk. What will be the drift-ice for the people who live in this beach? The distress by the drift-ice often occurred. The drift-ice spoils tearing, shell in the pickpocket in respect of the fishing gear in respect of destruction and kelp. The boat was landed, when the drift-ice came, the fisherman came out, and it went to the labor. The seafood processing field becomes also the closure condition. The drift-ice was a white demon for people of the beach, and it was a troublesome person. In the meantime, the drift-ice soothes the wave, and it becomes a natural float breakwater, the coast is kept, and the salt damage does be held. There is some that it is faced the sea off beach cleaning. People of the seashore in Okohtsk live with the drift-ice with merits and both demerit sideses. (NEDO)

  4. Tolerance to road salt deicers in chronically exposed urban pond communities

    Science.gov (United States)

    Freshwater salinization is a concern in urban aquatic ecosystems that receive road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs and to assess the tolerance o...

  5. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  6. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  7. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    Science.gov (United States)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  8. Recent changes in energy and freshwater budgets for the Godthåbsfjord catchment simulated in a 5 km regional climate model

    DEFF Research Database (Denmark)

    Langen, P. L.; Mottram, R.; Christensen, J. H.

    2014-01-01

    Freshwater input to the Godthåbsfjord (Southwest Greenland) is analyzed with special attention on the melt and runoff from the ice sheet. We use the high resolution (5.5 km) HIRHAM5 regional climate model covering all of Greenland, forced by the ERA-Interim reanalysis at the lateral boundaries ov...

  9. Advances in marine ice profiling for oil and gas applications

    International Nuclear Information System (INIS)

    Fissel, D.; Marko, J.; Melling, H.

    2008-01-01

    Developments in acoustic profiling technologies have allowed ever more accurate and information-rich extraction of data on the draft, undersurface topography and immediately adjacent water column environment of polar and other marine and freshwater ice covers. The purpose of these advances was to replace and improve upon other, often inconvenient, costly and/or otherwise unsatisfactory methodologies such as the use of upward looking sonar (ULS) sounders on submarines as well as deployments of airborne- sensors such as laser profilometers and electromagnetic induction instrumentation. ULS is a primary source of data for measurements of ice thickness. Self-contained units now have the data capacity and accuracy/resolution sufficient for unattended operation. Recent technological advances have now led to the next generation of ice profiling sonar (IPS), incorporating much expanded on-board data storage capacity and powerful onboard real-time firmware. This paper outlined the nature of the issues addressed in past oil and gas related ice profiling studies. The paper focused on identifying the key items of interest and the remaining uncertainties in the derived products. All of the data gathered in this regard was obtained with first generation profiling instrumentation of the type initially introduced by Melling and coworkers in 1995. The additional features of a recently introduced next generation IPS instrument were briefly described. The observed and potential benefits offered in oil and gas related applications were also presented. It was concluded that the next generation ice profilers sets the stage for research and development into the measurement of new ice parameters, the combination of information from ice profilers and all-weather radar satellite systems, and the possibility of remote access to the ice profiler data from multi-year moorings located well within the main Arctic Ocean ice pack. 11 refs., 10 figs

  10. Laboratory evaluation of long-term anti-icing performance and moisture susceptibility of chloride-based asphalt mixture

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2016-03-01

    Full Text Available The objective of this research is to investigate the long-term anti-icing performance and moisture susceptibility of chloride-based asphalt mixture. Two experiments (the natural and accelerated dissolving-out methods were conducted on the Marshall samples and their salt releasing amount were determined based on the density measurement of the aqueous solution with a hydrometer. In addition, the impact of anti-icing agents (MFL on the mixture water stability was also investigated. Results show that a similar tendency in both methods was observed and the salt dissolution history was generally divided into three phases. Most notably, compared with the natural dissolving-out experiment the accelerated test was more effective and time-saving. Moreover, asphalt concrete with MFL performed poorer water damage resistance than the conventional asphalt concrete and the residual stability of the former declined more dramatically than the later. Finally, based on the 60 °C dissolving-out experiment, a model to predict the effective working time of the anti-icing asphalt pavement was proposed subsequently. Keywords: Asphalt mixture, Chloride, Long-term anti-icing performance, Moisture susceptibility

  11. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta.

    Science.gov (United States)

    Kefford, Ben J; Nugegoda, Dayanthi

    2005-04-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 microS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 microS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 microS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 microS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered.

  12. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  13. Acute effects of road salts and associated cyanide compounds on the early life stages of the unionid mussel Villosa iris.

    Science.gov (United States)

    Pandolfo, Tamara J; Cope, W Gregory; Young, George B; Jones, Jess W; Hua, Dan; Lingenfelser, Susan F

    2012-08-01

    The toxicity of cyanide to the early life stages of freshwater mussels (order Unionida) has remained unexplored. Cyanide is known to be acutely toxic to other aquatic organisms. Cyanide-containing compounds, such as sodium ferrocyanide and ferric ferrocyanide, are commonly added to road deicing salts as anticaking agents. The purpose of the present study was to assess the acute toxicity of three cyanide compounds (sodium cyanide, sodium ferrocyanide, and ferric ferrocyanide), two road salts containing cyanide anticaking agents (Morton and Cargill brands), a brine deicing solution (Liquidow brand), and a reference salt (sodium chloride) on glochidia (larvae) and juveniles of the freshwater mussel Villosa iris. Sodium ferrocyanide and ferric ferrocyanide were not acutely toxic to glochidia and juvenile mussels at concentrations up to 1,000 mg/L and 100 mg/L, respectively. Lowest observed effect concentrations (LOECs) for these two chemicals ranged from 10 to >1,000 mg/L. Sodium cyanide was acutely toxic to juvenile mussels, with a 96-h median effective concentration (EC50) of 1.10 mg/L, although glochidia tolerated concentrations up to 10 mg/L. The EC50s for sodium chloride, Liquidow brine, Morton road salt, and Cargill road salt were not significantly different for tests within the same life stage and test duration (range, 1.66-4.92 g/L). These results indicate that cyanide-containing anticaking agents do not exacerbate the toxicity of road salts, but that the use of road salts and brine solutions for deicing or dust control on roads may warrant further investigation. Copyright © 2012 SETAC.

  14. Mussel remains from prehistoric salt works, clarke county, Alabama

    Science.gov (United States)

    McGregor, S.W.; Dumas, A.A.

    2010-01-01

    Archaeological research at salt springs in Clarke County, AL (Tombigbee River drainage), documented bivalve mollusk exploitation by late prehistoric American Indians. A total of 582 valves representing 19 species of freshwater mussels (Unionidae) and an estuarine clam (Mactridae) from the Lower Salt Works Site (ca. A.D. 900-1550) and 41 valve fragments representing 6 mussel species from the Stimpson Site (ca. A.D. 1200-1550) were documented. The Lower Salt Works fauna was dominated numerically by Fusconaia ebena and Quadrula asperata, the dominant species reported during recent local surveys. The mussel species represented are known from medium to large streams in sand and gravel habitats and include four federally protected species and other species of conservation concern in Alabama. Results offer comparative data for other archaeological and ecological studies in the region.

  15. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  16. Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed by the Expendable Ice Tracker

    NARCIS (Netherlands)

    Carlson, D.F.; Boone, W.; Meire, L.; Abermann, J.; Rysgaard, S.

    2017-01-01

    Icebergs and bergy bits makes up a significant component of the total freshwater flux from the Greenland Ice Sheet to the ocean. Observations of iceberg trajectories are biased toward larger icebergs and, as a result, the drift characteristics of smaller icebergs and bergy bits are poorly

  17. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers

    International Nuclear Information System (INIS)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-01-01

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na + , Cl − , Mg 2+ , K + and Ca 2+ , at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ∼98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems. (paper)

  18. Salt Intrusion in the Tweed Estuary

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.

    1996-09-01

    Results are presented from a 2-week field programme in the Tweed Estuary, U.K. Maximum values of the empirically based Estuarine Richardson Number, Ri E, occurred during neap tides, and minimum values occurred during spring tides. Estimated values of Ri Evaried between 0·3 and 2·3, suggesting the occurrence of partially mixed to stratified conditions, depending on tidal state and freshwater inflow. These relatively large values of Ri Ewere consistent with both observed strong salinity stratification and large salt fluxes due to vertical shear transport. Low values (0·5) values in the halocline. A velocity maximum occurred within the halocline during the early flood. Wave-like spatial oscillations of the halocline occurred on the ebb. The oscillation troughs were situated above deep holes located just down-estuary of the rail and old road bridges. There was an indication that the constricted flow between the bridges' arches resulted in enhanced mixing of near-surface waters and a thickening of the halocline. It is also possible that these wave-like structures were stationary, near-critical internal lee waves, triggered by the deep holes. Trapping of high-salinity waters occurred on the ebb. Saline pools were isolated within a deep hole or deeper section of bed by the falling halocline. When the salt wedge moved further down-estuary, the ' trapped ' waters were subjected to strongly ebbing, overlying freshwater, and were subsequently entrained and flushed. The salinity intrusion was a strong function of spring-neap tidal state and a weaker function of freshwater inflow. The estimated salinity intrusion varied from about 4·7 to 7·6 km during the fieldwork period. The strong dependence on tidal range followed from the comparable lengths of the tidal excursion and salinity intrusion. Long excursion lengths were also partly responsible for the short residence (or flushing) times and their strong dependence on spring-neap tidal state. For typical summer freshwater

  19. Hazard identification for human and ecological effects of sodium chloride road salt.

    Science.gov (United States)

    2007-07-01

    The New Hampshire Department of Environmental Services (DES) requested an evaluation of : the human and ecological risks associated with the application of sodium chloride (NaCl) road : salt to roadways. NaCl is the major de-icing agent used in NH to...

  20. Rise and fall of road salt contamination of water-supply springs

    Science.gov (United States)

    Werner, Eberhard; Dipretoro, Richard S.

    2006-12-01

    A storage pile of de-icing agent consisting principally of sodium chloride was placed in the recharge area of two springs, and remained there for 2 years. Water flow is through fractures in rocks with low matrix permeability, along a hydraulic gradient developed along fracture zones. Salt contamination in the springs was noticed about 1 year after the salt was placed. When the salt was removed 1 year later, chloride concentrations in the springs exceeded 500 mg/L. Monitoring for the following 5 years showed salt contamination rising for the first year, but receding to normal background after 5 years. Chloride to sodium ratios of the spring waters indicated that some sodium was initially sequestered, probably by ion exchange on clay minerals, in the early part of the monitoring period, and released during the latter part; thereby extending the period of contamination.

  1. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters....

  2. Deep ice and salty oceans of icy worlds, how high pressures influence their thermodynamics and provide constrains on extraterrestrial habitability

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Bollengier, O.; Abramson, E.

    2017-12-01

    As in Earth arctic and Antarctic regions, suspected extraterrestrial deep oceans in icy worlds (i.e. icy moons and water-rich exoplanets) chemistry and thermodynamic state will strongly depend on their equilibrium with H2O ice and present solutes. Na-Mg-Cl-SO4 salt species are currently the main suspected ionic solutes to be present in deep oceans based on remote sensing, magnetic field measurements, cryovolcanism ice grains chemical analysis and chondritic material aqueous alteration chemical models. Unlike on our planet, deep extraterrestrial ocean might also be interacting at depth with high pressure ices (e.g. III, V, VI, VI, X) which have different behavior compared to ice Ih. Unfortunately, the pressures and temperatures inside these hydrospheres differ significantly from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions. High pressure in-situ measurements using diamond anvil cell apparatus were operated both at the University of washington and at the European Synchrotron Radiation Facility on aqueous systems phase diagrams with Na-Mg-Cl-SO4 species, salt incorporation in high pressure ices and density inversions between the solid and the fluids. These results suggest a more complex picture of the interior structure, dynamic and chemical evolution of large icy worlds hydrospheres when solutes are taken into account, compared to current models mainly using pure water. Based on our in-situ experimental measurements, we propose the existence of new liquid environments at greater depths and the possibility of solid state transport of solute through the high pressure ices

  3. Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012)

    DEFF Research Database (Denmark)

    Langen, P.L.; Mottram, R.H.; Christensen, J.H.

    2015-01-01

    Freshwater runoff to fjords with marine-terminating glaciers along the Greenland Ice Sheet margin has an impact on fjord circulation and potentially ice sheet mass balance through increasing heat transport to the glacier front. Here, the authors use the high-resolution (5.5 km) HIRHAM5 regional...... with observations (typically .0.9), there are biases that impact the results. In particular, overestimated albedo leads to underestimation of melt and runoff at low elevations. In the model simulation (1991–2012), the ice sheet experiences increasing energy input from the surface turbulent heat flux (up...... to elevations of 2000m) and shortwave radiation (at all elevations). Southerly wind anomalies and declining cloudiness due to an increase in atmospheric pressure over north Greenland contribute to increased summer melt. This results in declining surface mass balance (SMB), increasing surface runoff, and upward...

  4. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Goelzer, H.; Huybrechts, P. [Vrije Universiteit Brussel, Earth System Sciences and Departement Geografie, Brussels (Belgium); Loutre, M.F.; Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Georges Lemaitre Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Louvain-la-Neuve (Belgium); Mouchet, A. [Universite de Liege, Laboratoire de Physique Atmospherique et Planetaire, Liege (Belgium)

    2011-09-15

    We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2 x CO{sub 2} warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model's sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model's temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea-air interface, driven by freshening of the surface ocean and amplified by sea-ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model's climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses. (orig.)

  5. Physical controls on the storage of methane in land fast sea ice

    DEFF Research Database (Denmark)

    Zhou, Jiayun; Tison, Jean Louis; Carnat, Gauthier

    2014-01-01

    regulated the storage of CH4 in sea ice: bubble formation and sea ice permeability. Gas bubble formation from solubility changes had favoured the accumulation of CH4 in the ice at the beginning of ice growth. CH4 retention in sea ice was then twice as efficient as that of salt; this also explains...... the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient so that CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marks the end of CH4 storage.......We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged between 25.9 and 116.4 nmol L−1sw, indicating a superaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations...

  6. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  7. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  8. Combined effects of road salt and an insecticide on wetland communities.

    Science.gov (United States)

    Stoler, Aaron B; Walker, Brent M; Hintz, William D; Jones, Devin K; Lind, Lovisa; Mattes, Brian M; Schuler, Matthew S; Relyea, Rick A

    2017-03-01

    As the numbers of chemical contaminants in freshwater ecosystems increase, it is important to understand whether contaminants interact in ecologically important ways. The present study investigated the independent and interactive effects of 2 contaminants that frequently co-occur in freshwater environments among higher latitudes, including a commonly applied insecticide (carbaryl) and road salt (NaCl). The hypothesis was that the addition of either contaminant would result in a decline in zooplankton, an algal bloom, and the subsequent decline of both periphyton and periphyton consumers. Another hypothesis was that combining the contaminants would result in synergistic effects on community responses. Outdoor mesocosms were used with communities that included phytoplankton, periphyton, zooplankton, amphipods, clams, snails, and tadpoles. Communities were exposed to 4 environmentally relevant concentrations of salt (27 mg Cl - L -1 , 77 mg Cl - L -1 , 277 mg Cl - L -1 , and 727 mg Cl - L -1 ) fully crossed with 4 carbaryl treatments (ethanol, 0 µg L -1 , 5 µg L -1 , and 50 µg L -1 ) over 57 d. Contaminants induced declines in rotifer and cladoceran zooplankton, but only carbaryl induced an algal bloom. Consumers exhibited both positive and negative responses to contaminants, which were likely the result of both indirect community interactions and direct toxicity. In contrast to the hypothesis, no synergistic effects were found, although copepod densities declined when high concentrations of both chemicals were combined. The results suggest that low concentrations of salt and carbaryl are likely to have mostly independent effects on aquatic communities. Environ Toxicol Chem 2017;36:771-779. © 2016 SETAC. © 2016 SETAC.

  9. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    Science.gov (United States)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation

  10. Complex yet translucent: the optical properties of sea ice

    International Nuclear Information System (INIS)

    Perovich, Donald K.

