WorldWideScience

Sample records for salt water disposal

  1. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  2. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  3. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  4. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  5. Salt formations offer disposal alternative

    International Nuclear Information System (INIS)

    Funderburk, R.

    1990-01-01

    This paper discusses how three U.S. firms are spending millions to permit and build underground disposal sites in salt formations. These companies claim salt is the ideal geological medium for holding hazardous wastes. Two Texas locations and one in Michigan have been targeted as future sites for hazardous waste disposal. The Michigan site, outside Detroit, is a former salt mine 2,000 feet beneath the Ford Motor Co. (Detroit) assembly works in Dearborn. Both Texas sites are atop salt domes---one east and one west of Houston

  6. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  7. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  8. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  9. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  10. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr 90 , Cs 137 , and Pu 239 . Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150 0 C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  11. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  12. Some geotechnical problems related to underground waste disposal in salt formations

    International Nuclear Information System (INIS)

    Berest, P.

    1993-01-01

    Nuclear waste disposal in deep salt formations is an option considered by several countries. Rock salt is a very impervious medium, but can be easily leached; selection of an appropriate disposal formation must account for natural protections of the formation as regards water movements. It must be checked that such initially favourable characteristics will not be affected by the existence of shafts and galleries, or by the important heat output generated by vitrified wastes. The discussion is uneasy, for a comprehensive rheological model for rock salt is difficult to set and to be extrapolated to large time scales; some methodological problems are raised by use of numerical computations. (author). 22 refs., 2 figs

  13. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  14. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  15. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  16. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  17. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.5

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with safety evaluation as part of the investigations regarding a repository for high-level waste in a salt dome. It is volume 5 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. Two characteristics of the waste are of special importance for the safety evaluation: the encasing of the waste in steel casks with 15 cm thick walls affording protection against corrosion, protecting the surroundings against radiation, and protecting the glass cylinders from mechanical damage resulting from the pressure at the bottom of the disposal hole, and the modest generation of heat in the waste at the time of disposal resulting in a maximum temperature increase in the salt close to the waste of approx. 40 deg. C. These characteristics proved to considerably improve the safety margin with respect to unforeseen circumstances. The character of the salt dome and of the salt in the proposed disposal area offers in itself good protection against contact with the ground water outside the dome. The relatively large depth of 1200 and 2500 m of the salt surface also means that neither dome nor disposal facility will be appreciably influenced by glaciations or earthquakes. The chalk above the proposed disposal area is very tight and to retain radioactive matter effectively even in the precence of high concentrations of NaCL. The safety investigations included a number of natural processes and probable events such as the segregation of crystal water from overlooked salt minerals, faulty sealings of disposal holes, permeable fault zones in the chalk overlying the dome, the risk in connection with human penetration into the dome. These conditions will neither lead to the destruction of the waste casks or to the release of waste from the dome. Leaching of a cavern is the only situation which proved to result in a release of radioactive material to the biosphere, but the resulting doses was found to be small

  18. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  19. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  20. Decontaminated salt disposal as saltcrete in a landfill. Technical data summary

    International Nuclear Information System (INIS)

    1982-01-01

    This technical data summary presents a reference process for immobilizing decontaminated salt solution from the 200-Area waste storage tanks with cement, and disposing of the final waste material (called saltcrete) by burial in trenches. The saltcrete will be protected from leaching by clay and will be placed at least 3 meters above the historic high water table and beneath at least 5 meters of soil overburden. The decontaminated salt solution is a waste material which remains after the bulk of the radionuclides have been removed from waste tank supernate. This removal is effected by contacting the waste supernate with sodium tetraphenyl boron (Na-TPB) and sodium titanate (NaTi 2 O 5 H). These materials remove (by precipitation) most of the 137 Cs and 90 Sr as well as many other radioactive and non-radioactive elements. These precipitates, along with many other sludges which reside in the HLW tanks will be incorporated in borosilicate glass for eventual disposal in a geologic repository. An ion exchange process will also be used for removal of 99 Tc. The decontaminated salt solution has sufficiently low levels of radioactivity that it can be disposed of on-site. The scope of the curent effort is to describe a process for blending decontaminated salt solution with cement to form a saltcrete product which has dimensional stability and relatively low leachability. The process is to be capable of solidifying 10 gpm of supernate. About 100 million gallons of salt solution is to be solidified

  1. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    International Nuclear Information System (INIS)

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO 3 , NaOH, Na 2 SO 4 , and NaNO 2 . After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove 137 Cs and 90 Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards

  2. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  3. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  4. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  5. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  6. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  7. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs

  8. The safe disposal of radioactive wastes in geologic salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.; Proske, R.

    Geologic salt formations appear to be particularly suitable for final storage. Their existance alone - the salt formations in Northern Germany are more than 200 million years old - is proof of their stability and of their isolation from biological cycles. In 1967 the storage of LAW and later, in 1972, of MAW was started in the experimental storage area Asse, south-east of Braunschweig, after the necessary technical preparations had been made. In more than ten years of operation approx. 114,000 drums of slightly active and 1,298 drums of medium-active wastes were deposited without incident. Methods have been developed for filling the available caverns with wastes and salt to ensure the security of long term disposal without supervision. Tests with electric heaters for simulation of heat-generating highly active wastes confirm the good suitability of salt formations for storing these wastes. Safety analyses for the operating time as well as for the long term phase after closure of the final storage area, which among others also comprise the improbable ''greatest expected accident'', namely break through of water, are carried out and confirm the safety of ultimate storage of radioactive wastes in geological salt formations. (orig./HP) [de

  9. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  10. The HAW Project. Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Mueller-Lyda, I.; Raynal, M.; Major, J.C.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt a five years test disposal of thirty highly radioactive canisters is planned in the Asse salt mine in the Federal Republic of Germany. The thirty canisters containing the radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwith of heat generation and gamma radiation of real HAW will be emplaced in six boreholes located in two galleries at the 800-m-level. Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and successfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionization chambers as well as solid state dosemeters were developed and tested. 70 refs

  11. Possible salt mine sites for radioactive waste disposal in the northeastern states

    Energy Technology Data Exchange (ETDEWEB)

    Landes, K.K.

    1972-06-30

    The motivation for this investigation is the necessity for finding the safest possible repository for solid atomic plant wastes. It is believed that rooms mined in thick beds of salt would afford the best sanctuary. This is due especially to the impermeability of massive rock salt. This rock has enough plasticity so that it tends to give rather than fracture when disturbed by movements of the earth's crust. In addition, due to water conditions at the time of deposition, the rocks most commonly associated with salt (anhydrite and shale) are likewise relatively impervious. A number of areas have been selected for detailed discussion because of the excellence of the geological and environmental factors. The optimum requirements for a viable waste disposal prospect are described in detail and nine prospects are considered further.

  12. Possible salt mine sites for radioactive waste disposal in the northeastern states

    International Nuclear Information System (INIS)

    Landes, K.K.

    1972-01-01

    The motivation for this investigation is the necessity for finding the safest possible repository for solid atomic plant wastes. It is believed that rooms mined in thick beds of salt would afford the best sanctuary. This is due especially to the impermeability of massive rock salt. This rock has enough plasticity so that it tends to give rather than fracture when disturbed by movements of the earth's crust. In addition, due to water conditions at the time of deposition, the rocks most commonly associated with salt (anhydrite and shale) are likewise relatively impervious. A number of areas have been selected for detailed discussion because of the excellence of the geological and environmental factors. The optimum requirements for a viable waste disposal prospect are described in detail and nine prospects are considered further

  13. Geologic disposal of nuclear wastes: salt's lead is challenged

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    The types of radioactive waste disposal sites available are outlined. The use of salt deposits and their advantages are discussed. The reasons for the selection of the present site for the Waste Isolation Pilot Plant are presented. The possibilities of using salt domes along the Gulf Coast and not-salt rocks as nuclear waste repositories are also discussed. The sea bed characteristics are described and advantages of this type of site selection are presented

  14. Possible salt mine and brined cavity sites for radioactive waste disposal in the northeastern southern peninsula of Michigan

    International Nuclear Information System (INIS)

    Landes, K.K.; Bourne, H.L.

    1976-01-01

    A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern sites for waste disposal include environmental, geologic, and economic factors. The Michigan basin is a structural bowl of Paleozoic sediments resting on downwarped Precambrian rocks. The center of the bowl is in Clare and Gladwin Counties, a short distance north of the middle of the Southern Peninsula. The strata dip toward this central area, and some stratigraphic sequences, including especially the salt-containing Silurian section, increase considerably in thickness in that direction. Lesser amounts of salt are also present in the north central part of the Lower Peninsula. Michigan has been an oil and gas producing state since 1925 and widespread exploration has had two effects on the selection of waste disposal sites: (1) large areas are leased for oil and gas; and (2) the borehole concentrations, whether producing wells, dry holes, or industrial brine wells that penetrated the salt section, should be avoided. Two types of nuclear waste, low level and high level, can be stored in man-made openings in salt beds. The storage facilities are created by (1) the development of salt mines where the depths are less than 3000 ft, and (2) cavities produced by pumping water into a salt bed, and bringing brine back out. The high level waste disposal must be confined to mines of limited depth, but the low level wastes can be accommodated in brine cavities at any depth. Seven potential prospects have been investigated and are described in detail

  15. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.; Mueller-Lyda, I.

    1990-04-01

    To satisfy the test objectives thirty highly radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./DG)

  16. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  17. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  18. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    2016-01-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  19. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.

    1990-04-01

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  20. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  1. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  2. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  3. Romanian experience with rock salt characterisation methods and the implications for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2001-01-01

    The disposal in deep geological formations as rock salt, granite or clay seems to be now the most appropriate solution for final storage of the spent fuel. At this moment, rock salt is one of the Romanian options for spent fuel disposal, but the final decision will be made only after a performance assessment of this geological formation, having as input data the specific characteristics of the salt rock. In order to provide the data requested by the safety assessment programs, the Institute for Nuclear Research - Pitesti developed complex and modern methodologies for thermodynamic parameter determination as well as studies on salt convergence and radionuclide migration. The methodologies pursued to determine those thermal properties specific for spent fuel disposal as dilatation coefficient, heat conductivity and specific heat. The convergence and migration studies pursued a better understanding of these processes, very important in the disposal safety. The paper is a review of those studies and presents the methodologies and the main results obtained on salt samples from Slanic Prahova Salt Mine. (authors)

  4. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  5. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    International Nuclear Information System (INIS)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-01-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  6. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  7. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  8. Temperature distributions in a salt formation used for the ultimate disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Ploumen, P.

    1980-01-01

    In the Federal Republic of Germany the works on waste disposal is focussed on the utilization of a salt formation for ultimate disposal of radioactive wastes. Heat released from the high-level waste will be dissipated in the salt and the surrounding geologic formations. The occuring temperature distributions will be calculated with computer codes. A survey of the developed computer codes will be shown; the results for a selected example, taking into account the loading sequence of the waste, the mine ventilation as well as an air gap between the waste and the salt, will be discussed. Furthermore it will be shown that by varying the disposal parameters, the maximum salt temperature can be below any described value. (Auth.)

  9. Methods of characterization of salt formations in view of spent fuel final disposal

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  10. Radioactive waste and special waste disposal in salt domes - phoney waste management solutions

    International Nuclear Information System (INIS)

    Grimmel, E.

    1990-01-01

    The paper tries to make aware of the fact that an indefinite safe disposal of anthropogeneous wastes in underground repositories is impossible. Suspicion is raised that the Gorleben-Rambow salt dome has never been studied for its suitability as a repository, but that it was simply taken for granted. Safety analyses are meant only to conceal uncertainty. It is demanded to immediately opt out of the ultimate disposal technique for radioactive and special wastes in salt caverns. (DG) [de

  11. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.4

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with construction, operation and sealing of disposal facilities for high-level waste in a salt dome. It is volume 4 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. The safety investigations were carried out for a deep-hole disposal facility located in the salt dome on Mors. In principle the results of the investigations also apply to a shaft/mine disposal facility. The facility is designed for the disposal of vitrified high-level waste in the shape of glass canisters. There is a low concentration of waste in each canister, approx. 10%. Furthermore, it was selected to place the waste in an intermediate storage for about 40 years prior to its final disposal. Consequently, heat generation in the waste at the time of final disposal will be modest, resulting in low temperature increase in the salt. As an example, the highest temperature increase will be approx. 40 deg. C. and it will occur at the edge of the hole five years after disposal has taken place. Prior to disposal, the glass canisters are encased in steel casks with 15 cm thick walls. Three canisters are placed in each cask, and 215 casks are stacked on top on one another in each deep-hole from a depth of 1200 m to 2500 m underground. The additional encasing is designed to protect the glass from dissolution should any brine reach the disposal facility. Furthermore, the steel cask protects the glass canisters against pressure from the wall of the hole. The technical design of the disposal facility gives it a considerable safety margin against unexpected events. The investigations proved Cretaceous strata to constitute an effective secondary barrier that would prevent radioactive matter from travelling from the underlying disposal facility to the biosphere. (BP)

  12. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  13. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    International Nuclear Information System (INIS)

    Franks, Carrie J.; Quach, Anh P.; Birnie, Dunbar P.; Ela, Wendell P.; Saez, Avelino E.; Zelinski, Brian J.; Smith, Harry D.; Smith, Gary Lynn L.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  14. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  15. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  16. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  17. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  18. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  19. Radioactive waste disposal in the Gorleben salt deposit

    International Nuclear Information System (INIS)

    Gizycki, P. von

    1985-01-01

    In the opinion of five experts, the protective function of the overlying rock as a barrier has turned out to be questionable after borings and measurements carried through at Gorleben. Moreover, the results have also raised doubts about the geological safety of the salt deposit as a barrier in the long run. The geological multibarrier concept must be discarded. Not only critics, but also 3 advocates from the field of official research on radioactive waste disposal state their opinion. (DG) [de

  20. Evaluation of salt and mine rock disposal. Project No. 76-283

    International Nuclear Information System (INIS)

    1976-11-01

    Studies are being performed on the isolation of nuclear waste in geological formations; this would entail constructing an underground mine in selected rock strata for waste storage. Rocks removed from the mine during construction must be either disposed of permanently or temporarily stored for later backfill into the mine. Several methods of storing or disposing of the mined rock are discussed in this report. The technical feasibility, cost, advantages and disadvantages of each method are presented and the ranking of methods based on currently available data is discussed. Salt, shale, granite, and limestone are covered

  1. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.

    1986-01-01

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  2. Environmental efficiency and legal possibility of mineralized water dispose in the suprasalt sequence of the verkhnekamskoe deposit

    Directory of Open Access Journals (Sweden)

    С. Ю. Квиткин

    2017-12-01

    Full Text Available The production of potash fertilizers at PJSC Uralkali is accompanied by the formation of excess solutions/brines, located on the sludge dump, where also comes water from salt brines and tailing piles, clay-salt slimes and atmospheric precipitation. After mechanical purification and reduction of the solutions/brines mineralization in the order of 5 million m3/year are emitted into surface waters. The studies carried out by Uralkali in 2000-2006 at the Verkhnekamskoe field, revealed an opportunity of underground disposal of mineralized brines/wastewater in the upper part of the salt-marl layer, directly overlapping the salt deposits and situated at depths not exceeding 300 m. Obtained results are confirmed by the state geological commission of the Federal Agency on Mineral Resources. The location of mineralized solutions in reservoir beds with an almost unlimited capacitive potential does not lead to the change in the hydrodynamic and hydrochemical regime of the underground hydrosphere and lessen the burden on the environment. To implement underground disposal of mineralized process brines/wastewater, it is necessary to amend the «Concerning Subsurface Resources» Federal Law. Proposals of Uralkali to amend the «Concerning Subsurface Resources» Federal Law are supported by the Federal Agency for Mineral Resources and Federal Service for Supervision of Natural Resources.

  3. Low disposal of radioactive wastes in salt formations of the Federal Republic of Germaany

    International Nuclear Information System (INIS)

    Albrecht, E.

    1980-01-01

    The salt formations of northern Europe are generally suitable for the storage of radioactive wastes because the region is largely free from earthquakes and the salt formations known as diapires provide effective hydrological sealing. The Federal Republic of Germany employed the Asse Salt Mine of Lower Saxony for research in waste storage. More recently, exploratory work has begun on the construction of a large recycling and disposal plant at the Gorleben salt dome. The geology, hydrology, rock mechanics, and seismicity of the two sites are briefly discussed, including a discussion of experiences gained so far from the Asse site. 11 refs

  4. Disposal of decontaminated salts at the Savannah River Plant by solidification and burial

    International Nuclear Information System (INIS)

    Dukes, M.D.; Wolf, H.C.; Langton, C.A.

    1983-01-01

    The current plan for disposal of waste salt at the Savannah River Plant (SRP) is to immobilize the decontaminated salt solution by mixing with cement and SRP soil, and bury the resulting grout (saltstone) in a landfill. The grout which contains 37.8 wt % salt solution, 22.8 wt % Portland I-P cement, and 39.2 wt % SRP soil, was specially formulated to have a low permeability ( -10 cm/sec). This material will be mixed and placed in trenches. After setting, the saltstone will be covered with a clay cap, and an overburden of compacted native soil will be replaced. 6 references

  5. Geosphere migration studies as support for the comparison of candidate sites for disposal of radioactive waste in rock-salt

    International Nuclear Information System (INIS)

    Glasbergen, P.; Hassanizadeh, S.M.; Noordijk, H.; Sauter, F.

    1988-01-01

    The Dutch research program on the geological disposal of radioactive waste was designed to supply a basis for the selection of combinations of three factors, i.e., type of rock-salt formation, site, and disposal technique, satisfying radiological standards and other criteria for final disposal. The potential sites have been grouped according to the type of rock-salt formation (e.g. bedded salt and salt domes) and two classes of depth below the surface of the ground. Values for geohydrological parameters were obtained by extrapolation of data from existing boreholes and analysis of the sedimentary environment. A three-dimensional model of groundwater flow and contaminant transport, called METROPOL, has been developed. To investigate the effect of high salinity on nuclide transport properly, a theoretical experimental study was carried out. Use of a thermodynamic approach showed that terms related to salt mass fraction have to be added to Darcy's and Fick's laws. An experimental study to investigate effects of these modifications is in progress. 8 refs.; 8 figs.; 1 table

  6. The HAW-Project: Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    1992-04-01

    Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of 30 radioactive canisters (Sr-90 and Cs-137 sources) was developed and succesfully tested. This system consists of six multiple transport and storage casks of the type Castor-GSF-5, two above ground/below ground shuttle transport casks of the type Asse TB1, an above ground transfer station, an underground transport vehicle, a disposal machine, and a borehole slider. A laboratory investigation program on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This program includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionisation chambers as well as solid state dosemeters were developed and tested. Thermomechanical computer code validation is performed by calculational predictions and parallel investigation of the stress and displacement fields in the underground test field. (orig./HP)

  7. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  8. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  9. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  10. Heavy Metals in Salt and Water Samples from Maharloo Lake and their Comparison with Metal Concentrations in Samples from Sirjan, Lar, and Firoozabad Salt Mines

    Directory of Open Access Journals (Sweden)

    Farahnaz Sabet

    2015-03-01

    Full Text Available Maharloo Lake is one of the most important water ecosystems in Iran, which is nowadays exposed to multiple risks and threats due to poor water management, salt extraction, and heavy metal pollution. In this study, the concentrations of such heavy metals as chromium, copper, zinc, arsenic, cadmium, and lead in both water and salt samples collected from areas in the north and south of the lake were determined by atomic absorption (AA-670G after the samples had been digested. Results showed that metal concentrations in the salt samples taken from both the northern and southern areas had identical mean values in the order of Cr> Cu> As> Cd> Pb. An almost similar pattern was detected in metal concentrations in water samples taken from the same areas but with a slight difference in the way they were ordered (Cr> Cu> As> Pb> Cd. It was found that both water and salt samples collected from the northern areas had higher metal concentrations, except for that of Pb which was slightly lower. Comparison of the mean values of metal concentrations in the Salt Lake and those of Sirjan, Lar, and Firoozabad salt mines revealed that copper, cadmium, and lead had their highest concentrations in the Salt Lake while arsenic and chromium recorded their highest values in samples taken from Lar and Firoozabad salt mines, respectively. Based on these findings, it may be concluded that the increased metal concentrations observed in samples from both northern and southern areas of the lake are due to the sewage and effluents from urban, industrial, and hospital sources in Shiraz disposed into the lake as well as such other human activities as farming in the areas around the lake, especially in the northern stretches. These observations call for preventive measures to avoid further water quality degradation in the area.

  11. Leaching due to hygroscopic water uptake in cemented waste containing soluble salts

    DEFF Research Database (Denmark)

    Brodersen, K.

    1992-01-01

    conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution......Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid....... A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low...

  12. 46 CFR 45.77 - Salt water freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240...

  13. Computer simulation of an internally pressurized radioactive waste disposal room in a bedded salt formation

    International Nuclear Information System (INIS)

    Brown, W.T.; Weatherby, J.R.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico was created by the U.S. Department of Energy as an underground research and development facility to demonstrate the safe storage of transuranic waste generated from defense activities. This facility consists of storage rooms mined from a bedded salt formation at a depth of about 650 meters. Each room will accommodate about 6800 55-gallon drums filled with waste. After waste containers are emplaced, the storage rooms are to be backfilled with mined salt or other backfill materials. As time passes, reconsolidation of this backfill will reduce the hydraulic conductivity of the room. However, gases produced by decomposition and corrosion of waste and waste containers may cause a slow build-up of pressure which can retard consolidation of the waste and backfilled salt. The authors have developed a finite-element model of an idealized disposal room which is assumed to be perfectly sealed. The assumption that no gas escapes from the disposal room is a highly idealized and extreme condition which does not account for leakage paths, such as interbeds, that exist in the surrounding salt formation. This model has been used in a parametric study to determine how reconsolidation is influenced by various assumed gas generation rates and total amounts of gas generated. Results show that reductions in the gas generation, relative to the baseline case, can increase the degree of consolidation and reduce the peak gas pressure in disposal rooms. Even higher degrees of reconsolidation can be achieved by reducing both amounts and rates of gas generation. 8 refs., 4 figs., 1 tab

  14. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  15. Modeling internal deformation of salt structures targeted for radioactive waste disposal

    International Nuclear Information System (INIS)

    Chemia, Zurab

    2008-01-01

    This thesis uses results of systematic numerical models to argue that externally inactive salt structures, which are potential targets for radioactive waste disposal, might be internally active due to the presence of dense layers or blocks within a salt layer. The three papers that support this thesis use the Gorleben salt diapir (NW Germany), which was targeted as a future final repository for high-grade radioactive waste, as a general guideline. The first two papers present systematic studies of the parameters that control the development of a salt diapir and how it entrains a dense anhydrite layer. Results from these numerical models show that the entrainment of a dense anhydrite layer within a salt diapir depends on four parameters: sedimentation rate, viscosity of salt, perturbation width and the stratigraphic location of the dense layer. The combined effect of these four parameters, which has a direct impact on the rate of salt supply (volume/area of the salt that is supplied to the diapir with time), shape a diapir and the mode of entrainment. Salt diapirs down-built with sedimentary units of high viscosity can potentially grow with an embedded anhydrite layer and deplete their source layer (salt supply ceases). However, when salt supply decreases dramatically or ceases entirely, the entrained anhydrite layer/segments start to sink within the diapir. In inactive diapirs, sinking of the entrained anhydrite layer is inevitable and strongly depends on the rheology of the salt, which is in direct contact with the anhydrite layer. During the post-depositional stage, if the effective viscosity of salt falls below the threshold value of around 10 18 -10 19 Pa s, the mobility of anhydrite blocks might influence any repository within the diapir. However, the internal deformation of the salt diapir by the descending blocks decreases with increase in effective viscosity of salt. The results presented in this thesis suggest that it is highly likely that salt structures

  16. Buckling design criteria for waste package disposal containers in mined salt repositories: Technical report

    International Nuclear Information System (INIS)

    Mallett, R.H.

    1986-12-01

    This report documents analytical and experimental results from a survey of the technical literature on buckling of thick-walled cylinders under external pressure. Based upon these results, a load factor is suggested for the design of waste package containers for disposal of high-level radioactive waste in repositories mined in salt formations. The load factor is defined as a ratio of buckling pressure to allowable pressure. Specifically, a load factor which ranges from 1.5 for plastic buckling to 3.0 for elastic buckling is included in a set of proposed buckling design criteria for waste disposal containers. Formulas are given for buckling design under axisymmetric conditions. Guidelines are given for detailed inelastic buckling analyses which are generally required for design of disposal containers

  17. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  18. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  19. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  20. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  1. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  2. Site evaluation for disposal facilities in salt

    International Nuclear Information System (INIS)

    Brewitz, W.

    1982-01-01

    Although the various geoscientific investigations are not finished yet, the results so far show that the Konrad mine has some outstanding geological features as required for a safe disposal of radioactive wastes. The iron ore formation is extremely dry. Seepage water is no threat to the waste disposal operation and the repository itself. The construction of stable underground storage rooms which are sufficiently seized in volume is possible. Galleries containing wastes in drums or contaminated components can be refilled and sealed efficiently as well as the rest of the mine including the two shafts. Thereafter the geological containment with its favourable structure and ideal petrology will be an effective barrier against the contamination of the biosphere. As investigated this applies in particular to the low-active wastes with their specific nuclide inventory and the short decay time. (orig.)

  3. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  4. Safety evaluation of geological disposal concepts for low and medium-level wastes in rock-salt (Pacoma project)

    International Nuclear Information System (INIS)

    Prij, J.; Van Dalen, A.; Roodbergen, H.A.; Slagter, W.; Van Weers, A.W.; Zanstra, D.A.; Glasbergen, P.; Koester, H.W.; Lembrechts, J.F.; Nijhof-Pan, I.; Slot, A.F.M.

    1991-01-01

    In the framework of the Performance Assessment of Confinements for MLW and Alpha Waste (PACOMA) the disposal options dealing with rock-salt are studied by GSF and ECN (with subcontract to RIVM). The overall objectives of these studies are to develop and demonstrate procedures for the radiological safety assessment of a deep repository in salt formations. An essential objective is to show how far appropriate choices of the repository design parameters can improve the performances of the whole system. The research covers two waste inventories (the Dutch OPLA and the PACOMA reference inventory), two disposal techniques (conventional and solution mining) and three types of formations (salt dome, pillow and bedded salt). An important part of the research has been carried out in the socalled VEOS project within the framework of the Dutch OPLA study. The methodology used in the consequence analysis is a deterministic one. The models and calculation tools used to perform the consequence analysis are the codes: EMOS, METROPOL and BIOS. The results are expressed in terms of dose rates and doses to individuals as well as to groups. Detailed information with respect to the input data and the results obtained with the three codes is given in three annexes to this final report

  5. Disposal of drilling fluids and solids generated from water-based systems in Alberta

    International Nuclear Information System (INIS)

    Parenteau, S.E.

    1999-01-01

    The different disposal options for drilling wastes as outlined in Guide 50 of the Alberta Energy and Utilities Board (EUB) are discussed. Guide 50 provides for the cost effective and environmentally sound disposal of drilling waste generated in Alberta. Each disposal option of the guide is reviewed and common methods of operation are outlined. Relative costs, environmental suitability and liability issues associated with each option are described. Issues regarding overall disposal considerations, on-site and off-site disposal options, hydrocarbon contamination, salt contaminated waste, toxic waste, and documentation of waste disposal outlined. Some recent programs which have been in the trial phase for a few years are also addressed

  6. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    process and that any waste-storage or disposal sites in these structures should remain dry for hundreds of thousands of years.Trace to commercial quantities of oil and gas are found in all of the black shale-dolomite-anhydrite interbeds of the Paradox Member. These hydrocarbons constitute a definite hazard in the construction and operation of underground waste-storage or disposal facilities. However, many individual halite beds are of. sufficient thickness that a protective seal of halite can be left between the openings and the gassy beds.A total of 12 different localities were considered to be potential waste-storage or disposal sites in the Paradox basin. Two Sharer dome and Salt Valley anticline, were considered to have the most favorable characteristics.

  7. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  8. Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania.

    Science.gov (United States)

    Burgos, William D; Castillo-Meza, Luis; Tasker, Travis L; Geeza, Thomas J; Drohan, Patrick J; Liu, Xiaofeng; Landis, Joshua D; Blotevogel, Jens; McLaughlin, Molly; Borch, Thomas; Warner, Nathaniel R

    2017-08-01

    Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226 Ra /228 Ra and 87 Sr /86 Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.

  9. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  10. Purple Salt and Tiny Drops of Water in Meteorites

    Science.gov (United States)

    Taylor, G. J.

    1999-12-01

    Some meteorites, especially those called carbonaceous chondrites, have been greatly affected by reaction with water on the asteroids in which they formed. These reactions, which took place during the first 10 million years of the Solar System's history, formed assorted water-bearing minerals, but nobody has found any of the water that caused the alteration. Nobody, that is, until now. Michael Zolensky and team of scientists from the Johnson Space Center in Houston and Virginia Tech (Blacksburg, Virginia) discovered strikingly purple sodium chloride (table salt) crystals in two meteorites. The salt contains tiny droplets of salt water (with some other elements dissolved in it). The salt is as old as the Solar System, so the water trapped inside the salt is also ancient. It might give us clues to the nature of the water that so pervasively altered carbonaceous chondrites and formed oceans on Europa and perhaps other icy satellites. However, how the salt got into the two meteorites and how it trapped the water remains a mystery - at least for now.

  11. Recent studies on radiation damage formation in synthetic NaCl and natural rock salt for radioactive waste disposal applications

    International Nuclear Information System (INIS)

    Swyler, K.J.; Klaffky, R.W.; Levy, P.W.

    1980-01-01

    Radiation damage formation in natural rock salt is described as a function of irradiation temperature and plastic deformation. F-center formation decreases with increasing temperature while significant colloidal sodium formation occurs over a restricted temperature range around 150 0 C. Plastic deformation increases colloid formation; it is estimated that colloid concentrations may be increased by a factor of 3 if the rock salt near radioactive waste disposal canisters is heavily deformed. Optical bandshape analysis indicates systematic differences between the colloids formed in synthetic and natural rock salts

  12. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  13. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  14. Large-scale demonstration of disposal of decontaminated salt as saltstone. Part I. Construction, loading, and capping of lysimeters

    International Nuclear Information System (INIS)

    Wolf, H.C.

    1984-06-01

    The installation phase of a large-scale demonstration of the disposal concept for decontaminated, low-level radioactive salt waste at the Savannah River Plant was completed in December 1983 and January 1984. The installation entailed immobilizing 7500 gallons of decontaminated salt solution with a blended cement formulation and pouring the resulting grout, saltstone, into three specially designed lysimeters for extended in-field leaching tests under natural conditions. 4 references, 35 figures, 4 tables

  15. Implications of thermophysical properties in geoscientific investigations for the disposal of nuclear waste in a salt dome

    International Nuclear Information System (INIS)

    Kopietz, J.

    1984-01-01

    Examples from laboratory and in-situ experiments on the thermomechanical behavior of rock salt are used to discuss the implications of thermophysical properties for disposal of nuclear waste in a salt dome. The implications of thermophysical properties are also illustrated by a brief review of geothermal investigations made within the scope of geological and hydrogeological exploration of the Gorleben salt dome in northern Germany. High-resolution temperature measurements performed in shallow and deep boreholes drilled for the exploration of the Gorleben salt dome, together with thermal conductivity measurements on representative core samples from these boreholes, are contributing to a determination of groundwater flow in the covering layers of the salt dome and to the identification of zones of impurity (eg carnallitite layers) within the salt structure. Data from these experiments are used for setting up numerical models for heat propagation around a prospective waste repository in the Gorleben salt dome. Long-term creep experiments on samples of rock salt at up to 400 deg C are used to derive constitutive relations on the creep behavior of salt. In-situ heating experiments are being conducted in the Asse salt mine to determine the effect of a heat source on the integrity of the surrounding salt rock. (author)

  16. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); MacKinnon, Robert J. [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Leigh, Christi D. [Defense Waste Management Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Hansen, Frank D. [Geoscience Research and Applications Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  17. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    International Nuclear Information System (INIS)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.; Hansen, Frank D.

    2013-01-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  18. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  19. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  20. User's manual and guide to SALT3 and SALT4: two-dimensional computer codes for analysis of test-scale underground excavations for the disposal of radioactive waste in bedded salt deposits

    International Nuclear Information System (INIS)

    Lindner, E.N.; St John, C.M.; Hart, R.D.

    1984-02-01

    SALT3 and SALT4 are two-dimensional analytical/displacement-discontinuity codes designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. These codes were developed by the University of Minnesota for the Office of Nuclear Waste Isolation in 1979. The present documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of these computer codes. The SALT3 and SALT4 codes can simulate: (a) viscoelastic behavior in pillars adjacent to excavations; (b) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (c) excavation sequence. Major advantages of these codes are: (a) computational efficiency; (b) the small amount of input data required; and (c) a creep law based on laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of the codes, i.e., the homogeneous elastic half-space and temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT3 and SALT4 codes can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT3 is a refinement of an earlier code, SALT, and includes a fully anelastic creep model and thermal stress routine. SALT4 is a later version, and incorporates a revised creep model which is strain-hardening

  1. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  2. In situ-experiments on the disposal of high-level radioactive wastes (HAW) at the Asse salt mine Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kuhn, K.; Rothfuchs, T.

    1989-01-01

    Deep geological salt formations are considered as being the most suitable medium for the disposal of radioactive wastes in the Federal Republic of Germany (FRG). This paper reports how, in order to develop and to prove the necessary disposal techniques, the Asse Salt Mine in the northern part of Germany is being used as a national R and D facility for the execution of representative in situ-tests. Besides the test-wise disposal of low-and medium-level radioactive waste, a series of in situ experiments was performed on the disposal of high-level radioactive waste (HAW). The so-called HAW repository is being performed from 1983 through 1994 will be the most important pilot test for the HAW repository in the FRG. During this experiment, 30 vitrified high-level radioactive heat and radiation sources will be emplaced in six underground boreholes. The duration of testing will be approximately five years. In addition to the investigations of the interactions of the heat and radiation sources and the host rock, a complete handling system for HAW-canisters is being developed and proved

  3. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  4. Comparison of temperature calculations for an arbitrary high-level waste disposal configuration in salt formations

    International Nuclear Information System (INIS)

    Kevenaar, J.W.A.M.; Janssen, L.G.J.; Ploumen, P.; Winske, P.

    1979-05-01

    The objective of this report is the comparison of the results of temperature analyses for an arbitrary high-level radioactive waste disposal configuration in salt formations. The analyses were carried out at the RWTH and ECN. The computer programs used are based on finite difference and finite element techniques. From the local temperature analyses that were intended to check the solution techniques, it could be concluded that both finite difference and finite elements are capable to analyse this type of problems. From the global temperature analyses it could be concluded that both analysis approaches: temperature dependent and iteratively determined temperature independent material properties, are suited to analyse the global temperature distribution in the salt formation

  5. Contributions to safety assessment of the radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Ionescu, Alice; Deaconu, Viorel

    2003-01-01

    The paper presents the progress in the frame of the safety assessments related to the potential near-surface Romanian National Repository, as well as to the geological repository in salt rock for CANDU spent fuel. The safety assessment of the near-surface repository follows the ISAM methodology. The repository design consists of a vault, in which the wastes resulted from the operation and decommissioning of the CANDU reactor from Cernavoda Nuclear Power Plant (CNPP) are disposed off. The repository is located nearby the CNPP. A layered unsaturated zone overlying a variable thickness confined aquifer, which consists of barremian limestones, characterizes the site. The interface with biosphere is considered to be the Danube-Black Sea Channel. The paper summarizes the results of the post-closure safety assessment for the design scenario and the prediction of the radionuclide release in the liquid phase. As to the final disposal of the CANDU spent fuel from the CNPP, we assumed that the repository is built in a salt dome. Romania has important salt formations, some of them being potentially suitable for hosting a repository. Up to now there are no detailed characterization studies of such formations in Romania, from the point of view of the suitability as a repository site. Therefore, generic data for hydrogeological characterization of the site have been used, coming from the Gorleben site in Germany. The spent fuel containers are disposed off in galleries, somewhere 500 m bellow the cap rock of the salt dome. The temporal loading scheme of the repository is based on a sequential filing of the disposal fields, with a delay of 10 years between filling of two neighbouring disposal areas. The disposal fields are accessed via a shaft. After filling of a disposal gallery, the remaining space is backfilled with salt powder and the gallery is sealed with compacted salt bricks. The access galleries are also backfilled and sealed. Only the reference scenario is considered, in

  6. Preliminary investigation results as applied to utilization of Ukrainian salt formations for disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Shekhunova, S.B.; Khrushchov, D.P.; Petrichenko, O.I.

    1994-01-01

    The salt-bearing formations have been investigated in five regions of Ukraine. Upper Devonian and Lower Permian evaporite formations in Dnieper-Donets Depression and in the NW part of Donets basin are considered to be promising for disposal of high-level radioactive waste (HLRW). Rock salt occurs there either as bedded salts or as salt pillows and salt diapirs. Preliminary studies have resulted in selection of several candidate sites that show promise for construction of a subsurface pilot lab. Ten salt domes and two sites in bedded salts have been proposed for further exploration. Based on microstructural studies it is possible to separate the body of a salt structure and to locate within its limits the rock salt structure and to locate within its limits the rock salt blocks of different genesis, i.e.: (a) blocks characteristic of initial undisturbed sedimentary structure; (b) flow zones; (c) sliding planes; (d) bodies of loose or uncompacted rock salt. Ultramicrochemical examination of inclusions in halite have shown that they are composed of more than 40 minerals. It is emphasized that to assess suitability of a structure for construction of subsurface lab, and also the potential construction depth intervals, account should be taken of the results of ultra microchemical and microstructural data

  7. Combination gas-producing and waste-water disposal well. [DOE patent application

    Science.gov (United States)

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  8. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  9. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  12. Isotope geochemistry of water in Gulf Coast Salt Domes

    International Nuclear Information System (INIS)

    Knauth, L.P.; Kumar, M.B.; Martinez, J.D.