    2003-01-01

    Sea ice is a naturally occurring material with an intricate and highly variable structure consisting of ice platelets, brine pockets, air bubbles, and precipitated salt crystals. The optical properties of sea ice are directly dependent on this ice structure. Because sea ice is a material that exists at its salinity determined freezing point, its structure and optical properties are significantly affected by small changes in temperature. Understanding the interaction of sunlight with sea ice is important to a diverse array of scientific problems, including those in polar climatology. A key optical parameter for climatological studies is the albedo, the fraction of the incident sunlight that is reflected. The albedo of sea ice is quite sensitive to surface conditions. The presence of a snow cover enhances the albedo, while surface meltwater reduces the albedo. Radiative transfer in sea ice is a combination of absorption and scattering. Differences in the magnitude of sea ice optical properties are ascribable primarily to differences in scattering, while spectral variations are mainly a result of absorption. Physical changes that enhance scattering, such as the formation of air bubbles due to brine drainage, result in more light reflection and less transmission

  11. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  12. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    fluxes of heat, salt, and momentum. Hourly GPS fixes tracked the motion of the supporting ice floes and T/C recorders sampled the ocean waters just... sampled in a range of ice conditions from full ice cover to nearly open water and observed a variety of stratification and ocean velocity signals (e.g...From - To) 12/30/2016 final 01-Nov-2011to 30-Sep-201 6 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  13. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Nugegoda, Dayanthi

    2005-01-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 μS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 μS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 μS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 μS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered. - Responses of snails to increasing salinity were non-linear

  14. Viability of human-derived probiotic lactobacilli in ice cream produced with sucrose and aspartame.

    Science.gov (United States)

    Başyiğit, Gülden; Kuleaşan, Hakan; Karahan, Aynur G

    2006-09-01

    A mixture of human-derived probiotic strains of Lactobacillus acidophilus, L. agilis and L. rhamnosus was used as a probiotic culture in ice cream manufacture. Viability and survival of these probiotic cultures were investigated in two different ice cream formulations. Ice cream with sucrose and ice cream with aspartame were prepared and each of these was divided into two subgroups: one with direct addition of the probiotic culture and one with milk fermented by the same probiotic culture. Ice cream samples were stored at -20 degrees C for 6 months and the survival rate of cultures were determined monthly. Probiotic cultures underwent tests for resistance to bile salts, antibiotics, acidic conditions; they were found to be highly resistant to such challenges. Chemical analysis of ice cream samples, such as determination of acidity, pH and solid matter, was also performed. The probiotic cultures remained unchanged in ice cream stored for up to 6 months regardless of the sweeteners used. Using probiotic cultures in ice cream mixes did not alter the characteristics of the product.

  15. Experimental evidence for carbonate precipitation and CO 2 degassing during sea ice formation

    Science.gov (United States)

    Papadimitriou, S.; Kennedy, H.; Kattner, G.; Dieckmann, G. S.; Thomas, D. N.

    2004-04-01

    Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m 3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from -1.9 to -2.2°C in the under-ice seawater down to -6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (C T) and its stable isotopic composition (δ 13C T) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized C T by up to 0.37 pH SWS units and 376 μmol C kg -1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the C T. Calculations based on the direct pH and C T measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO 2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO 2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO 2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO 2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO 2 (≈3.5 × 10 -4 atm). When all physico

  16. Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, Miren [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); University of California, Department of Geography, Berkeley, CA (United States); Mikolajewicz, Uwe; Maier-Reimer, Ernst [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Groeger, Matthias [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); IFM-GEOMAR, Kiel (Germany); Schurgers, Guy [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Lund University, Department of Physical Geography and Ecosystems Analysis, Lund (Sweden); Winguth, Arne M.E. [Center for Climatic Research, Department of Atmospheric and Oceanic Sciences, Madison (United States)

    2008-11-15

    Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere-Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet. (orig.)

  17. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    Science.gov (United States)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  18. Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states

    Energy Technology Data Exchange (ETDEWEB)

    Meerbeeck, Cedric J. van; Renssen, Hans [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Roche, Didier M. [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Laboratoire CEA/INSU-CNRS/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Gif sur Yvette (France)

    2011-11-15

    A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, {proportional_to}60-27 ka BP) than during Termination 1 (T1, {proportional_to}18-10 ka BP) and especially around the Last Glacial Maximum (LGM, {proportional_to}23-19 ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56 ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15 Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200 years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (-0.6 kg

  19. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  20. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  1. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  2. Temporal offsets between surface temperature, ice-rafting and bottom flow speed proxies in the glacial (MIS 3) northern North Atlantic

    NARCIS (Netherlands)

    Jonkers, L.; Prins, M.A.; Moros, M.; Weltje, G.J.; Troelstra, S.R.; Brummer, G.J.A.

    2012-01-01

    Rapid climatic switches during marine isotope stage 3 (29-59 ka BP) are often attributed to ocean circulation changes caused by freshwater input into the North Atlantic through the melting of large amounts of icebergs and sea ice. However, recent studies have questioned this direct coupling between

  3. Reconciled freshwater flux into the Godthåbsfjord system from satellite and airborne remote sensing

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Barletta, Valentina Roberta; Forsberg, René

    2015-01-01

    IS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godthåbsfjord of 18.2 ± 1.2 Gt, in addition......, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godthåbsfjord, in southwest Greenland. The area of the GrIS draining into Godthåbsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the Gr...... to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission...

  4. Generation of sea ice geophysical flux estimates utilizing a multisensor data processor in preparation for the RADARSAT and EOS eras

    International Nuclear Information System (INIS)

    Holt, B.; Kwok, R.; Carsey, F.; Curlander, J.

    1991-01-01

    A geophysical processor for deriving sea ice type and ice motion information from sequential SAR image data has been designed and is in implementation phase for use with ERS-1 SAR data at the Alaska SAR Facility (ASF). This SAR ice data processor, called the ASF Geophysical Processing System, or ASF-GPS, will be in place for launch in May 1991. Descriptions of the salient aspects of ASF-GPS and its current status are presented. The next step in the evolution of processors for geophysical descriptions of sea ice is now in design phase; it involves the utilization of data from other sensors and sources and the generation of higher-level products. The augmented data are environmental, e.g., weather agency analyses, satellite-derived surface temperatures and drifting buoy data. These data serve to (1) improve the performance of the basic data product generation, the ice type and motion data sets, by increasing accuracy and shortening processing time, and (2) extend the level of the data products by computation of key geophysical fluxes. Geophysical quantities required from the sea ice processor include the surface heat, momentum, brine and freshwater fluxes, radiation balance, snow cover, melt pond cover and thermodynamic state. The estimation of two of these fluxes, brine and freshwater, is discussed, and the requirements for suitable environmental data are also presented. Finally, the system design of the ASF-GPS and the follow-on processor, designed initially to utilize SAR data from RADARSAT with weather and other inputs, e.g., AVHRR, and, after upgrade, from the suite of EOS instruments, will be presented. As now envisioned this system will have layered architecture with major branches in data management, user interface and science data analysis and will serve as a prototype design for a wide range of applications

  5. Wind effect on salt transport variability in the Bay of Bengal

    Science.gov (United States)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  6. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes

    Directory of Open Access Journals (Sweden)

    Wenqing Tang

    2018-06-01

    Full Text Available Sea surface salinity (SSS links various components of the Arctic freshwater system. SSS responds to freshwater inputs from river discharge, sea ice change, precipitation and evaporation, and oceanic transport through the open straits of the Pacific and Atlantic oceans. However, in situ SSS data in the Arctic Ocean are very sparse and insufficient to depict the large-scale variability to address the critical question of how climate variability and change affect the Arctic Ocean freshwater. The L-band microwave radiometer on board the NASA Soil Moisture Active Passive (SMAP mission has been providing SSS measurements since April 2015, at approximately 60 km resolution with Arctic Ocean coverage in 1–2 days. With improved land/ice correction, the SMAP SSS algorithm that was developed at the Jet Propulsion Laboratory (JPL is able to retrieve SSS in ice-free regions 35 km of the coast. SMAP observes a large-scale contrast in salinity between the Atlantic and Pacific sides of the Arctic Ocean, while retrievals within the Arctic Circle vary over time, depending on the sea ice coverage and river runoff. We assess the accuracy of SMAP SSS through comparative analysis with in situ salinity data collected by Argo floats, ships, gliders, and in field campaigns. Results derived from nearly 20,000 pairs of SMAP and in situ data North of 50°N collocated within a 12.5-km radius and daily time window indicate a Root Mean Square Difference (RMSD less than ~1 psu with a correlation coefficient of 0.82 and a near unity regression slope over the entire range of salinity. In contrast, the Hybrid Coordinate Ocean Model (HYCOM has a smaller RMSD with Argo. However, there are clear systematic biases in the HYCOM for salinity in the range of 25–30 psu, leading to a regression slope of about 0.5. In the region North of 65°N, the number of collocated samples drops more than 70%, resulting in an RMSD of about 1.2 psu. SMAP SSS in the Kara Sea shows a consistent

  7. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Anthony Campbell

    2017-02-01

    Full Text Available This study used Quickbird-2 and Worldview-2, high resolution satellite imagery, in a multi-temporal salt marsh mapping and change analysis of Jamaica Bay, New York. An object-based image analysis methodology was employed. The study seeks to understand both natural and anthropogenic changes caused by Hurricane Sandy and salt marsh restoration, respectively. The objectives of this study were to: (1 document salt marsh change in Jamaica Bay from 2003 to 2013; (2 determine the impact of Hurricane Sandy on salt marshes within Jamaica Bay; (3 evaluate this long term monitoring methodology; and (4 evaluate the use of multiple sensor derived classifications to conduct change analysis. The study determined changes from 2003 to 2008, 2008 to 2012 and 2012 to 2013 to better understand the impact of restoration and natural disturbances. The study found that 21 ha of salt marsh vegetation was lost from 2003 to 2013. From 2012 to 2013, restoration efforts resulted in an increase of 10.6 ha of salt marsh. Hurricane Sandy breached West Pond, a freshwater environment, causing 3.1 ha of freshwater wetland loss. The natural salt marsh showed a decreasing trend in loss. Larger salt marshes in 2012 tended to add vegetation in 2012–2013 (F4,6 = 13.93, p = 0.0357 and R2 = 0.90. The study provides important information for the resource management of Jamaica Bay.

  8. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  9. "Crystals within Crystals: The Story of Sea Ice". A Classroom-Based Outreach Project Communicating Cutting-Edge Ocean Science to School Pupils

    Science.gov (United States)

    Butler, B.

    2016-02-01

    'Crystals within Crystals: The story of sea ice' is a UK based outreach project based that uses a range practical tools to engage school students with cutting edge scientific research that relates to the use of some of the world's most powerful X-rays in sea ice research. The project is delivered in the form of a classroom workshop that first introduces school pupils (aged 11-14) to seawater and the salts that give it a salinity. The pupils are then shown how the presence of salts within seawater results in very important physical changes when the liquid freezes, which includes different structural and optical properties of the ice. The properties of the ice are then linked to the presence of countless microscopic salt crystals that are trapped within the microstructure of the frozen seawater, which is explained with use of a novel crystal growth demonstration. Given that there is currently no way of successfully removing these salt crystals from the ice, the workshop culminates in explaining how some of the worlds most powerful X-rays can be used to investigate processes that otherwise remain elusive. The workshop introduces students to the fundamental principles of scientific enquiry, the sea ice environment, and the power of X-rays in investigating the properties of crystals. Here we present information that outlines a host of practical and project management tools that are applicacble to outreach projects in the the field of ocean sciences, with the aim of seeding ideas and interest for other graduate student to enage with the public during their studies.

  10. Bio-based renewable additives for anti-icing applications (phase one).

    Science.gov (United States)

    2016-09-04

    The performance and impacts of several bio-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. : A statistical design of experiments (uniform design) was employed for developing anti-icing liquids consistin...

  11. The refreezing of melt ponds on Arctic sea ice

    Science.gov (United States)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  12. Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. cicla Farmed in Freshwater and Saltwater Aquaponic Systems

    Directory of Open Access Journals (Sweden)

    Valentina Nozzi

    2016-09-01

    Full Text Available The purpose of this study is to exploit the euryhaline nature of commercially attractive species for their cultivation in freshwater aquaponic systems. This approach may increase the profitability of aquaponic production in coastal countries where the consumption of marine fish is traditional and of commercial relevance. For this purpose, juvenile European sea bass (Dicentrarchus labrax were reared in an aquaponic freshwater (AFW system and an aquaponic saltwater (ASW system (salinity 20 ppt, in combination with chard (Beta vulgaris var. cicla seedlings, a salt tolerant plant. At the end of the trial, nitrate and phosphate concentration in water significantly increased in the ASW system, suggesting that the ability of B. vulgaris to absorb these substances was limited by salinity. Total reflection X-ray fluorescence spectrometry revealed that the concentration of some oligoelements such as Fe remained lower with respect to the concentration in the freshwater hydroponic solution, in both AFW and ASW. FTIR-Fourier transform infrared spectroscopy on plants showed that growth at high salinity affected their lipid content. In the case of fish, freshwater had no effects on mono- and poly-unsaturated fatty acid profiles, although saturated fatty acids were significantly decreased in D. labrax reared in AFW. Our results demonstrates that it is possible to increase aquaponic profitability by farming D. labrax juveniles in an aquaponic freshwater system together with Beta vulgaris, obtaining good quality products.

  13. Basic Physical Properties of Ammonia-Rich Ice

    Science.gov (United States)

    Shandera, S. E.; Lorenz, R. D.

    2000-10-01

    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  14. Observed runoff, jokulhlaups and suspended sediment load from the Greenland ice at Kangerlussuaq, West Greenland, 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Hasholt, Bent [UNIV OF COPENHAGEN

    2009-01-01

    This study fills the gap in hydrologic measurements of runoff exiting a part of the Greenland Ice Sheet (GrIS), the Kangerlussuaq drainage area, West Greenland. The observations are of value for obtaining knowledge about the terrestrial freshwater and sediment output from part of the GrIS and the strip of land between the GrIS and the ocean, in the context of varying ice sheet surface melt and influx entering the ocean. High-resolution stage, discharge and suspended sediment load show a decrease in runoff of {approx} 25% and in sediment load of {approx} 40% from 2007 to 2008 in response to a decrease in the summer accumulated number of positive degree days. During the 2007 and 2008 runoff season, joekulhlaups are observed at Kangerlussuaq, drained from an ice-dammed lake at the margin of the GrIS.

  15. Holocene sea-level changes in the Falkland Islands

    Science.gov (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  16. Amyloodinum ocellatum in Dicentrarchus labrax: Study of infection in salt water and freshwater aquaponics.