    1980-01-01

    Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has delta 18 O values ranging from -4 to +11.5% 0 and deltaD values from -2.3 to -53% 0 . One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18 O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by deltaD=3.0delta 18 O-40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial delta 18 O and deltaD values of +9.1 +- 0.5% 0 and -11% 0 +- 7% 0 , which have subsequently exchanged with water vapor in the mine air to produce the linear array of delta values. The water derived from active leaks in these three mines is too enriched in 18 O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. Isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for observed 18 O enrichments. Nonmeteroric water from the active leaks displays the type of 18 O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18 O enrichment it is calculated that formation waters were incorporated during diapiric rise of the salt at a depth of 3--4 km and have been trapped within the salt for 10--13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water

  13. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  14. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  15. A review of environmental impacts of salts from produced waters on aquatic resources

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  16. Water-bearing explosive containing nitrogen-base salt

    Energy Technology Data Exchange (ETDEWEB)

    Dunglinson, C.; Lyerly, W.M.

    1968-10-21

    A water-bearing explosive composition consists of an oxidizing salt component, a fuel component, and water. A sensitizer is included having an oxygen balance more positive than -150%, and consisting of a salt of an inorganic oxidizing acid and of an acyclic nitrogen base having no more than 2 hydrogen atoms bonded to the basic nitrogen and up to 3 carbons per basic nitrogen, and/or of a phenyl amine. 41 claims.

  17. Geochemical processes in marine salt deposits: Their significance and their implications in connection with disposal of radioactive waste within salt domes

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A G [Goettingen Univ. (Germany, F.R.). Geochemisches Inst.

    1980-01-01

    Attempts to effect permanent disposal of radioactive wastes in marine evaporites should do nothing to disturb, either in the short or the long term, the present relative stability of such bodies of rock. It is necessary to take account of all of the geochemical and physico-chemical reactions known to have been involved in the processes which formed the evaporites before proceeding to an acceptable strategy for disposal of radionucleides. These processes can be represented as three kinds of metamorphism: 1. solution metamorphism, 2. thermal metamorphism, 3. dynamic metamorphism. In all of the evaporite occurrences in Germany such processes have been influential in altering, on occasion significantly, the primary mineralogical composition and have also promoted a considerable degree of transposition of material. Given similar geochemical and physico-chemical premises, these metamorphic processes could become effective now or in the future. It is therefore necessary to discuss the following criteria when examining salt domes as permanent repositories of highly radioactive substances: (1) Temperatures <= 90/sup 0/ +- 10/sup 0/C at the contact between waste containers and rock salt; (2) Temperatures <= 75/sup 0/C within zones of carnallite rocks; (3) Immobilisation of high-level waste in crystalline forms whenever possible; (4) Systems of additional safety barriers around the waste containers or the unreprocessed spent fuel elements. The geochemical and physical effectiveness of the barriers within an evaporite environment must be guaranteed. For example: Ni-Ti-alloys, corundum, ceramic, anhydrite.

  18. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    Science.gov (United States)

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  19. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  20. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  1. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  2. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  3. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  4. An assessment study of septic tank based sewage disposal system on quality of underground water

    International Nuclear Information System (INIS)

    Khawaja, A.A.; Lisa, M.; Boustani, M.; Jaffar, M.; Masud, K.

    1999-01-01

    An assessment of septic tank based sewage disposal system made on the basis of quality of underground water is presented. Machrala village is selected as the case study area where an ever-increasing number of septic tanks are posing great health threat to the inhabitants. Both hand pump and tube well water samples are analyzed for toxic trace metals (Mn, Fe, Cd and Co), physico-chemical parameters (pH, turbidity, conductance, total dissolved salts, Ca, Mg, Cl/sup-/ and SO/sub 4//sup -2/) and micro-organism population in terms of total viable count, coliform count, MPN coliform. The metals were analyzed by the flame atomic absorption method using standard procedure. The study shows that the local underground water of the village is being adversely affected by toxic metals and coliform bacteria. In most cases, the latter parameter exceeds 240 counts/ml. Besides, tube well water were found to have higher Pb concentration (0.200 mg/ml) and the overall assessment renders more than 50% of the water samples as unsatisfactory for human consumption. (author)

  5. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    Water resource quality (WRQ) is affected by salt concentration and topographical position. Indeed, an increase in salt concentration, which decreases water availability for animal and plant nutrition, and lower altitude, which diminishes the potential for production of hydropower, negatively affects WRQ. Therefore, it is useful ...

  6. On selection of geological medium for disposal of high-level radwaste

    International Nuclear Information System (INIS)

    Min Maozhong

    1991-01-01

    The present paper briefly reviews the suitability of some rocks as geological disposal repositories of high-level radwaste (HLW). The suitable rocks for geological ogi disposal of HLW are rock salt (salt diapir, bedded salt), granite, argillaceous rocks, tuff, basalt, gabbro, diabase, anhydrite, marine sedimentary rocks etc., especially, rock salt, granite, and argillaceous rocks. The data of principal hydraulic properties, mechanical-physical properties for various rocks in typical environment which might be considered for disposal purposes are also given in this paper. These data give a reference to China's geological disposal of HLW in the future

  7. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  8. Ecosystem effects from produced water and potash mine disposal activities

    International Nuclear Information System (INIS)

    Roy, R.; Davis, D.; Hopkins, S.

    1993-01-01

    This study was initiated to determine the chemical, physical, and ecosystem effects of produced water and potash mine disposal practices upon naturally occurring-hypersaline playas in southeast New Mexico, Several playas that receive discharges were compared to several nearby reference playas. Results revealed that the treatment playas had been significantly altered when compared to the reference playas. For example, the salinity of treatment playas were greater than 300 per-thousand and those of reference playas were less than 200 per-thousand. The dominant ions in water and sediments of treatment playas were sodium and chloride. The major ions in reference playa water and sediments were sodium, calcium, chloride, and sulfate. In some instances aromatic hydrocarbon concentrations exceeded 13,000 ng/g in sediments from treatment playas. Aromatic hydrocarbon concentrations were less than 100 ng/g in sediments from reference playas. Surveys revealed that treatment playas supported few, if any, invertebrates. On the other hand, reference playas supported dense populations of brine shrimp Artemis and brine fly Hydropyrus larvae. Surveys also indicated that reference playas were used by shorebirds for nesting and feeding, whereas treatment playas were used as loafing areas by waterfowl. Unfortunately, dead waterfowl were found along the shores of several treatment playas. Necropsies revealed that the most likely cause of death was salt toxicosis

  9. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G.

    1990-05-01

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. To characterise the corrosion behaviour of these materials in more detail, further in-depth laboratory-scale and in-situ corrosion studies have been performed in the present study. Besides the above-mentioned materials, also some in-situ investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have been carried out in order to complete the results available to date. (orig.) [de

  10. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  11. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  12. Possibility of Radioactive and Toxic WasteDisposal in a Rock Ssalt Deposits in Slovakia Combining Wells and Cavities

    Directory of Open Access Journals (Sweden)

    Škvareková Erika

    2004-09-01

    Full Text Available Disposal of radioactive and toxic waste in rock salt can be performed in two ways – disposal in the salt mine repository or disposal in the deep wells connected with salt cavity. Presented article deals with the option of the disposal in a salt cavity at medium depths. The article also cover partially salt deposits in Slovakia and their potential suitability for waste disposal..

  13. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  14. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  15. Modeling Thermal Changes at Municipal Solid Waste Landfills: A Case Study of the Co-Disposal of Secondary Aluminum Processing Waste

    Science.gov (United States)

    The reaction of secondary aluminum processing waste (referred herein to as salt cake) with water has been documented to produce heat and gases such as hydrogen, methane, and ammonia (US EPA 2015). The objective of this project was to assess the impact of salt cake disposal on MS...

  16. Effect of Salt Water in the Production of Concrete | Mbadike ...

    African Journals Online (AJOL)

    In this research work, the effect of salt water in the production of concrete was investigated. A total of ninety (90) concrete cubes were cast for compression strength test i.e. forty five cubes were cast using fresh water and the other forty five cubes were also cast using salt water. Similarly, a total of ninety (90) concrete beams ...

  17. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Science.gov (United States)

    Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  18. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Directory of Open Access Journals (Sweden)

    Heather L Ullinger

    Full Text Available The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  19. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  20. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  1. Multiphase CFD modelling of water evaporation and salt precipitation in micro-pores

    NARCIS (Netherlands)

    Twerda, A.; O’Mahoney, T.S.D.; Velthuis, J.F.M.

    2014-01-01

    The precipitation of salt in porous reservoir rocks is an impairment to gas production, particularly in mature fields. Mitigation is typically achieved with regular water washes which dissolve the deposited salt and transport it in the water phase. However, since the process of salt precipitation is

  2. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  3. Identification of release scenarios for a repository of radioactive waste in a salt dome in the Netherlands

    International Nuclear Information System (INIS)

    Glasbergen, P.; Hamstra, J.

    1981-01-01

    A review is presented of the long-term scenarios used in the safety analysis which was carried out for the disposal of radioactive waste in salt domes in the Netherlands. The long-term analysis involved the following natural processes or events: climatological and sea-level changes, glacial erosion, diapirism, subsidence, faulting and dissolution. The model calculations which were carried out showed the dominant parameters: the rate of diapirism and the rate of subsurface dissolution of rock salt. During the operational period the intrusion of water in the repository was considered to be the most hazardous event. Because the layout of the disposal mine, the disposal geometry and the disposal mining procedures were still under consideration, the first approach of a release scenario was made on a generic basis. A generic scenario is presented for the events during the flooding of the repository. The transport ways of water through the repository and its surroundings are indicated. It is concluded that release scenario analysis for long-term periods and for the operational period provides essential information to optimize the overall disposal system in an iterative process

  4. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  5. Biochemical Changes Associated With Giving PALUDAL Salt In The Drinking Water Of Rats

    International Nuclear Information System (INIS)

    ABD-EL-MONEIM, A.E.; LOTFI, S.A.

    2010-01-01

    Three groups of adult male albino rats were given either tap water (control) or saline water (1 % unrefined paludal salt dissolved in tap water or 1 % pure chemically synthesized NaCl in tap water). The experiment was carried out under hot summer conditions. At the end of 28 days of the treatment, blood samples were collected to follow up the biochemical alterations induced by paludal salt intake in kidney, liver and thyroid function tests besides serum electrolytes since unrefined paludal salt is being used extensively nowadays by Egyptian people as a table salt which comprises risks to human health.The results revealed that drinking water containing high level of either pure or unrefined crude salts led to significant elevation of serum urea, creatinine, sodium, potassium, aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum triiodothyronine (T3) and thyroxine (T4) were significantly depressed in both groups received high levels of salt in their drinking water. The level of serum total protein was decreased and albumin was negatively affected by salinity of water especially in paludal group while serum globulin was significantly increased in the other two groups. The biochemical alterations observed in rats as a result of drinking water containing paludal salt were more pronounced than those occurred in rats drank tap water plus pure NaCl.

  6. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  7. Salt water and skin interactions: new lines of evidence

    Science.gov (United States)

    Carbajo, Jose Manuel; Maraver, Francisco

    2018-04-01

    In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.

  8. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  9. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  10. Harmful effects of wastewater disposal into water bodies: a case ...

    African Journals Online (AJOL)

    Improper disposal of waste water and the problems of addressing ... Abattoir wastes, industrial wastes from breweries, agricultural runoffs, and waste water from ... Ni and Pb make such water unsuitable for drinking, irrigation, aquatic life and ...

  11. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  12. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  13. Temperature calculations on different configurations for disposal of high-level reprocessing waste in a salt dome model

    International Nuclear Information System (INIS)

    Hamstra, J.; Kevenaar, J.W.A.M.

    1978-06-01

    A medium size salt dome is considered as a structure in which a repository can be located for all radioactive wastes to be produced within the scope of a postulated nuclear power program. A dominating design factor for the lay-out of such a waste repository is the temperature distribution in the salt dome resulting from decay heat released from the buried solidified high-level reprocessing waste. Two numerical models are presented for the calculation of both global and local rock salt temperatures. The results of calculations performed with these models are demonstrated to be compatible. Rock salt temperatures related to several types of burial configurations, ranging from two layer configurations with various vertical distances between the layers via a three and a four layer repository to deep bore hole concepts varying from 100 to 600 m bore hole depth, can therefore be calculated with one rather simple unit cell model. The results of these calculations indicate that rock salt temperatures can be kept within acceptable limits to realize a repository using standard mining techniques. The temperatures at mine galery level prove to be a dominating factor in the selection of a repository configuration. More detailed calculations of these temperatures taking into account the loading sequence and the cooling capacity of the mine ventilation are recommended. Finally the apparent advantages of a deep bore hole concept emphasize the need for R and D work with respect to advanced drilling techniques in order to achieve deep dry disposal bore holes that can be realized from a burial mine in the salt dome. (Auth.)

  14. Methods and results of the investigation of the thermomechanical behaviour of rock salt with regard to the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Wieczorek, K.; Klarr, K.

    1993-01-01

    This report summarizes the knowledge about thermal and mechanical behaviour of rock salt that has been accumulated by various R and D institutions in Germany from laboratory and in situ investigations. An important objective is to give a comprehensive overview of the investigation methods and instruments available and to discuss these methods and instruments with regard to their applicability and reliability for the investigation of the thermomechanical effects of high level radioactive waste emplacement in rock salt formations. The report is focused on the activities of the GSF-Institut fur Tieflagerung in the Asse mine regarding the disposal of high and intermediate level radioactive waste during the last decades. The design and the results of the most important in situ experiments are presented and discussed in detail. The results are compared to model calculations in order to evaluate the reliability of both the measurements and the calculation results. The relevance of the results for the situation in Spain is discussed in a separate chapter. As the investigations in Germany have been performed in domal salt, while the Spanish concept is based on waste disposal in bedded salt, significant differences in the thermomechanical behaviour cannot be excluded. The investigation methods, however, will be applicable. (Author)

  15. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab.; Wang, Peng

    2018-01-01

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor

  16. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material.

    Science.gov (United States)

    Colangelo, F; Cioffi, R; Montagnaro, F; Santoro, L

    2012-06-01

    Fly ash from municipal solid waste incinerators (MSWI) is classified as hazardous in the European Waste Catalogue. Proper stabilization processes should be required before any management option is put into practice. Due to the inorganic nature of MSWI fly ash, cementitious stabilization processes are worthy of consideration. However, the effectiveness of such processes can be severely compromised by the high content of soluble chlorides and sulphates. In this paper, a preliminary washing treatment has been optimized to remove as much as possible soluble salts by employing as little as possible water. Two different operating conditions (single-step and two-step) have been developed to this scope. Furthermore, it has been demonstrated that stabilized systems containing 20% of binder are suitable for safer disposal as well as for material recovery in the field of road basement (cement bound granular material layer). Three commercially available cements (pozzolanic, limestone and slag) have been employed as binders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  18. Water supply, waste water cleaning and waste disposal. 2. rev. ed.

    International Nuclear Information System (INIS)

    Knoch, W.

    1994-01-01

    The first part of the book contains fundamentals of chemistry, always having environmental protection in mind. Numerous examples are calculated. The second part gives detailed explanations of the material-scientific and analytical bases of the indispensable resource water and its conditioning, waste water cleaning and sludge treatment. Collection, transport, handling, disposal and recycling of unavoidable wastes and toxic wastes are finally dealt with. (orig./EF) [de

  19. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  20. Amount and nature of occluded water in bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Fisher, R.S.

    1987-01-01

    The quantity and types of fluids within bedded salt cores from the Permian San Andres Formation, Palo Duro, Texas, were evaluated at the Texas Bureau of Economic Geology. Bedded halite from the San Andres Formation and other salt-bearing units were selected to represent the variety of salt types present, and were then analyzed. The mean water content of ''pure'' samples (more than 90% halite) is 0.4 weight percent, with none observed greater than 1.0 weight percent. Samples that contain more than 10 weight percent clay or mudstone display a trend of increasing water content with increasing clastic material. Chaotic mudstone-halite samples have as much as 5 weight percent water; halite-cemented mudstone interlayers, common throughout the bedded salts, may have water content values as high as 10 to 15 weight percent based on extrapolation of existing data that range from 0 to about 6%. No significant difference exists between the mean water content values of ''pure salt'' from the upper San Andres, lower San Andres Cycle 5, and lower San Andres Cycle 4 salt units. The fraction of total water present as mobile intergranular water is highly variable and not readily predicted from observed properties of the salt sample. The amount of water that would be affected by a high-level nuclear waste repository can be estimated if the volume of halite, the volume of clastic interlayers, and the amount and type of impurity in halite are known. Appendix contains seven vugraphs

  1. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  2. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  3. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  4. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    Viscosities; oxalic acid and its salts; water + THF mixtures; structure-breakers. 1. Introduction ... has found its application in the organic syntheses as manifested from ... water. In other words, these results indicate that oxalic acid and its salts mix ...

  5. Effects of road salts on groundwater and surface water ...

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current baseflow salinity does not exceed water quality recommendations, but rapid “first flush” storm flow was approximately one-third that of seawater. Comparisons between the upstream and downstream study reaches suggest that a major interstate highway is the primary road salt source. A heavily used road parallels most of MBR and was an additional source to GW concentrations, especially the downstream right bank. A baseflow synoptic survey identified zones of increased salinity. Downstream piezometer wells exhibited increases in salt concentrations and there was evidence that Na+ is exchanging Ca2+ and Mg2+ on soils. SW salt concentrations were generally elevated above GW concentrations. Salinity levels persisted at MBR throughout the year and were above background levels at Bynum Run, a nearby reference stream not bisected by a major highway, suggesting that GW is a long-term reservoir for accumulating road salts. Chronic salinity levels may be high enough to damage vegetation and salinity peaks could impact other biota. Beneficial uses and green infrastructure investments may be at risk from salinity driven degradation. Therefore, road salt may represent an environmental risk that could af

  6. Fluid inclusions in salt: an annotated bibliography

    International Nuclear Information System (INIS)

    Isherwood, D.J.