    Science.gov (United States)

    Nozzi, Valentina; Strofaldi, Silvia; Piquer, Isabel Forner; Di Crescenzo, Davide; Olivotto, Ike; Carnevali, Oliana

    2016-10-01

    This investigation is aimed to improve the knowledge on the physiological alterations occurring at morphological and molecular level in European sea bass naturally infected by A. ocellatum and reared at different salinities. European sea bass juveniles (Dicentrarchus labrax) weighing 20 ± 0.5 g were divided in three aquaponics systems: CTRL, reared at 20 ppt salinity; AFI, reared in freshwater (0 ppt) and infected with the dinoflagellate Amyloodinium ocellatum; ASI, reared at 20 ppt salinity and infected with A. ocellatum. Beta vulgaris plants were introduced in each of the aquaponic systems. Temperature was increased 1 °C every second day from 18 to 25 °C during the experiment. At the end of the trial, liver, brain, intestine and gills were sampled for molecular and histological analyses. A. ocellatum affected D. labrax growth (insulin-like growth factor I, IGF-I) and appetite (Neuropeptide Y, NPY) signals in ASI. Immune system was activated in ASI by the presence of parasites by producing higher levels of Interleukin-1 (IL-1) and Tumor Necrosis Factor α (TNFα). Peroxisome proliferator-activated receptor α (PPAR α), codifying for a protein involved in lipid metabolism, was upregulated in ASI because of the necessity to produce energy to maintain homeostasis. On the contrary, A. ocellatum did not cause signs of infection in AFI as confirmed by gene expression and histological analysis, that were similar to CTRL. However, in freshwater reared fish, a modification of lipid metabolism was observed through a reduction in PPARα gene expression and hepatic lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  18. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  19. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xu [Chinese Academy of Sciences (CAS), Climate Change Research Center (CCRC), Beijing (China); Chinese Academy of Sciences (CAS), Nansen-Zhu International Research Center, Institute of Atmospheric Physics (IAP), Beijing (China); Harvard University, School of Engineering and Applied Sciences, Cambridge, MA (United States); Liao, Hong [Chinese Academy of Sciences (CAS), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), P.O. Box 9804, Beijing (China)

    2012-12-15

    We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 {mu}m. Predicted annual and global mean SW and LW REs of sea salt are, respectively, -1.06 and +0.14 W m{sup -2} at the top of atmosphere (TOA), and -1.10 and +0.54 W m{sup -2} at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be -0.55, -0.63, -0.86, and -0.91 K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year{sup -1}. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14 K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and

  20. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  1. A geoelectrical survey above an Antarctic ice shelf

    Directory of Open Access Journals (Sweden)

    M. Pavan

    1998-06-01

    Full Text Available A geoelectrical survey was performed on the Hells Gate ice shelf (Victoria Land-Antarctic within the framework of an integrated geophysical and glaciological research program. The resistivity profiles show a similar trend, with resistivity values ranging from about 25000 W · m to 500000 W · m. These results have been interpreted as the effect of a sharp transition from "marine ice" to "continental" ice an interpretation that is consistent with the results of surface mapping. Interpreting the Vertical Electrical Soundings (VES is a complex process. In fact, the alternating layers of ice with different compositions and salt content generate great uncertainty relative to the corresponding electric stratigraphies. To solve these problems of equivalency, all the available constraints were used including the drilling thickness, seismic reflection profiles as well as radar profiles. The results were used to provide what is mainly a qualitative overview that is coherent with the glaciological hypotheses relative to the evolution and structure proposed by some researchers for this ice shelf.

  2. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, A.P.; Renssen, H. [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands); Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique George Lemaitre, Louvain-la-Neuve (Belgium)

    2006-12-15

    To improve our understanding of the mechanism causing the 8.2 ka BP event, we investigated the response of ocean circulation in the ECBilt-CLIO-VECODE (Version 3) model to various freshwater fluxes into the Labrador Sea. Starting from an early Holocene climate state we released freshwater pulses varying in volume and duration based on published estimates. In addition we tested the effect of a baseline flow (0.172 Sv) in the Labrador Sea to account for the background-melting of the Laurentide ice-sheet on the early Holocene climate and on the response of the overturning circulation. Our results imply that the amount of freshwater released is the decisive factor in the response of the ocean, while the release duration only plays a minor role, at least when considering the short release durations (1, 2 and 5 years) of the applied freshwater pulses. Furthermore, the experiments with a baseline flow produce a more realistic early Holocene climate state without Labrador Sea Water formation. Meltwater pulses introduced into this climate state produce a prolonged weakening of the overturning circulation compared to an early Holocene climate without baseline flow, and therefore less freshwater is needed to produce an event of similar duration. (orig.)

  3. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Muijs, B.

    2010-01-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can

  4. The use of airborne electromagnetic for efficient mapping of salt water intrusion and outflow to the sea

    DEFF Research Database (Denmark)

    Auken, Esben; Kirkegaard, Casper; Ribeiro, Joana

    2010-01-01

    Airborne electromagnetic (AEM) is an efficient tool for mapping groundwater resources in sedimentary environments. AEM delivers a very high data coverage and results in high-resolution electrical images of the subsurface. In particular the time domain methods (TEM) are well suited for mapping o0f...... not only the salt-fresh water boundary in the coastal zone, but also the mixing of fresh-salt-water on the seaside. Even freshwater layers under several meters of brackish water can be mapped. Sufficient depth of investigation is obtained by time domain methods as they have a significant higher transmitter...

  5. Greenland ice sheet surface mass-balance modelling and freshwater flux for 2007, and in a 1995-2007 perspective

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.

    2009-01-01

    y-1); the only year with a negative GrIS SMB. Runoff in 2007 was approximately 35% greater than average for 1995-2006. From 1995 through 2007 overall, precipitation decreased while ablation increased, leading to an increased average SMB loss of 127 km3. The modelled GrIS SMB was merged with previous......-stations) were used as model inputs. The GrIS minimum surface melt extent of 29% occurred in 1996, while the greatest extent of 51% was present in 2007. The 2007 melt extent was 20% greater than the average for 1995-2006. The year 2007 had the highest GrIS surface runoff (523 km3 y-1) and the lowest SMB (-3 km3...... estimates of GrIS subglacial runoff (from geothermal melt) and GrIS calving to quantify GrIS freshwater flux to the ocean, indicating an average negative mass-balance of 265 (±83) km3 y-1. This study further suggests an average GrIS freshwater flux of approximately 786 km3 y-1 to the ocean, of which 45...

  6. Effects on physicochemical characteristics of yoghurt and ice cream with fatty acid modification and cholesterol removal

    International Nuclear Information System (INIS)

    Nadeem, M.; Ullah, R.; Arif, A.M.

    2015-01-01

    This study investigated the effect of fatty acid modification and cholesterol removal on physico-chemical characteristics of yoghurt and ice cream. Fatty acid profile of milk fat was modified by feeding calcium salts of soybean oil fatty acids to cows and cholesterol was removed by b-cyclodextrin b-cyclodextrin removed 76% and 60% cholesterol from yoghurt and ice cream. Modification of fatty acid composition did not have a significant effect on a-tocopherol content; while b-cyclodextrin treated milk had substantially lower a-tocopherol content. The concentration of a-tocopherol in control and b-cyclodextrin treated yoghurt was 45.62, 32.73 mg/g and 210.34, 185.56 mg/g for ice cream, respectively. Fatty acid modification and cholesterol removal significantly decreased the overrun in ice cream (P<0.05), with no effect on sensory characteristics of yoghurt and ice cream. These results evidenced that milk with higher content of unsaturated fatty acids and low cholesterol can be used in the formulation of yoghurt and ice cream with improved health benefits and suitable sensory features. (author)

  7. Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model

    NARCIS (Netherlands)

    Weijer, W.; Maltrud, M.E.; Hecht, M.W.; Dijkstra, H.A.; Kliphuis, M.

    2012-01-01

    The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to high-latitude freshwater input is one of the key uncertainties in the climate system. Considering the importance of the AMOC for global heat transports, and the vulnerability of the Greenland Ice Sheet (GrIS) to global

  8. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    Science.gov (United States)

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg -1 . Reddening was not noticeably impacted by the later addition of nitrite. L * ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a * from 10.9 ± 0.1 to 11.2 ± 0.1 and b * from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Gypsum and hydrohalite dynamics in sea ice brines

    Science.gov (United States)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  10. Environmental impacts of oil and gas brine applications for dust and ice control in New York : final report.

    Science.gov (United States)

    2016-04-01

    Transportation agencies are required to treat roads for dust and ice control to ensure adequate safety for travelers. This is commonly achieved through application of solid and liquid chemicals. These materials can be conventional rock salt, brine fr...

  11. ROAD SALT APPLICATION CREATES A UNIQUE CHLORIDE BIOCHEMISTRY IN AN URBAN STREAM OF THE CHESAPEAKE BAY WATERSHED

    Science.gov (United States)

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a ...

  12. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  13. Structural Uncertainty in Antarctic sea ice simulations

    Science.gov (United States)

    Schneider, D. P.

    2016-12-01

    The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic sea ice has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning ice shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated sea ice trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic sea ice trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the sea ice trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a sea ice increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including ice sheet surface mass balance changes and related changes in the sea level budget) have a strong dependence on the mean state of and changes in the Antarctic sea ice cover. This problem is not unique to

  14. Developing A Model for Lake Ice Phenology Using Satellite Remote Sensing Observations

    Science.gov (United States)

    Skoglund, S. K.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Ewing, H. A.

    2017-12-01

    Many northern temperate freshwater lakes are freezing over later and thawing earlier. This shift in timing, and the resulting shorter duration of seasonal ice cover, is expected to impact ecological processes, negatively affecting aquatic species and the quality of water we drink. Long-term, direct observations have been used to analyze changes in ice phenology, but those data are sparse relative to the number of lakes affected. Here we develop a model to utilize remote sensing data in approximating the dates of ice-on and ice-off for many years over a variety of lakes. Day and night surface temperatures from MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra (MYD11A1 and MOD11A1 data products) for 2002-2017 were utilized in combination with observed ice-on and ice-off dates of Lake Auburn, Maine, to determine the ability of MODIS data to match ground-based observations. A moving average served to interpolate MODIS temperature data to fill data gaps from cloudy days. The nighttime data were used for ice-off, and the daytime measurements were used for ice-on predictions to avoid fluctuations between day and night ice/water status. The 0˚C intercepts of those data were used to mark approximate days of ice-on or ice-off. This revealed that approximations for ice-off dates were satisfactory (average ±8.2 days) for Lake Auburn as well as for Lake Sunapee, New Hampshire (average ±8.1 days), while approximations for Lake Auburn ice-on were less accurate and showed consistently earlier-than-observed ice-on dates (average -33.8 days). The comparison of observed and remotely sensed Lake Auburn ice cover duration showed relative agreement with a correlation coefficient of 0.46. Other remote sensing observations, such as the new GOES-R satellite, and further exploration of the ice formation process can improve ice-on approximation methods. The model shows promise for estimating ice-on, ice-off, and ice cover duration for northern temperate lakes.

  15. No sodium in the vapour plumes of Enceladus.

    Science.gov (United States)

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  16. Evaluating sago as a functional ingredient in dietetic mango ice cream.

    Science.gov (United States)

    Patel, Ashish S; Jana, Atanu H; Aparnathi, Kishore D; Pinto, Suneeta V

    2010-10-01

    A low fat mango ice cream (2.4% milk fat) was prepared in a mechanized 'ice and salt' type freezer using powdered sago at 2.5% as a natural bulking agent along with sodium alginate at 0.025% as adjunct. The low fat mango ice cream was compared with control mango ice cream having 10% milk fat and 0.15% sodium alginate as stabilizer. Both control as well as experimental ice creams contained 20% mango pulp solids. To impart richness to low fat mango ice cream, flavour enhancers like Cream Plus and Butter Buds were used at levels of 0.2% and 0.05%, respectively. The dietetic low fat ice creams compared well in sensory colour and appearance, flavour, body and texture, and melting quality to that of control ice cream. Incorporation of 2.5% powdered sago and 0.2% Cream Plus as flavour adjunct is recommended in the manufacture of 'low-fat' mango ice cream. The energy values for control and dietetic mango ice cream was 202.8 and 142.9 kcal/100 g, respectively, which represents about 30% reduction in calorie. The cost of ice cream per liter was Rs 39.9, Rs 37.6 and Rs 49.7 for experimental ice creams containing Cream Plus and Butter Bud, and control, respectively.

  17. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  18. Small Scale Polygons and the History of Ground Ice on Mars

    Science.gov (United States)

    Mellon, Michael T.

    2003-01-01

    Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.

  19. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  20. Sea ice contribution to the air-sea CO{sub 2} exchange in the Arctic and Southern Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Rysgaard, Soeren (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, Univ. of Manitoba, Winnipeg (Canada)), e-mail: rysgaard@natur.gl; Bendtsen, Joergen (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Ice and Climate, Niels Bohr Inst., Univ. of Copenhagen, Copenhagen O (Denmark)); Delille, Bruno (Unit' e d' Oceanographie Chimique, Interfacultary Centre for Marine Research, Universite de Liege, Liege (Belgium)); Dieckmann, Gerhard S. (Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)); Glud, Ronnie N. (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Scottish Association of Marine Sciences, Scotland UK, Southern Danish Univ. and NordCee, Odense M (Denmark)); Kennedy, Hilary; Papadimitriou, Stathys (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom)); Mortensen, John (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark)); Thomas, David N. (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom); Finnish Environment Inst. (SYKE), Marine Research Centre, Helsinki (Finland)); Tison, Jean-Louis (Glaciology Unit, Dept. of Earth and Environmental Sciences, Universite Libre de Bruxelles, Bruxelles, (Belgium))

    2011-11-15

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO{sub 2} and the subsequent effect on air-sea CO{sub 2} exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea CO{sub 2} exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO{sub 2} uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO{sub 2} uptake in ice-free polar seas. This sea-ice driven CO{sub 2} uptake has not been considered so far in estimates of global oceanic CO{sub 2} uptake. Net CO{sub 2} uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO{sub 2}-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea CO{sub 2} exchange during winter, and (3) release of CO{sub 2}-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO{sub 2} drawdown during primary production in sea ice and surface oceanic waters

  1. The Spatial and Temporal Variability of the North Atlantic Oscillation Recorded in Ice Core Major Ion Time Series

    Science.gov (United States)

    Wawrzeniak, T. L.; Wake, C. P.; Fischer, H.; Fisher, D. A.; Schwikowski, M.

    2006-05-01

    The North Atlantic Oscillation represents a significant mode of atmospheric variability for the Arctic and sub- Artic climate system. Developing a longer-term record of the spatial and temporal variability of the NAO could improve our understanding of natural climate variability in the region. Previous work has shown a significant relationship between Greenland ice core records and the NAO. Here, we have compared sea-salt and dust records from nine ice cores around the Arctic region to sea level pressure and NAO indices to evaluate the extent to which these ice cores can be used to reconstruct the NAO.

  2. Direct observation of salts as micro-inclusions in the Greenland GRIP ice core

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Sakurai, Toshimitsu; Iizuka, Yoshinori

    2009-01-01

    We provide the first direct evidence that a number of water-soluble compounds, in particular calcium sulfate (CaSO4·2H2O) and calcium carbonate (CaCO3), are present as solid, micron-sized inclusions within the Greenland GRIP ice core. The compounds are detected by two independent methods: micro...... distributions of the micro-inclusions. These results suggest that water-soluble aerosols in the GRIP ice core are dependable proxies for past atmospheric conditions. Udgivelsesdato: December...

  3. Combined use of frequency‐domain electromagnetic and electrical resistivity surveys to delineate the freshwater/saltwater interface near saline lakes in the Nebraska Sand Hills, Nebraska, USA

    Science.gov (United States)

    Ong, John T.; White, Eric A.; Lane, John W.; Halihan, Todd; Zlotnik, Vitaly A; Butler, Dwain K.

    2009-01-01

    We investigate the use of frequency‐domain electromagnetic (FDEM) and electrical resistivity (ER) surveys for rapid and detailed characterization of the direction of lake‐aquifer fluxes and the configuration of salt plumes generated from saline lakes. This methodology was developed and applied at several lakes in the Nebraska Sand Hills, Nebraska, in an area with both freshwater and saline lakes hydraulically connected to the freshwater surficial aquifer. The FDEM survey was conducted by mounting the instrument on a fiberglass cart towed by an all‐terrain vehicle. The towed FDEM surveys covered about 25 km per day and served as a reconnaissance method for choosing locations for the more quantitative and detailed ER surveys. Around the saline lakes, areas with high electrical conductivity are consistent with the regional direction of ground‐water flow. Lower electrical conductivity was measured around the freshwater lakes with anomalies correlating to a paleovalley axis inferred from previous studies. The efficacy of this geophysical approach is attributed to: (1) significant contrast in electrical conductivity between freshwater and saltwater, (2) near‐surface location of the freshwater/saltwater interface, (3) minimal cultural interference, and (4) relative homogeneity of the aquifer materials.

  4. Reclaiming freshwater sustainability in the Cadillac Desert

    Science.gov (United States)

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  5. Structural incorporation of MgCl2 into ice VII at room temperature

    Science.gov (United States)

    Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki

    2017-05-01

    Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.

  6. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    Science.gov (United States)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  7. Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review.

    Science.gov (United States)

    Abd El-Hack, Mohamed E; Samak, Dalia H; Noreldin, Ahmed E; Arif, Muhammad; Yaqoob, Hilal S; Swelum, Ayman A

    2018-04-26

    Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different

  8. Simulating Baltic Sea climate for the period 1902-1998 with the Rossby Centre coupled ice-ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Meier, H.E. Markus [Swedish Meteorological and Hydrological Inst., Rossby Centre, Norrkoeping (Sweden); Kauker, Frank [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)

    2002-12-01

    Hindcast simulations for the period 1902-1998 have been performed using a 3D coupled ice-ocean model for the Baltic Sea. Daily sea level observations in Kattegat, monthly basin-wide discharge data, and reconstructed atmospheric surface data have been used to force the Baltic Sea model. The reconstruction utilizes a statistical model to calculate daily sea level pressure and monthly surface air temperature, dew point temperature, precipitation, and cloud cover fields on a 1 deg x 1 deg regular horizontal grid for the Baltic Sea region. An improved turbulence scheme has been implemented into the Baltic Sea model to simulate saltwater inflows realistically. The results are validated against available observational datasets for sea level, salinity, saltwater inflow, volume transport, and sea ice. In addition, a comparison is performed with simulations for the period 1980-1993 using 3-hourly gridded atmospheric observations from synoptic stations. It is shown that the results of the Baltic Sea model forced with the reconstructed data are satisfactory. Sensitivity experiments have been performed to explore the impact of internal mixing, fresh and saltwater inflows, sea ice, and the sea level in Kattegat on the salinity of the Baltic Sea. It is found that the decadal variability of mean salinity is explained partly by decadal volume variations of the accumulated freshwater inflow from river runoff and net precipitation and partly by decadal variations of the large-scale sea level pressure over Scandinavia. During the last century two exceptionally long stagnation periods are found, the 1920s to the 1930s and the 1980s to the mid 1990s. During these periods precipitation, runoff and westerly winds were stronger than normal. Stronger westerly winds caused increased eastward surface-layer transports. Consequently, the mean eastward lower layer transports through the Stolpe Channel is reduced. The response time scale of the Baltic Sea is of the order of 30-40 years. The large

  9. Complex bounds and microstructural recovery from measurements of sea ice permittivity

    International Nuclear Information System (INIS)

    Gully, A.; Backstrom, L.G.E.; Eicken, H.; Golden, K.M.

    2007-01-01

    Sea ice is a porous composite of pure ice with brine, air, and salt inclusions. The polar sea ice packs play a key role in the earth's ocean-climate system, and they host robust algal and bacterial communities that support the Arctic and Antarctic ecosystems. Monitoring the sea ice packs on global or regional scales is an increasingly important problem, typically involving the interaction of an electromagnetic wave with sea ice. In the quasistatic regime where the wavelength is much longer than the composite microstructural scale, the electromagnetic behavior is characterized by the effective complex permittivity tensor ε*. In assessing the impact of climate change on the polar sea ice covers, current satellites and algorithms can predict ice extent, but the thickness distribution remains an elusive, yet most important feature. In recent years, electromagnetic induction devices using low frequency waves have been deployed on ships, helicopters and planes to obtain thickness data. Here we compare two sets of theoretical bounds to extensive outdoor tank and in situ field data on ε* at 50MHz taken in the Arctic and Antarctic. The sea ice is assumed to be a two phase composite of ice and brine with known constituent permittivities. The first set of bounds assumes only knowledge of the brine volume fraction or porosity, and the second set further assumes statistical isotropy of the microstructure. We obtain excellent agreement between theory and experiment, and are able to observe the apparent violation of the isotropic bounds as the vertically oriented microstructure becomes increasingly connected for higher porosities. Moreover, these bounds are inverted to obtain estimates of the porosity from the measurements of ε*. We find that the temporal variations of the reconstructed porosity, which is directly related to temperature, closely follow the actual behavior

  10. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.

    1976-01-01

    Frozen aqueous solutions (FAS) of Fe3+ salts have been investigated by use of Mössbauer spectroscopy in order to study the conditions for formation of glasses. A general discussion of spin–spin relaxation in glasses is given, and we discuss how changes in the spin–spin relaxation time can...... be attributed to changes in the average separation between the iron ions. In the FeCl3–H2O system, it was found that homogeneous glasses are easily formed when the salt concentration is larger than 3.5 moles FeCl3 per 100 moles H2O. In more dilute samples, ice crystallizes during cooling, while the salt...

  11. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  12. Deposition, Accumulation, and Alteration of Cl(-), NO3(-), ClO4(-) and ClO3(-) Salts in a Hyper-Arid Polar Environment: Mass Balance and Isotopic Constraints

    Science.gov (United States)

    Jackson, Andrew; Davila, Alfonso F.; Boehlke, J. K.; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrette, Megan; Lacell, Denis; McKay, Christopher P.; Poghosyan, Armen; hide

    2016-01-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively

  13. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  14. Freshwater Fish Communities

    Science.gov (United States)

    Freshwater fish are ecologically important in stream ecosystems, and they provide people with significant food, recreation, and conservation value as biological indicator of freshwater streams. Historically, the streams and rivers of southern New England supported moderately dive...

  15. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    Science.gov (United States)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  16. Salt tolerant green crop species for sodium management in space agriculture

    Science.gov (United States)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  17. Meeting ecological and societal needs for freshwater

    Science.gov (United States)

    Baron, Jill S.; Poff, N.L.; Angermeier, P.L.; Dahm, Clifford N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D.

    2002-01-01

    Human society has used freshwater from rivers, lakes, groundwater, and wetlands for many different urban, agricultural, and industrial activities, but in doing so has overlooked its value in supporting ecosystems. Freshwater is vital to human life and societal well-being, and thus its utilization for consumption, irrigation, and transport has long taken precedence over other commodities and services provided by freshwater ecosystems. However, there is growing recognition that functionally intact and biologically complex aquatic ecosystems provide many economically valuable services and long-term benefits to society. The short-term benefits include ecosystem goods and services, such as food supply, flood control, purification of human and industrial wastes, and habitat for plant and animal life—and these are costly, if not impossible, to replace. Long-term benefits include the sustained provision of those goods and services, as well as the adaptive capacity of aquatic ecosystems to respond to future environmental alterations, such as climate change. Thus, maintenance of the processes and properties that support freshwater ecosystem integrity should be included in debates over sustainable water resource allocation.The purpose of this report is to explain how the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow. Defining these requirements in a comprehensive but general manner provides a better foundation for their inclusion in current and future debates about allocation of water resources. In this way the needs of freshwater ecosystems can be legitimately recognized and addressed. We also recommend ways in which freshwater ecosystems can be protected, maintained, and restored.Freshwater ecosystem structure and function are tightly linked to the watershed or catchment of which they are a part. Because riverine networks, lakes, wetlands, and their connecting groundwaters, are literally the

  18. Advancing approaches for multi-year high-frequency monitoring of temporal and spatial variability in carbon cycle fluxes and drivers in freshwater lakes

    Science.gov (United States)

    Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.

    2017-12-01

    Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.

  19. Exploring Freshwater Science

    Indian Academy of Sciences (India)

    and long term studies on mapping freshwater biodiversity1. 1. R J Ranjit Daniels ... The hierarchical nature of stream organization offers opportunity to ecologists to ask .... threats, freshwater systems are losing their aesthetic value (Fig- ure 4).

  20. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA

    International Nuclear Information System (INIS)

    Brown, M. E.; Hand, K. P.

    2013-01-01

    The surface of Europa could contain the compositional imprint of an underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W. M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution ∼40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO 2 . On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO 4 detection on the trailing side with other radiation products, we conclude that MgSO 4 is also a radiation product, rather than a constituent of a Europa ocean brine. Based on ocean chemistry models, we hypothesize that, prior to irradiation, magnesium is primarily in the form of MgCl 2 , and we predict that NaCl and KCl are even more abundant, and, in fact, dominate the non-ice component of the leading hemisphere. We propose observational tests of this new hypothesis.

  1. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: mbrown@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-04-15

    The surface of Europa could contain the compositional imprint of an underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W. M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution {approx}40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO{sub 2}. On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO{sub 4} detection on the trailing side with other radiation products, we conclude that MgSO{sub 4} is also a radiation product, rather than a constituent of a Europa ocean brine. Based on ocean chemistry models, we hypothesize that, prior to irradiation, magnesium is primarily in the form of MgCl{sub 2}, and we predict that NaCl and KCl are even more abundant, and, in fact, dominate the non-ice component of the leading hemisphere. We propose observational tests of this new hypothesis.

  2. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  3. The land-ice contribution to 21st-century dynamic sea level rise

    Science.gov (United States)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  4. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    Science.gov (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  5. Implications of Climate Change for Northern Canada: Freshwater, Marine, and Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Prowse, Terry D.; Wrona, Fred J. (Water and Climate Impacts Research Centre, Environment Canada, Dept. of Geography, Univ. of Victoria, Victoria, BC (Canada)). e-mail: terry.prowse@ec.gc.caa; Furgal, Chris (Indigenous Environmental Studies Program, Trent Univ., Peterborough, ON (Canada)); Reist, James D. (Fisheries and Oceans Canada, 501 Univ. Crescent, Winnipeg, MB (Canada))

    2009-07-15

    Climate variability and change is projected to have significant effects on the physical, chemical, and biological components of northern Canadian marine, terrestrial, and freshwater systems. As the climate continues to change, there will be consequences for biodiversity shifts and for the ranges and distribution of many species with resulting effects on availability, accessibility, and quality of resources upon which human populations rely. This will have implications for the protection and management of wildlife, fish, and fisheries resources; protected areas; and forests. The northward migration of species and the disruption and competition from invading species are already occurring and will continue to affect marine, terrestrial, and freshwater communities. Shifting environmental conditions will likely introduce new animal-transmitted diseases and redistribute some existing diseases, affecting key economic resources and some human populations. Stress on populations of iconic wildlife species, such as the polar bear, ringed seals, and whales, will continue as a result of changes in critical sea-ice habitat interactions. Where these stresses affect economically and culturally important species, they will have significant effects on people and regional economies. Further integrated, field-based monitoring and research programs, and the development of predictive models are required to allow for more detailed and comprehensive projections of change to be made, and to inform the development and implementation of appropriate adaptation, wildlife, and habitat conservation and protection strategies

  6. Ocean-Ice-Atmosphere Interactions off Sabrina and Adelie Coasts During NBP1402 and AU1402

    Science.gov (United States)

    Orsi, A. H.; Zielinski, N. J.; Webb, C.; Huber, B. A.

    2015-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form, massive floating ice shelves and glaciers melt, gases are exchanged at the sea surface, and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on a the first synoptic shipboard measurements made by U.S. (NBP1402) and Australian (AU1402) scientists. Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice- atmosphere interactions on the characteristics of local Shelf Water (SW) sources. A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, there was no evidence of dense SW off Sabrina Coast during both summer cruises of 2014 and 2015, thus lessening the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, the main evidence of inflow and mixing of relatively warm oceanic waters is reduced to relatively cold thermocline water (< 0.3°C) from the continental slope. This source water enters the eastern trough off Sabrina Coast and is swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity

  7. 21st Century Global Freshwater Security: Can it Exist and Can Scientists Communicate the Challenges?

    Science.gov (United States)

    Famiglietti, J. S.

    2015-12-01

    Climate models and decades of satellite data are converging on the unfortunate reality that Earth's water cycle is changing. Paleoclimate indicators remind us that this has always been the case. Freshwater is constantly being exchanged among the atmosphere, ocean, land and ice reservoirs, while on land, patterns of precipitation, evapotranspiration, flooding and drought are shifting. The evolving water cycle of the 21st century will likely be stronger, more variable, and will result in broad swaths of mid-latitude drying, accelerated by the depletion of the world's major groundwater aquifers. A well-defined geography of freshwater 'haves' and 'have-nots' is clearly emerging. What does water sustainability mean under such dynamic climate and hydrologic conditions, in particular when coupled with future projections of population growth? How will water managers cope with these new normals, and how will food and energy production be impacted? The responsibility of communicating this changing global water landscape falls squarely on the shoulders of the academic-research community, yet the challenge of doing so is daunting. In this Special Lecture I will review what our latest research tells us, and I will share my personal experiences with science communication and water diplomacy.

  8. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    with a regulation of pH and salt concentrations e.g. the MOD systems and could be installed on a planetary probe melting its way down the Martian ice caps e.g. the NASA Cryobot. JAWS can be used for detection of remains of ancient life preserved in the Martian ice as well as for detection of contamination brought...... to the planet from Earth....

  9. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  10. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2015-06-15

    This project investigated possible mechanisms by which melt-water pulses can induce abrupt change in the Atlantic Meridional Overturning Circulation (AMOC) magnitude. AMOC magnitude is an important ingredient in present day climate. Previous studies have hypothesized abrupt reduction in AMOC magnitude in response to influxes of glacial melt water into the North Atlantic. Notable fresh-water influxes are associated with the terminus of the last ice age. During this period large volumes of melt water accumulated behind retreating ice sheets and subsequently drained rapidly when the ice weakened sufficiently. Rapid draining of glacial lakes into the North Atlantic is a possible origin of a number of paleo-record abrupt climate shifts. These include the Younger-Dryas cooling event and the 8,200 year cooling event. The studies undertaken focused on whether the mechanistic sequence by which glacial melt-water impacts AMOC, which then impacts Northern Hemisphere global mean surface temperature, is dynamically plausible. The work has implications for better understanding past climate stability. The work also has relevance for today’s environment, in which high-latitude ice melting in Greenland appears to be driving fresh water outflows at an accelerating pace.

  11. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  12. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ andsalt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  13. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA and on a medium selective for the genus Pseudomonas (KBC to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P = 0.027, suggesting an uneven distribution of Pseudomonas across the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P = 0.038, demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P = 0.707 and KBC (P = 0.641 across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720 of the colonies recovered across all four sampling missions were ice nucleation active (ice+ at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments.

  14. Holocene environmental and parasequence development of the St. Jones Estuary, Delaware (USA): Foraminiferal proxies of natural climatic and anthropogenic change

    Science.gov (United States)

    Leorri, E.; Martin, R.; McLaughlin, P.

    2006-01-01

    The benthic foraminiferal record of marshes located along western Delaware Bay (St. Jones Estuary, USA) reflects the response of estuaries to sea-level and paleoclimate change during the Holocene. System tracts are recognized and within them parasequences based on sedimentological and foraminiferal assemblages identification. The parasequences defined by foraminiferal assemblages appear correlative with rapid Holocene climate changes that are of worldwide significance: 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600??cal years BP. Following postglacial sea-level rise, modern subestuaries and marshes in the region began to develop between 6000 and 4000??years BP, depending on their proximity to the mouth of Delaware Bay and coastal geomorphology. Initial sediments were fluvial in origin, with freshwater marshes established around 4000??years BP. The subsequent sea-level transgression occurred sufficiently slowly that freshwater marshes alternated with salt marshes at the same sites to around 3000??years BP. Locally another two transgressions are identified at 1800 and 1000??years BP respectively. Marine influence increased in the estuaries until 600??years BP (Little Ice Age), when regression occurred. Sea-level began to rise again during the mid-19th Century at the end of the Little Ice Age, when marshes became established. The presence of a sand lens in the upper and middle estuary and the reduction in the number of tests in the top samples in cores from the same area also suggest an anthropogenic influence. The estuary infill resulted in a sharp transgressive sequence, represented by salt marsh foraminiferal assemblages in the upper part of the cores. The increase in marsh foraminifera in both areas suggests an increase in marine influence that might be due to the transgression beginning at the end of the Little Ice Age about 150-180??years ago coupled with anthropogenic straightening of the channel in 1913. ?? 2006 Elsevier B.V. All rights reserved.