    1979-01-01

    An annotated bibliography is presented which was compiled while searching the literature for information on fluid inclusions in salt for the Nuclear Regulatory Commission's study on the deep-geologic disposal of nuclear waste. The migration of fluid inclusions in a thermal gradient is a potential hazard to the safe disposal of nuclear waste in a salt repository. At the present time, a prediction as to whether this hazard precludes the use of salt for waste disposal can not be made. Limited data from the Salt-Vault in situ heater experiments in the early 1960's (Bradshaw and McClain, 1971) leave little doubt that fluid inclusions can migrate towards a heat source. In addition to the bibliography, there is a brief summary of the physical and chemical characteristics that together with the temperature of the waste will determine the chemical composition of the brine in contact with the waste canister, the rate of fluid migration, and the brine-canister-waste interactions

  7. Safety studies of HLW-disposal in the Mors salt dome - Support to the salt option of the Pagis project

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1987-01-01

    The study, which is a support to the Pagis project, covers three tasks concerning the evaluation of the Danish salt dome Mors (variant disposal site): evaluation of the human intrusion scenario where a cavern is excavated near the HLW-repository by solution mining technique. The waste is supposed to be leached during the operation period until the abandoned cavern is closed by convergence and the contaminated brine is pressed up into the overburden. Evaluation of the brine intrusion scenario, where the HLW-repository is inadvertently located close to a major brine pocket which subsequently releases its brine content through defects in the repository to the discharge stream for the catchment area. Collection and description of hydrological data of surface and deep layers (down to circa 700 metres) in the repository region. The data will be used by GSF to calculate the radionuclide migration in the geosphere

  8. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    Science.gov (United States)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  9. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  10. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  11. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  12. Features of metabolic reactions to various water-salt loads in female rats

    Directory of Open Access Journals (Sweden)

    Anatoliy I Gozhenko

    2018-04-01

    Full Text Available Background. In the previous article we reported that screening registered parameters of water-salt, nitrous and lipid metabolism as well as the neuroendocrine-immune complex found 42 among them who in rats subjected to various water-salt loads, significantly different from that of intact rats, but on average the same group of animals that received liquids with different mineralization and chemical composition. The purpose of this article is to find out the features of the reactions of the parameters of metabolism. Materials and methods. Experiment was performed on 58 healthy female Wistar rats 240-290 g divided into 6 groups. Animals of the first group remained intact, using tap water from drinking ad libitum. Instead, the other rats received the same tap water as well as waters Sophiya, Naftussya, Gertsa and its artificial salt analogue through the probe at a dose of 1,5 mL/100 g of body mass for 6 days. The day after the completion of the drinking course in all rats the parameters of water-salt, nitrous and lipid metabolism were registered. Results. Found that 16 metabolic parameters the maximum deviates from the level of intact rats under the influence of the salt analogue of Gertsa water, a smaller, but tangible effect is made by the Gertsa native water, even less effective waters Sofiya and Naftussya, instead of ordinary water is almost ineffective in relation to these metabolic parameters. The other 19 parameters deviates to a maximum extent from the reference level after the use of water Naftussya, fresh water is less effective, whereas quasi-isotonic liquids are practically inactive for these parameters. The remaining 13 parameters in animals that use normal water, deviates from intact control to the same extent as in the previous pattern, which, apparently, is also due to the stressful effects of the load course. Both Naftussya and Gertsa water and its salt analogue prevent the stress deviations of these parameters. Instead, by

  13. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  14. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary; Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Omraadebeskrivelser - Description of areas. Dansk og engelsk resume

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  15. Surface displacements and pillar stresses associated with nuclear waste disposal in salt

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.

    1977-01-01

    A numerical model for regional analysis of stresses and displacement, resulting from heat generating waste placement in underground salt excavations, is presented. The model, which is an extension of that described by McClain and Starfield (1971), is based upon the displacement discontinuity method of stress analysis. It incorporates an empirical characterization of creep behavior of material on the excavation horizon and accounts for thermally induced stresses and displacements. The versatility of this approach is illustrated by the results of three relatively short simulations of test scale disposal facilities at shallow and greater depths. In addition, a three-dimensional code was used to evaluate the surface displacement history for a full-scale repository. This latter code, a thermoelastic analysis, gives an upper bound for the surface movements. It is concluded that the pillar stresses are the result of a complex non-linear interaction of many variables, and the maximum pillar stress can reach several multiples of the tributory-area pillar stress

  16. Salt mine Asse II. Status of the retrieval activities

    International Nuclear Information System (INIS)

    2017-02-01

    The booklet on the status of retrieval activities in the salt mine Asse II includes information on the background of medium-level radioactive waste disposal during 1967 to 1978 on behalf of the Federal government. Since 2009 the former mine is operated by the BfS with the assignment of decommissioning. The potential risk for stability and safety due to problems of water ingress were known before beginning of the disposals. The retrieval of the radioactive waste will require many decades; the costs are financed by tax money. The planning of the retrieval is currently on the way, details of the concept are described.

  17. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    OpenAIRE

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chlorid...

  18. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  19. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  20. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  1. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  2. Disposal of high-level waste from nuclear power plants in Denmark. v.3

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with material testing as part of the investigations regarding a repository for high-level waste in a salt dome. It is volume 3 of five volumes that together constitute the final report of the Danish utilities' salt dome investigations. The material testing programme chiefly comprised laboratory investigations and analyses of material samples, partly obtained from the salt dome in question and partly from the overlying geological formation. The test programme was fully completed for Eslev salt dome on Mors. Chemical analyses and mineralogical investigations were carried out in order to determine the type and extent of the impurities confined in the rock salt. Moreover, a programme was carried out to investigate the water content of the salt. Temperature conditions around a repository, the strenght and creep properties of the salt were investigated in order to determine whether drill holes, shafts and mine galleries could be constructed and maintained intact within the period of time required to complete the disposal of high-level waste. Chemical analysis were carried out in order to determine which substances are found dissolved in the water contained by the geological formation overlying the salt dome, as well as chemical/physical investigations regarding the water content, porosity, velocity of a possible leak of radioactive waste products, etc. Materials that would be introduced into a repository were studied with regard to their corrosion resistance in the salt environment. Concrete materials were investigated and characterized for their use in the final sealing of the access routes to the repository through the geological formation. (BP)

  3. Computer-aided evaluation of waste disposal cavern construction methods. ISBN 3-9801713-0-2.

    International Nuclear Information System (INIS)

    Knissel, W.; Fahlbusch, M.

    1991-01-01

    The disposal of hazardous radioactive and toxic wastes in deep geological formations is considered the safest solution in many countries. The Federal Republic of Germany prefers salt formations for underground disposal on account of the special advantages of the rock salt. Calculation methods are presented for the mathematical description of mining techniques for the construction of waste disposal salt caverns. The developed calculation model allows one to evaluate different construction methods with regard to expenses and time. (orig./DG) [de

  4. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    Bennion, D.B.; Thomas, F.B.; Imer, D.; Ma, T.

    2000-01-01

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  5. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  6. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  7. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  8. Isotopic study of water origin in salt mines in Poland

    International Nuclear Information System (INIS)

    Dulinski, M.; Grabczak, J.; Garlicki, A.; Zuber, A.

    1998-01-01

    The most important results of isotopic analyses carried out so far in salt mines in Wieliczka, Bochnia, Klodawa, Wapno and Inowroclaw are presented. Discussion of these results for individual leakages proofs that isotopic methods are fully useful in determining of the origin of water appearing in salt mines. (author)

  9. Biosphere transport and radiation dose calculations resulting from radioactive waste stored in deep salt formation (PACOMA-project)

    International Nuclear Information System (INIS)

    Jong, E.J. de; Koester, H.W.; Vries, W.J. de; Lembrechts, J.F.

    1990-03-01

    Parts are presented of the results of a safety-assessment study of disposal of medium and low level radioactive waste in salt formations in the Netherlands. The study concerns several disposal concepts for 2 kinds of salt formation, a deep dome and a shallow dome. 7 cases were studied with the same Dutch inventory and 1 with a reference inventory R, in order to compare results with those of other PACOMA participants. The total activity of the reference inventory R is 30 percent lower than the Dutch inventory, but some long living nuclides such as I-129, Np-237 and U-238 have a considerably higher activity. This reference inventor R has been combined with the disposal concept of mined cavities in a shallow salt dome. In each case. the released fraction of stored radio-nuclides moves gradually with water through the geosphere to the bio-sphere where it enters a river. River water is used for sprinkler irrigation and for drinking by man and livestock. The dispersal of the radionuclides into the biosphere is calculated with the BIOS program of the NRPB. Subroutines linked to the program add doses via different pathways to obtain a maximum individual dose, a collective dose and an integrated collective dose. This study presents results of these calculations. (author). 11 refs.; 39 figs.; 111 tabs

  10. Electrodialysis-based separation process for salt recovery and recycling from waste water

    Science.gov (United States)

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  11. Rise and fall of road salt contamination of water-supply springs

    Science.gov (United States)

    Werner, Eberhard; Dipretoro, Richard S.

    2006-12-01

    A storage pile of de-icing agent consisting principally of sodium chloride was placed in the recharge area of two springs, and remained there for 2 years. Water flow is through fractures in rocks with low matrix permeability, along a hydraulic gradient developed along fracture zones. Salt contamination in the springs was noticed about 1 year after the salt was placed. When the salt was removed 1 year later, chloride concentrations in the springs exceeded 500 mg/L. Monitoring for the following 5 years showed salt contamination rising for the first year, but receding to normal background after 5 years. Chloride to sodium ratios of the spring waters indicated that some sodium was initially sequestered, probably by ion exchange on clay minerals, in the early part of the monitoring period, and released during the latter part; thereby extending the period of contamination.

  12. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  13. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  14. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  15. Multi-purpose logical device with integrated circuit for the automation of mine water disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pop, E.; Pasculescu, M.

    1980-06-01

    After an analysis of the waste water disposal as an object of automation, the author presents a BASIC-language programme established to simulate the automated control system on a digital computer. Then a multi-purpose logical device with integrated circuits for the automation of the mine water disposal is presented. (In Romanian)

  16. The Effects of water and salt stresses on germination in two bread ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... soluble salts in soil leads to an increase in osmotic pressure of the soil solution, which may limit the absorption of water by the seeds or plant roots. Salt damage to plants is attributed to reduction in water availability, toxicity or specific ions, and nutritional imbalance caused by such ions (James et al., 2006).

  17. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  18. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    Science.gov (United States)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  19. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  20. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  1. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    International Nuclear Information System (INIS)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  2. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  3. Treatment and disposal of radioactive waste from nuclear power stations

    International Nuclear Information System (INIS)

    Baehr, W.

    1981-01-01

    The Federal Republic of Germany and many other European countries, having very high population densities, must make the most efficient use of their soil, their ground and surface waters. In Germany, no method of waste disposal could be used which included direct storage or seepage into the upper strata of the soil or a discharge into rivers or lakes. It has been shown after more than 20 years experience of treatment of low and intermediate level liquid and solid wastes and disposal of solidified residues in a salt mine, that a number of techniques and procedures are available for manageing this kind of waste with a high degree of safety. A complete system of waste collection, treatment methods and controlled disposal of low and intermediate radioactive residues in accordance with legally established rules and regulations offers the best guarantee for environmental protection. (orig./RW)

  4. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  5. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  6. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    Science.gov (United States)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  7. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  8. Analysis of water content in salt deposits: its application to radioactive waste storage

    International Nuclear Information System (INIS)

    Cuevas Muller, C. de la.

    1993-01-01

    The salt deposits as radioactive storage medium are analyzed. This report studies the physical-chemical characteristics of water into salts deposits, its implications for the safety of the repository, and the transport water release mechanism. The last part analyzes the geochemical numerical data of correlation analysis, geostatistics analysis and interpretation of statistical data

  9. Life cycle assessment of disposal of residues from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Birgisdottir, Harpa; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase...... layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals...... and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment...

  10. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  11. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  12. Container for processing and disposing radioactive wastes and industrial wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Kasahara, Yuko; Kasai, Noboru; Sudo, Giichi; Ishizaki, Kanjiro.

    1978-01-01

    Purpose: To improve the performance of containers for radioactive wastes for ocean disposal and on-land disposal such as impact strength, chemical resistance, fire resistance, corrosion resistance, water impermeability and the like. Constitution: Steel fiber-reinforced concrete previously molded in a shape of a container is impregnated with polymerizable impregnating agent selected from the group consisting of a polymerizable monomer, liquid mixture of a polymerizable monomer and an oligomer, a polymer solution, a copolymer solution and the liquid mixture thereof. Then, the polymerizable impregnating agent is polymerized to solidify in the concrete by way of heat-polymerization or radiation-induced polymerization to form a waste container. The container thus obtained can be improved with the impact resistance and wear resistance and further improved with salt water resistance, acid resistance, corrosion resistance and solidity by the impregnation of the polymer, as well as can effectively be prevented from leaching out of radioactive substances. (Furukawa, Y.)

  13. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    Science.gov (United States)

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  14. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  15. Densification of salt-occluded zeolite a powders to a leach-resistant monolith

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murhpy, C.D.

    1993-01-01

    Pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR) yields a salt waste of LiCl-KCl that contains approximately 6 wt% fission products, primarily as CsCl and SrCl 2 . Past work has shown that zeolite A will preferentially sorb cesium and strontium and will encapsulate the salt waste in a leach-resistant, radiation-resistant aluminosilicate matrix. However, a method is sill needed to convert the salt-occluded zeolite powders into a form suitable for geologic disposal. We are thus investigating a method that forms bonded zeolite by hot pressing a mixture of glass frit and salt-occluded zeolite powders at 990 K (717 degree C) and 28 MPa. The leach resistance of the bonded zeolite was measured in static leach tests run for 28 days in 363 K (90 degree C) deionized water. Normalized release rates of all elements in the bonded zeolite were low, 2 d. Thus, the bonded zeolite may be a suitable waste form for IFR salt waste

  16. Fate of individual sewage disposal system wastewater within regolith in mountainous terrain

    Science.gov (United States)

    Dano, Kathleen; Poeter, Eileen; Thyne, Geoff

    2008-06-01

    In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.

  17. Perovskite nickelates as electric-field sensors in salt water

    Science.gov (United States)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  18. Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana.

    Science.gov (United States)

    Devasya, Roopa; Bassi, Amarjeet

    2017-11-15

    Phyco-remediation is an environmental-friendly method, which involves the application of beneficial microalgae to treat wastewater-containing pollutants for a diverse range of conditions. Several industrial processes generate hyper saline wastewater, which is a significant challenge for conventional wastewater treatment, and the disposal of saline waters also has a negative impact on the environment. Road salt run-off is one such saline wastewater stream not currently treated and one that contributes significantly to negatively impacting receiving bodies of water. In this study, Nannochloropsis microalgae were able to assimilate >95% of the nitrates within 8 days in road salt concentrations ranging from 2.6% to 4.4% under phototrophic cultivation mode. Biomass yields of 1-2 g/l of culture were obtained with the maximum lipid of 22% (g/g) biomass in the road salt media. The crude road salt media provided all the essential micronutrients needed for algal cultivation. The fatty acid composition analysis of the obtained lipid composed of C16 and C18 over 45% of FAME are suitable for biofuel. This study has established that the use of road salt containing nitrate and phosphate nutrients will support the growth of marine micro algae for remediation of a waste water system that are the concern at winter-prevalent regions.

  19. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...

  20. Safety assessment of radioactive waste disposal into geological formations; a preliminary application of fault tree analysis to salt deposits

    International Nuclear Information System (INIS)

    Bertozzi, B.; D'Alessandro, M.; Girardi, F.; Vanossi, M.

    1978-01-01

    The methodology of the fault tree analysis (FTA) has been widely used at the Joint Research Centre of Ispra in nuclear reactor safety studies. The aim of the present work consisted in studying the applicability of this methodology to geological repositories of radioactive wastes, including criteria and approaches for the quantification of probalities of primary events. The present work has just an illustrative purpose. Two ideal cases of saline formations, I.E. a bedded salt and a diapir were chosen as potential disposal sites for radioactive waste. On the basis of arbitrarily assumed hydrogeological features of the salt formations and their surrounding environment, possible phenomena capable of causing the waste to be released from each formation have been discussed and gathered following the logical schemes of the FTA. The assessment of probability values for release events due to natural causes as well as to human actions, over different time periods, up to one million years, has been discussed

  1. Geohydrolic studies of Gulf Coast interior salt domes

    International Nuclear Information System (INIS)

    Smith, C.G. Jr.

    1977-01-01

    Disposal of high-level radioactive wastes in Gulf Coast salt domes requires that the cavities be free from groundwater dissolution for 250,000 years. Salinity variations of groundwater near selected domes were investigated. Saline groundwater anomalies (saline plumes) in aquifers pierced or uplifted by the dome may be the result of salt solution by groundwater. In the Northeast Texas salt dome basin electric logs of oil and gas wells have been used to estimate groundwater salinities in aquifers near selected domes. Thus far, the analyses have revealed saline groundwater anomalies around 4 of the 9 domes studied. Estimates of the rate of salt dissolution from domes associated with saline groundwater plumes indicate that less than 30 meters of salt will be removed from the upper surfaces of the dome in 250,000 years. Thus, these preliminary studies show that even apparently unstable domes may be sufficiently stable to serve as waste disposal sites. 6 figures

  2. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  3. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  4. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Fries, G.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of thei formation, and the associated parameters [fr

  5. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Charo, L.; Habib, P.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of their formation, and the associated parameters [fr

  6. Engineering risk assessment for emergency disposal projects of sudden water pollution incidents.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Liu, Rentao; Khan, Afed Ullah; Wang, Peng

    2017-06-01

    Without an engineering risk assessment for emergency disposal in response to sudden water pollution incidents, responders are prone to be challenged during emergency decision making. To address this gap, the concept and framework of emergency disposal engineering risks are reported in this paper. The proposed risk index system covers three stages consistent with the progress of an emergency disposal project. Fuzzy fault tree analysis (FFTA), a logical and diagrammatic method, was developed to evaluate the potential failure during the process of emergency disposal. The probability of basic events and their combination, which caused the failure of an emergency disposal project, were calculated based on the case of an emergency disposal project of an aniline pollution incident in the Zhuozhang River, Changzhi, China, in 2014. The critical events that can cause the occurrence of a top event (TE) were identified according to their contribution. Finally, advices on how to take measures using limited resources to prevent the failure of a TE are given according to the quantified results of risk magnitude. The proposed approach could be a potential useful safeguard for the implementation of an emergency disposal project during the process of emergency response.

  7. An alternating voltage battery with two salt-water oscillators

    Science.gov (United States)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  8. Leachate migration from a solid waste disposal facility near Biscayne National Park, South Florida

    International Nuclear Information System (INIS)

    Waller, B.G.; Labowski, J.L.

    1987-01-01

    Leachate from the Dade County Solid Waste Disposal Facility (SWDF) is migrating to the east (seaward) and to the south from the currently active disposal cell. Water levels and ground-water flow directions are strongly influenced by water-management practices, especially in the Black Creek Canal and structure S-21 to the north of the SWDF. Ground-water flow is initially to the south, from Black Creek Canal, and then to the east through the disposal area. The SWDF is constructed over the salt-intruded part of the highly transmissive Biscayne aquifer and because of this, chloride ion concentrations and specific conductance levels could not be used as indicators of leachate concentrations. Water-quality indicators used to identify leachate migration were primarily ammonium, organic nitrogen, phenols, and chemical oxygen demand with cadmium, chromium, and lead used as auxiliary indicator constituents. Leachate was detected in multi-depth wells located 75 meters to the south and 20 meters to the east of the active cell. Concentrations of water-quality indicators had mean concentrations generally 2 to 10 times higher than baseline conditions. Leachate was not detected in any of the other ground-water, canal water, or Biscayne Bay sampling sites. Primary controls over leachate movement in the SWDF are water-management practices in the Black Creek and Gould Canals, configuration and integrity of the liner beneath the active cell, and low hydraulic gradients in the landfill area

  9. Perovskite nickelates as electric-field sensors in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2017-12-18

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures

  10. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  11. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  12. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  13. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  14. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  15. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  16. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  17. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  18. Maw and spent HTR Fuel Element Test storage in Boreholes in rock salt

    International Nuclear Information System (INIS)

    Barnert, E.; Brucher, P.H.; Kroth, K.; Merz, E.; Niephaus, D.

    1986-01-01

    The Budesminister fur Forschung und Technolgie (BMFT, Federal Ministry for Research and Technology) is sponsoring a project at the Kernforschungsanlage Julich (KFA, Juelich Nuclear Research Centre) entitled ''MAW and HTR Fuel Element Test disposal in Boreholes.'' The aim of this project is to develop a technique for the final disposal of (1) dissolver sludge, (2) cladding hulls/structural components and (3) spent HTR fuels elements in salt, and to test this technique in the abandoned Asse salt mine, including safety calculations and safety engineering demonstrations. The project is divided into the sub-projects I ''Disposal/sealing technique'' and II ''Retrievable disposal test.''