  15. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice

    Science.gov (United States)

    Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe

    2014-06-01

    The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities

  16. Iodine stability and sensory quality of fermented fish and fish sauce produced with the use of iodated salt.

    Science.gov (United States)

    Chanthilath, Boualapha; Chavasit, Visith; Chareonkiatkul, Somsri; Judprasong, Kunchit

    2009-06-01

    Universal salt iodization promotes the use of iodated salt for producing industrial food products, although it might affect product quality and iodine stability. To assess iodine loss during fermentation of fermented fish and fish sauces produced by using iodated salt and the effect on product sensory quality. Fermented fish and fish sauces were produced with iodated rock and grain sea salts (approximately 30 ppm iodine). Fermented fish was prepared from freshwater fish mixed with salt and rice bran and fermented for 6 months at room temperature. Fish sauces were prepared by mixing anchovy with salt and fermenting either exposed to sunlight or in the shade for 12 months. Residual iodine was determined with a spectrophotometer at day 0 and months 1, 3, and 6 for fermented fish and day 0 and months 3, 6, and 12 for fish sauces. After fermentation, the products were tested for sensory acceptability by Laotian and Thai panelists (approximately 50 in each panel) after they were cooked and served in the traditional manner. After fermentation, the level of residual iodine was 7.61 ppm (16% loss) infermented fish, 5.57 ppm (55% loss) in fish sauce prepared with exposure to sunlight, and 9.52 ppm (13% loss) in fish sauce prepared in the shade. Sensory qualities of the products that were produced from fortified and unfortified salts as well as dishes prepared from these products were not significantly different (p > 0.05). It is feasible to produce fermented fish and fish sauces with iodated salt and maintain acceptable iodine levels.

  17. Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices

    Science.gov (United States)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2002-11-01

    Near-IR observations reveal that nitrogen-rich ice containing small amounts of methane, CH4, and carbon monoxide, CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto (Cruikshank et al.. 1993; Owen et al., 1993). N2-rich apolar ices are also possible in some interstellar environments (Ehrenfreund et al., 1998). To investigate the radiation chemical behavior of N2-dominated ices we performed a systematic IR study of ion-irradiated N2-rich ices containing CH4 and CO. Experiments at 18 K, showed that HCN, HNC, and the reactive molecule diazomethane, CH2N2, formed along with several radicals. NH3 was also identified in irradiated N2 + CH4. Comparing results from similarly photolyzed ices (Bohn et al., 1994) shows that the significant difference between radiolysis and photolysis of these N2-dominated ices is that photolyzed ices do not form detectable HCN and HNC. Our experiments examined different N2/CH4 ratios, the half-life of CH4, possible HCN and HNC formation routes, and competing pathways in the presence of CO. Intrinsic band strengths (A(HCN) and A(HNC)) were measured and used to calculate nearly equal values of HCN and HNC yields in N2+CH4 irradiated ices. Low temperature results apply to interstellar ices. Reaction products that appear at 30-35 K are also expected to form and survive on the surfaces of Triton and Pluto and interstellar grains. We examined the evolution of ice features as species undergo acid-base (acids such as HCN, HNC, HNCO and a base NH3) reactions triggered by warming from 18 K to 30-35 K. We identified anions (OCN-, CN- and N3-) attributed to relatively stable salts in ices where NH4+ is the likely cation. These results also have an astrobiology implication since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are reactants used in synthesis studies of bio- molecules such as amino acids and peptides.

  18. Species diversity and distribution of freshwater crabs (Decapoda: Pseudothelphusidae inhabiting the basin of the Rio Grande de Térraba, Pacific slope of Costa Rica

    Directory of Open Access Journals (Sweden)

    Luis Rólier Lara

    2013-09-01

    Full Text Available During the last decades, knowledge on biodiversity of freshwater decapods has increased considerably; however, information about ecology of these crustaceans is scarce. Currently, the freshwater decapod fauna of Costa Rica is comprised by representatives of three families (Caridea: Palaemonidae and Atyidae; Brachyura: Pseudothelphusidae. The present study aims to describe the species diversity and distribution of freshwater crabs inhabiting the basin of the Rio Grande de Térraba, Pacific slope of Costa Rica, where the Instituto Costarricense de Electricidad (ICE plans to implement one of the largest damming projects in the region. Samples were collected in 39 locations at an altitude ranging from 20 to 1,225 m. Sampling was carried out during several months in 2007, 2009 and 2010. We collected a total of 661 crabs, comprising eight species of Pseudothelphusidae of three genera, representing 53% of the 15 pseudothelphusid crab species currently recorded from Costa Rica. The most common species was Ptychophallus paraxanthusi followed by P. tristani. Freshwater crabs were more frequently encountered in the middle-low region of the basin (between 311 and 600 m and less frequently in the medium-high basin (between 601 and 1,225 m. Ptychophallus paraxanthusi showed the widest distribution and was collected in altitudes ranging from 20 to 700 m. The Rio Grande de Térraba region can be considered as a relatively small, but highly diverse system. Therefore, any alteration of the basin of Rio Grande de Térraba, and especially the possible construction of a hydroelectric power plant, needs to be carefully analyzed to mitigate the damaging effects of this project on the freshwater crabs. More ecological information about freshwater crabs from Costa Rica and the Central American region are needed to reach a first reasonable overview on the ecological role of these decapods in freshwater systems.

  19. Improving the Simulation of Sea Ice Lead Conditions and Turbulent Fluxes Using RGPS Products and Merged RADARSAT, AVHRR and MODIS Data

    Science.gov (United States)

    Maslanik, James A.

    2004-01-01

    The importance of sea ice leads in the ice-ocean-atmosphere system lies in the fact that each of the boxes in the 'surface processes' interface in this diagram is closely linked to lead conditions. For example, heat, moisture and salt exchange between the Ocean and atmosphere within the ice pack occur nearly entirely through leads. The shear, divergence and convergence associated with lead formation and closure alter surface and basal roughness and topography, which in turn affects momentum transfer in the atmosphere and ocean boundary layers, and modifies the accumulation of snow on the ice surface, which then affects heat conduction and summertime albedo. In addition to providing openings for loss of heat and moisture fluxes to the atmosphere, leads absorb solar energy, which is used to melt ice and is transmitting to the underlying ocean. Given that leads dominate the ice-ocean interface in this manner, then it stands to reason that focusing on lead treatments within models can identify performance limitations of models and yield routes for significant improvements.

  20. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  1. Deposition, accumulation, and alteration of Cl−, NO3−, ClO4− and ClO3− salts in a hyper-arid polar environment: Mass balance and isotopic constraints

    Science.gov (United States)

    Jackson, Andrew; Davila, Alfonso F.; Böhlke, John Karl; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan; Lacelle, Denis; McKay, Christopher P.; Poghosyan, Armen; Pollard, Wayne; Zacny, Kris

    2016-01-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl−, NO3−, ClO4− and ClO3− in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl− and NO3−isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4−/NO3− ratios and NO3− isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3−/ClO4− in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3−, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from ∼10 to 30 kyr near the glacier to 70–200 kyr near the valley mouth. The relatively young age

  2. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov

    2012-04-01

    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  3. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    Science.gov (United States)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  4. Native Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for...

  5. Stratigraphic response of salt marshes to slow rates of sea-level change

    Science.gov (United States)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  6. The Innovative Structure Solution for Preventing Salt Intrusion and Retaining Freshwater In Mekong Delta VietNam

    NARCIS (Netherlands)

    Hong, S.T.; Vrijling, J.K.; Stive, M.J.F.

    2013-01-01

    In the Mekong Delta Vietnam, the construction of sluices with the purpose of retaining fresh water and preventing salt water intrusion potentially plays a very important role. However, the structures constructed in small rivers according to local or traditional technology revealed many disadvantages

  7. Origin, composition and quality of suspended particulate organic matter in relation to freshwater inflow in a South Texas estuary

    Science.gov (United States)

    Lebreton, Benoit; Beseres Pollack, Jennifer; Blomberg, Brittany; Palmer, Terence A.; Adams, Leslie; Guillou, Gaël; Montagna, Paul A.

    2016-03-01

    South Texas has a semi-arid climate with a large interannual variability of freshwater inflows. This study sought to define how changes in freshwater inflow affect the composition, quantity and quality of suspended particulate organic matter (SPOM) in a South Texas estuary: the Mission-Aransas estuary. The study was implemented 1.5 months after a large rain event in September 2010 and continued for 10 months of drought conditions. The composition of SPOM originating from rivers, the Gulf of Mexico and the estuary were determined using stable isotopes (δ13C, δ15N and δ34S). The quantity and quality of SPOM were assessed using organic carbon content, chlorophyll a concentrations and C/chl a ratios. Our results demonstrated that autochthonous phytoplankton was the dominant component of SPOM in the Mission-Aransas estuary during droughts. Benthic organic matter from local primary producers (i.e., seagrass, salt marsh plants, benthic microalgae) did not influence SPOM composition, either as fresh material or as detritus. A comparison with a positive estuary (i.e., Sabine-Neches estuary, TX) indicates that decreases in freshwater inflow may lead to decreases of terrestrial organic matter inputs and to increase the ratio of autochtonous phytoplanktonic material in SPOM.

  8. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    on the major roads (150 km) in the municipality of North Funen from the winter 2007/8. The result has been a dramatically reduction in the number of traffic accidents on slippery roads during the winter season. From 7 and 5 accidents in the previous 2 winters to 1 accident in the winter 2007/8. Neighbouring...... municipalities had an increasing number of traffic accidents on slippery roads in the same period.......During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...

  9. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  10. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.

    Science.gov (United States)

    Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J

    2018-05-07

    Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where

  11. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    Science.gov (United States)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo

  12. Multicriteria Decision Analysis of Freshwater Resource Management in Southwestern Bangladesh

    Science.gov (United States)

    Peters, C.; Baroud, H.; Hornberger, G. M.

    2016-12-01

    Freshwater resources in coastal Bangladesh fluctuate with extreme periods of shortage and abundance. Bangladeshis have adapted to these alternating periods but are still plagued with scarce drinking water resources due to pond water pathogens, salinity of groundwater, and arsenic contamination. The success of attempts to correct the problem of unsafe drinking water have varied across the southern Bangladesh as a result of physical and social factors. We use a multicriteria decision analysis (MCDA) to explore the various physical and social factors that influence decisions about freshwater technologies and management schemes in southern Bangladesh. To determine the best freshwater technologies and management schemes, we examine four alternatives, including managed aquifer recharge (MAR), pond sand filter (PSF), rain water harvesting (RWH), and tubewells (TW). Criteria are grouped into four categories (environmental, technical, social, and economic) and weighting of social factors will be determined by community surveys, non-governmental organizations (NGO) opinions, and academic interviews. Social data include regional water quality perceptions, perceptions of management/technology success, MAR community surveys, and interviews with NGO partners. Environmental and technical feasibility factors are determined from regional water quality data, geospatial information, land use/land change, and regional stratigraphy. Survey data suggest a wide range of criteria based on location and stakeholder perception. MAR and PSF technologies likely have the greatest environmental and technical potential for success but are highly influenced by community dynamics, individual perspective, and NGO involvement. RWH solutions are used frequently and are successful at reducing the water security threats of contamination by pathogens, arsenic, and salts. This MCDA informs us of community and stakeholder water resource decisions, specifically related to their objectives and preferences.

  13. Selection for salt tolerance in tidal freshwater swamp species: Advances using baldcypress as a model for restoration: Chapter 14

    Science.gov (United States)

    Krauss, Ken W.; Chambers, Jim L.; Creech, David L.

    2007-01-01

    Worldwide, the intrusion of salinity into irrigated and natural landscapes has major economic and cultural impacts and has resulted in large reductions in crop yields (Epstein et al. 1980; Flowers 2003). Losses have prompted wide-scale programs to improve the salt tolerance of many agronomic species or to identify crop species that can tolerate lands affected by low levels of salinity. Few historic research efforts have considered forest tree species in the United States, especially in nonurban areas. Newer programs have focused on identifying salt tolerance in forest tree species but have mainly limited these efforts to compiling lists of salt tolerant species to be used in afforestation projects (Gogate et al. 1984; Shrivastava et al. 1988; Beckmann 1991; Bell 1999). Gogate et al. (1984), for instance, listed 26 potential species from Australia with silvicultural application to salt affected lands in India. More comprehensive efforts have considered species lists along with specific site requirements (Bell 1999); species tolerant to saline irrigation waters on dry land, for example, will not often be tolerant of salinity increases in wetland settings. Similar ideas have spawned field trials of native and nonnative tree species in India, Pakistan, Thailand, Australia, and the United States (Thomson 1988; Beckmann 1991; Krauss et al. 2000; Conner and Ozalp 2002; Marcar and Crawford 2004; Conner and Inabinette 2005). Concerted attempts at salt tolerance improvement of forest tree species have been limited, owing in part to the diversity of regional issues that such programs must consider. Whereas food, fodder, and pulp yield may be the major improvement goal on salt affected lands in India (Mathur and Sharma 1984), identifying trees that can survive deicing salts (Townsend 1989), oil and gas brine discharges (Auchmoody and Walters 1988), or sea-level rise induced salinity changes (Pezeshki et al. 1987, 1990) are of greater interest to larger industrial nations

  14. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  15. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  16. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  17. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  18. Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: a natural comparison of freshwater and marine influences on otolith chemistry

    Directory of Open Access Journals (Sweden)

    Cristiano Q. de Albuquerque

    Full Text Available Strontium and barium incorporation into otoliths was compared between whitemouth croaker, Micropogonias furnieri, collected from an entrapped freshwater population (Mirim Lagoon and a normal marine/estuarine population in southern Brazil. Chemical analysis was performed using LA-ICPMS with the objective of validating the effects of marine and freshwater environments on Sr and Ba incorporation as a basis for further investigation of marine and freshwater connectivity of M. furnieri. The freshwater population was dominated by older fish with mean ±SD age of 34±1 y, whereas the coastal samples were dominated by younger fish of 14±7 y. Comparison of strontium and barium incorporation among otolith life-history profiles indicated significantly higher barium and lower strontium for the freshwater population compared to the marine population. Furthermore, comparison of otolith material deposited in the freshwater, estuarine and marine life-history phases demonstrated clear differences among these environments. Mean concentrations of strontium and barium in otoliths of M. furnieri were respectively 710 and 112 µg g-1 for freshwater, 2069 and 16.7 µg g-1 for estuarine, and 2990 and 2.7 µg g-1 for marine life-history phases. Barium concentrations in otoliths from the freshwater population of M. furnieri appeared high relative to other freshwater species. Strontium levels across life-history profiles of marine fish increased with age from 2000 to 2900 µg g-1, possibly indicating more time spent in marine than estuarine waters with age. In contrast, for the freshwater population, strontium levels decreased during the first year of life approximately to 700 µg g-1, and remained low and stable thereafter, consistent with the early life-history occurring in an estuarine environment prior to entrapment in Mirim Lagoon. The results confirm the strong and opposite effects of marine and freshwater environments on incorporation of barium and strontium into

  19. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    Science.gov (United States)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  20. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States); Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA (United States)

    2017-09-30

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS show the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.

  1. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape.

    Science.gov (United States)

    Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2003-04-01

    Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the

  2. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom

    2018-03-01

    Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.

  3. Road Salts as Environmental Constraints in Urban Pond Food Webs

    Science.gov (United States)

    Van Meter, Robin J.; Swan, Christopher M.

    2014-01-01

    Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May – July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L−1 Cl−/high = 1067 mg L−1 Cl−), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L−1) in the mesocosms was significantly greater for the high conductance inoculum (Psalts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259

  4. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  5. Freshwater crayfish invasions in South Africa: past, present and ...

    African Journals Online (AJOL)

    Freshwater crayfish invasions have been studied around the world, but less so in Africa, a continent devoid of native freshwater crayfish. The present study reviews historical and current information on alien freshwater crayfish species introduced into South Africa and aims to indicate which areas are at risk from invasion.

  6. Late rise in hemolymph osmolality in Macrobrachium acanthurus (diadromous freshwater shrimp) exposed to brackish water: Early reduction in branchial Na+/K+ pump activity but stable muscle HSP70 expression.

    Science.gov (United States)

    Freire, Carolina A; Maraschi, Anieli C; Lara, Alessandra F; Amado, Enelise M; Prodocimo, Viviane

    2018-02-01

    Some Macrobrachium shrimps (Caridea, Palaemonidae) are diadromous; freshwater adults are truly euryhaline, while larvae need saline water for development. Branchial Na + /K + -ATPase (NKA) and carbonic anhydrase (CA) are involved in NaCl absorption in freshwater. This study aimed at verifying the time course of the osmoregulatory response of adult Macrobrachium acanthurus to high salinity brackish water (20‰), from the first 30min to 5days. The goal was to detect possible transition from hyper- to hyporegulation, the putative involvement of branchial NKA and CA, or the induction of muscular HSP70 expression. Hemolymph osmotic and ionic concentrations remained relatively stable and close to control levels until ~9h of exposure, but later increased consistently (~50%). A fast reduction in NKA activity (3-6h) was observed; these shrimps seem to shut off salt absorption already in the first hours. Later on, especially after 24h, hemolymph concentrations rise but HSP70 expression is not induced, possibly because constitutive levels are already sufficient to prevent protein damage. Time-dependent response mechanisms effective in high salinity brackish water, resulting in salt loading avoidance and suggestive of hyporegulation should be further investigated in decapods that evolutionary invaded freshwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements

    Science.gov (United States)

    Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.

    2016-05-01

    This study addresses, through two types of experiments, the potential for the oceans to act as a source of atmospheric ice-nucleating particles (INPs). The INP concentration via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concentration at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concentrations with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and numbers of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, respectively. Additionally, the INPs measured in the deposition mode showed a poor correlation with the concentration of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, laboratory experiments with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was observed with salt aerosol particles (sodium chloride and two forms of commercial sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a commercial source of natural organic matter (Suwannee River humic material), or particle mixtures of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biological origins, although we cannot rule out other sources, including mineral dust.

  8. Threatened and Endangered Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all US listed Threatened and Endangered freshwater fish and freshwater mussels in the Middle-Atlantic region....

  9. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    Science.gov (United States)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  10. Synthesis and characterization of polyaniline as emeraldine salt

    International Nuclear Information System (INIS)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K.

    2016-01-01

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  11. Synthesis and characterization of polyaniline as emeraldine salt

    Energy Technology Data Exchange (ETDEWEB)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  12. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  13. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  14. Potential use of reverse osmosis in managing saltwater waste collected at road-salt storage facilites [sic].

    Science.gov (United States)

    2006-01-01

    The implementation of its anti-icing program comprises a large part of the Virginia Department of Transportation's (VDOT) maintenance effort. Earlier research confirmed that VDOT captures a large volume of salt-laden stormwater runoff at its 300+ sal...

  15. Physical modeling of the effects of climate change on freshwater lenses

    Science.gov (United States)

    Stoeckl, L.; Houben, G.

    2012-04-01

    The investigation of the fragile equilibrium between fresh and saline water on oceanic islands is of major importance for a sustainable management and protection of freshwater lenses. Overexploitation will lead to salt water intrusion (up-coning), in turn causing damages or even destruction of a lens in the long term. We have performed a series of experiments on the laboratory scale to investigate and visualize processes of freshwater lenses under different boundary conditions. In addition these scenarios were numerically simulated using the finite-element model FEFLOW. Results were also compared to analytical solutions for problems regarding e.g. mean travel times of flow paths within a freshwater lens. On the laboratory scale, a cross section of an island was simulated by setting up a sand-box model (200 cm x 50 cm x 5 cm). Lens dynamics are driven by density contrasts of saline and fresh water, recharge rate and Kf-values of the medium. We used a time-dependent, sequential application of the tracers uranine, eosine and indigotine, to represent different recharge events. With a stepwise increase of freshwater recharge, we could show that the maximum thickness of the lens increased in a non-linear behavior. Moreover we measured that the degradation of a freshwater lens after turning off the precipitation does not follow the same function as its development does. This means that a steady state freshwater lens does not degrade as fast as it develops under constant recharge. On the other side, we could show that this is not true for a partial degradation of the lens due to passing forces, like anthropogenic pumping or climate change. This is, because the recovery to equilibrium is always a quasi asymptotic process. Thus, times of re-equilibration to steady state will take longer after e.g. a drought, than the degradation during the draught itself. This behavior could also be verified applying the numerical finite-element model FEFLOW. In addition, numerical

  16. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  17. Impact of realistic future ice sheet discharge on the Atlantic ocean

    Science.gov (United States)

    van den Berk, Jelle

    2015-04-01

    Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.

  18. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  19. Inhabitants of the Fresh-Water Community.

    Science.gov (United States)

    Jorgensen, Joseph; Schroeder, Marlene

    This learner's guide is designed to assist middle school students in studying freshwater organisms. Following a brief introduction to freshwater ecology, simple line drawings facilitate the identification of plants and animals common to Florida's freshwater ecosystems. Emphasis of the short text which accompanies each illustration is upon the…

  20. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  1. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  2. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence.

    Science.gov (United States)

    Milotic, Dino; Milotic, Marin; Koprivnikar, Janet

    2017-08-01

    Large quantities of road salts are used for de-icing in temperate climates but often leach into aquatic ecosystems where they can cause harm to inhabitants, including reduced growth and survival. However, the implications of road salt exposure for aquatic animal susceptibility to pathogens and parasites have not yet been examined even though infectious diseases can significantly contribute to wildlife population declines. Through a field survey, we found a range of NaCl concentrations (50-560mg/L) in ponds known to contain larval amphibians, with lower levels found in sites close to gravel- rather than hard-surfaced roads. We then investigated how chronic exposure to environmentally-realistic levels of road salt (up to 1140mg/L) affected susceptibility to infection by trematode parasites (helminths) in larval stages of two amphibian species (Lithobates sylvaticus - wood frogs, and L. pipiens - northern leopard frogs) by considering effects on host anti-parasite behavior and white blood cell profiles. Wood frogs exposed to road salt had higher parasite loads, and also exhibited reduced anti-parasite behavior in these conditions. In contrast, infection intensity in northern leopard frogs had a non-monotonic response to road salts even though lymphocytes were only elevated at the highest concentration. Our results indicate the potential for chronic road salt exposure to affect larval amphibian susceptibility to pathogenic parasites through alterations of behavior and immunocompetence, with further studies needed at higher concentrations, as well as that of road salts on free-living parasite infectious stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)

    Science.gov (United States)

    Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.

    2014-12-01

    The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.

  4. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  5. Insight into biogeochemical inputs and composition of Greenland Ice Sheet surface snow and glacial forefield river catchment environments.

    Science.gov (United States)

    Cameron, Karen; Hagedorn, Birgit; Dieser, Markus; Christner, Brent; Choquette, Kyla; Sletten, Ronald; Lui, Lu; Junge, Karen

    2014-05-01

    The volume of freshwater transported from Greenland to surrounding marine waters has tended to increase annually over the past four decades as a result of warmer surface air temperatures (Bamber et al 2012, Hanna et al 2008). Ice sheet run off is estimated to make up approximately of third of this volume (Bamber et al 2012). However, the biogeochemical composition and seeding sources of the Greenland Ice Sheet supraglacial landscape is largely unknown. In this study, the structure and diversity of surface snow microbial assemblages from two regions of the western Greenland Ice Sheet ice-margin was investigated through the sequencing of small subunit rRNA genes. Furthermore, the origins of microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and to geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Viridiplantae). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The structure of microbial assemblages was found to have strong similarities to communities sampled from marine and air environments, and sequences obtained from the South-West region, near Kangerlussuaq, which is bordered by an extensive periglacial expanse, had additional resemblances to soil originating communities. Strong correlations were found between bacterial beta diversity and Na+ and Cl- concentrations. These data suggest that surface snow from western regions of Greenland contain microbiota that are most likely derived from exogenous, wind transported sources. Downstream of the supraglacial environment, Greenland's rivers likely influence the ecology of localized estuary and marine systems. Here we characterize the geochemical and biotic composition of a glacial and glacial forefield fed river catchment in

  6. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.

    2001-07-01

    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  7. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Department of Earth System Science, University of California, Irvine California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-09-23

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrow during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.

  8. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  9. Field and model investigations of freshwater lenses in coastal aquifers

    NARCIS (Netherlands)

    Pauw, P.S.

    2015-01-01

    A major problem of sustaining freshwater supply from freshwater lens is the invasion of saline groundwater into a fresh groundwater body. In many coastal areas saltwater intrusion has led to well closure and reduced freshwater supply. Furthermore, in the future saltwater intrusion is expected to

  10. Restricted-range fishes and the conservation of Brazilian freshwaters.

    Science.gov (United States)

    Nogueira, Cristiano; Buckup, Paulo A; Menezes, Naercio A; Oyakawa, Osvaldo T; Kasecker, Thais P; Ramos Neto, Mario B; da Silva, José Maria C

    2010-06-30

    Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape

  11. Composition and Morphology of Major Particle Types from Airborne Measurements during ICE-T and PRADACS Field Studies

    Science.gov (United States)

    Venero, I. M.; Mayol-Bracero, O. L.; Anderson, J. R.

    2012-12-01

    As part of the Puerto Rican African Dust and Cloud Study (PRADACS) and the Ice in Clouds Experiment - Tropical (ICE-T), we sampled giant airborne particles to study their elemental composition, morphology, and size distributions. Samples were collected in July 2011 during field measurements performed by NCAR's C-130 aircraft based on St Croix, U.S Virgin Island. The results presented here correspond to the measurements done during research flight #8 (RF8). Aerosol particles with Dp > 1 um were sampled with the Giant Nuclei Impactor and particles with Dp 4000 ft) showed the highest concentrations of clay material. HYSPLIT back trajectories for all samples showed that the low altitude samples initiated in the free troposphere in the Atlantic Ocean, which may account for the high sea salt content and that the source of the high altitude samples was closer to the Saharan - Sahel desert region and, therefore, these samples possibly had the influence of African dust. Size distribution results for quartz and unreacted sea-salt aerosols collected on the Giant Nuclei Impactor showed that sample RF08 - 12:05 UTM (300 ft) had the largest size value (mean = 2.936 μm) than all the other samples. Additional information was also obtained from the Wyoming Inlet present at the C - 130 aircraft which showed that size distribution results for all particles were smaller in size. The different mineral components of the dust have different size distributions so that a fractionation process could occur during transport. Also, the presence of supermicron sea salt at altitude is important for cloud processes.

  12. Toxicity of road deicing salt (NaCl) and copper (Cu) to fertilization and early developmental stages of Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Mahrosh, Urma; Kleiven, Merethe; Meland, Sondre; Rosseland, Bjørn Olav; Salbu, Brit; Teien, Hans-Christian

    2014-09-15

    In many countries, salting of ice or snow covered roads may affect aquatic organisms in the catchment directly or indirectly by mobilization of toxic metals. We studied the toxicity of road deicing salt and copper (Cu) on the vulnerable early life stages of Atlantic salmon (Salmo salar), from fertilization till hatching. Controlled episodic exposure to road salt (≥ 5,000 mg/L) during fertilization resulted in reduced swelling and less percent egg survival. Exposure to Cu both during and post fertilization caused delayed hatching. Larval deformities were, however found as an additional effect, when eggs were exposed to high salt concentration (≥ 5,000 mg/L) mixed with Cu (10 μg Cu/L) during fertilization. Thus, it appears that the sensitivity of early developmental stages of Atlantic salmon increased when exposed to these stressors, and road salt application during spawning can pose threat to Atlantic salmon in water bodies receiving road runoff. The study gives insight on assessment and management of risks on Atlantic salmon population posed by road related hazardous chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Capturing the Petermann Ice Island Flux With the CI2D3 Database

    Science.gov (United States)

    Crawford, A. J.; Crocker, G.; Mueller, D.; Saper, R.; Desjardins, L.; Carrieres, T.

    2017-12-01

    be utilized for the development of operational models and remote sensing tools for ice island detection, as well as assessing the distribution of Greenland Ice Sheet freshwater. The database will contribute to the study of these large, tabular icebergs that are anticipated to continue calving in both Polar Regions, including at the Petermann Glacier.

  14. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    2.5 × 106 km2 and drained the present day Vistula, Elbe, Rhine and Thames rivers through the Seine Estuary. During the Bølling/Allerød oscillation after c. 14.6 ka BP, two major proglacial lakes formed in the Baltic and White seas, buffering meltwater pulses from eastern Fennoscandia through to the Younger Dryas when these massive proglacial freshwater lakes flooded into the North Atlantic Ocean. Deglaciation temporarily abated during the Younger Dryas stadial at 12.9 ka BP, when remnant ice across Svalbard, Franz Josef Land, Novaya Zemlya, Fennoscandia and Scotland experienced a short-lived but dynamic re-advance. The final stage of deglaciation converged on present day ice cover around the Scandes mountains and the Barents Sea by 8.7 ka BP, although the phase-lagged isostatic recovery still continues today.

  15. Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk

    2015-01-01

    The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt-processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct...... of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice....

  16. Toward a Lake Ice Phenology Derived from VIIRS Data

    Science.gov (United States)

    Sütterlin, Melanie; Duguay-Tetzlaff, Anke; Wunderle, Stefan

    2017-04-01

    Ice cover on lakes plays an essential role in the physical, chemical, and biological processes of freshwater systems (e.g., ice duration controls the seasonal heat budget of lakes), and it also has many economic implications (e.g., for hydroelectricity, transportation, winter tourism). The variability and trends in the seasonal cycle of lake ice (e.g., timing of freeze-up and break-up) represent robust and direct indicators of climate change; they therefore emphasize the importance of monitoring lake ice phenology. Satellite remote sensing has proven its great potential for detecting and measuring the ice cover on lakes. Different remote sensing systems have been successfully used to collect recordings of freeze-up, break-up, and ice thickness and increase the spatial and temporal coverage of ground-based observations. Therefore, within the Global Climate Observing System (GCOS) Swiss project, "Integrated Monitoring of Ice in Selected Swiss Lakes," initiated by MeteoSwiss, satellite images from various sensors and different approaches are used and compared to perform investigations aimed at integrated monitoring of lake ice in Switzerland and contributing to the collection of lake ice phenology recordings. Within the framework of this project, the Remote Sensing Research Group of the University of Bern (RSGB) utilizes data acquired in the fine-resolution imagery (I) bands (1-5) of the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor that is mounted onboard the SUOMI-NPP. Visible and near-infrared reflectances, as well as thermal infrared-derived lake surface water temperatures (LSWT), are used to retrieve lake ice phenology dates. The VIIRS instrument, which combines a high temporal resolution ( 2 times per day) with a reasonable spatial resolution (375 m), is equipped with a single broad-band thermal I-channel (I05). Thus, a single-channel LSWT retrieval algorithm is employed to correct for the atmospheric influence. The single channel algorithm applied in

  17. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  18. Scale-based freshwater conservation planning: towards protecting freshwater biodiversity in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Rivers-Moore, NA

    2011-01-01

    Full Text Available River systems have strong linear linkages and require innovative solutions to capture these linkages from aquatic conservation planners. The authors applied an approach to freshwater conservation planning to freshwater ecosystems of Kwa...

  19. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions

    Science.gov (United States)

    Longo, William M.; Huang, Yongsong; Yao, Yuan; Zhao, Jiaju; Giblin, Anne E.; Wang, Xian; Zech, Roland; Haberzettl, Torsten; Jardillier, Ludwig; Toney, Jaime; Liu, Zhonghui; Krivonogov, Sergey; Kolpakova, Marina; Chu, Guoqiang; D'Andrea, William J.; Harada, Naomi; Nagashima, Kana; Sato, Miyako; Yonenobu, Hitoshi; Yamada, Kazuyoshi; Gotanda, Katsuya; Shinozuka, Yoshitsugu

    2018-06-01

    Alkenones are C35-C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n = 30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: -17.3-10.9 °C; mean annual precipitation range: 125-1657 mm yr-1; latitude range: 40-81°N), and are commonly found in neutral to basic lakes (pH > 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U37K) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U37K = 0.029 * T - 0.49; r2 = 0.60; p < 0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632°N, 149.602°W; Lake E5, 68.643°N, 149.458

  20. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae.

    Science.gov (United States)

    Palaiomylitou, M A; Kalimanis, A; Koukkou, A I; Drainas, C; Anastassopoulos, E; Panopoulos, N J; Ekateriniadou, L V; Kyriakidis, D A

    1998-08-01

    Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis. Copyright 1998 Academic Press.

  1. Seeing from Space: What Icebergs Can Tell Us About Ice-ocean Interactions

    Science.gov (United States)

    Scheick, J.; Enderlin, E. M.; Hamilton, G. S.