  19. Corrosion behaviour of selected high-level waste packaging materials under gamma irradiation and in-situ disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-07-01

    Corrosion studies performed until now on a number of materials have shown that unalloyed steels, Hastelloy C4 and Ti 99.8-Pd are the most promising materials for a long-term resistant packaging to be used in high-level waste (HLW) canister disposal in rock salt formations. To characterize their corrosion behaviour in more detail, additional studies have been performed. The influence has been examined which is exerted by the gamma dose rate (1 Gy/h to 100 Gy/h) on the corrosion of three preselected steels and Hastelloy C4 at 90 0 C in a salt brine (Q-brine) rich in MgCl 2 , i.e., conditions relevant to accident scenarios in a repository. In addition, in-situ corrosion experiments have been carried out in the Asse salt mine at elevated temperatures (120 0 C to 210 0 C) in the absence and in the presence of a gamma radiation field of 3 x 10 2 Gy/h, within the framework of the German/US Brine Migration Test. Under the test conditions the gamma radiation did not exert a significant influence on the corrosion of the steels investigated, whereas Hastelloy C4, exposed to dose rates of 10 Gy/h and 100 Gy/h, underwent pitting and crevice corrosion (20 μm/a at the maximum).The low amounts of migrated salt brine (140 ml after 900 days) in the in-situ- experiment did not produce noticeable corrosion of the materials. (orig./RB) [de

  20. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  1. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  2. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or...) Colonia. (See definition in Sec. 1777.4). The proposed project will provide water and/or waste disposal... of obtaining federal financing, receive economic benefits that exceed any direct economic costs...

  3. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  4. Geology, hydrology, thickness and quality of salt at three alternate sites for disposal of radioactive waste in Kansas

    International Nuclear Information System (INIS)

    Bayne, C.K.; Brinkley, C.

    1972-09-01

    The three sites selected by the AEC for additional study for the disposal of radioactive wastes in Kansas are; Site A located in south-central Lincoln County, Site D-2 located in south-central Wichita County, and Site A-1 located in north-western Lincoln County. Results of the study show that all sites failed to meet the detailed criteria. Areas A and A-1 fail to meet the criteria concerning thickness and quality. Area D-2 fails to meet the criteria concerning quality and mineability of the salt. Areas west of Site A-1 and in south-central Harper County, in the authors' opinion, appear to be the best prospects for future study in Kansas

  5. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  6. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Dailey, Kelsey R.; Welch, Kathleen A.; Lyons, W. Berry

    2014-01-01

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl − and Na + data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl − and Na + showed increased concentration and flux downstream near urban areas. • Cl − /Br − mass ratios in waters suggest the origin of Cl − is in part from road salt. • 36 Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl − ) and sodium (Na + ), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl − and Na + concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl − /Br − ) ratios and nitrate (N-NO 3 − ) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl − and Na + concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na + were slightly lower than respective Cl − concentrations (in equivalents). High Cl − /Br − mass ratios in the Ohio surface waters indicated the source of Cl − was likely halite, or road salt. In addition, analysis of 36 Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl − into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl − and Na + concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in

  7. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  8. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  9. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    Abd El-Moniem, M.; El-Gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  10. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    Science.gov (United States)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at

  11. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  12. Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus

    Science.gov (United States)

    Badruzzaman, B.; Sifa, A.

    2018-02-01

    Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.

  13. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  14. Spanish participation in the Haw Project: Laboratory investigations on Gamma irradiation effects in rock salt

    International Nuclear Information System (INIS)

    Cuevas, C. de las; Miralles, L.; Teixidor, P.; Garcia Veigas, J.; Dies, X.; Ortega, X.; Pueyo, J.J.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt rock, a five years test disposal of thirty highly radioactive radiation sources is planned in the Asse salt mine, in the Federal Republic of Germany. The thirty radiation sources consist of steel canisters containing the vitrified radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwidth of heat generation and gamma radiation of real HAW. The radiation sources will be emplaced in six boreholes located in two galleries at the 800 m level. Two electrical heater tests were already started in November 1988 and are continuosly surveyed in respect of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and succesfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Part of this programme has been carried out since 1988 at the University of Barcelona, basically what refers to colloidal sodium determinations by light absorption measurements and microstructural studies on irradiated salt samples. For gamma dose and dose rate measurements in the test field, measuring systems consisting of ionisation chambers as well as solid state dosemeters were developed and tested. Thermomechanical computer code validation is performed by calculational predictions and parallel investigation of the stress and displacement fields in the underground test field

  15. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  16. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  17. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Consolidating and water repellent treatments applied to wet and salt contaminated granite

    Directory of Open Access Journals (Sweden)

    Silva, B.

    2000-03-01

    Full Text Available A comparison was made of the efficacy of two consolidants and two water repellents applied to samples of granite under optimum conditions, with the efficacy of the same products applied to the granite in the presence of soluble salts or water. The amount of product absorbed and the amount of dry polymer remaining after treatment were compared. The results show that the presence of water and soluble salts in the stone significantly modifies the consumption of the products (in particular the water repellents and also the level of dry polymer retained. The water repellents were found to be much less effective when the substrate contained salts, whereas the presence of water did not appear to influence their efficacy. The lack of correlation between uptake, active dry polymer, and efficacy led to the conclusion that the presence of salts or water markedly changes the kinetics of the polymerization of the products.

    Se analiza la eficacia de dos consolidantes y dos hidrofugantes aplicados a rocas graníticas en condiciones óptimas comparativamente a la eficacia de los mismos productos aplicados sobre los mismos sustratos conteniendo cierta cantidad de sales solubles o de agua. Se compara la cantidad de producto absorbido y la cantidad de materia seca presente tras el curado. Los resultados indican que la presencia de agua y de sales solubles en la piedra modifica significativamente el consumo de los productos, sobre todo el de los hidrofugantes, así como la cantidad de materia seca. Se observa, asimismo, un fuerte detrimento en la eficacia de los hidrofugantes cuando el sustrato contiene sales mientras que, al contrario, la presencia de agua no parece infiuir en dicha eficacia. La falta de correlación entre el consumo, materia seca activa y eficacia lleva a concluir que la presencia de sales o agua modifica sensiblemente la cinética de la polimeración de los productos.

  19. Direct ultimate disposal of spent fuel DEAB. Systems analysis. Ultimate disposal concepts. Final report. Main volume

    International Nuclear Information System (INIS)

    Wahl, A.

    1995-10-01

    The results elaborated under the project, systems analysis of mixed radwaste disposal concepts and systems analysis of ultimate disposal concepts, provide a comprehensive description and assessment of a radwaste repository, for heat generating wastes and for wastes with negligible heat generation, and thus represent the knowledge basis for forthcoming planning work for a repository in an abandoned salt mine. A fact to be considered is that temperature field calculations have shown that there is room for further optimization with regard to the mine layout. The following aspects have been analysed: (1) safety of operation; (2) technical feasibility and realisation and licensability of the concepts; (3) operational aspects; (4) varieties of utilization of the salt dome for the intended purpose (boreholes for waste emplacement, emplacement in galleries, multi-horizon systems); (5) long-term structural stability of the mine; (6) economic efficiency; (7) nuclear materials safeguards. (orig./HP) [de

  20. An approach to selecting routes over which to transport excess salt from the Deaf Smith County Site

    International Nuclear Information System (INIS)

    1987-09-01

    This report presents an approach to be utilized in the identification of rail and/or highway routes for the disposal of waste salt and other salt contaminated material from repository construction. Relevant issues regarding salt transport also are identified. The report identifies a sequence of activities that precede actual route selection, i.e., final selection of a salt disposal method and its location, refined estimates of salt shipment volume and schedule, followed by selection of rail or truck or a combination thereof, as the preferred transport mode. After these factors are known, the route selection process can proceed. Chapter 2.0 of this report identifies directives and requirements that potentially could affect salt transport from the Deaf Smith site. A summary of salt disposal alternatives and reference cases is contained in Chapter 3.0. Chapter 4.0 identifies and discusses current methods of salt handling and transport in the United States, and also provides some perspective as to the volume of excess salt to be transported from the Deaf Smith site relative to current industry practices. Chapter 5.0 identifies an approach to the salt transportation issue, and suggests one system for evaluating alternative highway routes for truck shipments

  1. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially...

  2. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  3. Waste isolation pilot plant disposal room model

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  4. Waste isolation pilot plant disposal room model

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the open-quotes Disposal Room Model,close quotes describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized

  5. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  6. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  8. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. OEstjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  9. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 10. Characterization and description of areas. Nordjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the area 22 in Northern Jutland. (LN)

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  11. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. Oestjylland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  12. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  13. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  14. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    International Nuclear Information System (INIS)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C.; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  15. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  16. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  17. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  18. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  19. Analysing monthly sectorial water use and its influence on salt intrusion induced water shortage in urbanized deltas

    NARCIS (Netherlands)

    Yao, Mingtian; Yan, Dan; Kabat, Pavel; Huang, Heqing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2016-01-01

    Urbanizing delta regions face seasonal water shortages induced by rising salt intrusion. Decreasing river discharge is readily listed as the major cause of water shortage events. Yet, observations of river discharge often fail to support this attribution. Evidence of the association between

  20. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-22

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).

  1. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analy...

  2. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  3. Trial storage of high-level waste in the Asse II salt mine

    International Nuclear Information System (INIS)

    1984-01-01

    This report covers a second phase of the work performed by GSF and KfK in the Asse II salt mine, with a view to disposal of radioactive waste in salt formations. New items of the research were geophysical investigations of the behaviour of heated salt and preparation of a trial storage in the Asse II salt mine

  4. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  5. Local Commune Administration as a Regulator of the Local Water Supply and Sewage Disposal Services Market

    OpenAIRE

    Małysko, Jacek

    2012-01-01

    In this article the author discusses problems related to the regulation of water and sewage disposal services market. In the beginning he describes the processes of water supply and sewage disposal taken by the local commune administration as a natural monopoly. Next he characterizes the structure of this market in Poland. Then he presents the role of local commune administration as a regulator. The author concludes by evaluating the existing Polish system of regulating wate...

  6. Determination of the water insoluble residuum in potassium salts using gamma logging

    International Nuclear Information System (INIS)

    Mishin, G.T.; Gavrilova, L.I.

    1976-01-01

    For potassium salts the relationship has been established between the concentration of heavy radioelements (the uranium-radium and thorium series) and the content of the water-insoluble, residue which is mainly represented by the clay-iodine fraction. A method is described for determining the content of the insoluble residue with the aid of PRKS-2 equipment. The results are given of experimental investigations aimed at studying the content of the insoluble residue in salts along the section of rising production wells. The results of the determination of the insoluble residue in potassium salts define their quality with an accuracy sufficient for industrial purposes

  7. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    Science.gov (United States)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  8. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  9. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  10. Effects of salt and water stress on plant biomass and photosynthetic ...

    African Journals Online (AJOL)

    Water deficit led to earlier peaks of net photosynthetic rate (PN) during the day. Relative rate of electron transport (ETR) decreased, but optimal quantum yield of photosystem II (Fv/Fm) showed no significant difference (P<0.05) with water deficit (from 60 to 20% FC); soil salt significantly decreased PN and transpiration rate ...

  11. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  12. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  13. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  14. A review of in situ investigations in salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    1985-01-01

    In situ investigations for the disposal of radioactive wastes in rock salt formations have the longest history in the field. Well known names are Project Salt Vault (PSV) which was performed in the Lyons Mine, Kansas/USA, and the Asse salt mine in Germany. The overall objective for in situ investigations is twofold: 1. To produce all necessary data for the construction and operation of repositories and 2. to produce all necessary data for a performance assessment for repositories

  15. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  16. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  17. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  18. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  19. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application

    Science.gov (United States)

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na+ are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed.

  20. The study of contamination of discharged runoff from surface water disposal channels of Bushehr city in 2012-2013

    Directory of Open Access Journals (Sweden)

    Vaheid Noroozi-Karbasdehi

    2016-09-01

    Full Text Available Background: In coastal cities, wastewater discharge into the sea is one of the options for sewage disposal that in case of non-compliance with health standards  in wastewater disposal will be led to the spread of infection and disease. On the other hand, water resources preservation and using them efficiently are the principles of sustainable development of each country. This study was aimed to investigate the contamination of discharged runoff from the surface water disposal channels of Bushehr city in 2012 - 13. Materials and Methods: In this study, Sampling was conducted by composite sampling method from output of the five main surface water disposal channels leading to the Persian Gulf located in the coastal region of Bushehr city during two seasons including wet (winter and dry (summer in 2012- 13. Then, experimental tests of BOD5, total coliform and fecal coliform were done on any of the 96 samples according to the standard method. Results: Analysis of the data showed that the BOD5, total coliform and fecal coliform of effluent runoff of the channels were more than the national standard output of disposal wastewaters into the surface waters, and the highest and lowest amount of BOD5 which obtained were 160 mg/L and 28 mg/L, respectively. Conclusion: considering the fact that discharged runoff from surface water disposal channels link from shoreline to sea in close distance and they often are as natural swimming sites and even fishing sites of Bushehr city, and also according to high level of organic and bacterial load of these channels, it is urgently required to be considered by the authorities.

  1. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  2. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  3. Signal transduction pathways involved in intestinal salt and water secretion

    NARCIS (Netherlands)

    W. van den Berghe (Nina)

    1992-01-01

    textabstractThis thesis describes some novel aspects of the regulation of salt and water secretion in the intestinal epithelium. This process is not unique for the intestine, but a common and necessary function of many other organs, including the stomach (gastric juice), kidney (urine), sweatglands

  4. 9+ years of disposal experience at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Rempe, Norbert T.; Nelson, Roger A.

    2008-01-01

    With almost a decade of operating experience, the Waste Isolation Pilot Plant (WIPP) has established an enviable record by clearly demonstrating that a deep geologic repository for unconditioned radioactive waste in rock salt can be operated safely and in compliance with very complex regulations. WIPP has disposed of contact-handled transuranic (TRU) waste since 1999 and remote-handled TRU waste since 2007. Emplacement methods range from directly stacking unshielded 0.21-4.5 m 3 containers inside disposal rooms to remotely inserting highly radioactive 0.89 m 3 canisters into horizontally drilled holes (shield plugs placed in front of canisters protect workers inside active disposal rooms). More than 100 000 waste containers have been emplaced, and one-third of WIPP's authorized repository capacity of 175,000 m 3 has already been consumed. Principal surface operations are conducted in the waste handling building, which is divided into CH and RH waste handling areas. Four vertical shafts extend from the surface to the disposal horizon, 655 m below the surface in a 1000 m thick sequence of Permian bedded salt. The waste disposal area of about 0.5 km 2 is divided into ten panels, each consisting of seven rooms. Vertical closure (creep) rates in disposal rooms range up to 10 cm per year. While one panel is being filled with waste, the next one is being mined. Mined salt is raised to the surface in the salt shaft, and waste is lowered down the waste shaft. Both of these shafts also serve as principal access for personnel and materials. Underground ventilation is divided into separate flow paths, allowing simultaneous mining and disposal. A filter building near the exhaust shaft provides the capability to filter the exhaust air (in reduced ventilation mode) through HEPA filters before release to the atmosphere. WIPP operations have not exposed employees or the public to radiation doses beyond natural background variability. They consistently meet or exceed regulatory

  5. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    International Nuclear Information System (INIS)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all "enclosed,"whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative "open"modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if "enclosed"concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  6. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  7. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration

    International Nuclear Information System (INIS)

    Gázquez, M.J.; Mantero, J.; Mosqueda, F.; Bolívar, J.P.; García-Tenorio, R.

    2014-01-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly 226 Ra, 210 Pb, and 210 Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, 234 Th, 230 Th, 226 Ra, 210 Pb and 210 Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential. - Highlights: • A radioactive analysis of efflorescences and leaching water has been carried out. • Water contains very high concentrations of radionuclides from the uranium series. • Efflorescence shows a high activity concentrations of 238 U and 210 Pb. • This information is essential for the future restoration of a phosphogypsum piles

  8. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  9. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taesinge and Fyn

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taasinge and Fyn

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  11. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, G.A.; Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States); Davies, P.B. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  12. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time

  13. Variety and variability of bentonites as buffer materials in radioactive waste disposal

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    1994-01-01

    Bentonite which is considered to be most promising as the buffer material in the formation disposal of high level radioactive waste is the clay having Montmorillonite of smectite group as the main component mineral. The clay of smectite group shows different properties, and its range of variability is wide. In this report, the clay minerals of smectite group and their variety are explained from the viewpoint of crystal chemistry, and the difference in expansion property, water recovery property and long period stability, which are expected for the buffer material in formation disposal, in various smectite clays is described. The trend of the investigation of the buffer materials and the importance of making their standard are referred to. In the formation disposal of high level radioactive waste, multiple barrier concept is investigated. The expectation for the development of intelligent materials is large. Bentonite established the position as one of the intelligent materials. The factors controlling the properties of clay are the compositions of clay minerals, nonclay minerals, organic substances, exchangeable cations and soluble salts and texture. (K.I.)

  14. Removal of Oil Spills from Salt Water by Magnesium, Calcium ...

    African Journals Online (AJOL)

    Magnesium, calcium carbonates and oxides that are widely used in cement industries were employed in studying sorption of petroleum oil spills from salt water at different condition parameters such as temperature, loading weight, degree of salinity. Treatment of magnesium, calcium carbonates and oxides by dodecyl ...

  15. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  16. Policy of radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Selling, H.A.

    2002-01-01

    Earlier this year the final report of the CORA Commission on retrievable disposal of radioactive waste was published. It confirmed the technical feasibility of retrievable repository concepts in the deep underground. Rock salt and sedimentary clay were considered as potential host rocks for such a repository. It is recommended, among other things, that subsequent research programmes should focus on stakeholder identification and involvement in a stepwise decision-making process of waste disposal. (author)

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  18. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  19. Modelling of the thermomechanical behaviour of salt rock

    International Nuclear Information System (INIS)

    Albers, G.; Graefe, V.; Korthaus, E.; Pudewillis, A.; Prij, J.

    1986-01-01

    The modelling of the thermomechanical behaviour of salt rock is examined, with respect to the disposal of radioactive waste in salt formations. The calculation methods and programmes currently available for the modelling are described. Some examples are given of calculations carried out in parallel with tests. Some results of modelling calculations for a repository are presented by way of illustration. (U.K.)

  20. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  1. Synopsis of in situ testing for mined geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Gnirk, P.F.

    1980-01-01

    The concept of mined geologic disposal of radioactive wastes was proposed about 25 years ago. Until the mid-1970's, research and development activities were directed essentially to the evaluation of the disposal concept fot salt formations. During the past 5 years, the waste disposal technology programs in the USA and other countries have been expanded substantially in effort and scope for evaluation of a broader range of geologic media beyond salt, including basalt, granite, shale, and tuff. From the outset, in situ testing has been an integral part of these programs, and has included activities concerned with rock mass characterization, the phenomenological response of rock to waste or simulated waste emplacement, model development and verification, and repository design. This paper provides a synopsis of in situ tests that have been or are being performed in geologic media in support of the waste disposal programs in the USA, the United Kingdom, Sweden, and the Federal Republic of Germany

  2. HLW disposal in Germany - R and D achievements and outlook

    International Nuclear Information System (INIS)

    Steininger, W.

    2006-01-01

    The paper gives a brief overview of the status of R and D on HLW disposal. Shortly addressed is the current nuclear policy. After describing the responsibilities regarding R and D for disposing of heat-generating high-level (HLW) waste (vitrified waste and spent fuel), selected projects are mentioned to illustrate the state of knowledge in disposing of waste in rock salt. Participation in international projects and programs is described to illustrate the value for the German concepts and ideas for HLW disposal in different rock types. Finally, a condensed outlook on future activities is given. (author)

  3. Estimating the burden of illness in an Ontario community with untreated drinking water and sewage disposal problems.

    Science.gov (United States)

    Chambers, L W; Shimoda, F; Walter, S D; Pickard, L; Hunter, B; Ford, J; Deivanayagam, N; Cunningham, I

    1989-01-01

    The Hamilton-Wentworth regional health department was asked by one of its municipalities to determine whether the present water supply and sewage disposal methods used in a community without piped water and regional sewage disposal posed a threat to the health of its residents. Three approaches were used: assessments by public health inspectors of all households; bacteriological and chemical analyses of water samples; and completion of a specially designed questionnaire by residents in the target community and a control community. 89% of the 227 residences in the target community were found to have a drinking water supply that, according to the Ministry of Environment guidelines, was unsafe and/or unsatisfactory. According to on-site inspections, 32% of households had sewage disposal problems. Responses to the questionnaire revealed that the target community residents reported more symptoms associated with enteric infections due to the water supply. Two of these symptoms, diarrhea and stomach cramps, had a relative risk of 2.2 when compared to the control community (p less than 0.05). The study was successfully used by the municipality to argue for provincial funding of piped water.

  4. Salt mine Asse II. Status of the retrieval activities; Schachtanlage Asse II. Stand der Arbeiten und Rueckholung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-02-15

    The booklet on the status of retrieval activities in the salt mine Asse II includes information on the background of medium-level radioactive waste disposal during 1967 to 1978 on behalf of the Federal government. Since 2009 the former mine is operated by the BfS with the assignment of decommissioning. The potential risk for stability and safety due to problems of water ingress were known before beginning of the disposals. The retrieval of the radioactive waste will require many decades; the costs are financed by tax money. The planning of the retrieval is currently on the way, details of the concept are described.

  5. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the

  6. Radiolysis salt phenomenology: application to storage of high level radioactive waste

    International Nuclear Information System (INIS)

    Akram, Najib

    1993-01-01

    In France, rock salt is a candidate repository for highly radioactive waste. Rock salt contains water and adsorbed gases which can be released in boreholes after heating due to vitrified wastes. In addition, waste-induced irradiation in near-field conditions induce radiolytic reactions which also contribute to gas release. The aim of this work is to understand and evaluate the effects of heat and irradiation produced by waste containers in a deep disposal, primarily concerning gas production. This is justified by the impact of gases on long-term safety: toxicity, explosibility, chemical reactivity, pressure build-up. We have evidenced the influence of integrated dose, filling gases, temperature and grain size on an homogeneous medium (Asse Mine rock salt). We have then studied heterogeneous samples, which allowed to determine the influence of the chemical and mineralogical composition of rock salt (bedded rock salt from the Mine de Potasse d'Alsace). The role played by organic matter on gas production is important, leading for instance to high consumption rates of oxygen. Through this study, we have also considered the behaviour of clay-rich materials under irradiation. Our results constitute important bases for the future modelling of the phenomena which will take place in the near-field of a rock salt-type repository, especially concerning its long-term safety. (author) [fr

  7. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  8. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    Science.gov (United States)

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  9. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  10. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  11. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  12. Research on the disposal of radioactive wastes; Forschung zur Entsorgung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-02-15

    The report covers the following issues: Challenges of the nuclear disposal; actual state of knowledge: research and development on final disposal in salt rocks, clays, granite, general topics; research and development strategy: goals of the governmental project funding, strategic research objectives, research and development needs; research and development projects.

  13. Alternative methods to manage waste salt from repository excavation in the Deaf Smith County and Swisher County locations, Texas: A scoping study: Technical report

    International Nuclear Information System (INIS)

    1987-01-01

    This report describes and qualitatively evaluates eight options for managing the large volumes of salt and salt-laden rock that would result from the excavation of a high-level radioactive waste repository in Deaf Smith County or Swisher County, Texas. The options are: distribution for commercial use; ocean disposal; deep-well injection; disposal in multilevel mines on the site; disposal in abandoned salt mines off the site; disposal off the site in abandoned mines developed for minerals other than salt; disposal in excavated landfills; and surface disposal on alkali flats. The main features of each option are described, as well as the associated environmental and economic impacts, and regulatory constraints. The options are evaluated in terms of 11 factors that jointly constitute a test of relative suitability. The results of the evaluation and implications for further study are indicated. This document does not consider or include the actual numbers, findings, or conclusions contained in the final Deaf Smith County Environmental Assessment (DOE, 1986). 43 refs., 8 tabs

  14. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  15. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  16. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Science.gov (United States)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  17. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers

    International Nuclear Information System (INIS)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-01-01

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na + , Cl − , Mg 2+ , K + and Ca 2+ , at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ∼98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems. (paper)

  19. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    Science.gov (United States)

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  20. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  1. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  2. Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission

    International Nuclear Information System (INIS)

    Eichlt, Jair Romeu

    2003-01-01

    A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m 3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m 3 ) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and I o , while the theoretical simulation foresaw the same discrimination level

  3. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    Science.gov (United States)

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  4. Salt repository design approach

    International Nuclear Information System (INIS)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure

  5. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  6. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    Science.gov (United States)

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  7. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  8. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  9. A performance assessment methodology for high-level radioactive waste disposal in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Gallegos, D.P.

    1991-07-01

    Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig

  10. Risk methodology for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R.; Guzowski, R.V.

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs

  11. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  12. Underground disposal of radioactive waste regulations in The Netherlands

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1978-01-01

    The only method of final disposal of radioactive waste currently envisaged in the Netherlands is disposal in rock-salt. This question is at present being studied by governmental authorities, and a public discussion is foreseen for the near future. Various Ministries, as well as local authorities at both provincial and municipal levels, are involved in the licensing and control of waste disposal. The principal stages are site selection (including that for test-drilling), construction of the mine, and supervision of the repository. These activities are governed by the legislation on mining as well as by nuclear regulations. One matter still to be decided is the nature of the body to be responsible for conducting the disposal operations. (NEA) [fr

  13. Quantitative analysis of the hydration of lithium salts in water using multivariate curve resolution of near-infrared spectra

    International Nuclear Information System (INIS)

    Barba, M. Isabel; Larrechi, M. Soledad; Coronas, Alberto

    2016-01-01

    The hydration process of lithium iodide, lithium bromide, lithium chloride and lithium nitrate in water was analyzed quantitatively by applying multivariate curve resolution alternating least squares (MCR-ALS) to their near infrared spectra recorded between 850 nm and 1100 nm. The experiments were carried out using solutions with a salt mass fraction between 0% and 72% for lithium bromide, between 0% and 67% for lithium nitrate and between 0% and 62% for lithium chloride and lithium iodide at 323.15 K, 333.15 K, 343.15 K and 353.15 K, respectively. Three factors were determined for lithium bromide and lithium iodide and two factors for the lithium chloride and lithium nitrate by singular value decomposition (SVD) of their spectral data matrices. These factors are associated with various chemical environments in which there are aqueous clusters containing the ions of the salts and non-coordinated water molecules. Spectra and concentration profiles of non-coordinated water and cluster aqueous were retrieved by MCR-ALS. The amount of water involved in the process of hydration of the various salts was quantified. The results show that the water absorption capacity increases in the following order LiI < LiBr < LiNO_3 < LiCl. The salt concentration at which there is no free water in the medium was calculated at each one of the temperatures considered. The values ranged between 62.6 and 65.1% for LiBr, 45.5–48.3% for LiCl, 60.4–61.2% for LiI and 60.3–63.7% for LiNO_3. These values are an initial approach to determining the concentration as from which crystal formation is favored. - Highlights: • Quantitative analysis of the hydration of lithium salts in water. • The absorption capacity of the electrolytes in function of the salt is evaluated. • The lithium salt concentration is estimated when the crystal formation is favored.

  14. Quantitative analysis of the hydration of lithium salts in water using multivariate curve resolution of near-infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Barba, M. Isabel [Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept. (Spain); Larrechi, M. Soledad, E-mail: mariasoledad.larrechi@urv.cat [Analytical and Organic Chemistry Dept., Universitat Rovira i Virgili, Tarragona (Spain); Coronas, Alberto [Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept. (Spain)

    2016-05-05

    The hydration process of lithium iodide, lithium bromide, lithium chloride and lithium nitrate in water was analyzed quantitatively by applying multivariate curve resolution alternating least squares (MCR-ALS) to their near infrared spectra recorded between 850 nm and 1100 nm. The experiments were carried out using solutions with a salt mass fraction between 0% and 72% for lithium bromide, between 0% and 67% for lithium nitrate and between 0% and 62% for lithium chloride and lithium iodide at 323.15 K, 333.15 K, 343.15 K and 353.15 K, respectively. Three factors were determined for lithium bromide and lithium iodide and two factors for the lithium chloride and lithium nitrate by singular value decomposition (SVD) of their spectral data matrices. These factors are associated with various chemical environments in which there are aqueous clusters containing the ions of the salts and non-coordinated water molecules. Spectra and concentration profiles of non-coordinated water and cluster aqueous were retrieved by MCR-ALS. The amount of water involved in the process of hydration of the various salts was quantified. The results show that the water absorption capacity increases in the following order LiI < LiBr < LiNO{sub 3} < LiCl. The salt concentration at which there is no free water in the medium was calculated at each one of the temperatures considered. The values ranged between 62.6 and 65.1% for LiBr, 45.5–48.3% for LiCl, 60.4–61.2% for LiI and 60.3–63.7% for LiNO{sub 3}. These values are an initial approach to determining the concentration as from which crystal formation is favored. - Highlights: • Quantitative analysis of the hydration of lithium salts in water. • The absorption capacity of the electrolytes in function of the salt is evaluated. • The lithium salt concentration is estimated when the crystal formation is favored.

  15. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  16. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  17. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  18. The significance of natural ground-water recharge in site selection for mill tailings disposal

    International Nuclear Information System (INIS)

    Stephens, D.B.

    1985-01-01

    Milling operations throughout the world have created vast amounts of waste by-products, or tailings, which are often disposed on the land surface. The wastes may be disposed behind dams, on untreated ground, or on compacted clay or synthetic liners of impoundments and trenches. Often one of the principle concerns of environmental regulatory agencies is whether seepage from the waste pile could move through the vadose zone to the water table and possibly contaminate an aquifer. The seepage may be generated by the drainage of liquids initially deposited along with the tailings or by infiltrating meteoric water which leaches soluted from the tailings. The purpose of this article is to discuss some of the commonly held assumptions regarding storage of seepage wastes in the unsaturated zone. The significance of recent studies of water movement in dry climates which pertain to tailings site selection are presented

  19. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  20. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  2. Characteristis of Soil Water and Salt Spatial Variations in the Spring Season in Typical Yellow River Delta Areas of Kenli County, China

    Directory of Open Access Journals (Sweden)

    WANG Zhuo-ran

    2015-04-01

    Full Text Available The Yellow River Delta as an important area of reserved land resources, is faced with the problem of soil salinization. Grasping the status of soil water and salt as well as their spatial variation rules is an important foundation of prevention, control and use of soil salinization. This study selected Kenli County of the Yellow River Delta, obtained soil water and salt content data through field survey and lab experiments, and analyzed the status of soil water and salt as well as their spatial variation rules using statistics, GIS interpolation and buffer analysis methods. The results showed that the general salt content in the study area was mainly moderate. Salt content increased from soil surfacelayer to underlayer and salt content in each layer was significantly correlated. The areas with high saltness in surfacelayer, middlelayer and underlayer soil mainly distributed in the east near the Bohai Sea in Kenli County, while the areas with lower saltness mainly distributed in the southwest. Soil salt contents showed the trends of decrease, and soil water contents showed the trends of decrease first and then increase with the increase in distance to Bohai Sea. Stretching from the Yellow River, soil salt content showed increase tendency with the increase in distance to the Yellow River, and water content decreased first and then increased. The order from high saltness to low of different vegetation types was naked land>suaeda glauca>tamarix>vervain>reed>couch grass>paddy>cotton>winter wheat>maize, the order of different geomorphic types was depression>slightly sloping ground>slow hillock>beach heights. This study preliminary delineates soil water and salt status as well as their spatial variation rules in the spring season of the study area, and provides scientific basis for soil resource sustainable utilization in the Yellow River Delta.

  3. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  4. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  5. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  6. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  7. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  8. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  9. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  10. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  11. Risk analysis of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.; de Marsily, G.; Weber, J.

    1980-01-01

    The problems of risk analysis of geological disposal of radioactive waste are briefly summarized. Several characteristics, such as the very long time span considered, make it rather unique among the problems of modern society. The safety of nuclear waste disposal in geological formations is based on several barriers, natural and man-made, which prevent disposed radionuclides from reaching the biosphere. They include a) the physico-chemical form of conditioned waste, b) the waste container, c) the geological isolation, d) buffering and backfilling materials, radionuclide retention in the geosphere and e) environmental dilution and isolation processes. The knowledge available on each barrier and its modelling is reviewed. Specific disposal strategies in clay, granite and salt formations are considered, outlining the performance of the barriers in each particular strategy, and results obtained in preliminary evaluations

  12. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  13. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  14. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  15. Radiotoxicity of nuclear waste and disposal possibilities in the Netherlands

    International Nuclear Information System (INIS)

    Weber, J.

    1980-01-01

    A description is given of the evaluation of the long-term risks of the disposal of nuclear waste in salt-domes. It is generic for the salt-domes in the N-E of the Netherlands. In the far future the isolation of the waste from the biosphere provided by the salt can be violated by diapyrism and by dissolution. Although improbable a diapyrism of 2.5 mm/year cannot be excluded. As this pathway gives the higher risks for future generations it was taken as the basis for the evaluation. (Auth.)

  16. Treatment and disposal of saline wastewater from coal mines in Poland

    International Nuclear Information System (INIS)

    Ericsson, B.; Hallmans, B.

    1994-01-01

    Some Polish coal mines are reviewed with respect to the disposal of saline wastewater into rivers and its environmental impact. The drainage water from mines has a daily contribution of, in the order of magnitude, 6,500 tons chlorides (Cl - ) and 0.5 tons sulphates (SO 4 2- ) to the rivers Wisla and Odra. The river Wisla contributes to about 55% of the water resources in Poland. This report is based on a part of a commission for the Ministry of Environmental Protection, National Resources and Forestry of Poland by COWI-VBB VIAK joint venture. Different treatment and disposal schemes are described and compared from a technical-economical point of view, out of which methods for desalination with zero discharge as well as deep well injection are the most promising ones. The desalination methods include reverse osmosis (RO) plant, thermal powered desalination and crystallization plant as well as facilities for dewatering and drying of sodium chloride (NaCl) to be sold in Poland and/or on the export market. The valuable main products are potable water, boiler feed water and sodium chloride. A special problem in this connection may be the radioactivity in the wastewater from some of the mines. Special treatment methods for radioactivity removal in the selected treatment and disposal scheme for the mine wastewater are discussed with respect to the effects of radioactivity on the saleability of the recovered salt. In addition methods for recovery of the by-products magnesium hydroxide, iodine and bromine are considered from the point of view of economy and environmental protection. Finally, the desalination project in Katowice for the coal mines Debiensko and Budryk is now in the end of the construction phase. Some modifications of the original design are shown. 1 ref., 2 figs., 1 tab

  17. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  18. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Krupka, K.M.; Serne, R.J.

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments

  19. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  20. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow

    Directory of Open Access Journals (Sweden)

    Pablo Sabat

    2017-09-01

    Full Text Available Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis could generate differences in basal (BMR and maximum metabolic rates (Msum, as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW or tap (fresh water (TW and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA. The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA to whole organism traits (e.g., metabolic rates. We propose that the physiological changes observed

  1. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  2. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  3. Repository site data and information in bedded salt: Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Tien, P.; Nimick, F.B.; Muller, A.B.; Davis, P.A.; Guzowski, R.V.; Duda, L.E.; Hunter, R.L.

    1983-11-01

    This report is a compilation of data from the literature on the Palo Duro Basin. The Palo Duro Basin is a structural basin, about 150 miles long and 80 miles wide, that is a part of the much larger Permian Basin. The US Department of Energy is investigating the Palo Duro Basin as a potentially suitable area for the site of a repository for the disposal of high-level radioactive waste. Sediments overlying the Precambrian basement range from about 5000 to about 11,000 ft in thickness and from Cambrian to Holocene in age. The strata in the Palo Duro Basin that are of primary interest to the Department of Energy are the bedded salts of the Permian San Andres Formation. The total thickness of the bedded salts is about 2000 ft. The geology of the Palo Duro Basin is well understood. A great deal of information exists on the properties of salt, although much of the available information was not collected in the Palo Duro Basin. Mineral resources are not currently being exploited from the center of the Palo Duro Basin at depth, although the possibility of exploration for and development of such resources can not be ruled out. The continued existence of salts of Permian age indicates a lack of any large amount of circulating ground water. The hydrology of the pre-Tertiary rocks, however, is currently too poorly understood to carry out detailed, site-specific hydrologic modeling with a high degree of confidence. In general, ground water flows from west to east in the Basin. There is little or no hydraulic connection between aquifers above and below the salt sequences. Potable water is pumped from the Ogallala aquifer. Most of the other aquifers yield only nonpotable water. More extensive hydrological data are needed for detailed future modeling in support of risk assessment for a possible repository for high-level waste in the Palo Duro Basin. 464 references

  4. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  5. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  6. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  7. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 μg L{sup −1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  8. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  9. The distribution of soluble radionuclide-relevant trace elements between salt minerals and saline solutions; Die Verteilung loeslicher Radionuklid-relevanter Spurenelemente zwischen Salzmineralen und salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Ina

    2015-07-16

    The research platform ENTRIA (Disposal options for radioactive residues Interdisciplinary analyses and development of evaluation principles) includes the sub-project ''Final disposal in deep geological formations without any arrangements for retrieval''. This approach considers rock salt (beside clay and granite) as host rock formation for disposal of heat-producing long-live waste. Most rock salt formations contain Mg-rich brines derived from highly evolved sea water evaporation processes now included in the rock salt mass. If such brines get access to metal-canister corrosion will allow release of soluble nuclides to the brine. In this scenario, it cannot be excluded that contaminated brines leave the deep seated disposal area and move along geological or technical migration pathways towards the rock salt/cap rock contact. The temperature of the brine will drop from near 80 C to 25 or 30 C. The deceasing temperature of the brine causes precipitation of magnesian chloride and sulfate phase in equilibrium with the brine. In order to understand the salt precipitation and the retention mechanism of dissolved trace elements experiments have been set up which allow formation of sylvite, carnallite, kainite, and hydrous Mg-sulphates under controlled conditions. The retention capacity of crystallizing salt minerals based occurring in magnesian brine solutions at decreasing temperature within a salt dome is best measured as the distribution coefficient D. This concept assumes incorporation of trace elements into the lattice of salt minerals. The distribution coefficients of the trace elements, Rb, Cs, Co, Ni, Zn, Li and B between sylvite, carnallite, kainite, and MgSO{sub 4} phases have been determined at experimental temperatures of 25, 35, 55 and 83 C. The results clearly indicate the following range of distribution coefficients (D): Sylvite D > 1 Rb and Br, D < 1 Co, Ni, Zn, Li and B, Carnallite D > 1 Rb and Cs, D < 1 Co, Ni, Zn, Li and B, Kainite D

  10. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  11. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  12. Elimination of 137Cs from trefoil (leaf and stem), ''Mitsuba'', cryptotaenia japonica hassk, boiled in a distilled and salted waters

    International Nuclear Information System (INIS)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki; Izumo, Yoshiro

    1999-01-01

    Elimination of 137 Cs from highly accumulated trefoil (leaf and stem) through boiling in distilled and salted water were investigated in relation to study the effect of cooking and processing on biochemical states of radionuclides (RI) contaminating in foods. 137 Cs was hardly eliminated from the trefoil immersed in a distilled water at room temperature (about 15degC) during 10 min. 137 Cs was considerably eliminated from the trefoil when boiled in a distilled water, 0.3-3.0% salt concentration of the water and soy sauce: about 40-60% (after 2 min), 70-85% (5 min) and 80-90% (10 min), respectively. Elimination of 137 Cs in the soy sauce (e.g. 77.0±2.9%, at 1% salt concentration after 10 min) was restrictive comparing to that in the salt water (93.4±2.3%). These results are expected to contribute to evaluate the radiation exposure to man when a boiled trefoil contaminating with 137 Cs was ingested. (author)

  13. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    International Nuclear Information System (INIS)

    Melamed, A.; Pitkaenen, P.

    1996-01-01

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO 3 and SO 4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  14. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  15. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  16. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  17. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  18. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  19. WATER AND SALT METABOLISM IN THE GERIATRIC SYNDROMES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso

    2010-01-01

    Full Text Available Geriatrics has already described four syndromes of its own: confusional syndrome, incontinence (fecal and/or urinary, and gait disorders and immobility syndrome, naming them geriatric giants. This name reflects their prevalence and great importance in the elderly. Ageing process induces many changes in renal physiology such as a reduction in glomerular filtration rate (senile hyponatremia, and water and sodium reabsorbtion capability. Besides, there are particular water and salt metabolism alteration characteristics of the geriatric syndromes, such as dehydration and hypernatremia in psychiatric disturbances as well as hyponatremia in patients suffering from immobility syndrome. The geriatric giants and nephrogeriatric physiology changes, are a good example of feed-back between geriatric syndromes, clinical entities characteristics in the elderly that predispose and potentiate each other, leading to catastrophic clinical events.

  20. Policies on radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Selling, H.A.

    1999-01-01

    An outline is given of the policy in the Netherlands on radioactive waste management, with an emphasis on the preferred disposal strategies. A description is given of the siting and licensing process for the waste treatment and storage facility of COVRA, which is in many respects expected to be comparable with that for a disposal site in due course. Immediate disposal of radioactive waste is not envisaged. Instead, the government has opted for long term interim storage in an engineered facility until sufficient confidence has been obtained on the safety performance of a geological repository over long time periods. In the previous decade research has mostly focused on the exploration of the suitability of existing salt formations in the northern part of the country as host rock for a radioactive waste repository. Although so far no in situ research was carried out, it could be demonstrated by utilising values of the relevant parameters from other rock salt formations that, in principle, deep underground disposal of radioactive waste is safe. This assessment was made by comparing both with common radiation protection criteria and with risk criteria over long periods of time. However, a decision to proceed with in situ research was postponed in view of the strong opposition from the local population against underground disposal. Instead, the scope of the research was extended to other host rock materials (clay). Additionally, from a sustainability point of view it was demanded that disposal should be conceived as an irreversible process. This means that the waste should be disposed of in such a way that it is retrievable in case better processing methods for the waste would become available. This demand of retrievability derives from the general waste policy to close the life-cycles of raw materials in order not to deprive future generations from their benefits. Consequently, much of the sequential research is now focused on the safety and financial impact of

  1. Removal of uranium from spent salt from the moltensalt oxidation process

    International Nuclear Information System (INIS)

    Summers, L.; Hsu, P.C.; Holtz, E.V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  2. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    Science.gov (United States)

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  3. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    Science.gov (United States)

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  4. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  5. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  6. Modeling of waste/near field interactions for a waste repository in bedded salt: the Dynamic Network (DNET) model

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1983-01-01

    The Fuel Cycle Risk Analysis Division of Sandia National Laboratories has been funded by the US Nuclear Regulatory Commission to develop a methodology for use in assessing the long-term risk from the disposal of radioactive wastes in deep geologic formations. As part of this program, the Dynamic Network (DNET) model was developed to investigate waste/near field interactions associated with the disposal of radioactive wastes in bedded salt formations. The model is a quasi-multi-dimensional network model with capabilities for simulating processes such as fluid flow, heat transport, salt dissolution, salt creep, and the effects of thermal expansion and subsedence on the rock units surrounding the repository. The use of DNET has been demonstrated in the analysis of a hypothetical disposal site containing a bedded salt formation as the host medium for the repository. An example of this demonstration analysis is discussed. Furthermore, the outcome of sensitivity analyses performed on the DNET model are presented

  7. Salt Content in Ready-to-Eat Food and Bottled Spring and Mineral Water Retailed in Novi Sad.

    Science.gov (United States)

    Paplović, Ljiljana B Trajković; Popović, Milka B; Bijelović, Sanja V; Velicki, Radmila S; Torović, Ljilja D

    2015-01-01

    Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD) risk. In 1,069 samples of ready-to-eat food, salt (sodium chloride) content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Average salt content (g/100 g) ranged from 0.36 ± 0.48 (breakfast cereals) to 2.32 ± 1.02 (grilled meat). The vast majority of the samples of sandwiches (91.7%), pizza (80.7%), salami (73.9%), sausages (72.9%), grilled meat (70.0%) and hard cheese (69.6%) had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals) to 46.4% (grilled meat) and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33 ± 0.30 mg and 33 ± 44 mg, respectively. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  8. Mechanical and hydrological characterization of the near-field surrounding excavations in a geologic salt formation

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Clifford L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-09-01

    The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are impermeable. Upon mining, the salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called the disturbed rock zone (DRZ).

  9. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  10. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  12. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia.

    Science.gov (United States)

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-03-08

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10-12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  13. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia

    Directory of Open Access Journals (Sweden)

    Aang Sutrisna

    2018-03-01

    Full Text Available The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10–12 years of age (SAC, 13,233 women of reproductive age (WRA, and 578 pregnant women (PW. Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49% and WRA (48% and a quarter for PW (28%. The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES, iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  14. Underground waste disposal; the time to go ahead

    International Nuclear Information System (INIS)

    Fitzpatrick, J.

    1979-01-01

    The findings and status of several national and international research programmes were recently reported at an International Symposium on the Underground Disposal of Radioactive Wastes. A brief review is presented of the situation. Attention is drawn to the flexibility in design emerging to allow for differences in fuel cycle policy, and to the bias of countries towards research into geologic host formations available within their own borders. International co-operation in this field is good. Collaborative work in the nine Community countries is divided between them by geologic type. Disposal of low and medium active waste is discussed. Research into salt domes, crystalline rods, and argillaceous sediments is briefly summarised. Aspects of underground disposal of high-level waste and radionuclide migration are also considered. (U.K.)

  15. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    Science.gov (United States)

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, road ( = 0.76, road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Experiments in a 600m borehole in the Asse II salt mine

    International Nuclear Information System (INIS)

    Heijdra, J.J.

    1992-07-01

    In the design and fabrication of underground disposal sites for radio-active waste in salt formations and the assessment of the safety of such disposal facilities, the thermo-mechanical behaviour of rock salt plays an important role. In previous research programmes models have been developed which need to be verified by in-situ experiments. It has been proven during the COSA project that computations based on laboratory scale experiments do not agree with in-situ measurements. Based on the experiments performed already and on the associated validation work, two items were considered to be of special concern, viz. the consecutive behaviour of rock salt and the rock pressure in the Asse salt mine. A particular problem in the constitutive relations is the elastic or apparent elastic behaviour of rock salt. It appeared that the salt around openings is weaker than could be expected on the basis of laboratory experiments. Possible explanations are primary creep and the weakening effect of micro cracks. In the research programme discussed here, in-situ experiments will be carried out in the Asse II salt mine in the Federal Republic of Germany. The measurements will be carried out in dry drilled boreholes. The development of the drilling technique was part of a related programme carried out under supervision of GSF-Forschungszentrum fuer Umwelt und Gesundheit (Research Centre for Environment and Health). (author). 3 refs

  17. Elimination of {sup 137}Cs from trefoil (leaf and stem), ``Mitsuba``, cryptotaenia japonica hassk, boiled in a distilled and salted waters

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki [Saitama Inst. of Public Health (Japan); Izumo, Yoshiro

    1999-07-01

    Elimination of {sup 137}Cs from highly accumulated trefoil (leaf and stem) through boiling in distilled and salted water were investigated in relation to study the effect of cooking and processing on biochemical states of radionuclides (RI) contaminating in foods. {sup 137}Cs was hardly eliminated from the trefoil immersed in a distilled water at room temperature (about 15degC) during 10 min. {sup 137}Cs was considerably eliminated from the trefoil when boiled in a distilled water, 0.3-3.0% salt concentration of the water and soy sauce: about 40-60% (after 2 min), 70-85% (5 min) and 80-90% (10 min), respectively. Elimination of {sup 137}Cs in the soy sauce (e.g. 77.0{+-}2.9%, at 1% salt concentration after 10 min) was restrictive comparing to that in the salt water (93.4{+-}2.3%). These results are expected to contribute to evaluate the radiation exposure to man when a boiled trefoil contaminating with {sup 137}Cs was ingested. (author)

  18. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  19. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  20. The use of airborne electromagnetic for efficient mapping of salt water intrusion and outflow to the sea

    DEFF Research Database (Denmark)

    Auken, Esben; Kirkegaard, Casper; Ribeiro, Joana

    2010-01-01

    Airborne electromagnetic (AEM) is an efficient tool for mapping groundwater resources in sedimentary environments. AEM delivers a very high data coverage and results in high-resolution electrical images of the subsurface. In particular the time domain methods (TEM) are well suited for mapping o0f...... not only the salt-fresh water boundary in the coastal zone, but also the mixing of fresh-salt-water on the seaside. Even freshwater layers under several meters of brackish water can be mapped. Sufficient depth of investigation is obtained by time domain methods as they have a significant higher transmitter...

  1. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  2. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    Science.gov (United States)

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  3. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  4. Control of pH of retained water in the coastal waste disposal site

    Directory of Open Access Journals (Sweden)

    Hem Ramrav

    2018-01-01

    Full Text Available After landfilling of wastes is completed, the stabilization of landfilled ground requires much time and cost. Therefore, this study aimed to control the pH of retained water in the coastal waste disposal sites during landfilling process, by conducting field surveys and laboratory experiments. In field surveys, we investigated the changes of retained water quality such as pH, salinity, and dissolved oxygen. The results show the pH of retained water has risen to about 10 when the volume of landfilled wastes reached about 25% of landfill capacity. In lowing the pH, we considered a low-cost method by pumping seawater from the adjacent sea into the landfill. The mechanism in this method is that, H+ dissociated from HCO3- in the fresh seawater react with OH- eluted from wastes would result in pH decrease. The laboratory experiments were conducted to verify the effect on pH change by adding fresh seawater to alkalized seawater. As a result, the effect of injecting fresh seawater into alkalized seawater with pH higher than 9 was confirmed. Therefore, this treatment method is suggested to enable the disposal sites to be used promptly after landfilling is completed, by adding fresh seawater to purify the retained water and waste at low cost during landfilling process.

  5. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  6. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  7. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  8. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Reefy, S A; Ali, A [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab.

  9. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    International Nuclear Information System (INIS)

    El-Reefy, S.A.; Ali, A.

    1996-01-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab

  10. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  11. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  12. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  13. Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York

    Science.gov (United States)

    Norris, Stanley E.

    1978-01-01

    The aggregate thickness of evaporites (salt, gypsum, and anhydrite) in the Silurian Salina sequence in Michigan exceeds 1200 feet in areas near the periphery of the Michigan basin, where the salt beds are less than 3000 feet below land surface. In northeast Ohio the aggregate thickness of salt beds is as much as 200 feet in places, and in western New York it is more than 500 feet, where th beds are less than 3000 feet deep. The salt-bearing rocks dip regionally on the order of 50 feet per mile; those in Michigan dip toward the center of the Michigan basin, and those in Ohio and New York, in the Appalachian basin, dip generally southward. The rocks in both basins thicken downdip. Minor folds and faults occur in the salt-bearing rocks in all three states. Some of this defrmation has been attenuated or absorbed bo the salt beds. Occuring near the middle of thick sedimentary sequences, the salt beds are bounded aboe and below by beds containing water having dissolved-solids concentrations several times that seawter. The brines occur commonly in discrete zones of high permeability at specific places in the stratigraphic sequence. In northeast Ohio two prominent brine zones are recognized by the driller, the Devonian Oriskany Sandstone, or 'first water' zone, above the Salina Formation, and the Newburg or 'second water' zone below the Salina. In each aquifer there is a vertical component of hydraulic head, but little brine probably moves through the salt beds because their permeability is extremely low. Also, ther is little evidence of dissolution of the salt in areas distant from the outcrop, suggesting that if brine does move through the salt, movement is at a slow enough rate so that, in combination with the saturated or near-saturated condition of the water, it precludes significant dissolution. Principal brine movement is probably in the permeable zones in the direction of the hydraulic gradient. Two areas in Michigan and one area each in Ohio and New York appear

  14. Characterization of trench water at the Maxey Flats low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Weiss, A.J.; Francis, A.J.; Colombo, P.

    1977-01-01

    Currently the United States Geological Survey is conducting a study of the hydrogeological and geochemical behavior of commercially operated low-level radioactive waste disposal sites. The data collected from this study will be used to establish criteria for selection of new sites for disposal of radioactive wastes. As part of this study, water samples from trenches at the Maxey Flats, Kentucky site were analyzed at Brookhaven National Laboratory to determine the source terms of the radionuclides and other components in solution in the trenches. Procedures for collection and filtration of the samples under anoxic conditions are described. The samples were analyzed for inorganic, radiochemical and organic constituents. The inorganic analysis includes the measurements of pH, specific conductance, alkalinity, and various cations and anions. The radionuclides were measured by the gross alpha, gross beta, tritium, and gamma activities, followed by specific measurements of strontium-90 and plutonium isotopes. The organics were extracted, concentrated, and identified by gas chromatography/mass spectrometry. Considerable quantities of organics were detected in all of the trench waters sampled. Specific organics were found in most of the trenches, however, the organic composition of the trench waters vary. The presence of a variety of organic compounds in trench waters suggest that they may play an important role in the transport of radionuclides

  15. Study of the multiplication and kinetic effects of salt mixtures and salt blanket micromodels on thermal neutron spectra of heavy water MAKET facility

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The main goal of the Project is to study and evaluate nuclear characteristics of materials and isotopes involved in processes of irradiated nuclear fuel transmutation. This principal task is subdivided into 9 subtasks subject to the neutron or proton source used, the type of the nuclear process under study, isotope collection, characteristics of which are to be investigated, etc. In the presented extract of the Project Activity report the measurements there were used the MAKET zero-power heavy-water reactor in the measurements there was employed a large set of minor actinide samples highly enriched with the main isotope. The samples were obtained with mass-separator SM-2 (VNIIEF). At the heavy-water reactor MAKET (ITEP) there were measured multiplying and kinetic characteristics of salt mixtures basing on the spectra of fast and thermal neutrons. The salt mixtures of zirconium and sodium fluorides were available in salt blanket models (SBM) of cylindrical shape. There were measured the neutron spectra formed by this micro-model as well as the effective fission cross-sections of neptunium, plutonium, americium and curium isotopes caused by SBM neutrons. The neutron spectra in the measurement positions were determined from activation reaction rates. (author)

  16. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  17. Radioactive waste disposal - policy and perspectives

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1979-01-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies. (UK)

  18. Radioactive waste disposal - policy and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-04-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies.

  19. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.

    Science.gov (United States)

    Pang, Bo; Saurí Suárez, Héctor; Becker, Frank

    2016-09-01

    Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Trees as indicators of subterranean water flow from a retired radioactive waste disposal site

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.

    1987-01-01

    Tree sampling helped locate a subterranean flow of tritiated water from a low-level radioactive waste disposal site that had not been detected by well water monitoring alone. Deciduous trees growing in a natural forest on the hillsides downslope from the site were sampled for the presence of tritiated water in sap of maple trees and in leaf water extracted from oak and hickory trees. Elevated concentrations of 3 H were detected in the leaf water extracted from several trees located 50 m downslope from the western boundary of the fenced exclusion zone. A 3-m-deep well drilled near these trees indicated that the source of tritiated water was a narrow zone of subterranean flow

  1. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  2. Risk analysis methodology for unreprocessed spent fuel disposal in bedded salt

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.Y.; Cranwell, R.M.

    1982-01-01

    In accordance with the decision to defer the reprocessing of commercially generated spent fuel, we are investigating the implications on risk of direct disposal of spent fuel assemblies. To the extent possible, we are using the methodology developed at Sandia for the NRC to evaluate risks from the disposal of wastes from reprocessing of spent fuel. This allows direct comparison of the risks calculated for the two waste forms. A number of differences between the two waste forms with implications on risk have been identified and investigation of their effects has begun. Among these are the presence of gases and additional plutonium and uranium isotopes, the potential for differing leach behavior, and the difference in the decay heat source which determines the overall thermomechanical response of the host media. We have analyzed a number of scenarios for a hypothetical geologic repository that have been identified as important contributors to risk from the disposal of both reprocessed and unreprocessed spent fuel. For each scenario, we employ the Groundwater Transport, Pathways to Man, and Dosimetry and Health Effects models of the High Level Waste Methodology. Risks are compared for the reprocessed and unreprocessed spent fuel wastes and the effects of uncertainty in the parameters of the various models are compared

  3. SALT4: a two-dimensional displacement discontinuity code for thermomechanical analysis in bedded salt deposits

    International Nuclear Information System (INIS)

    1983-04-01

    SALT4 is a two-dimensional analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. This code was developed by the University of Minnesota. This documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of the computer code, SALT4. The SALT4 code takes into account: (1) viscoelastic behavior in the pillars adjacent to excavations; (2) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (2) excavation sequence. Major advantages of the SALT4 code are: (1) computational efficiency; (2) the small amount of input data required; and (3) a creep law consistent with laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of SALT4, i.e., temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT4 code can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT4 can also be used to verify fully numerical codes. This is similar to the use of analytic solutions for code verification. Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  4. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  5. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  6. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  7. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  8. Calculations on the development in space and time of the temperature field around a repository of medium and high active wastes in a salt formation

    International Nuclear Information System (INIS)

    Delisle, G.