    2017-12-01

    Icebergs are an important component of the ice-ocean system, yet until recently they have remained the focus of relatively few studies. Icebergs are an important distributed freshwater and nutrient source and can pose significant hazards for navigation and infrastructure, warranting further study. Importantly, icebergs are also easily observable en masse using satellite imagery and other remote sensing platforms, allowing for the collection of large datasets from already existing archives. Here we present some of the many ways that remotely sensed icebergs can be used to inform our understanding of ice-ocean interactions, as well as some of the limitations of these methods and what information is still needed. We will explore the size and spatial distribution of icebergs through time and what that can tell us about the calving behavior of the parent glacier and/or ocean-driven melting below the waterline. We will also explore the use of icebergs as depth finders and drifters to infer bathymetry and components of fjord circulation, respectively.

  2. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  3. Isolating and identifying atmospheric ice-nucleating aerosols: a new technique

    Science.gov (United States)

    Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.

    Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.

  4. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-07-01

    burning source for much of the aerosol. Comparison of the particles from the CFDC with the other aerosol in the residuals of ice particles suggested that the largest portion of IN had similar inferred origins (from biomass burning with minor amounts of rBC as the other aerosol, but contained slightly elevated amounts of calcium and less influence from sea salt.

  5. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    Science.gov (United States)

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.

  7. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    Science.gov (United States)

    Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.

    2010-10-01

    During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and soot (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3-8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17-27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9-15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the separate components contained within the individual particles.

  8. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2011-03-01

    Full Text Available During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI. Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN were identified from the significant enrichment of particle groups in the ice residual (IR samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2. In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb. C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent, and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.

  9. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  10. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  11. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  12. Comparative Salt Stress Study on Intracellular Ion Concentration in Marine and Salt-adapted Freshwater Strains of Microalgae

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad TALEBI

    2013-08-01

    Full Text Available Salinity imposes significant stresses in various living organisms including microalgae. High extracellular concentration of Na+ directly influences ionic balance inside the cell and subsequently the cellular activities. In the present study, the effect of such stress on growth and intracellular ions concentration (IIC of Dunaliella salina and Chlorella Spp. was investigated. IIC was analyzed using Ion chromatography technique. D. salina showed the highest degree of resistance to increase in salinity as little changes occurred both in IIC and in growth parameters. D. salina could maintain the balance of K+ inside the cell and eject the excess Na+ even at NaCl concentrations above 1M. Moreover, D. salina accumulated β-carotene in order to protect its photosynthetic apparatus. Among Chlorella species, C. vulgaris showed signs of adaptation to high content of salinity, though it is a fresh water species by nature. Moreover, the response shown by C. vulgaris to rise in salinity was even stronger than that of C. salina, which is presumably a salt-water resistant species. In fact, C. vulgaris could maintain intracellular K+ better than C. salina in response to increasing salinity, and as a result, it could survive at NaCl concentrations as high as 0.75 M. Marine strains such as D. salina well cope with the fluctuations in salinity through the existing adaptation mechanisms i.e. maintaining the K+/N+ balance inside the cell, K+ accumulation and Na+ ejection, accumulation of photosynthetic pigments like β-carotene.

  13. Insight into protist diversity in Arctic sea ice and melt-pond aggregate obtained by pyrosequencing

    Directory of Open Access Journals (Sweden)

    Estelle Silvia Kilias

    2014-11-01

    Full Text Available Protists in the central Arctic Ocean are adapted to the harsh environmental conditions of its various habitats. During the Polarstern cruise ARK-XXVI/3 in 2011, at one sea-ice station, large aggregates accumulated at the bottom of the melt ponds. In this study, the protist assemblages of the bottom layer of the sea-ice and melt-pond aggregate were investigated using flow cytometry and 454-pyrosequencing. The objective is to provide a first molecular overview of protist biodiversity in these habitats and to consider the overlaps and/or differences in the community compositions. Results of flow cytometry pointed to a cell size distribution that was dominated by 3–10 µm nanoflagellates. The phylogenetic classification of all sequences was conducted at a high taxonomic level, while a selection of abundant (≥1% of total reads sequences was further classified at a lower level. At a high taxonomic level, both habitats showed very similar community structures, dominated by chrysophytes and chlorophytes. At a lower taxonomic level, dissimilarities in the diversity of both groups were encountered in the abundant biosphere. While sea-ice chlorophytes and chrysophytes were dominated by Chlamydomonas/Chloromonas spp. and Ochromonas spp., the melt-pond aggregate was dominated by Carteria sp., Ochromonas spp. and Dinobryon faculiferum. We suppose that the similarities in richness and community structure are a consequence of melt-pond freshwater seeping through porous sea ice in late summer. Differences in the abundant biosphere nevertheless indicate that environmental conditions in both habitats vary enough to select for different dominant species.

  14. Restricted-range fishes and the conservation of Brazilian freshwaters.

    Directory of Open Access Journals (Sweden)

    Cristiano Nogueira

    Full Text Available BACKGROUND: Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29% watersheds have lost more than 70% of their original vegetation cover, and only 141 (26% show significant overlap with formally protected areas or indigenous lands. We detected 220 (40% critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. CONCLUSIONS/SIGNIFICANCE: We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked

  15. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Climate Changes Documented in Ice Core Records from Third Pole Glaciers, with Emphasis on the Guliya Ice Cap in the Western Kunlun Mountains over the Last 100 Years

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2016-12-01

    The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal

  17. Freshwater gastropods of Neogene and Quaternary lake systems of Europe - state of the art and outlook

    Science.gov (United States)

    Neubauer, Thomas A.; Harzhauser, Mathias; Mandic, Oleg; Kroh, Andreas

    2013-04-01

    Globally, about 4000 extant species of freshwater gastropod species have been described. In contrast, only 225 species are listed by MollBase2012 for North- and Central Europe. Many of these are rare species, limited to certain springs and in fact the typical diversity of gastropods in lakes of North and Central Europe is much lower. The high number is boosted by several highly speciose endemic radiations in long-lived ancient lakes, which are hotspots for biodiversity. These long-lived ancient lakes provide key examples for understanding evolutionary processes and therefore are intensively studied. During the Neogene, Europe's geodynamic history gave rise to several such long-lived lakes with conspicuous endemic radiations. However, these lacustrine systems are rare today as well as in the past compared to the enormous numbers of "normal" lakes. Most extant European lakes are mainly results of the Ice Ages and are due to their geologically temporary nature largely confined to the Pleistocene-Holocene. Also deposits of streams, springs, and groundwater, which today are inhabited by species-rich gastropod assemblages, are rarely preserved. Thus, the pre-Quaternary lacustrine record is biased towards long-lived systems. Apart from few general overviews precise studies on the γ-diversities of the post-Oligocene European lake systems and the shifting biodiversity in European freshwater systems through space and time are entirely missing. Even for the modern faunas, literature on large-scale freshwater gastropod diversity in extant lakes is scarce and lacks a statistical approach. Building upon a great amount of existing literature, a new project will provide the first detailed assessment of the composition of European freshwater gastropods during the Neogene and Quaternary at species, genus and family levels, with emphasis on lake faunas. The γ-diversity of several hundred modern and fossil European lakes will be evaluated. Data will be made available permanently for

  18. Observation and modeling of snow melt and superimposed ice formation on sea ice

    OpenAIRE

    Nicolaus, Marcel; Haas, Christian

    2004-01-01

    Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...

  19. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  20. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  1. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  2. Changes in body weight and eye size in female European eel kept in fresh and salt water

    Directory of Open Access Journals (Sweden)

    Joanna Nowosad

    2014-05-01

    Full Text Available The eel is a catadromous fish which spends most of its life in freshwater and adults swim to the Sargasso Sea region to spawn. While preparing for the reproductive process, eels undergo a metamorphosis to become what is called silver eel; a process involving changes in the colour and weight of the body and an increase in the eye size. These are indicators of fish maturity and they facilitate the selection of fish for reproduction under controlled conditions. During this study, changes in the body weight (BW and eye size in female European eel were observed while being given weekly hormonal injections of 20 mg kg–1 carp pituitary homogenate and kept in 15°C freshwater and in 15°C saltwater with a salinity of 32-33‰. Fish kept in saltwater but not subjected to hormonal stimulation were used as a control group. Furthermore, after the experiment was finished, females in the control group were kept for next 5 months, with the same environmental parameters maintained. Differences between the treated groups were observed as early as week 4 of the experiment. An increase in fish BW was observed in fish kept both in salt and freshwater which were subjected to hormonal stimulation. On the other hand, changes in eye size were observed in the fish kept in saltwater, both in those hormonally stimulated and otherwise. The eye diameter in the fish kept in fresh after hormonal stimulation did not change significantly.

  3. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  4. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  5. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  6. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Directory of Open Access Journals (Sweden)

    V. Dansereau

    2017-09-01

    Full Text Available This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB, is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr–Coulomb damage criterion that allows for pure (uniaxial and biaxial tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  7. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  8. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  9. Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    Science.gov (United States)

    Denby, B. R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J. V.; Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.; Sundvor, I.

    2016-09-01

    De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of -0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes.

  10. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  11. Mechanical challenges to freshwater residency in sharks and rays.

    Science.gov (United States)

    Gleiss, Adrian C; Potvin, Jean; Keleher, James J; Whitty, Jeff M; Morgan, David L; Goldbogen, Jeremy A

    2015-04-01

    Major transitions between marine and freshwater habitats are relatively infrequent, primarily as a result of major physiological and ecological challenges. Few species of cartilaginous fish have evolved to occupy freshwater habitats. Current thought suggests that the metabolic physiology of sharks has remained a barrier to the diversification of this taxon in freshwater ecosystems. Here, we demonstrate that the physical properties of water provide an additional constraint for this species-rich group to occupy freshwater systems. Using hydromechanical modeling, we show that occurrence in fresh water results in a two- to three-fold increase in negative buoyancy for sharks and rays. This carries the energetic cost of lift production and results in increased buoyancy-dependent mechanical power requirements for swimming and increased optimal swim speeds. The primary source of buoyancy, the lipid-rich liver, offers only limited compensation for increased negative buoyancy as a result of decreasing water density; maintaining the same submerged weight would involve increasing the liver volume by very large amounts: 3- to 4-fold in scenarios where liver density is also reduced to currently observed minimal levels and 8-fold without any changes in liver density. The first data on body density from two species of elasmobranch occurring in freshwater (the bull shark Carcharhinus leucas, Müller and Henle 1839, and the largetooth sawfish Pristis pristis, Linnaeus 1758) support this hypothesis, showing similar liver sizes as marine forms but lower liver densities, but the greatest negative buoyancies of any elasmobranch studied to date. Our data suggest that the mechanical challenges associated with buoyancy control may have hampered the invasion of freshwater habitats in elasmobranchs, highlighting an additional key factor that may govern the predisposition of marine organisms to successfully establish in freshwater habitats. © 2015. Published by The Company of Biologists Ltd.

  12. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  13. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution

    Science.gov (United States)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier

    2018-01-01

    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  14. There goes the sea ice: following Arctic sea ice parcels and their properties.

    Science.gov (United States)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  15. Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland Observed by the Expendable Ice Tracker

    Directory of Open Access Journals (Sweden)

    Daniel F. Carlson

    2017-08-01

    Full Text Available Icebergs and bergy bits makes up a significant component of the total freshwater flux from the Greenland Ice Sheet to the ocean. Observations of iceberg trajectories are biased toward larger icebergs and, as a result, the drift characteristics of smaller icebergs and bergy bits are poorly understood. In an attempt to fill this critical knowledge gap, we developed the open-source EXpendable Ice TrackEr (EXITE. EXITE is a low-cost, satellite-tracked GPS beacon capable of high-resolution temporal measurements over extended deployment periods (30 days or more. Furthermore, EXITE can transform to a surface drifter when its host iceberg capsizes or fragments. Here we describe basic construction of an EXITE beacon and present results from a deployment in Godthåbsfjord (SW Greenland in August 2016. Overall, EXITE trajectories show out-fjord surface transport, in agreement with a simple estuarine circulation paradigm. However, eddies and abrupt wind-driven reversals reveal complex surface transport pathways at time scales of hours to days.

  16. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  17. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence......The freshwater reservoir effect can result in too high radiocarbon ages of samples from lakes and rivers, including the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. In my talk, I will explain the causes and consequences of this effect. Two...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  18. Effects of Extreme Events on Arsenic Cycling in Salt Marshes

    Science.gov (United States)

    Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.

    2018-03-01

    Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.

  19. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  20. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, Tore; Levermann, Anders [Potsdam University, Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2010-10-15

    We investigate the large-scale oceanic features determining the future ice shelf-ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157-170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1% per year CO{sub 2}-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 x 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO{sub 2} concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one. (orig.)

  1. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  2. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    KAUST Repository

    Chen, Wei

    2018-03-05

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  4. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    Science.gov (United States)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  5. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  6. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  7. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  8. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  9. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A. [ORNL; Griffiths, Natalie A. [ORNL; DeRolph, Christopher R. [ORNL; Pracheil, Brenda M. [ORNL

    2018-01-01

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.

  10. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  11. Comparison of Freezing and Hydrate Formation Methods in Removing Chloride and Bromide Ions from Brine

    Directory of Open Access Journals (Sweden)

    Marzieh Fattahi

    2018-01-01

    Full Text Available The growing population and enhanced industrial activities coupled with limitations on freshwater availability have led to efforts to desalinate salt water from the seas. Membrane and thermal technologies are the two commonly used for this purpose. In this study, the direct freezing and hydrate formation techniques were used for salt water desalination. Materials and Methods: Distilled water, sodium chloride, and sodium bromide were used as raw materials in the experiments. The experimental setup included a stationary reactor with two coaxial cylinders, in which ice crystals were deposited outside the cool inner cylinder to increase the salt concentration in the residual brine. An electrical conductivity instrument was used to measure sal removal. Results: Salt removal was shown to decrease with increasing salt concentration in the direct freeze method. A different trend was, however, observed in the hydrate formation method; salt removal was negligible at low concentrations in this method but increased at high concentrations before a constant value was reached. Overall, the hydrate formation recorded a higher salt removal efficiency than the other method. To investigate the effect of anion size on salt removal efficiency, experiments were carried out using NaCl and NaBr, which have the same cation but different anion sizes. Result showed that removal efficiency increased with increasing anion size. Conclusion: It was found that increasing ion radius leads to the lower likelihood of ion presence in the crystal lattice, thereby reducing salt removal efficiency. On the other hand, low concentrations of salt serve as site for the generation of cores, which naturally serve as removal accelerators.

  12. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...

  13. Modelling sea ice formation in the Terra Nova Bay polynya

    Science.gov (United States)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  14. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  15. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  16. Lysogenic infection in sub-tropical freshwater cyanobacteria cultures and natural blooms

    NARCIS (Netherlands)

    Steenhauer, L.M.; Pollard, P.C.; Brussaard, C.P.D.; Säwström, C.

    2014-01-01

    Lysogeny has been reported for a few freshwater cyanobacteria cultures, but it is unknown how prevalent it is in freshwater cyanobacteria in situ. Here we tested for lysogeny in (a) cultures of eight Australian species of subtropical freshwater cyanobacteria; (b) seven strains of one species:

  17. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Braconnot, P.; Zheng, W. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Luan, Y. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Chinese Academy of Sciences (CAS), State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Brewer, Simon [University of Wyoming, Department of Botany, Laramie, WY (United States)

    2012-03-15

    We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Nina events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Nino events. The impact of ice-sheet melting may have offset the impact of insolation on El Nino Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records. (orig.)

  18. Thermodynamics of high-pressure ice polymorphs : ices III and V

    NARCIS (Netherlands)

    Tchijov, [No Value; Ayala, RB; Leon, GC; Nagornov, O

    Thermodynamic properties of high-pressure ice polymorphs, ices III and V, are studied theoretically. The results of TIP4P molecular dynamics simulations in the NPT ensemble are used to calculate the temperature dependence of the specific volume of ices III and V at pressures 0.25 and 0.5 GPa,

  19. A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation.

    Science.gov (United States)

    Suárez, Francisco; Tyler, Scott W; Childress, Amy E

    2010-08-01

    Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    Science.gov (United States)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  1. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  2. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  3. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  4. Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence.