    1980-01-01

    The concept of nuclear waste disposal of th of the Federal Republic of Germany calls for the burial of the wastes within a salt formation. A small portion of the wastes will generate heat after the disposal procedure. A temperature rise within the salt formation, in space and time limited, will be the consequence. The temperature change at any point in the near or far field of the disporal area can be calculated with the aid of numerical models. The thermal parameters representative for the bulk material of the Zechstein formation in NW-Germany, on which the calculations are based, will be discussed in detail. The interrelation between the concentration of heat producing wastes in the disposal field and the maximum average temperature in the salt formation will be treated. By defining numerical models, which are based on assumed shapes of a salt dome and a disposal area, the temperature development in the near and far field of a nuclear repository are shown. (orig.) [de

  9. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    Science.gov (United States)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  10. Control of water infiltration into near-surface, low-level waste-disposal units in humid regions

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    This study's objective is to assess means for controlling water infiltration through waste-disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste-disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  11. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  12. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    Science.gov (United States)

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  13. Some aspects of the development of NW-German salt domes

    International Nuclear Information System (INIS)

    Jaritz, W.

    1980-01-01

    Aspects of the development of salt structures that may be of some importance to the safety of a final disposal site for radioactive waste are salt ascent and salt dissolution at the surface. The geological history of the salt domes is described in terms of the dissolution of the salt at the dome surface. In many cases it can be distinguished whether dissolution was caused by the ascent of the salt into strata containing groundwater by diapirism or by epeirogenic uplift or both. The salt domes of Wesendorf, Heide, and Marne are used as examples in a discussion of the transition from dissolution to the deposition of a cover of impermeable sediments. Moreover, the development of the Gorleben salt dome is described. The author's studies show the average rate of uplift of the NW-German salt domes in the diapiric stage to have ranged from a little less than 0.1 to about 0.5 mm per year. For salt domes in later stages, the rate of uplift is several hundredths of a millimeter per year at most. (orig.) [de

  14. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome

  15. Radiation effects in rock salt. A status report

    International Nuclear Information System (INIS)

    Gies, H.; Hild, W.; Kuehle, T.; Moenig, J.

    1994-01-01

    Knowledge of the irradiation defects and the accompanying energy storage in rock salt resulting from the absorption of ionizing radiation emitted by vitrified high level radioactive waste (HLW) disposed off in geological rock salt formations in an important prerequisite for a realistic assessment of possible consequences. Based on a critical review of the scientific status this report attempts to evaluate whether the available database is satisfactory and sufficiently reliable for the performance of such an assessment. Apart from a brief description of the radiation-and temperature-conditions prevailing in a HLW-repository, a detailed presentation is given of both the interaction of radiation with rock salt and the theories and models developed for their quantification

  16. Preliminary environmental assessments of disposal of rock mined during excavation of a federal repository for radioactive waste

    International Nuclear Information System (INIS)

    1977-09-01

    Since the environmental impact of mined rock handling will be dependent not only upon the nature of the material and the way in which it might be disposed but also upon the features of the disposal site area and surroundings, it was necessary to select ''reference environmental locii'' within the regions of geological interest to typify the environmental setting into which the rock would be placed. Reference locii (locations) were developed for consideration of the environmental implications of mined rock from: bedded rock salt from the Salina region, bedded rock salt from the Permian region, dome rock salt from the Gulf Interior region, Pierre shale from the Argillaceous region, granite from the crystalline rock region, volcanic basalt rock from the crystalline ash region, and carbonate rock from the limestone region. Each of these reference locii was examined with respect to those demographic, geographic, physical and ecological attributes which might be impacted by various mined rock disposal alternatives. Alternatives considered included: onsite surface storage, industrial or commercial use, offsite disposal, and environmental blending. Potential impact assessment consists of a qualitative look at the environmental implications of various alternatives for handling the mined rock, given baseline characteristics of an area typified by those represented by the ''reference locus''

  17. Using of clay-salt slimes of 'Belaruskali' factory as a sorbents of radionuclide

    International Nuclear Information System (INIS)

    Maskalchuk, L.

    2010-01-01

    Document available in extended abstract form only. The effective sorbents for decrease of radionuclide migration in soil and prevention of pollution risk of soil and underground water by radionuclide, according to available practical experience on minimization of consequences of the Chernobyl NPP accident, are: clay minerals of layered structure of type 2:1, potash fertilizers for 137 Cs and potassium rocks for 90 Sr. The analysis of literary data shows, those there two base kinds of industrial waste are formed at sylvinite ore processing almost at all potassium plants of the world: - Solid halite rejects material - Liquid waste in the form of clay-salt slimes. There is about 9 % of halite waste from annual formation using in Belarus, clay-salt slimes (CSS) are not used in general and all the volume goes to slime storage. Clay-salt slimes are the waste products of potassium production being formed in the course of sylvinite ore conversion at processing plants of the Industrial centre 'Belaruskali'. Up to the present moment about 80 millions of tones of clay-salt slimes have been accumulated in Soligorsk industrial zone, and their annual formation makes up about 2.0-2.5 millions of tones. The volume of industrial waste collected in Republic of Belarus allows considering CSS as a possible source of low-cost raw material for reception of products with different functions. On the other hand by estimation of national and international experts such quantity of industrial waste, especially liquid, represents ecological danger. Taking into account this circumstance the situation with industrial waste disposal in Soligorsk industrial area of Belarus which was estimated by international experts as critical one and it needs the cardinal measures for further environment pollution prevention. There is considerable volume of liquid radioactive waste is formed at the Nuclear Power Plant operation. Modern tendencies of radioactive waste disposal are directed on

  18. Corrosion aspects of high-level waste disposal in salt domes

    International Nuclear Information System (INIS)

    Roerbo, K.

    1979-12-01

    In the ELSAM/ELKRAT waste management project it is planned that the high-level waste is glassified, encapsuled in canisters and finally deposited in a deep hole drilled in a salt dome. In the present report corrosion aspects of the canisters after deposition are discussed. The chemical environment will probably be a limited amount of brine coming from brine inclusions in the surrounding salt and moving up against the temperature gradient, the temperature at the canister surface being in the range of 100-150degC. The possible types of corrosion and the expected corrosion rates for a number of potential canister materials (mild steel, austenitic and ferritic stainless steels, Ni-base alloys, copper, titanium and a few combinations of materials) are discussed. Mild steel (possibly combined with an inner layer of copper or titanium) might possibly be an appropriate choice of material for the canister. (author)

  19. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  20. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    Science.gov (United States)

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2008-09-01

    The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (phiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.

  2. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    Science.gov (United States)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  3. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  4. Sorbents for waste water purification from radionuclides and other toxic substances

    International Nuclear Information System (INIS)

    Maddalone, R.F.; MakKlenason, L.Ts.

    1996-01-01

    The TRW firm (USA) developed the system for sorption and disposal of radionuclides, heavy metals and organic substances, based on utilization of carbon sorbents. The sorbent is produced through processing natural coal by alkali-salt solution and has a large specific pores surface (up to 1000 m 2 /g). The sorbent carboxyl ionogenic groups are able of absorbing heavy metals cations from waste waters. Sorption by uranium constituted 30 mg/l. The sorbent with absorbed substances may be burnt (it contains no sulfur) or delivered for vitrification. The volume of disposed materials constitutes in comparison with existing techniques for uranium isotopes 420000 : 1. The costs are reduced up to 0.26 doll/m 2 of reprocessed water. 2 refs., 2 figs., 4 tabs

  5. Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry C. Hull; Carolyn W. Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  6. The community project COSA: comparison of geo-mechanical computer codes for salt

    International Nuclear Information System (INIS)

    Lowe, M.J.S.; Knowles, N.C.

    1986-01-01

    Two benchmark problems related to waste disposal in salt were tackled by ten European organisations using twelve rock-mechanics finite element computer codes. The two problems represented increasing complexity with first a hypothetical verification and then the simulation of a laboratory experiment. The project allowed to ascertain a shapshot of the current combined expertise of European organisations in the modelling of salt behaviour

  7. Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain

    International Nuclear Information System (INIS)

    Huertas, F.; Ulibarri, A.

    1993-01-01

    Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m 2 , including the rock salt dump. The space required for the underground facilities amounts to 1.2 km 2 , approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented

  8. In situ corrosion studies on selected high level waste packaging materials under simulated disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-01-01

    In order to qualify corrosion resistant materials for high level waste (HLW) packagings acting as a long-term barrier in a rock salt repository, the corrosion behavior of preselected materials is being investigated in laboratory-scale and in-situ experiments. This work reports about in-situ corrosion experiments on unalloyed steels, Ti 99.8-Pd, Hastelloy C4, and iron-base alloys, as nodular cast iron, Ni-Resist D4 and Si-cast iron, under simulated disposal conditions. The results of the investigations can be summarized as follows: (1) all materials investigated exhibited high resistance to corrosion under the conditions prevailing in the Brine Migration Test; (2) all materials and above all the materials with passivating oxide layers such as Ti 99.8-Pd and Hastelloy C4 which may corrode selectively already in the presence of minor amounts of brine had been resistant with respect to any type of local corrosion attack; the gamma-radiation of 3 · 10 2 Gy/h did not exert an influence on the corrosion behavior of the materials

  9. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  10. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  11. Trial storage of high-level waste cylinders in the Asse II salt mine

    International Nuclear Information System (INIS)

    1984-01-01

    This report covers the contract period 1976-77, as well as some of the tasks carried out during the extension in 1978, in the framework of the R and D programme for disposal of radioactive waste in salt formations. With regard to the in-situ tests for the liberation and migration of brine, the testing devices were examined successfully. Laboratory examinations carried out showed a stepwise liberation of the water contents in halite in dependence on the temperature. The amount of brine liberated stood in good agreement with the in situ results. A temperature test for borehole convergence resulted in definite convergence rates. Simultaneously no influence was registered in the stability of the surrounding rocks. For the realization of an integrated major experiment, temperature test field IV was mined on the 750 m level of the Asse Salt Mine and heater- as well as measurement drillings were carried out. Extensive rheological examinations are concentrated particularly on the halite and secondly on the Carnallite. They are chiefly based on uni- and multiaxial pressure tests. Computer programmes are developed to examine the heat generation in wastes as well as in salt. In comparison, the programme development of computer codes for the stability behaviour of rocks is still at a relatively early stage, because it has to build up on the results of heat generation. The works for the development of a transport container with a shielding combination are at a very advanced stage. An integrated disposal- and retrieval system was developed, tested and successfully demonstrated. A monitoring system in the mine has also been developed in its essential parts

  12. Nuclear waste disposal: alternatives to solidification in glass proposed

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    More than a quarter-million cubic meters of liquid radioactive wastes are now being held at government installations awaiting final disposal. During the past 20 years, the disposal plan of choice has been to incorporate the 40 to 50 radioactive elements dissolved in liquid wastes into blocks of glass, seal the glass in metal canisters, and insert the canisters into deep, geologically stable salt beds. Over the last few years, some geologists and materials scientists have become concerned that perhaps not enough is known yet about the interaction of waste, container, and salt (or any rock) to have a reasonable assurance that the hazardous wastes will be contained successfully. The biggest advantage of glass at present is the demonstrated practicality of producing large, highly radioactive blocks of it. The frontrunner as a successor to glass is ceramics, which are nonmetallic crystalline materials formed at high temperature, such as chinaware or natural minerals. An apparent advantage of ceramics is that they already have an ordered atomic structure, whose properties can be tailored to a particular waste element and to conditions of a specific disposal site. A ceramic tailored for waste disposal called supercalcine-ceramic has been developed. It was emphasized that the best minerals for waste solidification may be those that have proved most stable under natural conditions over geologic time. Disadvantage to ceramics are radiation damage and transmutation. However, it is now obvious that some ceramics are more stable than glass under certain conditions. Metal-encapsulated ceramic, called cermet, is being developed as a waste form. Cermets are considerably more resistant at 100 0 C than a borosilicate waste glass. Researchers are now testing prospective waste forms under the most extreme conditions that might prevail in a waste disposal site

  13. Degradation of cementitious materials associated with salstone disposal units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-01

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of a saltstone disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions.

  14. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  15. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  16. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  17. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  18. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  19. Batch-wise final disposal made feasible by long-term interim storage of waste: the choice of the Netherlands

    International Nuclear Information System (INIS)

    Codee, Hans D.K.; Vrijen, Jan

    1991-01-01

    Radioactive waste produced in the Netherlands is managed by COVRA, the Central Organisation for Radioactive Waste. All kinds and categories of radwaste generated in the next 50-100 years will be stored in above ground engineered structures which allow retrieval at all times. After this long-term storage, the wastes will finally be disposed of in a deep geologic repository. At the political level no firm decisions have yet been taken with respect to the final disposal. Disposal in rock salt, which is available in the Netherlands, is explored as an option. Immediate disposal requires the availability of a large amount of money as well as a site. Neither of the two are available at present in the Netherlands, nor are they required at this time. Based on economic considerations, immediate disposal into a rock salt facility in not an acceptable option for the wastes presently produced in the Netherlands. Only after sufficient capital has been generated through an interest bearing fund can this option be considered for implementation

  20. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    Science.gov (United States)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  1. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  2. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  3. Salt Block II: description and results

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1980-06-01

    A description of and results from the Salt Block II experiment, which involved the heating of and measurement of water transport within a large sample of rock salt, are presented. These results include the measurement of water released into a heated borehole in the sample as well as measured temperatures within the salt. Measured temperatures are compared with the results of a mathematical model of the experiment

  4. Strategic petroleum reserve, Byran Mound Salt Dome, Brazoria County, Texas. Final environmental impact statement (final supplement to FEA FES 76/77-6)

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    On January 7, 1977, the Federal Energy Administration issued a Final Environmental Impact Statement (EIS) for the development of the Bryan Mound salt dome as a storage site for the Strategic Petroleum Reserve (FES 76/77-6). On October 1, 1977, the U.S. Department of Energy was created and the programs of the Federal Energy Administration were transferred to the new Department. As such, this final supplement is being issued by the Department of Energy. The salt dome is located in Brazoria County, Texas. Since the EIS was published, it has been determined that this arrangement would be inadequate to meet the long term requirements for filling and withdrawing oil at the site, although the disposal of brine to Dow Chemical would be utilized to the maximum extent possible. Therefore, on July 15, 1977, a Draft Supplement to FES 76/77-6 was issued addressing the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This final supplement addresses a brine injection well system and a water intake system. Construction of this new system component would cause temporary disruption to land use, water quality, air quality, and terrestrial and aquatic ecology. The new facilities would permanently change 17 acres of land from its present use. Operation of the systems would have relatively small, short-term impacts. Use of the brine surge pit could adversely affect air quality by emitting hydrocarbon vapors (maximum rate of 51.4 tons per year). Operation of the disposal wells would increase the salinity of an already saline aquifer. All operational impacts would be relatively minor and short-term, occurring only during periods of fill or withdrawal of the storage facility.

  5. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  6. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  7. Mined salt storage feasibility: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This study addresses a method of eliminating the surface storage of mined salt at the Deaf Smith repository site. It provides rough estimates of the logistics and costs of transporting 3.7 million tons of salt from the repository to the salt disposal site near Carlsbad, New Mexico and returning it to the repository for decommissioning backfill. The study assumes that a railcar/truck system will be installed and that the excavated salt will be transported from the repository to an existing potash mine located near Carlsbad, New Mexico approximately 300 miles from the repository. The 3.7 million tons of salt required for repository decommissioning backfill can be stored in the potash mines along with the excess salt, with no additional capital costs required for either a railcar or a truck transportation system. The capital cost for facilities to reclaim the 3.7 million tons of salt from the potash mine is estimated to be $4,400,000 with either a rail or truck transportation system. Segregating the 3.7 million tons of backfill salt in a surface storage area at the potash mine requires a capital cost of $13,900,000 with a rail system or $11,400,000 with a truck system. Transportation costs are estimated at $0.08/ton-mile for rail and $0.13/ton-mile for truck. 2 figs., 5 tabs

  8. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  9. Bile salts as semiochemicals in fish

    Science.gov (United States)

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  10. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  11. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references

  12. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  13. Safety related aspects of ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Goemmel, R.

    1992-01-01

    Solutions and questions related to nuclear waste management are presented. In particular, long-term safety of repositories in Germany and Sweden is considered, with special attention being paid to methods of detection, geotechnical barriers and post-operational phase of salt dome repositories, and conditioning of wastes to make them fit for ultimate disposal. (DG) [de

  14. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  15. Wastes disposal on board a ship. Disposal of sewage and waste water; Senjo no haikibutsu shori. Osui oyobi haisui no shori ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-07-25

    This paper describes technologies and devices suitable for disposing of sewage and waste water produced in a ship. Methods for disposing of sewage in a ship include such physico-chemical disposition methods as disinfection and sterilization, and such biological disposition methods as activated sludge sewage disposition and catalytic oxidation (biological membrane treatment). Sewage treatment devices include a storage tank type sewage treatment device often used in inner sea liners such as ferry boats, and a biological treatment device (aeration device) used as a mainstream in merchant ships, large passenger liners, and governmental ships. With the storage tank type sewage treatment device, sewage is stored in a storage tank provisionally while a ship is cruising in a discharge prohibited sea area, and discharged in a sea area allowing the discharge or when the ship enters a port. The method is simple, but limited in storage volume. An activated sludge sewage treatment device consists of a tank divided into an aeration chamber, a sedimentation chamber and a disinfection chamber, an air compressor, a chlorine dissolving apparatus, and a screen. Sewage is digested and decomposed by activated sludge, and the top clear water is disinfected by chlorine, and then discharged. 1 tab.

  16. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanisław Flasiński

    2014-01-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  17. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  18. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    Science.gov (United States)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  19. Land application for disposal of excess water: an overview

    International Nuclear Information System (INIS)

    Riley, G.H.

    1992-01-01

    Water management is an important factor in the operation of uranium mines in the Alligator Rivers Region, located in the Wet-Dry tropics. For many project designs, especially open cut operations, sole reliance on evaporative disposal of waste water is ill-advised in years where the Wet season is above average. Instead, spray irrigation, or the application of excess water to suitable areas of land, has been practised at both Nabarlek and Ranger. The method depends on water losses by evaporation from spray droplets, from vegetation surfaces and from the ground surface; residual water is carried to the groundwater system by percolation. The solutes are largely transferred to the soils where heavy metals and metallic radionuclides attach to particles in the soil profile with varying efficiency depending on soil type. Major solutes that can occur in waste water from uranium mines are less successfully immobilised in soil. Sulphate is essentially conservative and not bound within the soil profile; ammonia is affected by soil reactions leading to its decomposition. The retrospective viewpoint of history indicates the application of a technology inadequately researched for local conditions. The consequences at Nabarlek have been the death of trees on one application area and the creation of contaminated groundwater which has moved into the biosphere down gradient and affected the ecology of a local stream. At Ranger, the outcome of land application has been less severe in the short term but the effective adsorption of radionuclides in surface soils has lead to dose estimates which will necessitate restrictions on future public access unless extensive rehabilitation is carried out. 2 refs., 1 tab

  20. Novel ordered structures in the mixture of water/organic solvent/salts investigated by neutron scattering

    International Nuclear Information System (INIS)

    Sadakane, Koichiro

    2013-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)