    Science.gov (United States)

    Nan, Fangru; Feng, Jia; Lv, Junping; Liu, Qi; Fang, Kunpeng; Gong, Chaoyan; Xie, Shulian

    2017-06-07

    Freshwater representatives of Rhodophyta were sampled and the complete chloroplast and mitochondrial genomes were determined. Characteristics of the chloroplast and mitochondrial genomes were analyzed and phylogenetic relationship of marine and freshwater Rhodophyta were reconstructed based on the organelle genomes. The freshwater member Compsopogon caeruleus was determined for the largest chloroplast genome among multicellular Rhodophyta up to now. Expansion and subsequent reduction of both the genome size and GC content were observed in the Rhodophyta except for the freshwater Compsopogon caeruleus. It was inferred that the freshwater members of Rhodophyta occurred through diverse origins based on evidence of genome size, GC-content, phylogenomic analysis and divergence time estimation. The freshwater species Compsopogon caeruleus and Hildenbrandia rivularis originated and evolved independently at the inland water, whereas the Bangia atropurpurea, Batrachospermum arcuatum and Thorea hispida are derived from the marine relatives. The typical freshwater representatives Thoreales and Batrachospermales are probably derived from the marine relative Palmaria palmata at approximately 415-484 MYA. The origin and evolutionary history of freshwater Rhodophyta needs to be testified with more organelle genome sequences and wider global sampling.

  5. The Zoogeography of North American freshwater fishes

    National Research Council Canada - National Science Library

    Hocutt, Charles H; Wiley, E. O

    1986-01-01

    ..., and Pleistoscene glaciation. The Zoogeography of North American Freshwater Fishes is a comprehensive treatment of the freshwater biogeography of North America, with implications for other disciplines...

  6. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  7. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    Science.gov (United States)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  8. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    Science.gov (United States)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  9. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  10. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  11. Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant.

    Science.gov (United States)

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-04-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ~192 million short reads from four cDNA libraries of M. pinnata and processed them into 108,598 unisequences with a high depth of coverage. The mean length and total length of these unisequences were 606 bp and 65.8 Mb, respectively. A total of 54,596 (50.3%) unisequences were assigned Nr annotations. Functional classification revealed the involvement of unisequences in various biological processes related to metabolism and environmental adaptation. We identified 23,815 candidate salt-responsive genes with significantly differential expression under seawater and freshwater treatments. Based on the reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses, we verified the changes in expression levels for a number of candidate genes. The functional enrichment analyses for the candidate genes showed tissue-specific patterns of transcriptome remodelling upon salt stress in the roots and the leaves. The transcriptome of M. pinnata will provide valuable gene resources for future application in crop improvement. In addition, this study sets a good example for large-scale identification of salt-responsive genes in non-model organisms using the sequencing-based approach.

  12. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    Science.gov (United States)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  13. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  14. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    Science.gov (United States)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  15. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  16. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-01-01

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  17. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  18. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  19. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  20. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  1. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  2. MASS BALANCE CHANGES AND ICE DYNAMICS OF GREENLAND AND ANTARCTIC ICE SHEETS FROM LASER ALTIMETRY

    Directory of Open Access Journals (Sweden)

    G. S. Babonis

    2016-06-01

    Full Text Available During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA’s Ice, Cloud and land Elevation Satellite mission (ICESat and airborne laser campaigns, such as Airborne Topographic Mapper (ATM and Land, Vegetation and Ice Sensor (LVIS. For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  3. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  4. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    Science.gov (United States)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  5. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  6. Investigation of salt transport in vertical boreholes and brine invasion into freshwater aquifers. Interim report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Knapp, R.M.; Podio, A.L.

    1975-01-01

    A computer algorithm simulating salt transport in the wellbore system has been written. Earlier experiments performed for the Oak Ridge National Laboratory by T. N. Dixon have been duplicated. Attempts at simulating experimental data have not been successful because of limitations on allowable time step size. The algorithm is currently being modified to reduce the effects of this problem. An experimental system has been designed and constructed to simulate salt transport in vertical wellbores. Two preliminary tests have been run to evaluate the system design and it appears to be adequate. One of the two techniques for simulating miscible displacement has been implemented. Comparisons with experimental data are currently underway

  7. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    Science.gov (United States)

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  8. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  9. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  10. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    Directory of Open Access Journals (Sweden)

    C. P. Borstad

    2013-12-01

    Full Text Available Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the ability of ice shelves to sustain and transmit buttressing stresses. Here, we present a new framework for quantifying the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf that accounts for the softening influence of fractures on longitudinal deformation using a state damage variable. We use this new analytical relation, combined with a temperature calculation for the ice, to partition an inverse method solution for ice shelf rigidity into independent solutions for softening damage and stabilizing backstress. Using this new approach, field and remote sensing data can be utilized to monitor the structural integrity of ice shelves, their ability to buttress the flow of ice at the grounding line, and thus their indirect contribution to ice sheet mass balance and global sea level. We apply this technique to the Larsen C ice shelf using remote sensing and Operation IceBridge data, finding damage in areas with known crevasses and rifts. Backstress is highest near the grounding line and upstream of ice rises, in agreement with patterns observed on other ice shelves. The ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could diminish the backstress transmitted upstream. We model the consequences for the ice shelf if it loses contact with this small ice rise

  11. On the Revealing Firsthand Probing of Ocean-Ice-Atmosphere Interactions off Sabrina Coast During NBP1402

    Science.gov (United States)

    Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.

    2014-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low

  12. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  13. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  14. Effects of Pollution on Freshwater Fish.

    Science.gov (United States)

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  15. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    Science.gov (United States)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most

  16. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and

  17. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  18. Cosmic ray spectrum and composition from three years of IceTop and IceCube

    Science.gov (United States)

    Rawlins, K.; IceCube Collaboration

    2016-05-01

    IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.

  19. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  20. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    Science.gov (United States)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  1. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  2. Gene Expression in the Three-Spined Stickleback (Gasterosteus aculeatus) of Marine and Freshwater Ecotypes.

    Science.gov (United States)

    Rastorguev, S M; Nedoluzhko, A V; Gruzdeva, N M; Boulygina, E S; Tsygankova, S V; Oshchepkov, D Y; Mazur, A M; Prokhortchouk, E B; Skryabin, K G

    2018-01-01

    Three-spine stickleback (Gasterosteus aculeatus) is a well-known model organism that is routinely used to explore microevolution processes and speciation, and the number of studies related to this fish has been growing recently. The main reason for the increased interest is the processes of freshwater adaptation taking place in natural populations of this species. Freshwater three-spined stickleback populations form when marine water three-spined sticklebacks fish start spending their entire lifecycle in freshwater lakes and streams. To boot, these freshwater populations acquire novel biological traits during their adaptation to a freshwater environment. The processes taking place in these populations are of great interest to evolutionary biologists. Here, we present differential gene expression profiling in G. aculeatus gills, which was performed in marine and freshwater populations of sticklebacks. In total, 2,982 differentially expressed genes between marine and freshwater populations were discovered. We assumed that differentially expressed genes were distributed not randomly along stickleback chromosomes and that they are regularly observed in the "divergence islands" that are responsible for stickleback freshwater adaptation.

  3. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  4. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster

  5. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  6. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    Science.gov (United States)

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  8. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  9. Education Agendas and Resistance with the Teaching and Learning of Freshwater and Extreme Freshwater Events

    Science.gov (United States)

    Sammel, Alison; McMartin, Dena; Arbuthnott, Katherine

    2018-01-01

    Despite the essentiality of freshwater to all life on the planet, the populous has inadequate understandings of water. Formal education plays a key role in shaping how individuals and communities make sense of water, its accessibility, management, consumption, and hazards. This article seeks to bring attention to the infuence of cultural framings…

  10. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    Adam eMonier

    2014-09-01

    Full Text Available Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

  11. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Science.gov (United States)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  12. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    Science.gov (United States)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  13. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  14. Oil spill research : salt water and fresh water

    International Nuclear Information System (INIS)

    Goodman, R.

    2006-01-01

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m 3 . Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  15. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  16. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  17. 2H and 18O Freshwater Isoscapes of Scotland

    Science.gov (United States)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  18. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  19. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  20. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  1. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.

    2013-01-01

    a predictable shape, which is a function of ice temperature, ice rheology, and surface mass-exchange rate. In addition, the time for surface-shape adjustment is shorter than the characteristic time for significant deformation or displacement of internal layers within a flowing ice mass; as a result, surface......On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has...... topography is more diagnostic of flow than are internal-layer shapes. Because the shape of Gemina Lingula, North Polar Layered Deposits indicates that it flowed at some time in the past, we use its current topography to infer characteristics of those past ice conditions, or past climate conditions, in which...

  2. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  3. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  4. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    Science.gov (United States)

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  5. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  6. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  7. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  8. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  9. Review: Freshwater conservation planning in South Africa ...

    African Journals Online (AJOL)

    Review: Freshwater conservation planning in South Africa: Milestones to ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... Since the 1970s, at approximately 10-year intervals, 4 national-scale freshwater conservation ...

  10. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    Science.gov (United States)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  11. Assessment of the Relationship between Andean Ice Core Precipitation Indicators and Amazon River Discharge

    Science.gov (United States)

    Johnson, N.; Alsdorf, D.; Thompson, L.; Mosley-Thompson, E.; Melack, J.

    2006-12-01

    Prior to the last 100 years, there is a significant lack of hydrologic knowledge for the Amazon Basin. A 100- year record of discharge from the city of Manaus, located at the confluence of the Solimoes and Negro rivers, is the most complete record for the basin. Inundated wetlands play a key role in carbon out-gassing to the atmosphere whereas discharge from the Amazon River contributes about 20% of the total freshwater flux delivered to the world's oceans. As discharge (Q) and inundation are directly related to precipitation, we are developing a method to extend our understanding of Q and inundation into the 19^{th} century. Using proxy data preserved in Andean glaciers and ice caps and recovered from ice cores, annually resolved histories of δ^{18)O and mass accumulation are available. The latter is a proxy for local precipitation amount whereas δ18O is influenced by continental scale processes (i.e., evaporation, convection) as well as by temperature and hence, by varying climate regimes. We have correlated the accumulation and δ18O records from Core 1 drilled on the Quelccaya ice-cap in the southern Andes of Peru with the Manaus discharge data. As ice core annual layers correspond to the thermal year (in Peru, July to June of the following year) and the discharge records are kept daily (January to December), we averaged 365 days of Q data seeking the optimal correlation for each start and end date. The best statistical relationship between δ18O and Q (r = -0.41, p = < 0.001) is attained when Q is averaged from March 16 to March 15 of the following year. We also correlated 23 years of ENSO events, which are linked to both Amazon River discharge and ice core δ18O (r = -0.60, p = < 0.001). These linear relationships are used to create Amazon discharge for the 20^{th} century and to extrapolate Q into the 19^{th} century. Previously developed relationships between Q and mainstem inundated area are then used to estimate inundated area along the main Amazon

  12. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  13. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM

    Science.gov (United States)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and

  14. Survival strategies of freshwater insects in cold environments

    Directory of Open Access Journals (Sweden)

    Valeria LENCIONI

    2004-09-01

    Full Text Available At high latitudes and altitudes, ice formation is a major variable affecting survival of freshwater fauna and hence the abundance and composition of invertebrate communities. Freezing, but also desiccation and anoxia, are lethal threats to all life stages of aquatic insects, from the eggs to the adults. During cold periods, the aquatic stages commonly remain in or move to a portion of the water body that will not freeze or dry (e.g., deep waters of lakes, springs and hyporheic zone where they can remain active. Less frequently they migrate to habitats that will freeze at the onset of winter. Insects have developed a complex of strategies to survive at their physiological temperature minimum, comprising (a morphological (melanism, reduction in size, hairiness/pubescence, brachyptery and aptery, (b behavioural (basking in the sun, changes in feeding and mating habit, parthenogenesis, polyploidy, ovoviviparity, habitat selection and cocoon building, (c ecological (extension of development to several years by quiescence or diapause and reduction of the number of generations per year, (d physiological and biochemical (freezing tolerance and freezing avoidance adaptations. Most species develop a combination of these survival strategies that can be different in the aquatic and terrestrial phase. Freezing avoidance and freezing tolerance may be accompanied by diapause. Both cold hardiness and diapause manifest during the unfavourable season and: (i involve storage of food resources (commonly glycogen and lipids; (ii are under hormonal control (ecdysone and juvenile hormone; (iii involve a depression or suppression of the oxidative metabolism with mitochondrial degradation. However, where the growing season is reduced to a few weeks, insects may develop cold hardiness without entering diapause, maintaining in the haemolymph a high concentration of Thermal Hysteris Proteins (THPs for the entire year and a slow but continuous growth. A synthesis of

  15. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  16. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  17. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    Science.gov (United States)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  18. The Implications of Ranaviruses to European farmed and wild freshwater fish

    DEFF Research Database (Denmark)

    Jensen, Ann Britt Bang

    The present thesis explores the implications of ranaviruses to European farmed and wild freshwater fish. The work presented was carried out as a part of the EU project “Risk assessment of new and emerging systemic iridoviral diseases for European fish and aquatic ecosystems” which was initiated...... in 2005 as a reaction to the speculation that ranaviruses might pose a serious threat to both farmed and wild-living freshwater fish and amphibians within the European community. In the present thesis, the purpose is to determine the implications of ranaviruses to European freshwater farmed and wild......-living fish. The following specific objectives are addressed: Objective 1: To determine the susceptibility of selected European freshwater fish to a panel of ranaviruses Objective 2: To determine whether ornamental fish are susceptible to or can be carriers of ranaviruses Objective 3: To develop a model...

  19. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  20. NASA Iced Aerodynamics and Controls Current Research

    Science.gov (United States)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  1. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  2. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  3. Fish and mussels: importance of fish for freshwater mussel conservation

    Directory of Open Access Journals (Sweden)

    Ronaldo Sousa

    2015-12-01

    Full Text Available Co-extinctions have received trivial consideration in discussions about the global conservation crisis, even though recent studies have emphasised their importance. This situation is even more pronounced in freshwater ecosystems where this phenomenon is largely unrecognized. In this presentation we explore the role of fish for freshwater mussels’ conservation. Freshwater mussels’ need fish as a host to complete their life cycle and given this premise is expected that changes in the fish community due to species extinctions or additions may have great effects. We reviewed the published information and we found: 1 that most of the studies were published in the last few years; 2 that most of the studies were performed in North America (69%, which is probably due to the high number of endemic threatened species in this continent; 3 that most of the mussel species that are specialists in fish hosting are listed as vulnerable or endangered (55%; 4 most studies were performed in laboratory (83% and 5 that the majority of studies were focused on life cycle or on identifying suitable fish hosts of freshwater mussel species with few studies focusing on threats. Since the interaction between fish and freshwater mussels can be easily disrupted and serious threats to this interaction have arisen (e.g. loss and fragmentation of habitat, changes in river flow, climate change, introduction of invasive species, pollution a more holistic approach is needed to find the best management strategies to conserve these animals. In addition, more field studies are required and more information on African, South American and Asian species is essential. Neglect the possible fundamental role of fish in the decline or extinction of freshwater mussels may impair the success of any measure devoted to their conservation; therefore, this issue cannot be ignored.

  4. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  5. Exploring Freshwater Science

    Indian Academy of Sciences (India)

    Freshwater ecosystems and associated habitats harbor incrediblebiodiversity. They offer various ecosystem services andsustain human livelihoods. However, due to increasing developmentalpressure and rising water demand, these systemsare under huge threat. As a result, many aquatic species arefeared to become ...

  6. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  7. Evidence of local and regional freshening of Northeast Greenland coastal waters

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Stedmon, Colin A; Bendtsen, Jørgen

    2017-01-01

    The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland...... coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first...... observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing...

  8. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  9. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    Science.gov (United States)

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  10. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  11. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  12. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  13. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.

    Science.gov (United States)

    Pujolar, J M; Ferchaud, A L; Bekkevold, D; Hansen, M M

    2017-07-01

    This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used. © 2017 The Fisheries Society of the British Isles.

  14. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  15. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  16. Turbulent heat exchange between water and ice at an evolving ice-water interface

    Science.gov (United States)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  17. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  18. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  19. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Science.gov (United States)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  20. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Williams, D.F.; Peretz, F.J.

    1996-01-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions